WorldWideScience

Sample records for stirred gas-phase reactors

  1. Gas-solid hydroxyethylation of potato starch in a stirred vibrating fluidized bed reactor

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    A novel reactor for modifying cohesive C-powders such as in the gas-solid hydroxyethylation of semidry potato starch is characterized, the so-called stirred vibrating fluidized bed reactor. Good fluidization characteristics are obtained in this reactor for certain combinations of stirring and

  2. Gas–liquid flow in stirred reactors: Trailing vortices and gas accumulation behind impeller blades

    NARCIS (Netherlands)

    Ranade, V.; Deshpande, Vaibhav R.

    1999-01-01

    In a gas–liquid stirred reactor, gas tends to accumulate in low-pressure regions behind the impeller blades. Such gas accumulation significantly alters impeller performance characteristics. We have computationally investigated gas–liquid flow generated by a Rushton (disc) turbine. Rotating Rushton

  3. Analysis of lime-slurry stirred tank carbonation reactor

    International Nuclear Information System (INIS)

    McAleese, J.P.; Belt, B.A.; Datesh, J.R.; Shaeffer, M.C.

    1977-01-01

    Gas residence time distributions were determined for a stirred tank carbonation reactor. Empirical correlations for the first and second moments of the residence time distribution (RTD) curves as functions of flow rates and impeller speeds were obtained. Decontamination factors for 85 Kr were measured

  4. Gas-phase photocatalysis in μ-reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high-sensitivity reac......Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high...

  5. continuous stirred tank reactor (CSTR)

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... stirred tank reactor (CSTR) and the small and large intestines as plug flow reactor (PFR) ... from the two equations are used for the reactor sizing of the modeled reactors.

  6. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  7. Nonequilibrium chemical instabilities in continuous flow stirred tank reactors: The effect of stirring

    International Nuclear Information System (INIS)

    Horsthemke, W.; Hannon, L.

    1984-01-01

    We present a stochastic model for stirred chemical reactors. In the limiting case of practical interest, i.e., fast stirring, we solve for the characteristic function in steady state and derive expressions for the stationary moments through a perturbation expansion. Moments are explicitly calculated for a generic model of bistable behavior. We find that stirring decreases the area of the bistable region essentially by changing the point of transition from the high reaction rate state to the low reaction rate state. This is in remarkable agreement with the experimental findings of Roux, et al. Our results indicate that stirring should not be considered simply as an ''enhanced diffusion'' process and that nucleation plays only a minor role in transitions between multiple steady states in a continuous flow stirred tank reactor (CSTR)

  8. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  9. Parametric study of the Incompletely Stirred Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mobini, K. [Department of Mechanical Engineering, Shahid Rajaee University, Lavizan, Tehran (Iran); Bilger, R.W. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney (Australia)

    2009-09-15

    The Incompletely Stirred Reactor (ISR) is a generalization of the widely-used Perfectly Stirred Reactor (PSR) model and allows for incomplete mixing within the reactor. Its formulation is based on the Conditional Moment Closure (CMC) method. This model is applicable to nonpremixed combustion with strong recirculation such as in a gas turbine combustor primary zone. The model uses the simplifying assumptions that the conditionally-averaged reactive-scalar concentrations are independent of position in the reactor: this results in ordinary differential equations in mixture fraction space. The simplicity of the model permits the use of very complex chemical mechanisms. The effects of the detailed chemistry can be found while still including the effects of micromixing. A parametric study is performed here on an ISR for combustion of methane at overall stoichiometric conditions to investigate the sensitivity of the model to different parameters. The focus here is on emissions of nitric oxide and carbon monoxide. It is shown that the most important parameters in the ISR model are reactor residence time, the chemical mechanism and the core-averaged Probability Density Function (PDF). Using several different shapes for the core-averaged PDF, it is shown that use of a bimodal PDF with a low minimum at stoichiometric mixture fraction and a large variance leads to lower nitric oxide formation. The 'rich-plus-lean' mixing or staged combustion strategy for combustion is thus supported. (author)

  10. MODELLING AND CONTROL OF CONTINUOUS STIRRED TANK REACTOR WITH PID CONTROLLER

    Directory of Open Access Journals (Sweden)

    Artur Wodołażski

    2016-09-01

    Full Text Available This paper presents a model of dynamics control for continuous stirred tank reactor (CSTR in methanol synthesis in a three-phase system. The reactor simulation was carried out for steady and transient state. Efficiency ratio to achieve maximum performance of the product per reactor unit volume was calculated. Reactor dynamics simulation in closed loop allowed to received data for tuning PID controller (proportional-integral-derivative. The results of the regulation process allow to receive data for optimum reactor production capacity, along with local hot spots eliminations or temperature runaway.

  11. Mixing-Structure Relationship in Jet-Stirred Reactors

    KAUST Repository

    Ayass, Wassim W.

    2016-05-26

    In this study, measurements were performed to assess the overall mixing in jet-stirred reactors (JSRs) passively agitated by feed nozzles. The reactor diameter, nozzle shape, and nozzle diameter were varied to determine the effects of these geometrical parameters on mixing. The mixing was studied at ambient conditions using laser absorption spectroscopy to follow the exit concentration of a tracer gas, carbon dioxide, after a step change in its input flow. The results indicate that the use of a JSR of diameter D = 40 mm, having inclined or crossed nozzles of diameter d = 1 mm is recommended for low residence times up to 0.4 sec, while at moderate/high residence times 0.5-5 sec the use of a JSR of D = 56 mm and d = 0.3 mm having crossed nozzles is suggested.

  12. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent

    2012-08-16

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  13. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    Science.gov (United States)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  14. Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage

    International Nuclear Information System (INIS)

    Dufour, Thomas; Hoang, Hong Minh; Oignet, Jérémy; Osswald, Véronique; Clain, Pascal; Fournaison, Laurence; Delahaye, Anthony

    2017-01-01

    Highlights: •CO 2 hydrate storage was studied in a stirred tank reactor under pressure. •CO 2 hydrates can store three times more energy than water during the same time. •Increasing CO 2 hydrate pressure decreases charge time for the same stored energy. •CO 2 hydrate storage allow average power exchange to be maintained along the process. -- Abstract: Phase change material (PCM) slurries are considered as high-performance fluids for secondary refrigeration and cold thermal energy storage (CTES) systems thanks to their high energy density. Nevertheless, the efficiency of such system is limited by storage dynamic. In fact, PCM charging or discharging rate is governed by system design (storage tank, heat exchanger), heat transfer fluid temperature and flow rate (cold or hot source), and PCM temperature. However, with classical PCM (ice, paraffin…), phase change temperature depends only on material/fluid nature and composition. In the case of gas hydrates, phase change temperature is also controlled by pressure. In the current work, the influence of pressure on cold storage with gas hydrates was studied experimentally using a stirred tank reactor equipped with a cooling jacket. A tank reactor model was also developed to assess the efficiency of this storage process. The results showed that pressure can be used to adjust phase change temperature of CO 2 hydrates, and consequently charging/discharging time. For the same operating conditions and during the same charging time, the amount of stored energy using CO 2 hydrates can be three times higher than that using water. By increasing the initial pressure from 2.45 to 3.2 MPa (at 282.15 K), it is also possible to decrease the charging time by a factor of 3. Finally, it appears that the capacity of pressure to increase CO 2 -hydrate phase-change temperature can also improve system efficiency by decreasing thermal losses.

  15. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  16. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  17. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  18. Steady State Simulation of Two-Gas Phase Fluidized Bed Reactors in Series for Producing Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Ali Farhangiyan Kashani

    2012-12-01

    Full Text Available A linear low density polyethylene (LLDPE production process, including two- fuidized bed reactors in series (FBRS and other process equipment, was completely simulated by Aspen Polymer Plus software. Fluidized bed reactors were considered as continuous stirred tank reactors (CSTR consisted of polymer and gas phases. POLY-SRK and NRTL-RK equations of state were used to describe polymer and non-polymer streams, respectively. In this simulation, a kinetic model, based on a double active site heterogeneous Ziegler-Natta catalyst was used for simulation of LLDPE process consisting of two FBRS. Simulator using this model has the capability to  predict a number of  principal characteristics of LLDPE such as melt fow index (MFI, density, polydispersity index, numerical and weight average molecular weights (Mn,Mw and copolymer molar fraction (SFRAC. The results of the simulation were compared with industrial plant data and a good agreement was observed between the predicted model and plant data. The simulation results show the relative error of about 0.59% for prediction of polymer mass fow and 2.67% and 0.04% for prediction of product MFI and density, respectively.

  19. FLUIDDYNAMIC ASPECTS OF GAS-PHASE ETHYLENE POLYMERIZATION REACTOR DESIGN

    Directory of Open Access Journals (Sweden)

    Guardani R.

    1998-01-01

    Full Text Available The relative importance of design variables affecting the fluiddynamic behavior of a fluidized bed reactor for the gas-phase ethylene polymerization is discussed, based on mathematical modeling. The three-phase bubbling fluidized bed model is based on axially distributed properties for the bubble, cloud and emulsion phases, combined with correlations for population balance and entrainment. Under the operating conditions adopted in most industrial processes, the reactor performance is affected mainly by the reaction rate and solids entrainment. Simulation results indicate that an adequate design of the freeboard and particle collecting equipment is of primary importance in order to produce polymeric particles with the desired size distribution, as well as to keep entrainment and catalyst feed rates at adequate levels.

  20. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  2. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Holland, M.E.

    1980-01-01

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  3. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang

    2017-06-01

    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  4. Investigations of the Gas-Liquid Multiphase System Involving Macro-Instability in a Baffled Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2016-01-01

    Full Text Available Bubble Sauter Mean Diameter (SMD in gas-liquid multiphase system is of particular interest and the quantification of gas characteristics is still a challenge today. In this contribution, multiphase Computational Fluid Dynamic (CFD simulations are combined with Population Balance Model (PBM to investigate the bubble SMD in baffled stirred tank reactor (STR. Hereby, special attention is given to the phenomenon known as the fluid macro-instability (MI, which is a large-scale low-frequency fluid velocity variation in baffled STRs, since the fluid MIs have a dominating influence on the bubble breakage and coalescence processes. The simulations, regarding the fluid velocity, are validated with Laser Doppler Anemometry (LDA experiments, in which the instant radial velocity is analyzed through Fast Fourier Transform (FFT spectrum. The frequency peaks of the fluid MIs are found both in the simulation and in the experiment with a high degree of accuracy. After the validation, quantitative predictions of overall bubble SMD with and without MIs are carried out. Due to the accurate prediction of the fluid field, the influence of the fluid MI to bubble SMD is presented. This result provides more adequate information for engineers working in the field of estimating bubble SMDs in baffled STRs.

  5. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  6. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  8. Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor

    International Nuclear Information System (INIS)

    Sharma, Ashokkumar M.; Kumar, Ajay; Madihally, Sundararajan; Whiteley, James R.; Huhnke, Raymond L.

    2014-01-01

    Syngas, the main gasification product, is a well-known intermediate for making fuels, chemicals and power. The objective of this study was to develop and validate reaction kinetics-based gasification model using extents of major reactions in a CSTR (continuous stirred-tank reactor) to predict syngas composition and yield. The model was studied by varying biomass and air flowrates from 2.9 to 4.2 dry kg/h and 4.5–10 kg/h, respectively, with temperature from 801 to 907 °C. Results showed significant improvement in the predictions of syngas composition and yield, and gasification efficiency. The extents of gasification reactions indicated that at ERs (equivalence ratios) below 0.32, the water gas reaction contributed the most to the syngas CO and H 2 yields. The char oxidation reaction was also the dominating reaction contributing to CO yield at ERs below 0.40. At ERs above 0.29, the Boudouard and methane oxidation reactions were the most dominating reactions contributing to the CO yield while the water gas shift reaction contributed to the H 2 yield. The developed model corrected one of the key underlying assumptions that biomass decomposes into elemental forms (C, H, O, N and S), however, gasification temperature, carbon conversion efficiency and tar yield were assumed to be given. - Highlights: • Modeled gasification using extent of reaction in a continuous stirred-tank reactor. • Extents of major reactions during gasification were predicted. • Model greatly improved prediction of biomass-generated gas composition and yield. • Water gas, Boudouard and methane oxidation reactions contributed to CO production. • Water gas and water gas shift were the dominating reactions for H 2 production

  9. Gas-liquid contacting in mixing vessels

    International Nuclear Information System (INIS)

    Mann, R.

    1983-01-01

    This report by Dr. R. Mann of UMIST presents a critical survey of literature on the contacting of gases with liquids in stirred vessels. Research undertaken in the last fifteen years in analysed, and promising areas for future research are identified. The report deals with physical contacting, mass transfer between the gas and liquid phases and the utilisation of the stirred vessel as a gas-liquid reactor. Three sections are given on gas-liquid contacting: physical aspects; interphase mass transfer; and chemical reactions. It also discusses recent new approaches and includes a summary of conclusions, nomenclature and references

  10. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.; Vanteru, Mahendra Reddy; Ruan, S.; Doan, N. A K; Roberts, William L.; Swaminathan, N.

    2016-01-01

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used

  11. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  12. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  13. Modelling of non-catalytic reactors in a gas-solid trickle flow reactor: Dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase

  14. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  15. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    International Nuclear Information System (INIS)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-01-01

    Highlights: ► Flotation concentrate and smelter dust were sampled and combined. ► Copper bioleaching from the combined was investigated. ► Two bio-reactors were investigated and optimized: stirred and airlift. ► STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu 2 S, CuS, and Cu 5 FeS 4 .Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  16. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  17. Evaluation of Continuous Stirred Tank Reactor Performance by Using Radioisotope Tracer

    International Nuclear Information System (INIS)

    Noor Anis Kundari; Djoko Marjanto; Ardhani Dyah W

    2009-01-01

    Research on performance evaluation of continuous stirred tank reactor (CSTR) using radioisotope tracer has been carried out. The aim of research is to assess a validity of assumption that stirring or mixing process in a CSTR is perfect. In order to follow the flow dynamics process of the fluid in the reactor, I-131 was used. The reactor was equipped with four baffles. The fluid/water leaving the reactor was sampled at 13 up to 1393 seconds and analysed its I-131 concentration. The performance of CSTR is expressed as dispersed number (D/uL) as function of retention time and Reynolds number under axial dispersed model. The experimental result show that the relation between the dispersion number and retention time is D/uL = 9X10 -4 (t s * ) 2 - 6.9X10 -1 (t s * ) + 148 and the dispersion number and Reynolds number is D/uL = 65.7 e 0.0003/Re . The dispersion number obtained were much higher than 0.01 that in between 11.08 up to 21.4. That mean the mixing process occurred in the CSTR can be assumed to be ideal. (author)

  18. Gas-liquid reactor / separator: dynamics and operability characteristics

    NARCIS (Netherlands)

    Ranade, V.; Kuipers, J.A.M.; Versteeg, Geert

    1999-01-01

    A comprehensive mathematical model is developed to simulate gas¿liquid reactor in which both, reactants as well as products enter or leave the reactor in gas phase while the reactions take place in liquid phase. A case of first-order reaction (isothermal) was investigated in detail using the dynamic

  19. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  20. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  2. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    Science.gov (United States)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  3. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  4. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  5. Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives

    OpenAIRE

    Dubey, Kashyap Kumar; Kumar, Dhirendra; Kumar, Punit; Haque, Shafiul; Jawed, Arshad

    2013-01-01

    Bioconversion of colchicine into its pharmacologically active derivative 3-demethylated colchicine (3-DMC) mediated by P450BM3 enzyme is an economic and promising strategy for the production of this inexpensive and potent anticancer drug. Continuous stirred tank reactor (CSTR) and packed-bed reactor (PBR) of 3 L and 2 L total volumes were compared for the production of 3-demethylated colchicine (3-DMC) a colchicine derivative using Bacillus megaterium MTCC*420 under aerobic conditions. Statis...

  6. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  7. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  8. Numerical Study on Flow, Temperature, and Concentration Distribution Features of Combined Gas and Bottom-Electromagnetic Stirring in a Ladle

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available A novel method of combined argon gas stirring and bottom-rotating electromagnetic stirring in a ladle refining process is presented in this report. A three-dimensional numerical model was adopted to investigate its effect on improving flow field, eliminating temperature stratification, and homogenizing concentration distribution. The results show that the electromagnetic force has a tendency to spiral by spinning clockwise on the horizontal section and straight up along the vertical section, respectively. When the electromagnetic force is applied to the gas-liquid two phase flow, the gas-liquid plume is shifted and the gas-liquid two phase region is extended. The rotated flow driven by the electromagnetic force promotes the scatter of bubbles. The temperature stratification tends to be alleviated due to the effect of heat compensation and the improved flow. The temperature stratification tends to disappear when the current reaches 1200 A. The improved flow field has a positive influence on decreasing concentration stratification and shortening the mixing time when the combined method is imposed. However, the alloy depositing site needs to be optimized according to the whole circulatory flow and the region of bubbles to escape.

  9. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor

    International Nuclear Information System (INIS)

    Moussiere, S.

    2006-12-01

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  10. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  11. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  12. Friction Stir Processing of Cast Superalloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  13. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    Science.gov (United States)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  14. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  15. Terminal sliding mode control for continuous stirred tank reactor

    OpenAIRE

    Zhao, D.; Zhu, Q.; Dubbeldam, J.

    2015-01-01

    A continuous stirred tank reactor (CSTR) is a typical example of chemical industrial equipment, whose dynamics represent an extensive class of second order nonlinear systems. It has been witnessed that designing a good control algorithm for the CSTR is very challenging due to the high complexity. The two difficult issues in CSTR control are state estimation and external disturbance attenuation. In general, in industrial process control a fast and robust response is essential. Driven by these ...

  16. A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls

    International Nuclear Information System (INIS)

    Kokkoris, George; Panagiotopoulos, Apostolos; Gogolides, Evangelos; Goodyear, Andy; Cooke, Mike

    2009-01-01

    Gas phase and reactor wall-surface kinetics are coupled in a global model for SF 6 plasmas. A complete set of gas phase and surface reactions is formulated. The rate coefficients of the electron impact reactions are based on pertinent cross section data from the literature, which are integrated over a Druyvesteyn electron energy distribution function. The rate coefficients of the surface reactions are adjustable parameters and are calculated by fitting the model to experimental data from an inductively coupled plasma reactor, i.e. F atom density and pressure change after the ignition of the discharge. The model predicts that SF 6 , F, F 2 and SF 4 are the dominant neutral species while SF 5 + and F - are the dominant ions. The fit sheds light on the interaction between the gas phase and the reactor walls. A loss mechanism for SF x radicals by deposition of a fluoro-sulfur film on the reactor walls is needed to predict the experimental data. It is found that there is a net production of SF 5 , F 2 and SF 6 , and a net consumption of F, SF 3 and SF 4 on the reactor walls. Surface reactions as well as reactions between neutral species in the gas phase are found to be important sources and sinks of the neutral species.

  17. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  18. FBR type reactor

    International Nuclear Information System (INIS)

    Nagai, Fumio.

    1979-01-01

    Purpose: To unify the temperature distribution in a nuclear reactor vessel by the provision of a gas recycle path for pressurizing a cover gas to recycle the cover gas and thus stir the gas in a cover gas chamber. Constitution: A plurality of gas inlet tubes and gas discharge tubes are provided to the wall of a cover gas chamber above the liquid level of coolants in a nuclear reactor vessel and the cover gas is recycled through the tubes. The plurality of gas inlet tubes are each provided at their tops with nozzles opening circumferentially and communicated to the outlet of a compressor. While on the other hand, the plurality of gas discharge tubes are communicated to the inlet of a compressor. Upon operation of the compressor, the pressurized cover gas is jetted out from the nozzles, swirls along the inner circumferential surface of the vessel and interrupts and stirs the vertical thermal convection. The gas, after swirling one-half of the inner circumferential surface of the vessel, automatically flows out of the gas discharging tubes opening behind the nozzles and then flows into the inlet of the compressor. (Seki, T.)

  19. Mixing In Jet-Stirred Reactors With Different Geometries

    KAUST Repository

    Ayass, Wassim W.

    2013-12-01

    This work offers a well-developed understanding of the mixing process inside Jet- Stirred Reactors (JSR’s) with different geometries. Due to the difficulty of manufacturing these JSR’s made in quartz, existing JSR configurations were assessed with certain modifications and optimal operating conditions were suggested for each reactor. The effect of changing the reactor volume, the nozzle diameter and shape on mixing were both studied. Two nozzle geometries were examined in this study, a crossed shape nozzle and an inclined shape nozzle. Overall, six reactor configurations were assessed by conducting tracer experiments - using the state-of-art technologies of high-speed cameras and laser absorption spectroscopy- and Computational Fluid Dynamics (CFD) simulations. The high-speed camera tracer experiment gives unique qualitative information – not present in the literature – about the actual flow field. On the other hand, when using the laser technique, a more quantitative analysis emerges with determining the experimental residence time distribution (RTD) curves of each reactor. Comparing these RTD curves with the ideal curve helped in eliminating two cases. Finally, the CFD simulations predict the RTD curves as well as the mixing levels of the JSR’s operated at different residence times. All of these performed studies suggested the use of an inclined nozzle configuration with a reactor diameter D of 40mm and a nozzle diameter d of 1mm as the optimal choice for low residence time operation. However, for higher residence times, the crossed configuration reactor with D=56mm and d=0.3mm gave a nearly perfect behavior.

  20. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang

    2017-01-01

    levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental

  1. The operation characteristics of biohydrogen production in continuous stirred tank reactor with molasses

    Energy Technology Data Exchange (ETDEWEB)

    Hong, C.; Wei, H.; Jie-xuan, D.; Xin, Y.; Chuan-ping, Y. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering

    2010-07-01

    The anaerobic fermentation biohydrogen production in a continuous stirred tank reactor (CSTR) was investigated as a means for treating molasses wastewater. The research demonstrated that the reactor has the capacity of continuously producing hydrogen in an initial biomass (as volatile suspension solids) of 17.74 g/L, temperature of approximately 35 degrees Celsius, hydraulic retention time of 6 hours. The reactor could begin the ethanol-type fermentation in 12 days and realize stable hydrogen production. The study also showed that the CSTR reactor has a favourable stability even with an organic shock loading. The hydrogen yield and chemical oxygen demand (COD) increased, as did the hydrogen content.

  2. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  3. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    Science.gov (United States)

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Vega, J L; Clausen, E C; Gaddy, J L

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  6. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    Science.gov (United States)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  7. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  8. Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: combustion model formulation and implementation details

    OpenAIRE

    Li, Zhiyi; Ferrarotti, Marco; Cuoci, Alberto; Parente, Alessandro

    2018-01-01

    The present work focuses on the numerical simulation ofModerate or Intense Low oxygen Dilution combustion condition, using thePartially-Stirred Reactor model for turbulence-chemistry interactions.The Partially-Stirred Reactor model assumes that reactions are confinedin a specific region of the computational cell, whose mass fractiondepends both on the mixing and the chemical time scales. Therefore, theappropriate choice of mixing and chemical time scales becomes crucial toensure the accuracy ...

  9. Batch leachate treatment using stirred electrocoagulation reactor with variation of residence time and stirring rate

    Science.gov (United States)

    Sitorus, I. S.; Astono, W.; Iswanto, B.

    2018-01-01

    This study aims to reduce pollutant levels of the leachate by electrocoagulation method using a stirred electrocoagulation reactor as the electrochemical water treatment. The release of active coagulants as metallic ions took place in the anode, while in the cathode, the electrolysis reaction in the form of hydrogen gas dischargeoccurred. The source of wastewater is Waste Water Treatment Plant inlet III of Bantar Gebang, Bekasi. Some parameters were analyzed in this research, i.e., Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), NH3, NO3 -, NO2 -, N-total, and organic substances as well as the microorganism growth before and after electrocoagulation, with variations of detention time (seconds) of 10, 20, 120, 600 and rapid mixing conditions (rpm) of 60, 100 and 200. The results show that the greater the rapid mixing speed and the detention time of electrolysis, the higher the removal of contaminants in liquid waste. The optimum condition of electrocoagulation was encountered at 200 rpm rapid mixing with 600 seconds of processing time. The removal efficiencies of electrocoagulation method for each parameter are TSS of 46.80%, BOD5 of 71.33%, COD of 73.77%, Pb of 62.5%,and NH3-N of 57.92%,whereas the pH value has been increased from 8.03 to 8.95. The electrocoagulation method can reduce levels of pollutants, complying with the environmental standards.

  10. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  11. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    International Nuclear Information System (INIS)

    Xu, Nan; Bao, Yefeng

    2016-01-01

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg_1_7Al_1_2 phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  12. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  13. Continuous ARGET ATPR of methyl methacrylate and butyl acrylate in a stirred tank reactor

    NARCIS (Netherlands)

    Chan, N.; Meuldijk, J.; Cunningham, M.F.; Hutchinson, R.A.

    2013-01-01

    ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization) of butyl acrylate (BA) and methyl methacrylate (MMA) was successfully adapted from a batch process to a continuous stirred tank reactor (CSTR) with 50 ppm copper. A series of batch polymerizations were first

  14. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  15. Engineered Alloy Structures by Friction Stir Reaction Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative surface modification technology incorporating friction stir reaction processing for producing...

  16. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  17. Gas fluidized bed reactor

    International Nuclear Information System (INIS)

    Bernardelli, H. da C.

    1976-03-01

    The equations of motion for both gas and particles in a gas fluidised system are stablished through general assumptions which are generally accepted on physical grounds. The resulting model is used to study the velocity fields of each phase in the case of an isolated bubble rising close to the flat distributor plate. A well posed problem results for the solution of Laplace's equation of the potential flow of the particles when consideration is given to the presence of the distributor as a boundary condition. The corresponding stream functions are also obtained which enable the drawing of the motion patterns using numerical techniques. The following two dimensional cases are analysed: S/b=1; S/b=1,5; S/b=2,5; S/b=5 and the limiting case S/b→αinfinite. The results for the interphase exchange between bubbles and particulate phases are applied to a gas fluidised bed reactor and its effect on the chemical conversion is studied for the simplest cases of piston flow and perfect mixing in the particulate phase [pt

  18. Analysis of stirred-tank carbonation reactors

    International Nuclear Information System (INIS)

    Sheppard, N.F.; Rizo-Patron, R.C.; Sun, W.H.

    1978-01-01

    The removal of CO 2 from air in a calcium hydroxide slurry-agitated reactor was investigated to aid the design of such vessels. Gas-liquid interfacial areas were calculated using theoretical rate expression and experimental data at specific operating conditions. A correlation for interfacial areas was then determined as a function of impeller speed, impeller diameter, gas flow rate, and concentration of the slurry. Decontamination factors were also determined

  19. Optimizing The Efficiency of a Dielectric Barrier Discharge Reactor for Removal of Nitric Oxides in Gas Phase

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Wong, C.S.; Abas, M.R.

    2016-01-01

    A dielectric barrier discharge (DBD) reactor was built and used to remove nitric oxides in gas phase. In the preliminary work, it was found that the DBD reactor can used for direct processing of contaminated air stream. It was observed that if the applied energy is sufficiently high, reduction can overcome the oxidation process. The other characteristics that can affect the efficiency of the reactor are the processing flow rate, number of DBD tubes used and how the tubes are connected. The composition of the feed gas also plays important role. To improve the efficiency, more tubes were added and configured in combination of serial and parallel connections to achieve the best result. The reactor was found to be most efficient when using 6 tubes configured to have 2 sets of 3 tubes in series connected in parallel. The maximum flow rate that can be treated is 5 scfh. When operated with the optimum input voltage of 32 kV, the reactor can remove up to 80 % nitric oxide in the reduction mode. This means that the energy is sufficiently high to sustain the reduction mode and prevent further oxidation. (author)

  20. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  1. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    OpenAIRE

    A. Jayachitra; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  2. Gas/liquid separator for BWR type reactor

    International Nuclear Information System (INIS)

    Soma, Naoshi; Akimoto, Seiichi; Yokoyama, Iwao.

    1993-01-01

    A two phase gas/liquid flow generated at a heating portion of a nuclear reactor is swirled by inlet vanes. The phase gas/liquid flow uprises as a vortex flow in a vortex cylinder, and a liquid phase of a high density gathers at the outer circumference of the vortex cylinder. The liquid phase gathered at the outer circumference is collected at the inlet of a discharge flow channel which protrude into the vortex cylinder and in a three-step structure, and introduced into a recycling liquid phase passing through the discharge flow channel for liquid phase. There is provided a structure that separated liquid collected at the lowermost state in the inlet of the three-step discharge flow channel inlet descends in the discharge flow channel, then uprises in an uprising flow channel and is introduced into the recycling liquid phase by way of a discharge flow channel exit. The height of the discharge flow channel exit is determined equal to that of a liquid level of the recycling liquid phase during rated operation of the reactor. Accordingly, even in a case where the liquid level in the recycling liquid phase is lowered, the liquid level of the uprising flow channel is kept equal to that during rated operation. (I.N.)

  3. An improved hollow fiber solvent-stir bar microextraction for the preconcentration of anabolic steroids in biological matrix with determination by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Liu, Wei; Zhang, Lan; Fan, Liangbiao; Lin, Zian; Cai, Yimin; Wei, Zhenyi; Chen, Guonan

    2012-04-13

    In this paper, a convenient and self-assembled hollow fiber solvent-stir bar microextraction (HF-SSBME) device was developed, which could stir by itself. In the extraction process, the proposed device made the solvent "bar" not floating at the sample solution and exposing to air while organic solvents outside hollow fiber always wrapped with donor phase solvent, which reduced the vaporization of organic solvents. This design could improve the precisions and recoveries of experiments. For evaluating the device, seven anabolic steroids (prasterone, 5α-androstane-3α, 17β-diol, methandriol, 19-norandrostenediol, androstenediol, methyltestosterone and methandienone) were used as model analytes and extraction conditions such as type and volume of organic solvents, agitation speed, extraction time, extraction temperature and salt addition were studied in detail. Under the optimum conditions (15 μL toluene, 40 °C, stirring at 750 rpm for 30 min with 1.5 g sodium chloride addition in 20.0 mL donor phase), the linear ranges of anabolic steroids were 0.25-200 ng mL(-1) with gas chromatography-mass spectrometry. The limits of detection were lower than 0.10 ng mL(-1). The recoveries and precisions in spiked urine and hair samples were between 73.97-93.56% and 2.18-4.47% (n=5). HF-SSBME method combined the intrinsical merits of hollow fiber with the superiority of the proposed self-stirring device which can be developed to two-phase, three-phase and in situ derivatization modes with wide prospect of application. Besides, the pedestal of this proposed device can be converted to fix stir bar in stir bar sorptive extraction (SBSE) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A cubic autocatalytic reaction in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)

    2015-10-22

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  5. Evaluating the efficiency of two phase partitioning stirred tank bio-reactor for treating xylene vapors from the airstreamthrough a bed of Pseudomonas Putida

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    Conclusion: Overall, the results of the present research revealed that the application of two phase stirred tank bioreactors (TPPBs containing pure strains of Pseudomonas putida was successful for treatment of air streams with xylene.

  6. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  7. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  8. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  9. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  10. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  11. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

    Science.gov (United States)

    Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

    2005-07-01

    This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

  12. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    Science.gov (United States)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  13. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  14. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  15. Effect of impeller type and stirring frequency on the behavior of an AnSBBR in the treatment of low-strength wastewater.

    Science.gov (United States)

    Cubas, Selma A; Foresti, Eugenio; Rodrigues, José Alberto D; Ratusznei, Suzana M; Zaiat, Marcelo

    2011-01-01

    The influence of impeller type and stirring frequency on the performance of a mechanically stirred anaerobic sequencing batch reactor containing immobilized biomass on an inert support (AnSBBR--Anaerobic Sequencing Batch Biofilm Reactor) was evaluated. The biomass was immobilized on polyurethane foam cubes placed in a stainless-steel basket inside a glass cylinder. Each 8-h batch run consisted of three stages: feed (10 min), reaction (460 min) and discharge (10 min) at 30 °C. Experiments were performed with four impeller types, i.e., helical, flat-blade, inclined-blade and curved-blade turbines, at stirring frequencies ranging from 100 to 1100 rpm. Synthetic wastewater was used in all experiments with an organic-matter concentration of 530±37 mg/L measured as chemical oxygen demand (COD). The reactor achieved an organic-matter removal efficiency of around 87% under all investigated conditions. Analysis of the four impeller types and the investigated stirring frequencies showed that mass transfer in the liquid phase was affected not only by the applied stirring frequency but also by the agitation mode imposed by each impeller type. The best reactor performance at all stirring frequencies was obtained when agitation was provided by the flat-blade turbine impeller. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Analysis of gas-liquid metal two-phase flows using a reactor safety analysis code SIMMER-III

    International Nuclear Information System (INIS)

    Suzuki, Tohru; Tobita, Yoshiharu; Kondo, Satoru; Saito, Yasushi; Mishima, Kaichiro

    2003-01-01

    SIMMER-III, a safety analysis code for liquid-metal fast reactors (LMFRs), includes a momentum exchange model based on conventional correlations for ordinary gas-liquid flows, such as an air-water system. From the viewpoint of safety evaluation of core disruptive accidents (CDAs) in LMFRs, we need to confirm that the code can predict the two-phase flow behaviors with high liquid-to-gas density ratios formed during a CDA. In the present study, the momentum exchange model of SIMMER-III was assessed and improved using experimental data of two-phase flows containing liquid metal, on which fundamental information, such as bubble shapes, void fractions and velocity fields, has been lacking. It was found that the original SIMMER-III can suitably represent high liquid-to-gas density ratio flows including ellipsoidal bubbles as seen in lower gas fluxes. In addition, the employment of Kataoka-Ishii's correlation has improved the accuracy of SIMMER-III for gas-liquid metal flows with cap-shape bubbles as identified in higher gas fluxes. Moreover, a new procedure, in which an appropriate drag coefficient can be automatically selected according to bubble shape, was developed. Through this work, the reliability and the precision of SIMMER-III have been much raised with regard to bubbly flows for various liquid-to-gas density ratios

  17. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  18. Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

    OpenAIRE

    Nasser Mohamed Ramli; Mohamad Syafiq Mohamad

    2017-01-01

    Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...

  19. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  20. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie; Togbé , Casimir; Wang, Zhandong; Dagaut, Philippe; Sarathy, Mani

    2016-01-01

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  1. Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2013-06-01

    A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become

  2. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  3. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  5. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  6. Fast reactor cover gas purification - The UK position

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W

    1987-07-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O{sub 2}, H{sub 2}) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H{sub 2}, CO/CO{sub 2} and CH{sub 4}; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O{sub 2}, N{sub 2} and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N{sub 2} which are potentially damaging if certain

  7. Fast reactor cover gas purification - The UK position

    International Nuclear Information System (INIS)

    Thorley, A.W.

    1987-01-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O 2 , H 2 ) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H 2 , CO/CO 2 and CH 4 ; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O 2 , N 2 and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N 2 which are potentially damaging if certain levels are exceeded in operating

  8. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B L; Kivaisi, A K; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  9. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  10. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert C.; Wen, Zhiyou

    2017-01-01

    Highlights: • A novel a horizontal rotating packed bed (h-RPB) reactor for syngas fermentation was reported. • The h-RPB reactor enhanced ethanol productivity by 3.3-folds compared to continuous stirred tank reactor (CSTR). • The h-RPB reactor has a unique feature of transfer gas from both bulk liquid phase and headspace phase. • The mass transfer in the headspace of h-PRB played an important role for enhanced ethanol production. - Abstract: Gasification of lignocellulosic biomass followed by syngas fermentation is a promising process for producing fuels and chemicals. Syngas fermentation, however, is commonly limited by low mass transfer rates. In this work, a horizontally oriented rotating packed bed (h-RPB) reactor was developed to improve mass transfer and enhance ethanol production. In the h-RPB reactor, cell attachment materials were packed in the reactor and half submerged in the liquid and half exposed to the headspace. With continuous rotation of the packing materials, the cells in biofilm were alternately in contact with liquid and headspace; thus, transport of syngas to the cells occurred in both the liquid phase and headspace. The volumetric mass transfer coefficient (k_La) of the h-RPB reactor was lower than that in a traditional continuous stirred tank reactor (CSTR), indicating the mass transfer in the liquid phase of h-PRB was lower than CSTR, and the mass transfer in the headspace phase played an important role in syngas fermentation. The syngas fermentation of Clostridium carboxidivorans P7 in h-RPB resulted in a 7.0 g/L titer and 6.7 g/L/day productivity of ethanol, respectively, 3.3 times higher than those obtained in a CSTR under the same operational conditions. The results demonstrate that the h-RPB reactor is an efficient system for syngas fermentation, making cellulosic ethanol biorefinery one step closer to technical and economic feasibility.

  11. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  12. Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: A step further towards greenhouse gas biorefineries

    OpenAIRE

    Cantera, Sara; Lebrero Fernández, Raquel; Rodríguez, Elisa; García Encina, Pedro A.; Muñoz Torre, Raúl

    2017-01-01

    Producción Científica This study demonstrates for the first time the feasibility of producing ectoine (a high added value osmoprotectant intensively used in the cosmetic industry) during the continuous abatement of diluted emissions of methane by Methylomicrobium alcaliphilum 20Z in stirred tank reactors under non-sterile conditions. An increase in NaCl concentration in the cultivation broth from 3 to 6% increased the intra-cellular ectoine yield by a factor of 2 (from 16.5 to 37.4 mg ecto...

  13. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  14. Stir-bar supported micro-solid-phase extraction for the determination of polychlorinated biphenyl congeners in serum samples.

    Science.gov (United States)

    Sajid, Muhammad; Basheer, Chanbasha

    2016-07-15

    In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Laser spectroscopy and gas-phase chemistry in CVD

    International Nuclear Information System (INIS)

    Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1986-01-01

    The experimental work involves the use of laser spectroscopic techniques for in situ measurements on the gas phase in a chemical vapor deposition reactor. The theoretical part of the program consists of a computer model of the coupled fluid mechanics and gas-phase chemical kinetics of silane decomposition and subsequent reactions of intermediate species. The laser measurements provide extensive data for thoroughly testing the predictive capabilities of the model

  16. Modeling and simulation of a pseudo-two-phase gas-liquid column reactor for thermal hydrocracking of petroleum heavy fractions

    Directory of Open Access Journals (Sweden)

    E.M. Matos

    2002-07-01

    Full Text Available This work presents a model to predict the behavior of velocity, gas holdup and local concentration fields in a pseudo-two-phase gas-liquid column reactor applied for thermal hydrocracking of petroleum heavy fractions. The model is based on the momentum and mass balances for the system, using an Eulerian-Eulerian approach. Using the k-epsilon model,fluid dynamics accounts for both laminar and turbulent flows, with discrete small bubbles (hydrogen flowing in a continuous pseudohomogeneous liquid phase (oil and catalyst particles. The petroleum is assumed to be a mixture of pseudocomponents, grouped by similar chemical structural properties, and the thermal hydrocracking is taken into account using a kinetic network based on these pseudocomponents.

  17. Kinetic Study of COS with Tertiary Alkanolamine Solutions. 2. Modeling and Experiments in a Stirred Cell Reactor

    NARCIS (Netherlands)

    Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1992-01-01

    Absorption experiments of COS into aqueous solutions of MDEA and DEMEA at 303 K have been carried out in a stirred cell reactor. An absorption model, based on Higbie’s penetration theory, has been developed and applied to interpret the absorption experiments, using the kinetic data obtained in part

  18. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    International Nuclear Information System (INIS)

    Lee, D.D.; Collins, J.L.

    2000-01-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required

  19. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  20. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    Science.gov (United States)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  1. Study of optimal operation for producing onion vinegar using two continuously stirred tank reactors

    OpenAIRE

    小林, 秀彰; 山口, 文; 富田, 弘毅; 管野, 亨; 小林, 正義; KOBAYASHI, Hideaki; YAMAGUCHI, Kazaru; TOMITA, Koki; KANNO, Tohru; KOBAYASHI, Masayoshi

    1997-01-01

     Onion vinegar was produced using a 2-stage continuously stirred tank reactor. Regarding the alcohol fermentation and the acetic acid fermentation examined in this study, the immobilized cells on porous ceramics offered stable production of alcohol and acetic acid for long periods of 300 and 700 days, respectively. Compared with the steady-state operation method, the temperature-change forced-cyclic operation method increased ethanol yield of alcohol fermentation by a maximum of 15%. Acetic a...

  2. Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: applications of tomography, dynamic gas disengagement (DGD), and CFD.

    Science.gov (United States)

    Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad

    2018-05-01

    The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5  m 3 /s.

  3. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Mu, Huiling

    2000-01-01

    Lipozyme IM-catalyzed interesterification of the oil blend between palm stearin and coconut oil (75/25 w/w) was studied for the production of margarine fats in a 1 kg scale batch stirred tank reactor. Parameters such as lipase load, water content, temperature, and reaction time were investigated...

  4. Evaluation of the Gas Turbine Modular Helium Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  5. Evaluation of the Gas Turbine Modular Helium Reactor

    International Nuclear Information System (INIS)

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs

  6. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  7. TEMPERATURE CONTROL OF A CONTINUOUS STIRRED TANK REACTOR BY MEANS OF TWO DIFFERENT INTELLIGENT STRATEGIES

    OpenAIRE

    Rahmat, Mohd Fua'ad; Yazdani, Amir Mehdi; Movahed, Mohammad Ahmadi; Mahmoudzadeh, Somaiyeh

    2011-01-01

    Continues Stirred Tank Reactor (CSTR) is an important subject in chemical process and offering a diverse range of researches in the area of the chemical and control engineering. Various control approaches have been applied on CSTR to control its parameters. This paper presents two different control strategies based on the combination of a novel socio-political optimization algorithm, called Imperialist Competitive Algorithm (ICA), and concept of the gain scheduling performed by means of the l...

  8. Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts

    DEFF Research Database (Denmark)

    Haumann, Marco; Dentler, Katharina; Joni, Joni

    2007-01-01

    The concept of supported ionic liquid phase (SILP) catalysis has been extended to 1-butene hydroformylation. A rhodium-sulfoxantphos complex was dissolved in [BMIM][n-C8H17OSO3] and this solution was highly dispersed on silica. Continuous gas-phase experiments in a fixed-bed reactor revealed...

  9. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  10. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  11. Optimisation of hydrogenation reactors with heterogeneous catalysts operated in trickle phase

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, M. [CRI KataLeuna GmbH, Leuna (Germany)

    2010-12-30

    Maldistribution in trickle phase reactors is to be blamed for hot spot formation and non-ideal reaction. For a simple and quick evaluation, a virtually divided reactor model is presented for a better understanding and analysis of the consequences of liquid maldistribution. Based on this modelization, different methods are described to resolve microscopic and macroscopic maldistribution. The same model provides information to produce guidelines for reactor loading and evaluating the uneven effects of coking. It is shown that areas with specifically high liquid loads may suffer from insufficient gas supply and might therewith prevent a proper stoechiometric conversion of the gas with the liquid. In areas with lower liquid load, the gas has less hydraulic resistance and bypasses the effective reaction zone. (orig.)

  12. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  13. Mathematical modeling of a three-phase trickle bed reactor

    Directory of Open Access Journals (Sweden)

    J. D. Silva

    2012-09-01

    Full Text Available The transient behavior in a three-phase trickle bed reactor system (N2/H2O-KCl/activated carbon, 298 K, 1.01 bar was evaluated using a dynamic tracer method. The system operated with liquid and gas phases flowing downward with constant gas flow Q G = 2.50 x 10-6 m³ s-1 and the liquid phase flow (Q L varying in the range from 4.25x10-6 m³ s-1 to 0.50x10-6 m³ s-1. The evolution of the KCl concentration in the aqueous liquid phase was measured at the outlet of the reactor in response to the concentration increase at reactor inlet. A mathematical model was formulated and the solutions of the equations fitted to the measured tracer concentrations. The order of magnitude of the axial dispersion, liquid-solid mass transfer and partial wetting efficiency coefficients were estimated based on a numerical optimization procedure where the initial values of these coefficients, obtained by empirical correlations, were modified by comparing experimental and calculated tracer concentrations. The final optimized values of the coefficients were calculated by the minimization of a quadratic objective function. Three correlations were proposed to estimate the parameters values under the conditions employed. By comparing experimental and predicted tracer concentration step evolutions under different operating conditions the model was validated.

  14. Status of and prospects for gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The IAEA International Working Group on Gas-Cooled Reactors (IWGGCR) (see Annex I), which was established in 1978, recommended to the Agency that a report be prepared in order to provide an up-to-date summary of gas-cooled reactor technology. The present Technical Report is based mainly on submissions of Member Countries of the IWGGCR and consists of four main sections. Beside some general information about the gas-cooled reactor line, section 1 contains a description of the incentives for the development and deployment of gas-cooled reactors in various Agency Member States. These include both electricity generation and process steam and process heat production for various branches of industry. The historical development of gas-cooled reactors is reviewed in section 2. In this section information is provided on how, when and why gas-cooled reactors have been developed in various Agency Member States and, in addition, a detailed description of the different gas-cooled reactor lines is presented. Section 3 contains information about the technical status of gas-cooled reactors and their applications. Gas-cooled reactors that are under design or construction or in operation are listed and shortly described, together with an outlook for future reactor designs. In this section the various applications for gas-cooled reactors are described in detail. These include both electricity generation and process steam and process heat production. The last section (section 4) is entitled ''Special features of gas-cooled reactors'' and contains information about the technical performance, fuel utilization, safety characteristics and environmental impact, such as radiation exposure and heat rejection

  15. The influence of the reactor pressure on the hydrodynamics in a cocurrent gas-liquid trickle-bed reactor

    NARCIS (Netherlands)

    Wammes, W.J.A.; Westerterp, K.R.

    1990-01-01

    The influence of the reactor pressure on the liquid hold-up in the trickle-flow regime and on the transition between trickle-flow and pulse-flow has been investigated in a trickle-flow column operating up to 6.0 MPa with water, and nitrogen or helium as the gas phase. The effect of the gas velocity

  16. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  17. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  18. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  19. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  1. Increased performance of continuous stirred tank reactor with calcium supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zhuliang; Yang, Haijun; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), New Materials Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-04-15

    Continuous biohydrogen production with calcium supplementation at low hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR) was studied to maximize the hydrogen productivity of anaerobic mixed cultures. After stable operations at HRT of 8-4 h, the bioreactor became unstable when the HRT was lowered to 2 h. Supplementation of 100 mg/L calcium at HRT 2 h improved the operation stability through enhancement of cell retention with almost two-fold increase in cell density than that without calcium addition. Hydrogen production rate and hydrogen yield reached 24.5 L/d/L and 3.74 mol H{sub 2}/mol sucrose, respectively, both of which were the highest values our group have ever achieved. The results showed that calcium supplementation can be an effective way to improve the performance of CSTR at low HRT. (author)

  2. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  3. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    Science.gov (United States)

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  4. An integration scheme for stiff solid-gas reactor models

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss

    2001-04-01

    Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.

  5. Calculation of gas-flow in plasma reactor for carbon partial oxidation

    Science.gov (United States)

    Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya

    2018-03-01

    The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.

  6. Production of polygalacturonases by Aspergillus oryzae in stirred tank and internal- and external-loop airlift reactors.

    Science.gov (United States)

    Fontana, Roselei Claudete; da Silveira, Maurício Moura

    2012-11-01

    The production of endo- and exo-polygalacturonase (PG) by Aspergillus oryzae was assessed in stirred tank reactors (STRs), internal-loop airlift reactors (ILARs) and external-loop airlift reactors (ELARs). For STR production, we compared culture media formulated with either pectin (WBE) or partially hydrolyzed pectin. The highest enzyme activities were obtained in medium that contained 50% pectin in hydrolyzed form (WBE5). PG production in the three reactor types was compared for WBE5 and low salt WBE medium, with additional salts added at 48, 60 and 72h (WBES). The ELARs performed better than the ILARs in WBES medium where the exo-PG was the same concentration as for STRs and the endo-PG was 20% lower. These results indicate that PG production is higher under experimental conditions that result in higher cell growth with minimum pH values less than 3.0. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  8. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  9. Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline

    KAUST Repository

    Chen, Bingjie

    2017-03-28

    This work examines the oxidation of a well-characterized, high-octane-number FACE (fuel for advanced combustion engines) F gasoline. Oxidation experiments were performed in a jet-stirred reactor (JSR) for FACE F gasoline under the following conditions: pressure, 10 bar; temperature, 530-1250 K; residence time, 0.7s; equivalence ratios, 0.5, 1.0, and 2.0. Detailed species profiles were achieved by identification and quantification from gas chromatography with mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FTIR). Four surrogates, with physical and chemical properties that mimic the real fuel properties, were used for simulations, with a detailed gasoline surrogate kinetic model. Fuel and species profiles were well-captured and-predicted by comparisons between experimental results and surrogate simulations. Further analysis was performed using a quantities of interest (QoI) approach to show the differences between experimental and simulation results and to evaluate the gasoline surrogate kinetic model. Analysis of the multicomponent surrogate kinetic model indicated that iso-octane and alkyl aromatic oxidation reactions had impact on species profiles in the high-temperature region;. however, the main production and consumption channels were related to smaller molecule reactions. The results presented here offer new insights into the oxidation chemistry of complex gasoline fuels and provide suggestions for the future development of surrogate kinetic models.

  10. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760 0 C (1400 0 F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  11. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    International Nuclear Information System (INIS)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol

    2015-01-01

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained

  12. Neutronic of heterogenous gas cooled reactors

    International Nuclear Information System (INIS)

    Maturana, Roberto Hernan

    2008-01-01

    At present, one of the main technical features of the advanced gas cooled reactor under development is its fuel element concept, which implies a neutronic homogeneous design, thus requiring higher enrichment compared with present commercial nuclear power plants.In this work a neutronic heterogeneous gas cooled reactor design is analyzed by studying the neutronic design of the Advanced Gas cooled Reactor (AGR), a low enrichment, gas cooled and graphite moderated nuclear power plant.A search of merit figures (some neutronic parameter, characteristic dimension, or a mixture of both) which are important and have been optimized during the reactor design stage is been done, to aim to comprise how a gas heterogeneous reactor is been design, given that semi-infinity arrangement criteria of rods in LWRs and clusters in HWRs can t be applied for a solid moderator and a gas refrigerator.The WIMS code for neutronic cell calculations is been utilized to model the AGR fuel cell and to calculate neutronic parameters such as the multiplication factor and the pick factor, as function of the fuel burnup.Also calculation is been done for various nucleus characteristic dimensions values (fuel pin radius, fuel channel pitch) and neutronic parameters (such as fuel enrichment), around the design established parameters values.A fuel cycle cost analysis is carried out according to the reactor in study, and the enrichment effect over it is been studied.Finally, a thermal stability analysis is been done, in subcritical condition and at power level, to study this reactor characteristic reactivity coefficients.Present results shows (considering the approximation used) a first set of neutronic design figures of merit consistent with the AGR design. [es

  13. Generation and characterization of gas bubbles in liquid metals

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-01-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer

  14. A modeling and experimental study of flue gas desulfurization in a dense phase tower

    International Nuclear Information System (INIS)

    Chang, Guanqin; Song, Cunyi; Wang, Li

    2011-01-01

    We used a dense phase tower as the reactor in a novel semi-dry flue gas desulfurization process to achieve a high desulfurization efficiency of over 95% when the Ca/S molar ratio reaches 1.3. Pilot-scale experiments were conducted for choosing the parameters of the full-scale reactor. Results show that with an increase in the flue gas flow rate the rate of the pressure drop in the dense phase tower also increases, however, the rate of the temperature drop decreases in the non-load hot gas. We chose a water flow rate of 0.6 kg/min to minimize the approach to adiabatic saturation temperature difference and maximize the desulfurization efficiency. To study the flue gas characteristics under different processing parameters, we simulated the desulfurization process in the reactor. The simulated data matched very well with the experimental data. We also found that with an increase in the Ca/S molar ratio, the differences between the simulation and experimental data tend to decrease; conversely, an increase in the flue gas flow rate increases the difference; this may be associated with the surface reactions caused by collision, coalescence and fragmentation between the dispersed phases.

  15. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  16. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  17. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Essadki, A.H.; Gourich, B.; Vial, Ch.; Delmas, H.; Bennajah, M.

    2009-01-01

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm 2 , but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H 2 microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  18. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  19. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  20. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  1. Scram device for gas-cooled reactor

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Takahashi, Suehiro.

    1989-01-01

    A scram device for gas-cooled reactors has a hopper disposed below a stand pipe standing upright passing through a reactor container and electromagnets disposed therein. It further comprises neutron absorbing steel balls maintained between the electromagnets and the hopper upon energization of the electromagnets. Upon emergency reactor shutdown, energization for the electromagnets is interrupted to drop the neutron absorption stainless steel balls into the reactor core. It is an object of the present invention to keep the mechanical strength of the electromagnets in a high temperature gas atmosphere and not to reduce the insulation performance. That is, coils for the electromagnets are constituted with a small oxide-insulated metal sheath cable (MI cable). As the feature of the MI cable, it can maintain the mechanical strength even when exposed to high temperature gas coolant and the insulation performance thereof does not reduce by virture of its gas sealing property. Accordingly, a scram device of stable reliability can be obtained. (K.M.)

  2. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)

    2015-06-15

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.

  3. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  4. Removal of tritium from gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Nieder, R.

    1976-01-01

    Tritium contained in the coolant gas in the primary circuit of a gas cooled nuclear reactor together with further tritium adsorbed on the graphite used as a moderator for the reactor is removed by introducing hydrogen or a hydrogen-containing compound, for example methane or ammonia, into the coolant gas. The addition of the hydrogen or hydrogen-containing compound to the coolant gas causes the adsorbed tritium to be released into the coolant gas and the tritium is then removed from the coolant gas by passing the mixture of coolant gas and hydrogen or hydrogen-containing compound through a gas purification plant before recirculating the coolant gas through the reactor. 14 claims, 1 drawing figure

  5. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  6. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  7. Numerical modeling of spray combustion in DI diesel engine using partially stirred reactor (PaSR) model

    International Nuclear Information System (INIS)

    Khaleghi, H.; Hosseini, S.M.

    2003-01-01

    In recent years special attention has been paid to the topic of diesel engine combustion. Various combustion models are used in CFD codes. In this paper Partially Stirred Reactor (PaSR) model, one of the newest turbulent combustion models, is introduced. This model has been employed in conjunction with the non-iterative PISO algorithm to calculate spray combustion in an axi-symmetric, direct injection diesel engine. Qualitative consideration of the results shows very good agreement with physical expectations and other numerical and experimental results. (author)

  8. Study of two-phase underexpanded jets by gas jet

    International Nuclear Information System (INIS)

    Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

  9. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  10. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Essadki, A.H., E-mail: essadki@hotmail.com [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Vial, Ch. [Laboratoire de Genie Chimique et Biochimique, LGCB-UBP/ENSCCF, 24 avenue des Landais, BP 206, 63174 Aubiere Cedex (France); Delmas, H. [Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France); Bennajah, M. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France)

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm{sup 2}, but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H{sub 2} microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  11. Fault Diagnosis and Tolerant Control Using Observer Banks Applied to Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Martin F. Pico

    2017-04-01

    Full Text Available This paper focuses on studying the problem of fault tolerant control (FTC, including a detailed fault detection and diagnosis (FDD module using observer banks which consists of output and unknown input observers applied to a continuous stirred tank reactor (CSTR. The main objective of this paper is to use a FDD module here proposed to estimate the fault in order to apply this result in a FTC system (FTCS, to prevent a lost of of the control system performance. The benefits of the observer bank and fault adaptation here studied are illustrated by numerical simulations which assumes faults in manipulated and measuring elements of the CSTR.

  12. Fire damp gas in a heavy water reactor; Praskavi gas u teskovodnom reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, V D [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Yugoslavia)

    1963-07-01

    This document describes the process of fire damp gas creation in the reactor core and dependence of the gas percentage on the temperature, i.e. reactor power. It contains a detailed plan for measuring the the percent of fire damp gas at the RA reactor: before start-up, after longer shut-down periods, immediately after safety shutdown, periodically during operation campaign.

  13. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2015-02-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  14. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    Science.gov (United States)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  15. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  16. Mechanical properties of friction stir welded 11Cr-ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Yano, Y.; Sato, Y.S.; Sekio, Y.; Ohtsuka, S.; Kaito, T.; Ogawa, R.; Kokawa, H.

    2013-01-01

    Friction stir welding was applied to the wrapper tube materials, 11Cr-ferritic/martensitic steel, designed for fast reactors and defect-free welds were successfully produced. The mechanical and microstructural properties of the friction stir welded steel were subsequently investigated. The hardness values of the stir zone were approximately 550 Hv (5.4 GPa) with minimal dependence on the rotational speed, even though they were much higher than those of the base material. However, tensile strengths and elongations of the stir zones were high at 298 K, compared to those of the base material. The excellent tensile properties are attributable to the fine grain formation during friction stir welding

  17. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  18. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, Tinaztepe, 35160 Izmir (Turkey); Demirden, Pinar, E-mail: pinar.demirden@kozagold.com [Environmental Engineer, Koza Gold Company, Environmental Department, Ovacik, Bergama Izmir (Turkey)

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  19. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-01-01

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  20. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or

  1. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Saeid, T.

    2016-01-01

    This study was done in order to compare the microstructure and mechanical properties of friction stir welded single and double phase brass alloys. The microstructure of the joints were examined using optical microscope, scanning electron microscope (SEM), scanning transmission electron microscope (STEM), and X-ray diffraction. Furthermore, tensile test and fractography were applied to evaluate the mechanical properties of the joints. The results showed that the grain size of the stir zone in the double phase joint was smaller than that of the single phase alloy. In comparison with base metals, both of the joints contained high density of dislocations with a qualitatively similar texture. However, the dislocation density of the double phase joint was somewhat lower than that of the single phase one. Moreover, the joints had higher tensile strength, lower elongation and less ductile fracture compared to their base metals due to their finer grain size and higher dislocation density. The double phase joint had higher strength and lower elongation than single phase joint due to the effect of the second phase.

  2. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  3. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  4. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  5. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  6. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  7. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  8. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  9. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  10. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    OpenAIRE

    Erna Apriliani; Dieky Adzkiya; Arief Baihaqi

    2011-01-01

    Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ense...

  11. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Shenoy, K.T.; Sreenivas, T.

    2015-01-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40–60 MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. - Highlights: • Radiotracer technique was applied for evaluation of design of a pilot-scale continuous leaching reactor. • Mean residence time and dead volume were estimated. Dead volume was found to be ranging from 4% to 15% at different operating conditions. • Tank-in-series model was used to simulate the measured RTD data and was found suitable to describe the flow in the reactor. • No flow abnormality was found and the reactor behaved as a well-mixed system. The design of the reactor was validated

  12. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    Science.gov (United States)

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.

    Science.gov (United States)

    Dong, Haodi; Tang, Ya-Jie; Ohashi, Ryo; Hamel, Jean-François P

    2005-01-01

    A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.

  14. The effect of diffusivity on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated pressures

    NARCIS (Netherlands)

    Versteeg, G.F.; Blauwhoff, P.M.M.; Swaaij, W.P.M. van

    1987-01-01

    Mass transfer has been studied in gas-liquid stirred vessels with horizontal interfaces which appeared to the eye to be completely smooth. Special attention has been paid to the influence of the coefficient of molecular diffusion. The results are compared with those published before. The simplifying

  15. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  16. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  17. Deciphering the microbial ecology in bio- gas reactors for optimizing the anaerobic digestion process

    DEFF Research Database (Denmark)

    Zhu, Xinyu

    of the basic microbial metabolism and ecology, methanogenic microbial communities were enriched in a lab-scale continuous stirred-tank reactor (CSTR) fed with synthetic feedstocks. In the experiment, the substrates used were stepwise simplified (i.e. polysaccharide, monosaccharide, short chain fatty acids...

  18. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  19. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    International Nuclear Information System (INIS)

    Simmons, D. W.

    1994-01-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF 3 ) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF 6 ) gas. The potential existence of chlorine dioxide (ClO 2 ) during gas phase decontamination with ClF 3 has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO 2 in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO 2 was not detected in the flow loop in the absence of ClF 3 ; (2) ClO 2 was not detected in the static reactors in the absence of both ClF 3 and ClF; and (3) ClO 2 was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO 2 will not exist in the presence of ClF 3 , ClF, or UF 6 . The data analyzed to date is insufficient to determine the stability of ClO 2 in the presence of ClO 2 F. Thermodynamic calculations of the ClF 3 + H 2 O system support the experimental evidence, and suggest that ClO 2 will not exist in the presence of ClO 2 F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF 3 treatments and the product gases. However, preliminary evidence to date suggests that ClO 2 should not be present as a product during the normal operations of the gas phase decontamination project

  20. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    International Nuclear Information System (INIS)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-01-01

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L −1 d −1 . • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L −1 d −1 , methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L −1 d −1 ), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g −1 COD removed, which was higher than that at 38 °C (0.016 g VSS g −1 COD removed )

  1. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Bjornard, Trond; Hockert, John

    2011-01-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC and A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC and A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC and A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR (Pty) and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC and A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR and D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present

  2. Stability criteria and critical runway conditions of propylene glycol manufacture in a continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez

    2015-05-01

    Full Text Available Here, a new method for the analysis of the steady state and the safety operational conditions of the hydrolysis of propylene oxide with excess of water, in a Continuous Stirred Tank Reactor (CSTR, was developed. For industrial operational typical values, at first, the generated and removed heat balances were examined. Next, the effect of coolant fluid temperature in the critical ignition and extinction temperatures (TCI and TCE, respectively was analyzed. The influence of the heat exchange parameter (hS on coolant and critical temperatures was also studied. Finally, the steady state operation areas were defined. The existence of multiple stable states was recognized when the heat exchange parameter was in the range 6.636 < hS kJ/(min.K < 11.125. Unstable operation area was located between the TCI and TCE values, restricting the reactor operation area to the low stable temperatures.

  3. Experimental and analytical study of oxygen depletion in stirred cell suspensions

    International Nuclear Information System (INIS)

    Whillans, D.W.; Rauth, A.M.

    1980-01-01

    The determination and maintenance of constant low but non-zero levels of oxygen is critical in the study of the radiation chemical interactions of nitroimidazoles in mammalian cells in vitro. As well, many of these chemicals have increased toxicity toward hypoxic compared to aerobic cells, although absolute hypoxia probably is not required. Both of these phenomena must be investigated in systems where significant consumption of oxygen takes place, either through radiation depletion or by cellular metabolism. In this paper an analysis has been made of the form of oxygen depletion in stirred cell suspensions with overlying gas phase, and it has been found to conform to the relationship (C[t] - C/sub infinity/) = (C[0] - C/sub infinity/) exp(-k 1 t), where C/sub infinity/ = C/sub g/ - R/k 1 . Here C[t] is the oxygen tension throughout the solution; C/sub g/, the equivalent level in the overlying gas phase; R (concentration units per sec), the depletion rate; k 1 (sec/sup -1/), a physical constant independent of oxygen concentration and depletion rate; and C/sub infinity/, the oxygen level in solution approached at long times. This relationship has been confirmed in detail using a Clark-type oxygen sensor and a high-stability amplifier design due to Koch. Since oxygen levels down to a few hundred parts per million can be determined with accuracy, it has been possible to measure precisely the oxygen levels present in our experimental systems. Implications of these results for the interpretation of data obtained in stirred cell suspension with overlying gas phase under conditions of consumption are discussed

  4. High pressure flow reactor for in situ X-ray absorption spectroscopy of catalysts in gas-liquid mixtures—A case study on gas and liquid phase activation of a Co-Mo/Al2O3 hydrodesulfurization catalyst

    NARCIS (Netherlands)

    van Haandel, L.; Hensen, E.J.M.; Weber, Th.

    2017-01-01

    An in situ characterization of heterogeneous catalysts under industrial operating conditions may involve high pressure and reactants in both the gas and the liquid phase. In this paper, we describe an in situ XAS flow reactor, which is suitable to operate under such conditions (pmax 20 bar, Tmax 350

  5. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  6. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  7. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  8. Gas reactor and associated nuclear experience in the UK relevant to high temperature reactor engineering

    International Nuclear Information System (INIS)

    Beech, D.J.; May, R.

    2000-01-01

    In the UK, the NNC played a leading role in the design and build of all of the UK's commercial magnox reactors and advanced gas-cooled reactors (AGRs). It was also involved in the DRAGON project and was responsible for producing designs for large scale HTRs and other gas reactor designs employing helium and carbon dioxide coolants. This paper addresses the gas reactor experience and its relevance to the current HTR designs under development which use helium as the coolant, through the consideration of a representative sample of the issues addressed in the UK by the NNC in support of the AGR and other reactor programmes. Modern HTR designs provide unique engineering challenges. The success of the AGR design, reflected in the extended lifetimes agreed upon by the licensing authorities at many stations, indicates that these challenges can be successfully overcome. The UK experience is unique and provides substantial support to future gas reactor and high temperature engineering studies. (authors)

  9. Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100 Catalyst

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    2017-01-01

    Full Text Available In situ knowledge of the gas phase around a catalyst is essential to make an accurate correlation between the catalytic activity and surface structure in operando studies. Although ambient pressure X-ray photoelectron spectroscopy (AP-XPS can provide information on the gas phase as well as the surface structure of a working catalyst, the gas phase detected has not been spatially resolved to date, thus possibly making it ambiguous to interpret the AP-XPS spectra. In this work, planar laser-induced fluorescence (PLIF is used to visualize the CO2 distribution in a model AP-XPS reactor, during CO oxidation over a Pd(100 catalyst. The results show that the gas composition in the vicinity of the sample measured by PLIF is significantly different from that measured by a conventional mass spectrometer connected to a nozzle positioned just above the sample. In addition, the gas distribution above the catalytic sample has a strong dependence on the gas flow and total chamber pressure. The technique presented has the potential to increase our knowledge of the gas phase in AP-XPS, as well as to optimize the design and operating conditions of in situ AP-XPS reactors for catalysis studies.

  10. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

    2003-01-01

    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

  11. Microstructural characterization and formation of α′ martensite phase in Ti–6Al–4V alloy butt joints produced by friction stir and gas tungsten arc welding processes

    International Nuclear Information System (INIS)

    Esmaily, M.; Nooshin Mortazavi, S.; Todehfalah, P.; Rashidi, M.

    2013-01-01

    Highlights: ► A fusion (GTAW) and a solid state method (FSW) are used to weld Ti–6Al–4V alloy. ► Optimal parameters yielding defects-free weldments are identified. ► A very careful microstructural quantification of the FSW and GTAW weldments are performed. ► α′ Martensite formed only in FSWed samples and avoided in GTAWed samples. ► FSW process produced joints with considerably smaller HAZ and higher hardness values. - Abstract: The obtained microstructures of a Ti–6Al–4V alloy welded by Gas Tungsten Arc Welding (GTAW) and Friction Stir Welding (FSW) were investigated and evaluated quantitatively. In the GTAW method, the effect of current was examined so that the samples were subjected to various currents between 90 and 120 A. In the FSW process, samples were welded by different rotational speeds (450–850 rpm). Non-destructive tests including Visual and Radiography Tests (VT and RT) were used to identify defect-free samples. The microstructural studies by electron microscopes revealed formation of different phases in the weld area of the samples welded via mentioned methods. The recorded peak temperatures in the weld regions compared favorably with the expectations about the evolved microstructures. A bi-modal microstructure was just obtained in the FSWed sample with a peak temperature below β transus temperature (T < 995 °C). α′ martensite phase, which is an acicular and strengthening phase in this alloy, was only observed in FSWed specimens

  12. Fluid dynamics of airlift reactors; Two-phase friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, E. (Ingenieria Quimica, Facultad de Ciencias, Univ. de Alcala, 28871 Alcala de Henares (Spain))

    1992-10-01

    Airlift loop reactors (ALR) are useful equipment in biotechnology in a wide range of uses, however their design is not a simple task since prediction of fluid dynamics in these reactors is difficult. Most of the different strategies found in the literature in order to predict two main parameters, namely, gas holdup and liquid velocity, are based on energy or momentum balances. The balances include frictional effects, and it is not yet clear how to predict these effects. The objective of this article is to show how criteria corresponding to one-phase flow may be used in order to predict the frictional effects in ALRs. Based on a model proposed by Garcia-Calvo (1989, 1991), we simulated experimental data of liquid velocity profiles and gas holdup obtained by Young et al. in an ALR with two different configurations. Experimental data obtained in other three external ALRs with different shapes and sizes are also simulated.

  13. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  14. Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor

    International Nuclear Information System (INIS)

    Zhang Hui; Choi, H.J.; Huang, C.-P.

    2006-01-01

    The treatment of landfill leachate by Fenton process was carried out in a continuous stirred tank reactor (CSTR). The effect of operating conditions such as reaction time, hydraulic retention time, pH, H 2 O 2 to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process reached the steady state after three times of hydraulic retention. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H 2 O 2 to Fe(II) molar ratio was 3, and organic removal increased as dosage increased at the favorable H 2 O 2 to Fe(II) molar ratio. Temperature gave a positive effect on organic removal

  15. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  16. Research in Korea on Gas Phase Synthesis and Control of Nanoparticles

    International Nuclear Information System (INIS)

    Choi, Mansoo

    2001-01-01

    Research activity into the gas phase synthesis of nanoparticles has witnessed rapid growth on a worldwide basis, which is also reflected by Korean research efforts. Nanoparticle research is inherently a multi-disciplinary activity involving both science and engineering. In this paper, the recent studies undertaken in Korea on the gas phase synthesis and control of nanoparticles are reviewed. Studies on the synthesis of various kinds of nanoparticles are first discussed with a focus on the different types of reactors used. Recent experimental and theoretical studies and newly developed methods of measuring and modeling nanoparticle growth are also reviewed

  17. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Simmons

    1994-09-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF{sub 3}) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF{sub 6}) gas. The potential existence of chlorine dioxide (ClO{sub 2}) during gas phase decontamination with ClF{sub 3} has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO{sub 2} in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO{sub 2} was not detected in the flow loop in the absence of ClF{sub 3}; (2) ClO{sub 2} was not detected in the static reactors in the absence of both ClF{sub 3} and ClF; and (3) ClO{sub 2} was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO{sub 2} will not exist in the presence of ClF{sub 3}, ClF, or UF{sub 6}. The data analyzed to date is insufficient to determine the stability of ClO{sub 2} in the presence of ClO{sub 2}F. Thermodynamic calculations of the ClF{sub 3} + H{sub 2}O system support the experimental evidence, and suggest that ClO{sub 2} will not exist in the presence of ClO{sub 2}F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF{sub 3} treatments and the product gases. However, preliminary evidence to date suggests that ClO{sub 2} should not be present as a product during the normal operations of the gas phase decontamination project.

  18. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1987-01-01

    The oxidation of H2S by O2 producing elemental sulphur has been studied at temperatures of 100–300°C and at atmospheric pressure in a laboratory-scale gas-solid trickle-flow reactor. In this reactor one of the reaction products, i.e. sulphur, is removed continuously by flowing solids. A porous,

  19. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  20. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2011-01-01

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  1. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk, E-mail: oselcuk@mmf.sdu.edu.tr [Department of Environmental Engineering, Engineering and Architecture Faculty, Sueleyman Demirel University, Cuenuer Campus, 32260 Isparta (Turkey); Sponza, Delia Teresa [Dokuz Eyluel University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar campus, Izmir (Turkey)

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  2. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  4. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  5. Oscillations in the permanganate oxidation of glycine in a stirred flow reactor.

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós

    2013-09-19

    Oscillatory behavior is reported in the permanganate oxidation of glycine in the presence of Na2HPO4 in a stirred flow reactor. In near-neutral solutions, long-period sustained oscillations were recorded in the potential of a Pt electrode and in the light absorbance measured at λ = 418 and 545 nm, characteristic wavelengths for following the evolution of the intermediate [Mn(IV)] and reagent [MnO4(-) ] during the course of the reaction. No evidence of bistability was found. The chemical and physical backgrounds of the oscillatory phenomenon are discussed. In the oscillatory cycle, the positive feedback is attributed to the autocatalytic formation of a soluble Mn(IV) species, whereas the negative feedback arises from its removal from the solution in the form of solid MnO2. A simple model is suggested that qualitatively simulates the experimental observations in batch runs and the dynamics that appears in the flow system.

  6. An analysis of the falling film gas-liquid reactor

    NARCIS (Netherlands)

    Davis, E.J.; Ouwerkerk-Dijkers, van M.P.; Venkatesh, S.

    1979-01-01

    A mathematical model of the falling film reactor is developed to predict the conversion and temperature distribution in the reactor as a function of the gas and liquid flow rates, physical properties, the feed composition of the reactive gas and carrier gas and other parameters of the system.

  7. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  8. Tetraphenylborate Catalyst Development for the Oak Ridge National Laboratory 20-L Continuously Stirred Tank Reactor Demonstration

    International Nuclear Information System (INIS)

    Barnes, M.J.

    2001-01-01

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation as one of the three alternatives to replace the In-Tank Precipitation Facility at the Savannah River Site. The proposed design incorporates two continuous stirred tank reactors (CSTR) a concentrate tank and a sintered metal crossflow filter. Previous use of tetraphenylborate in batch operation and testing demonstrated the ability of the feed material to catalyze the decomposition of tetraphenylborate. The Small Tank Tetraphenylborate Precipitation design seeks to overcome the processing limitation of the unwanted reaction by rapid throughput and temperature control. Nitrogen inerting of the vapor space helps mitigate any safety (i.e., flammable) concerns of the reaction

  9. CEA programme on gas cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Chapelot, Ph.; Gauthier, J.C.

    2002-01-01

    Future nuclear energy systems studies conducted by the CEA aim at investigating and developing promising technologies for future reactors, fuels and fuel cycles, for nuclear power to play a major part in sustainable energy policies. Reactors and fuel cycles are considered as integral parts of a nuclear system to be optimised as a whole. Major goals assigned to future nuclear energy systems are the following: reinforced economic competitiveness with other electricity generation means, with a special emphasis on reducing the investment cost; enhanced reliability and safety, through an improved management of reactor operation in normal and abnormal plant conditions; minimum production of long lived radioactive waste; resource saving through an effective and flexible use of the available resources of fissile and fertile materials; enhanced resistance to proliferation risks. The three latter goals are essential for the sustainability of nuclear energy in the long term. Additional considerations such as the potentialities for other applications than electricity generation (co-generation, production of hydrogen, sea water desalination) take on an increasing importance. Sustainability goals call for fast neutron spectra (to transmute nuclear waste and to breed fertile fuel) and for recycling actinides from the spent fuel (plutonium and minor actinides). New applications and economic competitiveness call for high temperature technologies (850 deg C), that afford high conversion efficiencies and hence less radioactive waste production and discharged heat. These orientations call for breakthroughs beyond light water reactors. Therefore, as a result of a screening review of candidate technologies, the CEA has selected an innovative concept of high temperature gas cooled reactor with a fast neutron spectrum, robust refractory fuel, direct conversion with a gas turbine, and integrated on-site fuel cycle as a promising system for a sustainable energy development. This objective

  10. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  11. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  12. Gas-Cooled Reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1978-01-01

    Gas-Cooled Reactors are considered to have a significant future impact on the application of fission energy. The specific types are the steam-cycle High-Temperature Gas-Cooled Reactor, the Gas-Cooled Fast Breeder Reactor, the gas-turbine HTGR, and the Very High-Temperature Process Heat Reactor. The importance of developing the above systems is discussed relative to alternative fission power systems involving Light Water Reactors, Heavy Water Reactors, Spectral Shift Controlled Reactors, and Liquid-Metal-Cooled Fast Breeder Reactors. A primary advantage of developing GCRs as a class lies in the technology and cost interrelations, permitting cost-effective development of systems having diverse applications. Further, HTGR-type systems have highly proliferation-resistant characteristics and very attractive safety features. Finally, such systems and GCFRs are mutally complementary. Overall, GCRs provide interrelated systems that serve different purposes and needs; their development can proceed in stages that provide early benefits while contributing to future needs. It is concluded that the long-term importance of the various GCRs is as follows: HTGR, providing a technology for economic GCFRs and HTGR-GTs, while providing a proliferation-resistant reactor system having early economic and fuel utilization benefits; GCFR, providing relatively low cost fissile fuel and reducing overall separative work needs at capital costs lower than those for LMFBRs; HTGR-GT (in combination with a bottoming cycle), providing a very high thermal efficiency system having low capital costs and improved fuel utilization and technology pertinent to VHTRs; HTGR-GT, providing a power system well suited for dry cooling conditions for low-temperature process heat needs; and VHTR, providing a high-temperature heat source for hydrogen production processes

  13. Shear rate analysis of water dynamic in the continuous stirred tank

    Science.gov (United States)

    Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.

    2018-02-01

    Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.

  14. The modular high-temperature gas-cooled reactor - a new production reactor

    International Nuclear Information System (INIS)

    Nulton, J.D.

    1990-01-01

    One of the reactor concepts being considered for application as a new production reactor (NPR) is a 350-MW(thermal) modular high-temperature gas-cooled reactor (MHTGR). The proposed MHTGR-NPR is based on the design of the commercial MHTGR and is being developed by a team that includes General Atomics and Combustion Engineering. The proposed design includes four modules combined into a production block that includes a shared containment, a spent-fuel storage facility, and other support facilities. The MHTGR has a helium-cooled, graphite-moderated, graphite-reflected annular core formed from prismatic graphite fuel blocks. The MHTGR fuel consists of highly enriched uranium oxycarbide (UCO) microsphere fuel particles that are coated with successive layers of pyrolytic carbon (PyC) and silicon carbide (SiC). Tritium-producing targets consist of enriched 6 Li aluminate microsphere target particles that are coated with successive layers of PyC and SiC similar to the fuel microspheres. Normal reactivity control is implemented by articulated control rods that can be inserted into channels in the inner and outer reflector blocks. Shutdown heat removal is accomplished by a single shutdown heat exchanger and electric motor-driven circulator located in the bottom of the reactor vessel. Current plans are to stack spent fuel elements in dry, helium-filled, water-cooled wells and store them for ∼1 yr before reprocessing. All phases of MHTGR fuel reprocessing have been demonstrated

  15. Fundamental research of two-phase flows with high liquid/gas density ratios

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Saito, Yasushi; Tobita, Yoshiharu; Konishi, Kensuke; Suzuki, Tohru

    2000-07-01

    In order to analyze the boiling of a fuel-steel mixture pool formed during the core disruptive accident in a fast breeder reactor, it is important to understand the flow characteristics of gas-liquid two-phase pools containing molten reactor materials. Since the liquid/gas density ratio is high, the characteristics of such two-phase flows may differ from those of ordinary flows such as water/air flow. In this study, as a fundamental research of two-phase flows with a high liquid/gas density ratio, the experiments were performed to visualize and measure molten metal (lead-bismuth)/nitrogen gas two-phase flows using a neutron radiography technique. From these experiments, fundamental data such as bubble shapes, void fractions and liquid velocity fields were obtained. In addition, the momentum exchange model of SIMMER-III, which has been developed by JNC, was assessed and improved using the experimental data. In the visualization by neutron radiography, it was found that deformed ellipsoidal bubbles could be seen with smaller gas flux or lower void fractions, and spherical cap bubbles could be seen with larger gas flux or higher void fractions. In addition, a correlation applicable to SIMMER-III was proposed through a comparison between the experimental data and traditional empirical correlations. Furthermore, a visualization experiment using gold-cadmium tracer particles showed that the image processing technique used in the quantification of void fractions is applicable to the measurement of the liquid velocity fields. On the other hand, in the analysis by SIMMER-III, it was confirmed that the original momentum exchange model was appropriate for ellipsoidal bobby flows and that the accuracy of SIMMER-III for cap bubbly flows was much improved with the proposed correlation. Moreover, a new procedure, in which the appropriate drag coefficient could be automatically selected according to bubble shape, was developed. The SIMMER-III code improved through this study can

  16. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  17. Fischer-Tropsch synthesis in a two-phase reactor with presaturation

    Energy Technology Data Exchange (ETDEWEB)

    Wache, W. [Bayernoil Raffineriegesellschaft mbH, Ingolstadt (Germany); Datsevich, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2006-07-01

    In industry, the Fischer-Tropsch (FTS) synthesis is mostly carried out in multiphase slurry or multitubular reactors (MTR), where gaseous reactants and liquid products (hydrocarbons up to waxes) are contacted in the presence of a solid catalyst. Such reactors are characterized by a complex temperature control, necessity of gas recycling, complicated design and problematic scale-up. A new alternative to conventional FTS-processes is the presaturated-one-liquid-phase (POLF) technology. The basic principle of this concept is a recirculation of the liquid phase, in which a gaseous reactant(s) is (are) solved before entering the fixed-bed reactor. In a simple column reactor, this technology ensures the effective heat removal and intensive fluid-solid mass transfer. In comparison to conventional reactors, the plant design is very simple, the temperature control is uncomplicated and there is no danger of any runaways. That results in lower investment and operation costs as well as in higher reliability. The experiments show that the conversion of CO and the product distribution of hydrocarbons are practically independent on the mode of operation (two- or three-phase system). However, in the lab-scale apparatus, water is accumulated in the loop, which leads to a loss of the catalyst activity (due to Fe-carbonate). In a technical process, the water accumulation in a loop can be eluded by taking an oil free of water from the oil work-up unit. Our experiments with the removal of water from the stream by a zeolite demonstrate a much promising applicability of the POLF process to the industrial FTS. (orig.)

  18. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Chien-Chih Liu, James [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li2BeF4 (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.

  19. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  20. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  1. Axial and Radial Gas Holdup in Bubble Column Reactor

    International Nuclear Information System (INIS)

    Wagh, Sameer M.; Ansari, Mohashin E Alan; Kene, Pragati T.

    2014-01-01

    Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path

  2. Study on gas-liquid loop reactors with annular bubbling

    International Nuclear Information System (INIS)

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  3. CFD modeling of combustion processes using KIVA3V Code with partially stirred reactor model for turbulence-combustion interactions

    International Nuclear Information System (INIS)

    Jarnicki, R.; Sobiesiak, A.

    2002-01-01

    In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling

  4. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  5. Friction Stir Processing of Cast Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  6. A study of silver behavior in Gas-turbine High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Tanaka, Toshiyuki

    1995-11-01

    A Gas-turbine High Temperature Gas-cooled Reactor (GT-HTGR) is one of the promising reactor systems of future HTGRs. In the design of GT-HTGR, behavior of fission products, especially of silver, is considered to be important from the view point of maintenance of gas-turbine. A study of silver behavior in the GT-HTGR was carried out based on current knowledge. The purposes of this study were to determine an importance of the silver problem quantitatively, countermeasures to the problem and items of future research and development which will be needed. In this study, inventory, fractional release from fuel, plateout in the primary circuit and radiation dose were evaluated, respectively. Based on this study, it is predicted that gamma-ray from plateout silver in gas-turbine system contributes about a half of total radiation dose after reactor shutdown. In future, more detail data for silver release from fuel, plateout behavior, etc. using the High Temperature Engineering Test Reactor (HTTR), for example, will be needed to carry out reasonable design. (author)

  7. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Directory of Open Access Journals (Sweden)

    Xiao-Shuang Shi

    2017-01-01

    Full Text Available Three semicontinuous continuous stirred-tank reactors (CSTR operating at mesophilic conditions (35°C were used to investigate the effect of hydraulic retention time (HRT on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.

  8. In-Space Friction Stir Welding Machine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...

  9. Validating the Galerkin least-squares finite element methods in predicting mixing flows in stirred tank reactors

    International Nuclear Information System (INIS)

    Johnson, K.; Bittorf, K.J.

    2002-01-01

    A novel approach for computer aided modeling and optimizing mixing process has been developed using Galerkin least-squares finite element technology. Computer aided mixing modeling and analysis involves Lagrangian and Eulerian analysis for relative fluid stretching, and energy dissipation concepts for laminar and turbulent flows. High quality, conservative, accurate, fluid velocity, and continuity solutions are required for determining mixing quality. The ORCA Computational Fluid Dynamics (CFD) package, based on a finite element formulation, solves the incompressible Reynolds Averaged Navier Stokes (RANS) equations. Although finite element technology has been well used in areas of heat transfer, solid mechanics, and aerodynamics for years, it has only recently been applied to the area of fluid mixing. ORCA, developed using the Galerkin Least-Squares (GLS) finite element technology, provides another formulation for numerically solving the RANS based and LES based fluid mechanics equations. The ORCA CFD package is validated against two case studies. The first, a free round jet, demonstrates that the CFD code predicts the theoretical velocity decay rate, linear expansion rate, and similarity profile. From proper prediction of fundamental free jet characteristics, confidence can be derived when predicting flows in a stirred tank, as a stirred tank reactor can be considered a series of free jets and wall jets. (author)

  10. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  11. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  12. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  13. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  14. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Yekta, Sepehr, E-mail: sepehr.shakeri.yekta@liu.se [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden); Lindmark, Amanda [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden); Skyllberg, Ulf [Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå (Sweden); Danielsson, Åsa; Svensson, Bo H. [Department of Thematic Studies – Water and Environmental Studies, Linköping University, SE-581 83 Linköping (Sweden)

    2014-03-01

    Highlights: • Thermodynamics and kinetics of Fe, Co and Ni added to biogas reactors were studied. • Formation of Fe-sulfide and Fe-thiol aqueous complexes controlled the Fe solubility. • Cobalt solubility was controlled by processes independent of Co-sulfide interaction. • Iron added to the biogas reactors effected the Ni speciation and solubility. - Abstract: The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.

  15. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage

    International Nuclear Information System (INIS)

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Åsa; Svensson, Bo H.

    2014-01-01

    Highlights: • Thermodynamics and kinetics of Fe, Co and Ni added to biogas reactors were studied. • Formation of Fe-sulfide and Fe-thiol aqueous complexes controlled the Fe solubility. • Cobalt solubility was controlled by processes independent of Co-sulfide interaction. • Iron added to the biogas reactors effected the Ni speciation and solubility. - Abstract: The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes

  16. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    Science.gov (United States)

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    reactive gas in a given reaction mixture. We have developed a tube-in-tube reactor device consisting of a pair of concentric capillaries in which pressurized gas permeates through an inner Teflon AF-2400 tube and reacts with dissolved substrate within a liquid phase that flows within a second gas impermeable tube. This Account examines our efforts toward the development of a simple, unified methodology for the processing of gaseous reagents in flow by way of development of a tube-in-tube reactor device and applications to key C-C, C-N, and C-O bond forming and hydrogenation reactions. We further describe the application to multistep reactions using solid-supported reagents and extend the technology to processes utilizing multiple gas reagents. A key feature of our work is the development of computer-aided imaging techniques to allow automated in-line monitoring of gas concentration and stoichiometry in real time. We anticipate that this Account will illustrate the convenience and benefits of membrane tube-in-tube reactor technology to improve and concomitantly broaden the scope of gas/liquid/solid reactions in organic synthesis.

  17. Parents of two-phase flow and theory of "gas-lift"

    Science.gov (United States)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  18. Torque Control of Friction Stir Welding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC and Vanderbilt University propose the innovation of torque control of friction stir welding (FSW) as a replacement to force control of...

  19. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne

    2017-02-13

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  20. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne; Herbinet, Olivier; Meng, Xiangzan; Fittschen, Christa; Wang, Zhandong; Xing, Lili; Zhang, Lidong; Battin-Leclerc, Fré dé rique

    2017-01-01

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  1. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  2. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  3. Gas-cooled reactors: the importance of their development

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-06-01

    The nearest term GCR is the steam-cycle HTGR, which can be used for both power and process steam production. Use of SC-HTGRs permits timely introduction of thorium fuel cycles and of high-thermal-efficiency reactors, decreasing the need for mined U 3 O 8 before arrival of symbiotic fueling of fast-thermal reactor systems. The gas-turbine HTGR offers prospects of lower capital costs than other nuclear reactors, but it appears to require longer and more costly development than the SC-HTGR. Accelerated development of the GT-HTGR is needed to gain the advantages of timely introduction. The Gas-Cooled Fast Breeder Reactor (GCFR) offers the possibility of fast breeder reactors with lower capital costs and with higher breeding ratios from oxide fuels. The VHTR provides high-temperature heat for hydrogen production

  4. Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Hideaki, E-mail: mat@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Nakaya, Hiroyuki; Nakao, Yasuyuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Shimakawa, Satoshi; Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki 311-1393 (Japan); Nishikawa, Masabumi [Graduate School of Engineering Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2013-10-15

    Highlights: • The performance of a gas-cooled reactor as a tritium production system was studied. • A continuous tritium recovery using helium gas was considered. • Gas-cooled reactors with 3 GW output in all can produce ∼6 kg of tritium in a year • Performance of the system was examined for Li{sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3} and LiAlO{sub 2} compounds. -- Abstract: The performance of a high-temperature gas-cooled reactor as a tritium production with continuous tritium recovery system is examined. A gas turbine high-temperature reactor of 300-MWe (600 MW) nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations for the three-dimensional entire-core region of the GTHTR300 were performed. A Li loading pattern for the continuous tritium recovery system in the gas-cooled reactor is presented. It is shown that module gas-cooled reactors with a total thermal output power of 3 GW in all can produce ∼6 kg of tritium maximum in a year.

  5. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  6. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  7. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    Science.gov (United States)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  8. Development of THYDE-HTGR: computer code for transient thermal-hydraulics of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hirano, Masashi; Hada, Kazuhiko

    1990-04-01

    The THYDE-HTGR code has been developed for transient thermal-hydraulic analyses of high-temperature gas-cooled reactors, based on the THYDE-W code. THYDE-W is a code developed at JAERI for the simulation of Light Water Reactor plant dynamics during various types of transients including loss-of-coolant accidents. THYDE-HTGR solves the conservation equations of mass, momentum and energy for compressible gas, or single-phase or two-phase flow. The major code modification from THYDE-W is to treat helium loops as well as water loops. In parallel to this, modification has been made for the neutron kinetics to be applicable to helium-cooled graphite-moderated reactors, for the heat transfer models to be applicable to various types of heat exchangers, and so forth. In order to assess the validity of the modifications, analyses of some of the experiments conducted at the High Temperature Test Loop of ERANS have been performed. In this report, the models applied in THYDE-HTGR are described focusing on the present modifications and the results from the assessment calculations are presented. (author)

  9. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  10. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors.

    Science.gov (United States)

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-10-06

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin.

  11. Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Tang, Jing; Liu, Bing-Feng; Guo, Wan-Qian [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.202 Haihe Road, Harbin 150090 (China)

    2010-04-15

    Fermentative H{sub 2} production in continuous stirred tank reactor (CSTR) system with bacteria attached onto granular activated carbon (GAC) was designed to produce H{sub 2} continuously. The H{sub 2} production performances of CSTR with suspended and attached-sludge from molasses were examined and compared at various organic loading rates (8-40 g COD/L/d) at hydraulic retention time of 6 h under mesophilic conditions (35 C). Both reactor systems achieved ethanol-type fermentation in the pH ranges 4.5-4.8 and 3.8-4.4, respectively, while ORP ranges from -450 to -470 mV and from -330 to -350 mV, respectively. The hydrogen production rate in the attached system was higher compared to that of the suspended system (9.72 and 6.65 L/d/L, respectively) while specific hydrogen production rate of 5.13 L/g VSS/d was higher in the suspended system. The attached-sludge CSTR is more stable than the suspended-sludge CSTR with regard to hydrogen production, pH, substrate utilization efficiency and metabolic products (e.g., volatile fatty acids and ethanol) during the whole test. (author)

  12. Design requirements, operation and maintenance of gas-cooled reactors

    International Nuclear Information System (INIS)

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  13. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2001-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and

  14. Emergency reactor container cooling facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Matsumoto, Tomoyuki.

    1992-01-01

    The present invention concerns an emergency cooling facility for a nuclear reactor container having a pressure suppression chamber, in which water in the suppression chamber is effectively used for cooling the reactor container. That is, the lower portion of a water pool in the pressure suppression chamber and the inside of the reactor container are connected by a pipeline. The lower end of the pipeline and a pressurized incombustible gas tank disposed to the outside of the reactor container are connected by a pipeline by way of valves. Then, when the temperature of the lower end of the pressure vessel exceeds a predetermined value, the valves are opened. If the valves are opened, the incombustible gas flows into the lower end of the pipeline connecting the lower portion of the water pool in the pressure suppression chamber and the inside of the reactor container. Since the inside of the pipeline is a two phase flow comprising a mixture of a gas phase and a liquid phase, the average density is decreased. Therefore, the water level of the two phase flow is risen by the level difference between the inside and the outside of the pipeline and, finally, the two phase mixture is released into the reactor container. As a result, the reactor container can be cooled by water in the suppression chamber by a static means without requiring pumps. (I.S.)

  15. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  16. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  17. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  18. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)

    International Nuclear Information System (INIS)

    Cross, M.T.; Wareing, M.I.; Dixon, C.

    1998-01-01

    Decommissioning of the Windscale Advanced Gas-Cooled Reactor (WAGR) is a major UK reactor decommissioning project co-funded by the UK Government, the European Commission and Magnox Electric. WAGR was a CO 2 cooled, graphite moderated reactor which served as a test bed for the development of Advanced Gas-Cooled Reactor technology in the UK. It operated from 1963 until shutdown in 1981. AEA Technology plc are currently the Managing Agents on behalf of UKAEA for the WAGR decommissioning project and are responsible for the co-ordination of the project up to the point when the contents of the reactor core and associated radioactive materials are removed and either disposed of or packaged for disposal at some time in the future. Decommissioning has progressed to the point where the reactor has been dismantled down to the level of the hot gas collection manifold with the removal of the top biological shield, the refuelling standpipes and the top section of the reactor pressure vessel. The 4 heat exchangers have also been removed and committed to shallow land burial. This paper describes the work carried out by AEA Technology under separate contracts of UKAEA in developing some of the equipment and deployment methods for the next phase of active operations required in preparation for the dismantling of the core structure. Most recent work has concentrated on the development of specialist tooling for removal of items of operational waste stored within the reactor core, equipment for cutting and removal of the highly radioactive stainless steel 'loop' pressure tubes, diamond wire cutting equipment for sectioning large diameter pipework, and equipment for dismantling the reactor neutron shield. The paper emphasises the process of adaptation and extension of existing technologies for cost-effective application in the decommissioning environment, the need for adequate forward planning of decommissioning methodologies together with large-scale 'mock-up' testing of equipment to

  19. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C_5_+) to the disadvantage of CH_4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C_5_+ over CH_4. • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  20. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  1. A sublimate sorbent for stir-bar sorptive extraction of aqueous endocrine disruptor pesticides for gas chromatography-electron capture detection.

    Science.gov (United States)

    Huang, Yu-Wen; Lee, Hua Kwang; Shih, Hou-Kuang; Jen, Jen-Fon

    2018-06-06

    A dumbbell-shaped magnetic stir-bar with sublimate sorbent was prepared for the stir bar sorptive extraction (SBSE) of pesticides in an aqueous sample prior to gas chromatography-micro-electron capture detection (GC-μECD). Cyclododecane (CDD) was coated onto a magnetic stir-bar surface as a sublimate sorbent, and steel balls were placed on both ends to form a dumbbell-shaped magnetic stir-bar for SBSE. Four EDC pesticides including chlorpyrifos, ethion, bromopropylate, and λ-cyhalothrin in aqueous samples were selected as model species to examine the proposed SBSE and the following desorption. The parameters studied were those affecting the extraction efficiencies including the coating (solvent for CDD and thickness), extraction (sample pH, stirring rate, time, and salting out effect), dissolution solvent volume, and the loss of CDD sublimated in air. The maximum extraction efficiency was obtained under the following conditions. The stir bar (with CDD thickness of 5.2 μm) was added into a 10 mL sample solution (at pH 7) for a 20-min extraction at 600 rpm. Then, the stir bar was gently removed from the sample solution, disassembled, and immersed into a 0.2 mL insert tube consisting of 3 μL hexane to dissolve; 1 μL was used for GC-ECD analysis. The linear ranges were 0.005-5 μg L -1 with coefficients of determination ranging from 0.9950 - 0.9994. Detection limits (based on S/N = 3) of the four EDCs were 0.4-4.5 ngL -1 with a relative standard deviation (RSD) of 2.4-6.3%, and quantitation limits (based on S/N = 5) were 1-15 ngL -1 . The relative recoveries of the spiked samples were in the range of 83.2-98.7% with RSDs of 2.1-8.4% in farm field waters. The proposed sublimation sorbent obtained excellent enrichment factors (101-834) and provided a simple, rapid, sensitive, and eco-friendly sample preparation method. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    Science.gov (United States)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  3. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  4. Design codes for gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-12-01

    High-temperature gas-cooled reactor (HTGR) plants have been under development for about 30 years and experimental and prototype plants have been operated. The main line of development has been electricity generation based on the steam cycle. In addition the potential for high primary coolant temperature has resulted in research and development programmes for advanced applications including the direct cycle gas turbine and process heat applications. In order to compare results of the design techniques of various countries for high temperature reactor components, the IAEA established a Co-ordinated Research Programme (CRP) on Design Codes for Gas-Cooled Reactor Components. The Federal Republic of Germany, Japan, Switzerland and the USSR participated in this Co-ordinated Research Programme. Within the frame of this CRP a benchmark problem was established for the design of the hot steam header of the steam generator of an HTGR for electricity generation. This report presents the results of that effort. The publication also contains 5 reports presented by the participants. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  5. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  6. Parents of two-phase flow and theory of “gas-lift”

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2014-03-01

    Full Text Available This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.

  7. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Oriani, L.; Lombardi, C.; Paramonov, D.

    2001-01-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  8. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  9. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system

  10. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  11. Analysis of a gas-liquid film plasma reactor for organic compound oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kevin [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States); Wang, Huijuan [School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Locke, Bruce R., E-mail: blocke@fsu.edu [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2016-11-05

    Highlights: • Non-homogeneous filamentary plasma discharge formed along gas-liquid interface. • Hydrogen peroxide formed near interface favored over organic oxidation from liquid. • Post-plasma Fenton reactions lead to complete utilization of hydrogen peroxide. - Abstract: A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2 g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  12. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  13. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  14. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  15. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  16. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    KAUST Repository

    Rachidi, Mariam El; Thion, Sé bastien; Togbé , Casimir; Dayma, Guillaume; Mehl, Marco; Dagaut, Philippe; Pitz, William J.; Zá dor, Judit; Sarathy, Mani

    2016-01-01

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  17. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    KAUST Repository

    Rachidi, Mariam El

    2016-06-23

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O/N mixture was maintained at 0.7s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000K for ϕ = 2.0 and ϕ = 3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl+O, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  18. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  19. Development, optimisation and application of polyurethane foams as new polymeric phases for stir bar sorptive extraction.

    Science.gov (United States)

    Neng, N R; Pinto, M L; Pires, J; Marcos, P M; Nogueira, J M F

    2007-11-09

    In this contribution, polyurethane foams are proposed as new polymeric phases for stir bar sorptive extraction (SBSE). Assays performed for polyurethane synthesis demonstrated that four series of formulations (P(1), P(2), P(3) and P(4)) present remarkable stability and excellent mechanical resistance to organic solvents. For polymer clean-up treatment, acetonitrile proved to be the best solvent under sonification, ensuring the reduction of the contamination and interferences. SBSE assays performed on these polyurethane polymers followed by liquid desorption and high-performance liquid chromatography-diode array detection (LD-HPLC-DAD) or large volume injection-capillary gas chromatography-mass spectrometry (LD-LVI-GC-MS), showed that P(2) presents the best recovery yields for atrazine, 2,3,4,5-tetrachlorophenol and fluorene, used as model compounds in water samples at a trace level. SBSE(P(2)) assays performed on this polymer mixed up with several adsorbent materials, i.e. activated carbon, a mesoporous material and a calixarene, did not bring any advantages in relation with the polymeric matrix alone. The comparison between assays performed by SBSE(P(2)) and by the conventional SBSE(PDMS) showed much better performance for the former phase on aqueous samples spiked with atrazine, 2,3,4,5-tetrachlorophenol and fluorene, in which the foremost two analytes present recovery values 3- and 10-fold higher, respectively. The polyurethanes proposed as new polymeric phases for SBSE provided powerful capabilities for the enrichment of organic compounds from aqueous matrices, showing to be indicated mainly in the case of the more polar analytes.

  20. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  1. International working group on gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-15

    The purpose of the meeting was to provide a forum for exchange of information on safety and licensing aspects for gas-cooled reactors in order to provide comprehensive review of the present status and of directions for future applications and development. Contributions were made concerning the operating experience of the Fort St. Vrain (FSV) HTGR Power Plant in the United States of America, the experimental power station Arbeitsgemeinschaft Versuchsreaktor (AVR) in the Federal Republic of Germany, and the CO/sub 2/-cooled reactors in the United Kingdom such as Hunterson B and Hinkley Point B. The experience gained at each of these reactors has proved the high safety potential of Gas-cooled Reactor Power Plants.

  2. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  3. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  4. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  6. Gas cooled reactor assessment. Volume II. Final report, February 9, 1976--June 30, 1976

    International Nuclear Information System (INIS)

    1976-08-01

    This report was prepared to document the estimated power plant capital and operating costs, and the safety and environmental assessments used in support of the Gas Cooled Reactor Assessment performed by Arthur D. Little, Inc. (ADL), for the U.S. Energy Research and Development Administration. The gas-cooled reactor technologies investigated include: the High Temperature Gas Reactor Steam Cycle (HTGR-SC), the HTGR Direct Cycle (HTGR-DC), the Very High Temperature Reactor (VHTR) and the Gas Cooled Fast Reactor (GCFR). Reference technologies used for comparison include: Light Water Reactors (LWR), the Liquid Metal Fast Breeder Reactor (LMFBR), conventional coal-fired steam plants, and coal combustion for process heat

  7. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  8. Gas Phase Transport, Adsorption and Surface Diffusion in Porous Glass Membrane

    Czech Academy of Sciences Publication Activity Database

    Yang, J.; Čermáková, Jiřina; Uchytil, Petr; Hamel, Ch.; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 104, 2-4 (2005), s. 344-351 ISSN 0920-5861. [International Conference on Catalysis in Membrane Reactors /6./. Lahnstein, 06.07.2004-09.07.2004] R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas phase transport * vycor glass * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.365, year: 2005

  9. Microstructural characteristics and effects of TC4 titanium alloy processed by using friction stir welding

    Directory of Open Access Journals (Sweden)

    Bo LI

    2016-02-01

    Full Text Available Friction stir welding technique is used for the processing of TC4 titanium alloy under protective atmosphere, and it results with good formability. The research focues on the evolution mechanisms of α+β dual phase microstructure in stirred zone and the effects of processing parameters on structures hardness. The results show that with optimized technological parameters, stir zone structure experiences the α/β transformation, and finally changes to the α+β duplex structure which is based on the β phase. After mixing head leaves and the structure cools, the precipitated lamellar α phase is among and/or within-regions. Grain refining of α+β dual phase is obvious. The shortened α/β lamellar spacing distance may improve the strengthening effect of the α+β duplex phase and enhance the hardness of the stir zone. The increasing of the tool rotation speed could coarsen β-regions, while the increasing of the travel speed could help reduce the α phase ratio and generate needle-type Martensites.

  10. Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing

    International Nuclear Information System (INIS)

    Håkonsen, Silje Fosse; Grande, Carlos A.; Blom, Richard

    2014-01-01

    Highlights: • A mathematical model for the rotating CLC reactor has been developed. • The model reflects the gas distribution in the reactor during CLC operation. • Radial dispersion in the rotating bed is the main cause for internal gas mixing. • The model can be used to optimize the reactor design and particle characteristics. - Abstract: A newly designed continuous lab-scale rotating bed reactor for chemical looping combustion using CuO/Al 2 O 3 oxygen carrier spheres and methane as fuel gives around 90% CH 4 conversion and >90% CO 2 capture efficiency based on converted methane at 800 °C. However, from a series of experiments using a broad range of operating conditions potential CO 2 purities only in the range 20–65% were yielded, mostly due to nitrogen slip from the air side of the reactor into the effluent CO 2 stream. A mathematical model was developed intending to understand the air-mixing phenomena. The model clearly reflects the gas slippage tendencies observed when varying the process conditions such as rotation frequency, gas flow and the flow if inert gas in the two sectors dividing the air and fuel side of the reactor. Based on the results, it is believed that significant improvements can be made to reduce gas mixing in future modified and scaled-up reactor versions

  11. Analysis of Neutron Flux Distribution in Rsg-Gas Reactor With U-Mo Fuels

    Directory of Open Access Journals (Sweden)

    Taswanda Taryo

    2004-01-01

    Full Text Available The use of U-Mo fuels in research reactors seems to be promising and, recently, world researchers have carried out these such activities actively. The National Nuclear Energy Agency (BATAN which owns RSG-GAS reactor available in Serpong Research Center for Atomic Energy should anticipate this trend. It is, therefore, this research work on the use of U-Mo fuels in RSG-GAS reactor should be carried out. The work was focused on the analysis of neutron flux distribution in the RSG-GAS reactor using different content of molybdenum in U-Mo fuels. To begin with, RSG-GAS reactor core model was developed and simulated into X, Y and Z dimensions. Cross section of materials based on the developed cells of standard and control fuels was then generated using WIMS-D5-B. The criticality calculations were finally carried out applying BATAN-2DIFF code. The results showed that the neutron flux distribution obtained in U-Mo-fuel-based RSG-GAS core is very similar to those achieved in the 300-gram sillicide-fuel-based RSG-GAS reactor core. Indeed, the utilization of the U-Mo RSG-GAS core can be very similar to that of the high-density sillicide reactor core and even could be better in the future.

  12. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  13. Summary of ORNL high-temperature gas-cooled reactor program

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) efforts on the High-Temperature Gas-Cooled Reactor (HTGR) Program have been on HTGR fuel development, fission product and coolant chemistry, prestressed concrete reactor vessel (PCRV) studies, materials studies, graphite development, reactor physics and shielding studies, application assessments and evaluations and selected component testing

  14. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  15. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    Science.gov (United States)

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor.

    Science.gov (United States)

    Mos, Yvonne M; Zorzano, Karin Bertens; Buisman, Cees J N; Weijma, Jan

    2018-04-01

    Partial oxidation of defined Fe 2+ solutions is a well-known method for magnetite synthesis in batch systems. The partial oxidation method could serve as basis for an iron removal process in drinking water production, yielding magnetite (Fe 3 O 4 ) as a compact and valuable product. As a first step toward such a process, a series of experiments was carried out, in which magnetite was synthesized from an Fe 2+ solution in a 2 L continuous stirred tank reactor (CSTR) at atmospheric pressure and 32 °C. In four experiments, elevating the pH from an initial value of 5.5 or 6.0 to a final value of 6.8, 7.0 or 7.5 caused green rust to form, eventually leading to magnetite. Formation of NH 4 + in the reactor indicated that NO 3 - and subsequently NO 2 - served as the oxidant. However, mass flow analysis revealed an influx of O 2 to the reactor. In a subsequent experiment, magnetite formation was achieved in the absence of added nitrate. In another experiment, seeding with magnetite particles led to additional magnetite precipitation without the need for a pH elevation step. Our results show, for the first time, that continuous magnetite formation from an Fe 2+ solution is possible under mild conditions, without the need for extensive addition of chemicals.

  17. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  18. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  19. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics-Simultaneous Reaction Model (CFD-SRM) Coupled Model

    Science.gov (United States)

    Lou, Wentao; Zhu, Miaoyong

    2014-10-01

    A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.

  20. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding

    Directory of Open Access Journals (Sweden)

    Carter Hamilton

    2018-05-01

    Full Text Available Sheets of aluminum 2017A-T451 and 7075-T651 were friction stir-welded in a butt-weld configuration. An existing computational model of the welding process for temperature distribution and material flow was adapted to estimate the phase transformations that occur across the weld zone. Near the weld center, process temperatures are sufficient to fully dissolve the equilibrium η phase in 7075 and partially dissolve the equilibrium S phase in 2017A. Upon cooling, Guinier–Preston (GP and Guinier–Preston–Bagaryatsky (GPB zones re-precipitate, and hardness recovers. Due to the more complete dissolution of the equilibrium phase in 7075, the hardness recovery skews toward whichever side of the weld, i.e., the advancing or retreating side, represents the 7075 workpiece. Phase transformation maps generated by the numerical simulation align not only with the hardness profiles taken across the weld zone, but also with positron lifetimes obtained through positron annihilation lifetime spectroscopy (PALS. Boundaries between the aluminum matrix and the secondary phases provide open volumes to trap positrons; therefore, positron lifetimes across the weld correspond with the phase transformations that occur in 7075 and 2017A during processing.

  1. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  2. Measurement of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Sandalls, F.J.

    1978-03-01

    Sulphur is an important element in some food chains and the release of radioactive sulphur to the environment must be closely controlled if the chemical form is such that it is available or potentially available for entering food chains. The presence of sulphur-35 in the coolant gas of the Windscale Advanced Gas-Cooled Reactor warranted a study to assess the quantity and chemical form of the radioactive sulphur in order to estimate the magnitude of the potential environmental hazard which might arise from the release of coolant gas from Civil Advanced Gas-Cooled Reactors. A combination of gas chromatographic and radiochemical analyses revealed carbonyl sulphide to be the only sulphur-35 compound present in the coolant gas of the Windscale Reactor. The concentration of carbonyl sulphide was found to lie in the range 40 to 100 x 10 -9 parts by volume and the sulphur-35 specific activity was about 20 mCi per gramme. The analytical techniques are described in detail. The sulphur-35 appears to be derived from the sulphur and chlorine impurities in the graphite. A method for the preparation of carbonyl sulphide labelled with sulphur-35 is described. (author)

  3. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... and an ion-exchange reaction are also modelled and compared to experimental data. The thesis includes a comprehensive overview of the fundamentals behind a CFD software, as well as a more detailed review of the fluid dynamic phenomena investigated in this project. The momentum and continuity equations...

  4. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...

  5. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    International Nuclear Information System (INIS)

    Liu, J. Chien-Chih

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li 2 BeF 4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel

  6. LWR type reactor

    International Nuclear Information System (INIS)

    Kato, Kiyoshi.

    1993-01-01

    A water injection tank in an emergency reactor core cooling system is disposed at a position above a reactor pressure vessel. A liquid phase portion of the water injection tank and an inlet plenum portion in the reactor pressure vessel are connected by a water injection pipe. A gas phase portion of the water injection tank and an upper portion in the reactor pressure vessel are connected by a gas ventilation pipe. Hydraulic operation valves are disposed in the midway of the water injection pipe and the gas ventilation pipe respectively. A pressure conduit is disposed for connecting a discharge port of a main recycling pump and the hydraulic operation valve. In a case where primary coolants are not sent to the main recycling pump by lowering of a liquid level due to loss of coolants or in a case where the main recycling pump is stopped by electric power stoppage or occurrence of troubles, the discharge pressure of the main recycling pump is lowered. Then, the hydraulic operation valve is opened to release the flow channel, then, boric acid water in the water injection tank is sent into the reactor by a falling head, to lead the reactor to a scram state. (I.N.)

  7. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    M Postlehwait; P DiLorenzo; S Belanger; J Ashcroft

    2005-01-01

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  8. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  9. Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Long-Yan; Chen, Yan-Xiao; Guo, Xiao-Dong; Zhong, Ben-He; Zhong, Yan-Jun

    2014-01-01

    A porous carbon with multiple pore size distribution was synthesized, and regarded as a carrier to obtain the sulfur/carbon (S/C) composite via a gas-phase loading method. We proposed this novel gas-phase loading method by using a specially designed fluid-bed reactor to encapsulate and sequester gas-phase sulfur molecules into the porous carbon in current study. The nitrogen Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) characterizations were investigated on both the porous carbon and the sulfur/carbon composite. The results show that the gas-phase loading method contributes to the combination of sulfur molecules and matrix porous carbon. Furthermore, the sulfur/multiple pore size distribution carbon composite based on the gas-phase loading method demonstrate an excellent electrochemical property. The initial specific discharge capacity is 795.0 mAh g −1 at 800 mA g −1 , with a capacity retention of 86.3% after 100 cycles

  10. Design activity of IHI on the experimental multipurpose high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1978-01-01

    With conspicuous interest and attention paid by iron and steel manufacturing industries, the development of the multipurpose high temperature gas-cooled reactor, namely the process heat reactor has been energetically discussed in Japan. The experimental multipurpose high temperature gas-cooled reactor, planned by JAERI (the Japan Atomic Energy Research Institute), is now at the end of the adjustment design stage and about to enter the system synthesizing design stage. The design of the JAERI reactor as a pilot plant for process heat reactors that make possible the direct use of the heat, produced in the reactor, for other industrial uses was started in 1969, and has undergone several revisions up to now. The criticality of the JAERI reactor is expected to be realized before 1985 according to the presently published program. IHI has engaged in the developing work of HTGR (high temperature gas-cooled reactor) including VHTR (very high temperature gas-cooled reactor) for over seven years, producing several achievements. IHI has also participated in the JAERI project since 1973 with some other companies concerned in this field. The design activity of IHI in the development of the JAERI reactor is briefly presented in this paper. (auth.)

  11. The complete information for phenomenal distributed parameter control of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    A constitutive mathematical model of distributed parameters of multicomponent chemical processes in gas, fluid and solid phase is utilized to the realization of phenomenal distributed parameter control of these processes. Original systems of partial differential constitutive state equations, in the following derivative forms /I/, /II/ and /III/ are solved in this paper from the point of view of information for phenomenal distributed parameter control of considered processes. Obtained in this way for multicomponent chemical processes in gas, fluid and solid phase: -dynamical working space-time characteristics/analytical solutions in working space-time of chemical reactors/, -dynamical phenomenal Green functions as working space-time transfer functions, -statical working space characteristics /analytical solutions in working space of chemical reactors/, -statical phenomenal Green functions as working space transfer functions, are applied, as information for realization of constitutive distributed parameter control of mass, energy and momentum aspects of above processes. Two cases are considered by existence of: A/sup o/ - initial conditions, B/sup o/ - initial and boundary conditions, for multicomponent chemical processes in gas, fluid and solid phase

  12. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  13. Overview of gas cooled reactors' applications with CATHARE

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Fabrice Bentivoglio; Anne Messie; Alain Ruby; Manuel Saez; Nicolas Tauveron; Ola Widlund

    2005-01-01

    Full text of publication follows: For about four years, CEA has launched feasibility studies of future nuclear advanced systems in a consistent series of Gas Cooled Reactors (GCR) ranging from thermal reactors, as the Very High Temperature Reactor (VHTR) for the mid term, to fast reactors (GFR) for the long term. Thermal hydraulic performances are a key issue for the core design, the evaluation of the thermal stresses on the structures and the decay heat removal systems. This analysis requires a 1D code able to simulate the whole reactor, including the core, the vessel, the piping and the components (turbine, compressors, heat exchangers). CATHARE is the reference code developed and extensively validated in collaboration between CEA, EDF, IRSN and FRAMATOME-ANP for the French Pressurized Water Reactors. CATHARE has the capabilities to model a Gas Cooled Reactor using standard 0D and 1D modules with some adaptations to treat the specificities of the GCR designs. In this paper, the different adaptations are presented and discussed. The direct coupling of a Gas Cooled Reactor with a closed gas-turbine cycle leads to a specific dynamic plant behaviour and a specific turbomachinery module has been developed. The thermal reactors' core consists of hexagonal graphite blocks with an annular-fueled region surrounded by reflectors and a special attention is paid on the thermal modeling of such a core leading to a quasi-2D thermal description. First designs of the VHTR are proposed and are based on an indirect cycle concept with a primary circuit, cooled by helium, and containing the core and a circulator. The core power is transmitted to the secondary circuit via an intermediate heat exchanger (IHX). The secondary circuit contains a turbine and a compressor coupled on a single shaft. It uses a mixture of helium and nitrogen, in order to benefit from both the favourable thermal properties of helium for the heat exchanger, and from existing experience of turbomachines using

  14. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  15. Power to Fuels: Dynamic Modeling of a Slurry Bubble Column Reactor in Lab-Scale for Fischer Tropsch Synthesis under Variable Load of Synthesis Gas

    Directory of Open Access Journals (Sweden)

    Siavash Seyednejadian

    2018-03-01

    Full Text Available This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR (0.1 m Dt and 2.5 m height for Fischer–Tropsch (FT synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K. A set of Partial Differential Equations (PDEs in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.

  16. Fast reactor primary cover gas system proposals for CDFR

    International Nuclear Information System (INIS)

    Harrison, L.M.T.

    1987-01-01

    A primary sodium gas cover has been designed for CDFR, it comprises plant to maintain and control; cover gas pressure for all reactor operating at fault conditions, cover gas purity by both blowdown and by a special clean-up facility and the clean argon supply for the failed fuel detection system and the primary pump seal purge. The design philosophy is to devise a cover gas system that can be specified for any LMFBR where only features like vessel and pipework size need to be altered to suit different design and operating conditions. The choice of full power and shutdown operating pressures is derived and the method chosen to control these values is described. A part active/part passive system is proposed for this duty, a surge volume of 250 m 3 gives passive control between full power and hot shutdown. Pressure control operation criteria is presented for various reactor operating conditions. A design for a sodium aerosol filter, based on that used on PFR is presented, it is specifically designed so that it can be fitted with an etched disc type particulate filter and maintenance is minimised. Two methods that maintain cover gas purity are described. The first, used during normal reactor operation with a small impurities ingress, utilises the continuous blowdown associated with the inevitable clean argon purge through the various reactor component seals. The second method physically removes the impurities xenon and krypton from the cover gas by their adsorption, at cryogenic temperature, onto a bed of activated carbon. The equipment required for these two duties and their mode of operation is described with the aid of a system flow diagram. The primary pump seals requires a gas purge to suppress aerosol migration. A system where the argon used for this task is recirculated and partially purified is described. (author)

  17. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  18. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Science, University of Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Tee Liang, David [Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, RO (China); Jiang, Wen-Ju [Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2007-12-15

    An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36-0.41 mol-H{sub 2}/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H{sub 2}/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR. (author)

  19. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel

    International Nuclear Information System (INIS)

    Sato, Y.S.; Nelson, T.W.; Sterling, C.J.; Steel, R.J.; Pettersson, C.-O.

    2005-01-01

    The microstructure and mechanical properties of friction stir (FS) welded SAF 2507 super duplex stainless steel were examined. High-quality, full-penetration welds were successfully produced in the super duplex stainless steel by friction stir welding (FSW) using polycrystalline cubic boron nitride (PCBN) tool. The base material had a microstructure consisting of the ferrite matrix with austenite islands, but FSW refined grains of the ferrite and austenite phases in the stir zone through dynamic recrystallisation. Ferrite content was held between 50 and 60% throughout the weld. The smaller grain sizes of the ferrite and austenite phases caused increase in hardness and strength within the stir zone. Welded transverse tensile specimen failed near the border between the stir zone and TMAZ at the retreating side as the weld had roughly the same strengths as the base material

  20. Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.

    Science.gov (United States)

    Ye, Qin; Li, Zhimin; Wu, Hui

    2016-01-01

    Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.

  1. Characteristics of biohydrogen production by ethanoligenens R{sub 3} isolated from continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, A.Y.; Liu, K. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering; Liu, B. [Northeast Forestry Univ., Harbin (China). School of Material Science and Engineering; Xu, J.L. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    This study investigated the fermentative hydrogen production characteristics of ethanoligenens R{sub 3} isolated from anaerobic sludge in a continuous stirred tank reactor. The effects of the initial pH value, the proportion of carbon and nitrogen sources, and the effects of fermentation temperature were investigated in a series of batch experiments. Substrates for the hydrogen production of glucose and peptone were used as carbon and nitrogen sources. Results of the experiments showed that a maximum hydrogen production yield of 834 mlH{sub 2}/L culture was obtained with a fermentation temperature of 35 degrees C and an initial pH value of 5.5. The maximum average hydrogen production rate of 10.87 mmolH{sub 2}/g cell dry weight per hour was obtained at a carbon-nitrogen source ratio of 3.3. The degradation efficiency of the glucose used as a carbon source ranged from 91.5 to 95.43 per cent during the conversion of glucose to hydrogen by the bacteria.

  2. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    Science.gov (United States)

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H 2 -producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m 3 H 2 (or USD14.89/kg H 2 ). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  4. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1982-01-01

    Towards the second half of a fifty-year time span the market for gas-cooled reactors as sources of high temperature process heat and as highly fuel efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realisation of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel-making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  5. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1983-01-01

    Towards the second half of a 50-year time span the market for gas-cooled reactors as sources of high-temperature process heat and as highly fuel-efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realization of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas, later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  6. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  7. Design and development of gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kosugiyama, Shinichi

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) started design and development of the high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300, in April 2001. Design originalities of the GTHTR300 are a horizontally mounted highly efficient gas turbine system and an ultimately simplified safety system such as no containment building and no active emergency core cooling. These design originalities are proposed based on design and operational experiences in conventional gas turbine systems and Japan's first high temperature gas cooled reactor (HTTR: High Temperature Engineering Test Reactor) so that many R and Ds are not required for the development. Except these original design features, devised core design, fuel design and plant design are adopted to meet design requirements and attain a target cost. This paper describes the unique design features focusing on the safety design, reactor core design and gas turbine system design together with a preliminary result of the safety evaluation carried out for a typical severe event. This study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  8. The Gas Turbine - Modular Helium Reactor: A Promising Option for Near Term Deployment

    International Nuclear Information System (INIS)

    LaBar, Malcolm P.

    2002-01-01

    The Gas Turbine - Modular Helium Reactor (GT-MHR) is an advanced nuclear power system that offers unparalleled safety, high thermal efficiency, environmental advantages, and competitive electricity generation costs. The GT-MHR module couples a gas-cooled modular helium reactor (MHR) with a high efficiency modular Brayton cycle gas turbine (GT) energy conversion system. The reactor and power conversion systems are located in a below grade concrete silo that provides protection against sabotage. The GT-MHR safety is achieved through a combination of inherent safety characteristics and design selections that take maximum advantage of the gas-cooled reactor coated particle fuel, helium coolant and graphite moderator. The GT-MHR is projected to be economically competitive with alternative electricity generation technologies due to the high operating temperature of the gas-cooled reactor, high thermal efficiency of the Brayton cycle power conversion system, high fuel burnup (>100,000 MWd/MT), and low operation and maintenance requirements. (author)

  9. Method of collecting helium cover gas for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ueda, Hiroshi.

    1981-01-01

    Purpose: To reduce the systematic facility cost in a heavy water moderated reactor by contriving the simplification of a helium cover gas collecting intake system. Method: A detachable low pressure metal tank and a neoprene balloon are prepared for a vacuum pump in a permanent vacuum drying facility. When all of the helium cover gas is collected from a heavy water moderated reactor, a large capacity of neoprene balloon capable of temporarily storing it under low pressure is connected to the exhaust of the vacuum pump. On the other hand, while the reactor is operating, a suitable amount of the low pressure tank or neoprene balloon is connected to the exhaust side of the pump, thereby regulating the pressure of the helium cover gas. When refeeding the cover gas, the balloon, with a large capacity for collecting and storing the cover gas is connected to the intake side of the pump. Thus, the pressure regulation, collection of all of the cover gas and refeeding of the cover gas can be conducted without using a high discharge pump and high pressure tank. (Kamimura, M.)

  10. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.

    Science.gov (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G

    2016-12-06

    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  11. Development of gas-cooled fast reactor and its thermo-hydraulics

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1977-10-01

    Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2. Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod. Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible. In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two. (auth.)

  12. Observations of the behaviour of gas in the wake behind a corner blockage in fast breeder reactor subassembly geometry

    International Nuclear Information System (INIS)

    Fukuzawa, Y.

    1979-07-01

    Observations were made of gas behaviour in the wake behind a 21% corner blockage in the subassembly geometry of a liquid metal fast breeder reactor. The test section used represented one half of the reactor fuel subassembly, divided along the vertical plane of symmetry through the blockage. A glass wall occupied the position of this plane. Water was allowed to flow between glass rods simulating fuel pins, the velocity being changed from 1.2 to 4.5 m/s. Argon was injected into the wake or into the flow upstream of the blockage, the injection rate being changed from 1 to 230 Ncm 3 /s (standard temperature and pressure). From the present experiment, the following is evident: The gas is accumulated in the wake behind the blockage, forming a gas cavity. The flow patterns of the two-phase mixture in the wake are classified into three types, depending on the liquid velocity. In the lower velocity range, a gas cavity cannot be present at rest, rising up through the wake as a single bubble due to buoyancy. In the higher velocity range, the gas cavity is broken up by the liquid flow forces, only small gas bubbles circulating in the wake. In the velocity range in between, the gas cavity is present in the wake. The cavity size depends on the gas injection rate and on the liquid velocity. From the results, the possibility of fuel failure caused by fission gas release at a blockage in the fast breeder reactor can be considered to depend on the operating conditions of the reactor, specially on the coolant velocity. (orig.) [de

  13. A total Ammonium Reactor (NHxR) for In Situ Mobile Measurements: A Critical Tool to Understand Aerosol Formation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop, demonstrate, and optimize a front-end ammonium reactor (NHxR) for the fast, precise, and accurate measurement of gas-phase ammonia (NH3) and...

  14. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James Chien-Chih [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li2BeF4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel.

  15. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  16. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  17. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  18. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method.

    Science.gov (United States)

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-12-04

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  19. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 1: Theory and numerical solution procedures

    Science.gov (United States)

    Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  20. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  1. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction

    International Nuclear Information System (INIS)

    Chisvert, Alberto; Benedé, Juan L.; Anderson, Jared L.; Pierson, Stephen A.; Salvador, Amparo

    2017-01-01

    With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67–791), limits of detection (low ng L −1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87–113%, 91–117% and 89–115% for river, sea and swimming pool water samples, respectively). - Highlights: • A new microextraction method combining the

  2. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  3. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  4. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  5. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  6. Transient thermal-hydraulic simulations of direct cycle gas cooled reactors

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Marchand, Muriel; Chataing, Thierry; Geffraye, Genevieve; Bassi, Christophe

    2005-01-01

    This work concerns the design and safety analysis of gas cooled reactors. The CATHARE code is used to test the design and safety of two different concepts, a High Temperature Gas Reactor concept (HTGR) and a Gas Fast Reactor concept (GFR). Relative to the HTGR concept, three transient simulations are performed and described in this paper: loss of electrical load without turbo-machine trip, 10 in. cold duct break, 10 in. break in cold duct combined with a tube rupture of a cooling exchanger. A second step consists in modelling a GFR concept. A nominal steady state situation at a power of 600 MW is obtained and first transient simulations are carried out to study decay heat removal situations after primary loop depressurisation. The turbo-machine contribution is discussed and can offer a help or an alternative to 'active' heat extraction systems

  7. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  8. Modeling of bubble break-up in stirred tanks

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2004-01-01

    Full Text Available The Lagrangian code LAG3D for dispersed phase flow modeling was implemented with the introduction of bubble break-up model. The research was restricted on bubbles with diameter less than 2 mm, i.e. bubbles which could be treated as spheres. The model was developed according to the approach of Martinez-Bazan model. It was rearranged and adjusted for the use in the particular problem of flow in stirred tanks. Developed model is stochastic one, based on the assumption that shear in the flow induces the break of the bubble. As a dominant parameter a dissipation of the turbulent kinetic energy was used. Computations were performed for two different types of the stirrer: Rushton turbine, and Pitch blade turbine. The geometry of the tank was kept constant (four blades. Two different types of liquids with very big difference in viscosity were used, i.e. silicon oil and dimethylsulfoxide, in order to enable computation of the flow in turbulent regime as well. As a parameter of the flow, the number of rotations of the stirrer was varying. As a result of the computation the fields of velocity of both phases were got, as well as the fields of bubble concentration bubble mean diameter and bubble Sauter diameter. To estimate the influence of the break-up model on the processes in the stirred tank a computations with and without this model were performed and compared. A considerable differences were found not only in the field of bubble diameter, but also in the field of bubble concentration. That confirmed a necessity of the introduction of such model. A comparison with the experiments performed with phase Doppler anemometry technique showed very good agreement in velocity and concentration profiles of the gas phase. The results for the average bubble diameter are qualitatively the same, but in almost all computations about 20% smaller bubble diameter was got than in the measurements.

  9. Gas-cooled reactor technology: a bibliography

    International Nuclear Information System (INIS)

    Raleigh, H.D.

    1981-09-01

    Included are 3358 citations on gas-cooled reactor technology contained in the DOE Energy Data Base for the period January 1978 through June 1981. The citations include reports, journal articles, books, conference papers, patents, and monographs. Corporate, Personal Author, Subject, Contract Number, and Report Number Indexes are provided

  10. Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, L. [Alstom Power Italy, Milan (Italy)

    2010-08-01

    This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.

  11. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  12. Microstructural evolutions of friction stir welded F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Shim, Jae Won; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tani Gawa, Hiro Yasu [JAEA, Rokasho (Japan); Fujii, Hideto Shi [Osaka Univ., Osaka (Japan); Kim Ura, Aki Hiko [Kyoto Univ., Kyoto (Japan)

    2012-10-15

    A blanket is the most important component functionalized as plasma confining, tritium breeding, heat exchanging, and irradiation shielding from severe thermo neutron loads in a fusion reactor. Its structure consists of first walls, side walls, a back board, and coolant channels mainly made of reduced activation ferritic/martensitic (RAFM) steel, which is the most promising candidate as a structural material for fusion reactors. To fabricate this blanket structure, some welding and joining methods have being carefully applied. However, when fusion welding, such as tungsten inert gas (TIG) welding, electron beam, and laser welding was performed between F82H and itself, the strength of welds significantly deteriorated due to the development of {delta} ferrite and precipitate dissolution. Post welding heat treatment (PWHT) should be followed to restore the initial microstructure. Nevertheless, microstructural discontinuity inevitably occurs between the weld metal, heat affected zone and base metal and this seriously degrades the entire structural stability under pulsed operation at high temperature in test blanket module (TBM). A phase transformation can also be an issue to be solved, which leads to a difficult replacement of the blanket module. Therefore, a reliable and field applicable joining technique should be developed not to accompany with PWHT after the joining process. Friction stir welding (FSW) is one of the solid state processes that does not create a molten zone at the joining area, so the degradation of the featured microstructures may be avoided or minimized. In this study, FSW was employed to join F82H steels to develop a potential joining technique for RAFM steel. The microstructural features on the joint region were investigated to evaluate the applicability of the FSW.

  13. Gross Mal distribution Identification and Effect of Inlet Distributor on the Phase Holdup in a Trickle Bed Reactor Using Gamma-Ray Densitometry (GRD)

    International Nuclear Information System (INIS)

    Mohd Fitri Abdul Rahman; Alexander, V.; Al-Dahhan, M.

    2016-01-01

    Local liquid and gas mal distribution and their holdups in a packed column are difficult to identify due to multiphase properties and other design factors. Good liquid and gas flow distribution important to determine to get high performance of Trickle Bed Reactor (TBR). Gross mal distribution indicates some faulty or bad flow distribution of liquid and gas. In this work, gross mal distribution of phases has been identified using Gamma Ray Densitometry (GRD) technique with three types of inlet distributors (single inlet towards the wall, single inlet at the center, and proper shower) by measuring line average diameter profile of phases (Liquid, Gas, and Solids) holdups. Gamma-ray densitometry is a non-invasive technique which can be implemented at the laboratory, pilot plant, and industrial scales reactors. Experiments were performed on 0.14 m diameter reactor made of Plexiglas filled with 0.003 m glass bead which acts as the solid. The superficial velocities for both gas and liquid were in the range 0.03 m/s to 0.27 m/s and 0.004 m/s to 0.014 m/s respectively. Proper shower distributor showed early liquid spreading than compared with other distributors. The effect of superficial gas velocity on liquid spread was seen to be non-significant, and liquid distribution is found to be almost uniform at the center region of the catalyst bed. (author)

  14. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Juanli, E-mail: Jenyzuo@163.com; Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn; Chen, Ronghua, E-mail: ronghua.chen@stu.xjtu.edu.cn; Qiu, Suizheng; Su, Guanghui, E-mail: ghsu@mail.xjtu.edu.cn

    2013-10-15

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  15. Dual solid-phase and stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis provides a suitable tool for assaying limonene-derived mint aroma compounds in red wine.

    Science.gov (United States)

    Picard, Magali; Franc, Céline; de Revel, Gilles; Marchand, Stéphanie

    2018-02-25

    A novel analytical method was developed for quantitative determination of eight limonene-derived monoterpenes responsible for the mint aroma in red wine. As these aromatic compounds are present at trace levels, a new dual extraction approach was proposed, combining solid-phase extraction (SPE) and stir bar sorptive extraction (SBSE), followed by gas chromatography-mass spectrometry analysis. The various parameters affecting the efficiency of extracting the analytes from wine samples in both the SPE and SBSE steps were first investigated, to determine the best compromise for the simultaneous analysis of the compounds studied. Following preliminary optimization of the dilution factor, phase ratio, and methanol content in the SBSE sample, cartridge sorbent mass, type of solvent, elution volume, and wine sample volume in the pre-concentration SPE step were studied. Highest response values were obtained when a 90 mL wine sample was extracted on a 500 mg SPE C18 cartridge and eluted with 1.5 mL methanol. The wine extract was then diluted in 10 mL water to obtain a final methanol content of 15% before the SBSE step. Good linearity, repeatability, reproducibility, accuracy and the required low detection and quantification limits were obtained under the conditions described, making this SPE-SBSE combination a suitable, powerful tool for routine analysis of the selected limonene-derived mint aroma compounds in large series of wine samples. Finally, the validated method was applied to 15 commercial red Bordeaux wines, aged from 3 to 23 years. Most of the compounds studied, present within the ng.L -1 range, were easily quantified for the first time in wine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An Introduction to the Gas Phase

    Science.gov (United States)

    Vallance, Claire

    2017-11-01

    'An Introduction to the Gas Phase' is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behaviour of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.

  17. Gas reactor international cooperative program interim report. Pebble bed reactor fuel cycle evaluation

    International Nuclear Information System (INIS)

    1978-09-01

    Nuclear fuel cycles were evaluated for the Pebble Bed Gas Cooled Reactor under development in the Federal Republic of Germany. The basic fuel cycle specified for the HTR-K and PNP is well qualified and will meet the requirements of these reactors. Twenty alternate fuel cycles are described, including high-conversion cycles, net-breeding cycles, and proliferation-resistant cycles. High-conversion cycles, which have a high probability of being successfully developed, promise a significant improvement in resource utilization. Proliferation-resistant cycles, also with a high probability of successful development, compare very favorably with those for other types of reactors. Most of the advanced cycles could be adapted to first-generation pebble bed reactors with no significant modifications

  18. [GC-MS combined with AMDIS and Kováts retention index to investigate dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma with different stir-baking degrees].

    Science.gov (United States)

    Chen, Hong-Ping; Pan, Huan-Huan; Zhang, Xin; Liu, Fei; Chen, Mei-Jun; Luo, Guan-Hua; Liu, You-Ping

    2016-07-01

    To investigate the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma with different stir-baking degrees (from slight stir-baking, stir-baking to yellow, stir-baking to brown, to stir-baking to scorch). In the present experiment, the Atractylodis Macrocephalae Rhizoma samples with different stir-baking degrees were collected at different processing time points. The contents of volatile oil in various samples were determined by steam distillation method, and the volatile compounds were extracted by using static headspace sampling method. Gas chromatography-mass spectrography (GC-MS) and automated mass spectral deconrolution and identification system (AMDIS) were combined with Kováts retention index to analyze the chemical constituents of the volatile compounds. The results showed that with the deepening of the stir-baking degree, the content of volatile oil was decreased step by step in 4 phases, and both the compositions and contents of volatile components from Atractylodis Macrocephalae Rhizoma showed significant changes. The results showed that the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma in the process of stir-baking were closely related to the processing degree; in addition, Atractylodis Macrocephalae Rhizoma and honey bran had adsorption on each other. These results can provide a scientific basis for elucidating the stir-baking (with bran) mechanism of Atractylodis Macrocephalae Rhizoma. Copyright© by the Chinese Pharmaceutical Association.

  19. Experimental investigations of tungsten inert gas assisted friction stir welding of pure copper plates

    Science.gov (United States)

    Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.

    2017-10-01

    Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.

  20. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  1. Plant accident dynamics of high-temperature reactors with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Waloch, M.L.

    1977-01-01

    In the paper submitted, a one-dimensional accident simulation model for high-temperature reactors with direct-cycle gas turbine (single-cycle facilities) is described. The paper assesses the sudden failure of a gas duct caused by the double-ended break of one out of several parallel pipes before and behind the reactor for a non-integrated plant, leading to major loads in the reactor region, as well as the complete loss of vanes of the compressor for an integrated plant. The results of the calculations show especially high loads for the break of a hot-gas pipe immediately behind the flow restrictors of the reactor outlet, because of prolonged effects of pressure gradients in the reactor region and the maximum core differential pressure. A plant accident dynamics calculation therefore allows to find a compromise between the requirements of stable compressor operation, on the one hand, and small loads in the reactor in the course of an accident, on the other, by establishing in a co-ordinated manner the narrowing ratio of the flow restrictors. (GL) [de

  2. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  3. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  4. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...

  5. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  7. The Plunge Phase of Friction Stir Welding

    Science.gov (United States)

    McClure, John C.

    2005-01-01

    The many advantages of Friction Stir Welding have led to a relatively rapid acceptance in the often conservative welding community. Because the process is so different from traditional fusion welding, with which most investigators are most familiar, there remain many aspects of FSW for which there is no clear consensus. For example, the well known onion rings seen in transverse sections have been variously interpreted as grain size variations, variation in density of second phase particles and parts of the carousel of material rotating with the pin that have been shed from the carousel. Using Orientation Imaging Microscopy, Schneider has recently noted that the onion rings have a different orientation (and hence etch differently) than the surrounding material, and this orientation is consistent with slip plane orientations at the edge of the carousel. Likewise, the forces and torque exerted by the FSW tool on the work piece largely remain unaccounted for. Although these forces are routinely measured by investigators with commercial instrumented welders, they are rarely reported or even qualitatively analyzed. This paper will introduce a model based on a carousel or disk of material that rotates with the tool to estimate the torque and plunge force required to plunge a tool into the work piece. A stationary tool is modeled rather than the moving tool because effects such as thermal transients and metallurgical changes in the sample (primarily aging in aluminum) can be more easily accounted for. It is believed, however, that with some modifications the model should be applicable to a moving tool also.

  8. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  9. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented

  10. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  11. Improvements in gas supply systems for heavy-water moderated reactors

    International Nuclear Information System (INIS)

    Aubert, G.; Hassig, J.M.; Laurent, N.; Thomas, B.

    1964-01-01

    In a heavy-water moderated reactor cooled by pressurized gas, an important problem from the point of view, of the reactor block and its economics is the choice of the gas supply system. In the pressure tube solution, the whole of the reactor block structure is at a relatively low temperature, whereas the gas supply equipment is at that of the gas, which is much higher. These parts, through which passes the heat carrying fluid have to present as low a resistance as possible to it so as to avoid costly extra blowing power. Finally, they may only be placed in the reactor block after it has been built; the time required for putting them in position should therefore not be too long. The work reported here concerns the various problems arising in the case of each channel being supplied individually by a tube at the entry and the exit which is connected to a main circuit made up of large size collectors. This individual tubing is sufficiently flexible to absorb the differential expansion and the movement of its ends without stresses or prohibitive reactions being produced; the tubing is also of relatively short length so as to reduce the pressure head of the pressurized gas outside the channels; the small amount of space taken up by the tubing makes it possible to assemble it in a manner which is satisfactory from the point of view both of the time required and of the technical quality. (authors) [fr

  12. The early history of high-temperature helium gas-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Simnad, M.T.; California Univ., San Diego, La Jolla, CA

    1991-01-01

    The original concepts in the proposals for high-temperature helium gas-cooled power reactors by Farrington Daniels, during the decade 1944-1955, are summarized. The early research on the development of the helium gas-cooled power reactors is reviewed, and the operational experiences with the first generation of HTGRs are discussed. (author)

  13. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    Dragomir B. Bukur

    2004-01-01

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H 2 O, CO 2 , linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined

  15. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  16. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  17. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  18. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A. Ch.

    1982-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase. (author)

  19. Iodine removal from a gas phase

    International Nuclear Information System (INIS)

    Vikis, A.C.

    1984-01-01

    Iodine, e.g. radioactive iodine, present as one or more organic iodides, optionally with elemental iodine, in a gas phase (e.g. air) are removed by photochemically decomposing the organic iodides to elemental iodine, reacting the iodine produced, and any initially present with excess ozone, preferably photochemically produced in situ in the gas phase to produce solid iodine oxides, and removing the solid oxides from the gas phase

  20. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  1. Oxidation of nitrobenzene by ozone in the presence of faujasite zeolite in a continuous flow gas-liquid-solid reactor.

    Science.gov (United States)

    Reungoat, J; Pic, J S; Manéro, M H; Debellefontaine, H

    2010-01-01

    This work investigates the oxidation of nitrobenzene (NB) by ozone in the presence of faujasite zeolite. Experiments were carried out in a gas-liquid-solid reactor were ozone transfer and NB oxidation took place at the same time. Three configurations of the reactor were compared: empty, filled with inert glass beads and filled with faujasite pellets. First, ozone transfer coefficient (k(L)a) and decomposition rate constant (k(C)) were determined for each configuration. In presence of solid, k(L)a was 2.0 to 2.6 times higher and k(C) was 5.0 to 6.4 times higher compared to the empty reactor. Then, the various configurations were evaluated in terms of NB removal and chemical oxygen demand (COD) decrease. The faujasite reactor showed higher removal of NB and decrease of COD compared to other configurations under the same conditions suggesting that the faujasite increases the oxidation rate of NB. Oxidation of NB in presence of faujasite also proved to be limited by the transfer of ozone from the gas to the liquid phase.

  2. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  3. H2 gas pressure calculation of FPM capsule failure at RSG-GAS reactor core

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Sunaryo, Geni Rina

    2002-01-01

    RSG-GAS has been irradiated FPM capsule for 236 times, one of those i.e. capsule number 228 has failure. The one of root cause of failure possibility is radiolysis reaction can be occurred in FPM capsule when it is filled with water during irradiation in the reactor core. The safety analysis of the radiolysis reaction in the capsule has been done. The oc cumulative hydrogen gas production can cause high pressure in the capsule then a mechanical damage occurred. The analysis was done at 10 MW of reactor power which equivalent with neutron flux of 0,6929 x 10 1 4 n/cm 2 sec and γ dose rate of 0,63x10 9 rad/hour. The assumption is the capsule is filled with water at maximum volume, i.e. 176.67 ml. The results of calculation showed that radiolysis reaction with γ and neutron produce hydrogen gas for nominal flow rate each are 494 atm and 19683 atm for γ and neutron radiolysis, respectively. H 2 gas pressure for 5% flow rate each are 723 atm. and 25772 atm., for γ and neutron radiolysis, respectively. The changing of the operation condition due to radiolysis together with one way valve' phenomena, can be produce hydrogen gas from water during irradiation in the reactor core and can be the one of root cause of capsule failure. This analysis recommended the FPM capsule preparation must be guaranteed no water or/and there is no possibility of water immersion in the capsule during irradiation in the core by more accurate leak test

  4. Radiological considerations of the reactor cover gas processing system at the FFTF

    International Nuclear Information System (INIS)

    Prevo, P.R.

    1987-01-01

    Radiological and environmental protection experience associated with the reactor cover gas processing system at the Fast Flux Test Facility (FFTF) has been excellent. Personnel radiation exposures received from operating and maintaining the reactor cover gas processing system have been very low, the system has remained free of radioactive particulate contamination through the first seven operating cycles (cesium contamination was detected at the end of Cycle 8A), and releases of radioactivity to the environment have been very low, well below environmental standards. This report discusses these three aspects of fast reactor cover gas purification over the first eight operating cycles of the FFTF (a duration of a little more than four years, from April 1982 through July 1986). (author)

  5. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  6. Entropy Generation Minimization for Reverse Water Gas Shift (RWGS Reactors

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-05-01

    Full Text Available Thermal design and optimization for reverse water gas shift (RWGS reactors is particularly important to fuel synthesis in naval or commercial scenarios. The RWGS reactor with irreversibilities of heat transfer, chemical reaction and viscous flow is studied based on finite time thermodynamics or entropy generation minimization theory in this paper. The total entropy generation rate (EGR in the RWGS reactor with different boundary conditions is minimized subject to specific feed compositions and chemical conversion using optimal control theory, and the optimal configurations obtained are compared with three reference reactors with linear, constant reservoir temperature and constant heat flux operations, which are commonly used in engineering. The results show that a drastic EGR reduction of up to 23% can be achieved by optimizing the reservoir temperature profile, the inlet temperature of feed gas and the reactor length simultaneously, compared to that of the reference reactor with the linear reservoir temperature. These optimization efforts are mainly achieved by reducing the irreversibility of heat transfer. Optimal paths have subsections of relatively constant thermal force, chemical force and local EGR. A conceptual optimal design of sandwich structure for the compact modular reactor is proposed, without elaborate control tools or excessive interstage equipment. The results can provide guidelines for designing industrial RWGS reactors in naval or commercial scenarios.

  7. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  8. Analysis of Radioactivity Contamination Level of Kartini Reactor Efluen Gas to the Environment

    International Nuclear Information System (INIS)

    Suratman; Purwanto; Aminjoyo, S

    1996-01-01

    The analysis of radioactivity contamination level of Kartini reactor efluen gas to the environment has been done from 13-10-'95 until 8-2-'96. The aim of this research is to determine the radioactivity contamination level on the environment resulted from the release of Kartini reactor efluen gas and other facilities at Yogyakarta Nuclear Research Centre through stack. The analysis methods is the student t-test, the first count factor test and the gamma spectrometry. The gas sampling were carried out in the stack reactor, reactor room, environment and in other room for comparison. Efluen gas was sucked through a filter by a high volume vacuum pump. The filter was counted for beta, gamma and alpha activities. The radioactivity contamination level of the efluen gas passing through the stack to the environment was measured between 0.57 - 1.34 Bq/m3, which was equal to the airborne radioactivity in environment between 0.69 - 1.12 Bq/m3. This radioactivity comes from radon daughter, decay products result from the natural uranium and thorium series of the materials of the building

  9. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    Science.gov (United States)

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  10. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  11. Modeling of Biogas Production Process from Cow Manure with Completely Stirred Tank Reactor under Semi Continuously Feeding

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2018-03-01

    feeding. The complete-mix, pilot-scale digester with working volume of 180 l operated at different organic feeding rates of 2 and 3 kg VS. (m-3.d-1. the biogas produced was measured daily by water displacement method and its composition was measured by gas chromatograph. Total solids (TS, volatile solids (VS, pH and etc. were determined according to the APHA Standard Methods. The biogas production kinetics for the description and evaluation of methanogens was carried out by fitting the experimental data of biogas production to various kinetic equations. In addition, Specific cumulative biogas production was simulated using logistic kinetic model exponential Rise to Maximum and modified Gompertz kinetic model. Results and Discussion The experimental protocol was defined to examine the effect of the change in the organic loading rate on the efficiency of biogas production and to report on its steady-state performance. The biogas produced had methane composition of 58- 62% and biogas production efficiency 0.204 and 0.242 m3 biogas (kg VS input for 2 and 3 kg VS.(m-3.d-1, respectively. The reactor showed stable performance with VS reduction of around 64 and 53% during loading rate of 2 and 3 kg VS.(m-3.d-1, respectively. Other studies showed similar results. Modified Gompertz and logistic plot equation was employed to model the biogas production at different organic feeding rates. The equation gave a good approximation of the biogas yield potential (P and correlation coefficient (R2 over 0.99. Conclusions The performance of anaerobic digestion of cow dung for biogas production using a completely stirred tank reactor was successfully examined with two different organic loading rate (OLR under semi continuously feeding regime in mesophilic temperature range at (35°C±2. The methane content of 58- 62% and actual biogas yield of 0.204 and 0.242 m3 biogas.(kg VS input-1 were observed for 2 and 3 kg VS. (m-3.d-1, respectively. The modeling results suggested Modified Gompertz plot

  12. Nuclear power for coexistence with nature, high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    Until this century, it is sufficient to aim at the winner of competition in human society to obtain resources, and to entrust waste to natural cleaning action. However, the expansion of social activities has been too fast, and the scale has become too large, consequently, in the next century, the expansion of social activities will be caught by the structure of trilemma that is subjected to the strong restraint and selection from the problems of finite energy and resources and environment preservation. In 21st century, the problems change to those between mankind and nature. Energy supply and population increase, envrionment preservation and human activities, and the matters that human wisdom should bear regarding energy technology are discussed. In Japan, the construction of the high temperature engineering test reactor (HTTR) is in progress. The design of high temperature gas-cooled reactors and their features on the safety are explained. The capability of reducing CO 2 release of high temperature gas-cooled reactors is reported. In future, it is expected that the time of introducing high temperature gas-cooled reactors will come. (K.I.)

  13. Fundamental conceptual design of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimokawa, Junichi; Yasuno, Takehiko; Yasukawa, Shigeru; Mitake, Susumu; Miyamoto, Yoshiaki

    1975-06-01

    The fundamental conceptual design of the experimental multi-purpose very high-temperature gas-cooled reactor (experimental VHTR of thermal output 50 MW with reactor outlet-gas temperature 1,000 0 C) has been carried out to provide the operation modes of the system consisting of the reactor and the heat-utilization system, including characteristics and performance of the components and safety of the plant system. For the heat-utilization system of the plant, heat distribution, temperature condition, cooling system constitution, and the containment facility are specified. For the operation of plant, testing capability of the reactor and controlability of the system are taken into consideration. Detail design is made of the fuel element, reactor core, reactivity control and pressure vessel, and also the heat exchanger, steam reformer, steam generator, helium circulator, helium-gas turbine, and helium-gas purification, fuel handling, and engineered safety systems. Emphasis is placed on providing the increase of the reactor outlet-gas temperature. Fuel element design is directed to the prismatic graphite blocks of hexagonal cross-section accommodating the hollow or tubular fuel pins sheathed in graphite sleeve. The reactor core is composed of 73 fuel columns in 7 stages, concerning the reference design MK-II. Orificing is made in the upper portion of core; one orifice for every 7 fuel columns. Average core power density is 2.5 watts/cm 3 . Fuel temperature is kept below 1,300 0 C in rated power. The main components, i.e. pressure vessel, reformer, gas turbine and intermediate heat exchanger are designed in detail; the IHX is of a double-shell and helically-wound tube coils, the reformer is of a byonet tube type, and the turbine-compressor unit is of an axial flow type (turbine in 6 stages and compressor in 16 stages). (auth.)

  14. Enhancement of oxygen mass transfer and gas holdup using palm oil in stirred tank bioreactors with xanthan solutions as simulated viscous fermentation broths.

    Science.gov (United States)

    Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  15. Enhancement of Oxygen Mass Transfer and Gas Holdup Using Palm Oil in Stirred Tank Bioreactors with Xanthan Solutions as Simulated Viscous Fermentation Broths

    Directory of Open Access Journals (Sweden)

    Suhaila Mohd Sauid

    2013-01-01

    Full Text Available Volumetric mass transfer coefficient (kLa is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h−1. It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  16. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  17. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  18. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Tarigan, Alim

    1999-01-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U 3 O 8 -Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  19. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation

    Science.gov (United States)

    Nualsri, Chatchawin; Kongjan, Prawit; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased. PMID:28207755

  20. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    Science.gov (United States)

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The real gas behaviour of helium as a cooling medium for high-temperature reactors

    International Nuclear Information System (INIS)

    Hewing, G.

    1977-01-01

    The article describes the influence of the real gas behaviour on the variables of state for the helium gas and the effects on the design of high-temperature reactor plants. After explaining the basic equations for describing variables and changes of state of the real gas, the real and ideal gas behaviour is analysed. Finally, the influence of the real gas behaviour on the design of high-temperature reactors in one- and two-cycle plants is investigated. (orig.) [de

  2. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  5. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  6. State of development of high temperature gas-cooled reactors in foreign countries

    International Nuclear Information System (INIS)

    Sudo, Yukio

    1990-01-01

    Emphasis has been placed in the development of high temperature gas-cooled reactors on high thermal efficiency as power reactors and the reactor from which nuclear heat can be utilized. In U.K., as the international project 'Dragon Project', the experimental Dragon reactor for research use with 20 MWt output and exit coolant temperature 750 deg C was constructed, and operated till 1976. Coated fuel particles were developed. In West Germany, the experimental power reactor AVR with 46 MWt and 15 MWe output was operated till 1988. The prototype power reactor THTR-300 with 300 MWe output and 750 deg C exit temperature is in commercial operation. In USA, the experimental power reactor Peach Bottom reactor with 40 MWe output and 728 deg C exit temperature was operated till 1974. The prototype Fort Saint Vrain power reactor with 330 MWe output and 782 deg C exit temperature was operated till 1989. In USSR, the modular VGM with 200 MWh output is at the planning stage. Also in China, high temperature gas-cooled reactors are at the design stage. Switzerland has taken part in various international projects. (K.I.)

  7. Taylor flow hydrodynamics in gas-liquid-solid micro reactors

    NARCIS (Netherlands)

    Warnier, M.J.F.

    2009-01-01

    Chemical reactions in which a gas phase component reacts with a liquid phase omponent at the surface of a solid catalyst are often encountered in chemical industry. The rate of such a gas-liquid-solid reaction is often limited by the mass transfer rate of the gas phase component, which depends on

  8. Development of the IAEA’s Knowledge Preservation Portals for Fast Reactors and Gas-Cooled Reactors Knowledge Preservation

    International Nuclear Information System (INIS)

    Batra, C.; Menahem, D. Beraha; Kriventsev, V.; Monti, S.; Reitsma, F.; Grosbois, J. de; Khoroshev, M.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been carrying out a dedicated initiative on fast reactor knowledge preservation since 2003. The main objectives of the Fast Reactor Knowledge Portal (FRKP) initiative are to, a) halt the on-going loss of information related to fast reactors (FR), and b) collect, retrieve, preserve and make accessible existing data and information on FR. This portal will help in knowledge sharing, development, search and discovery, collaboration and communication of fast reactor related information. On similar lines a Gas Cooled Fast Reactor Knowledge Preservation portal project also started in 2013. Knowledge portals are capable to control and manage both publicly available as well as controlled information. The portals will not only incorporate existing set of knowledge and information, but will also provide a systemic platform for further preservation of new developments. It will include fast reactor and gas cooled reactor document repositories, project workspaces for the IAEA’s Coordinated Research Projects (CRPs), Technical Meetings (TMs), forums for discussion, etc. The portal will also integrate a taxonomy based search tool, which will help using new semantic search capabilities for improved conceptual retrieve of documents. The taxonomy complies with international web standards as defined by the W3C (World Wide Web Consortium). (author

  9. Water-immersion type ship reactor

    International Nuclear Information System (INIS)

    Okada, Hiroki; Yamamura, Toshio.

    1996-01-01

    In a water immersion-type ship reactor in which a water-tight wall is formed around a pressure vessel by way of an air permeable heat insulation layer and immersing the wall under water in a reactor container, a pressure equalizing means equipped with a back flow check valve and introducing a gas in a gas phase portion above the water level of the container into a water tight wall and a relief valve for releasing the gas in the water tight wall to the reactor container are disposed on the water tight wall. When the pressure in the water tight wall exceeds the pressure in the container, the gas in the water tight wall is released from the relief valve to the reactor container. On the contrary, when the pressure in the container exceeds the pressure in the water tight wall, the gas in the gas phase portion is flown from the pressure equalizing means equipped with a back flow check valve to the inside of the water tight wall. Thus, a differential pressure between both of them is kept around 0kg/cm 2 . A large differential pressure is not exerted on the water tight wall thereby capable of preventing rupture of them to improve reliability, as well as the thickness of the plate can be decreased thereby enabling to moderate the design for the pressure resistance and reduce the weight. (N.H.)

  10. Main gas circulator for VG-400 reactor plant

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kostin, V.I.; Novinskij, E.G.; Kuropatov, A.I.; Protsenko, A.N.; Smirnov, V.P.; Stolyarevskij, A.Ya.

    1988-01-01

    Principle parameters and operating conditions of the main gas circulator (MGC) in VG-400 reactor plant are presented. Brief MGC design description and experimental work scope are given. (author). 4 refs, 4 figs, 1 tab

  11. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  12. Overview of reactors for liquid phase Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Davis, Burtron H.

    2002-01-01

    The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer-Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors

  13. Acoustical environment of gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Blevins, R.D.

    1986-01-01

    Methods for acoustical analysis of gas-cooled nuclear reactors in terms of the sources of sound, the propagation of sound about the coolant circuit and the response of reactor structures to sound, are described. Sources of sound that are considered are circulators, jets, vortex shedding and separated flow. Circulators are generally the dominant source of sound. At low frequency the sound propagates one dimensionally through the ducts and cavities of the reactor. At high frequency the sound excites closely spaced two- and three-dimensional acoustic modes, and the resultant sound field can be described only statistically. The sound excites plate and shell structures within the coolant circuit. Secondary steam piping can also be excited by pumps and valves. Formulations are presented for the resultant vibration. Vibration-induced damage is also reviewed. (author)

  14. Specialists' meeting on fast reactor cover gas purification

    International Nuclear Information System (INIS)

    1987-01-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report

  15. Specialists' meeting on fast reactor cover gas purification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    The tentative agenda was adopted by the participants without comment and was followed throughout the meeting. The following topics were discussed at the subsequent sessions of the meeting on 'Fast Reactor Cover Gas Purification': National Position Papers; Impurities: Sources and Measurement; Cover Gas Purification Techniques; Sodium Aerosol Trapping; Radiological Considerations. Based on the papers presented and the discussions following, session summaries and conclusions were prepared and are included in this report.

  16. Study of new structures adapted to gas-graphite and gas-heavy water reactors

    International Nuclear Information System (INIS)

    Martin, R.; Roche, R.

    1964-01-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [fr

  17. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  18. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  19. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  20. Gas cooled fast reactor background, facilities, industries and programmes

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1980-05-01

    This report was prepared at the request of the OECD-NEA Coordinating Group on Gas Cooled Fast Reactor Development and it represents a contribution (Vol.II) to the jointly sponsored Vol.I (GCFR Status Report). After a chapter on background with a brief description of the early studies and the activities in the various countries involved in the collaborative programme (Austria, Belgium, France, Germany, Japan, Sweden, Switzerland, United Kingdom and United States), the report describes the facilities available in those countries and at the Gas Breeder Reactor Association and the industrial capabilities relevant to the GCFR. Finally the programmes are described briefly with programme charts, conclusions and recommendations are given. (orig.) [de

  1. Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1991-01-01

    Extn. of metals from 2 contaminated waste site clay soils by 0.1-0.3 N HCl solns. was tested in 3 lab. scale, continuous processes: 2 stirred tank reactors (CSTR' s) in series; a countercurrent sieve-plate column fed with flocculated clay soil materials; and a combination of tank reactor and column.

  2. Steam conversion of liquefied petroleum gas and methane in microchannel reactor

    Science.gov (United States)

    Dimov, S. V.; Gasenko, O. A.; Fokin, M. I.; Kuznetsov, V. V.

    2018-03-01

    This study presents experimental results of steam conversion of liquefied petroleum gas and methane in annular catalytic reactor - heat exchanger. The steam reforming was done on the Rh/Al2O3 nanocatalyst with the heat applied through the microchannel gap from the outer wall. Concentrations of the products of chemical reactions in the outlet gas mixture are measured at different temperatures of reactor. The range of channel wall temperatures at which the ratio of hydrogen and carbon oxide in the outlet mixture grows substantially is determined. Data on the composition of liquefied petroleum gas conversion products for the ratio S/C = 5 was received for different GHVS.

  3. Latest developments in prestressed concrete vessels for gas-cooled reactors

    International Nuclear Information System (INIS)

    Ople, F.S. Jr.

    1979-01-01

    This paper is an update of the design development of prestressed concrete vessels, commonly referred to as 'PCRVs' starting with the first single-cavity PCRV for the Fort St. Vrain Nuclear Generating Station to the latest multi-cavity PCRV configurations being utilized as the primary reactor vessels for both the High Temperature Gas-Cooled Reactor (HTGR) and the Gas-Cooled Fast Breeder Reactor (GCFR) in the U.S.A. The complexity of PCRV design varies not only due to the type of vessel configuration (single versus multi-cavity) but also on the application to the specific type of reactor concept. PCRV technology as applied to the Steam Cycle HTGR is fairly well established; however, some significant technical complexities are associated with PCRV design for the Gas Turbine HTGR and the GCFR. For the Gas Turbine HTGR, for instance, the fluid dynamics of the turbo-machinery cause multi-pressure conditions to exist in various portions of the power conversion loops during operation. This condition complicates the design approach and the proof test specification for the PCRV. The geometric configuration of the multi-cavity PCRV is also more complex due to the introduction of large horizontal cylindrical cavities (housing the turbo/machines for the Gas Turbine HTGR and circulators for the GCFR) in addition to the vertical cylindrical cavities for the core and heat exchangers. Because of this complex geometry, it becomes difficult to achieve an optimum prestressing arrangement for the PCRV. Other novel features of the multi-cavity PCRV resulting from the continuing design optimization effort are the incorporation of an asymmetric (offset core) configuration and the use of large vessel cavity/penetration concrete closures directly held down by prestressing tendons for both economic and safety reasons. (orig.)

  4. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    A continuous stirred tank reactor with built-in bioelectrochemical system (CSTR-BES) was developed for azo dye Alizarin Yellow R (AYR) containing wastewater treatment. The decolorization efficiency (DE) of the CSTR-BES was 97.04±0.06% for 7h with sludge concentration of 3000mg/L and initial AYR concentration of 100mg/L, which was superior to that of the sole CSTR mode (open circuit: 54.87±4.34%) and the sole BES mode (without sludge addition: 91.37±0.44%). The effects of sludge concentration and sodium acetate (NaAc) concentration on azo dye decolorization were investigated. The highest DE of CSTR-BES for 4h was 87.66±2.93% with sludge concentration of 12,000mg/L, NaAc concentration of 2000mg/L and initial AYR concentration of 100mg/L. The results in this study indicated that CSTR-BES could be a practical strategy for upgrading conventional anaerobic facilities against refractory wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Numerical Study of Pollutant Emissions in a Jet Stirred Reactor under Elevated Pressure Lean Premixed Conditions

    Directory of Open Access Journals (Sweden)

    Karim Mazaheri

    2016-01-01

    Full Text Available Numerical study of pollutant emissions (NO and CO in a Jet Stirred Reactor (JSR combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM, and for turbulence chemistry interactions, finite rate-Eddy dissipation model are employed. Effects of pressure (3, 6.5 bars and inlet temperature (408–573 K over a range of residence time (1.49–3.97 ms are numerically examined. A good agreement between the numerical and experimental distribution of NO and CO was found. The effect of decreasing the operating pressure on NO generation is much more than the effect of increase in the inlet temperature.

  6. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  7. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design

    International Nuclear Information System (INIS)

    Eisapour, M.; Keshtkar, A.; Moosavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► High amount of uranium recovery achieved using Acidithiobacillus ferrooxidans. ► ANOVA shows individual variables and their squares are statistically significant. ► The model can accurately predict the behavior of uranium recovery. ► The model shows that pulp density has the greatest effect on uranium recovery. - Abstract: To design industrial reactors, it is important to identify and optimize the effective parameters of the process. Therefore, in this study, a three-level Box–Behnken factorial design was employed combining with a response surface methodology to optimize pulp density, agitation speed and aeration rate in uranium bioleaching in a stirred tank reactor using a pure native culture of Acidithiobacillus ferrooxidans. A mathematical model was then developed by applying the least squares method using the software Minitab Version 16.1.0. The second order model represents the uranium recovery as a function of pulp density, agitation speed and aeration rate. An analysis of variance was carried out to investigate the effects of individual variables and their combined interactive effects on uranium recovery. The results showed that the linear and quadratic terms of variables were statistically significant whilst the interaction terms were statistically insignificant. The model estimated that a maximum uranium extraction (99.99%) could be obtained when the pulp density, agitation speed and aeration rate were set at optimized values of 5.8% w/v, 510 rpm and 250 l/h, respectively. A confirmatory test at the optimum conditions resulted in a uranium recovery of 95%, indicating a marginal error of 4.99%. Furthermore, control tests were performed to demonstrate the effect of A. ferrooxidans in uranium bioleaching process and showed that the addition of this microorganism greatly increases the uranium recovery

  8. Fuel assembly for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.

    1976-01-01

    A fuel assembly is described for gas-cooled nuclear reactor which consists of a wrapper tube within which are positioned a number of spaced apart beds in a stack, with each bed containing spherical coated particles of fuel; each of the beds has a perforated top and bottom plate; gaseous coolant passes successively through each of the beds; through each of the beds also passes a bypass tube; part of the gas travels through the bed and part passes through the bypass tube; the gas coolant which passes through both the bed and the bypass tube mixes in the space on the outlet side of the bed before entering the next bed

  9. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  10. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  11. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    Science.gov (United States)

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  13. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  14. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    Science.gov (United States)

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  15. Validation of CATHARE for gas-cooled reactors

    International Nuclear Information System (INIS)

    Fabrice Bentivoglio; Ola Widlund; Manuel Saez

    2005-01-01

    Full text of publication follows: Extensively validated and qualified for light-water reactor safety studies, the thermo-hydraulics code CATHARE has been adapted to deal also with gas-cooled reactor applications. In order to validate the code for these novel applications, CEA (Commissariat a l'Energie Atomique) has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE is being validated against existing experimental data, in particular from the German power plant Oberhausen II and the South African Pebble-Bed Micro Model (PBMM). Oberhausen II, operated by the German utility EVO, is a 50 MW(e) direct-cycle Helium turbine plant. The power source is a gas burner rather than a nuclear reactor core, but the power conversion system resembles those of the GFR (Gas-cooled Fast Reactor) and other high-temperature reactor concepts. Oberhausen II was operated for more than 100 000 hours between 1974 and 1988. Design specifications, drawings and experimental data have been obtained through the European HTR project, offering a unique opportunity to validate CATHARE on a large-scale Brayton cycle. Available measurements of temperatures, pressures and mass flows throughout the circuit have allowed a very comprehensive thermohydraulic description of the plant, in steady-state conditions as well as during transients. The Pebble-Bed Micro Model (PBMM) is a small-scale model conceived to demonstrate the operability and control strategies of the South African PBMR concept. The model uses Nitrogen instead of Helium, and an electrical heater with a maximum rating of 420 kW. As the full-scale PBMR, the PBMM loop features three turbines and two compressors on the primary circuit, located on three separate shafts. The generator, however, is modelled by a third compressor on a separate circuit, with a

  16. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  17. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  18. Gas-cooled reactor application for a university campus

    International Nuclear Information System (INIS)

    Colak, Ue.; Kadiroghlu, O.K.; Soekmen, C.N.; Schmitt, H.

    1991-01-01

    Large urban areas with unfavourable topographic and meteorological conditions suffer severe air pollution during the winter months. Use of low grade lignites, imported higher quality coal or imported fuel oil are the sources of air pollution in the form of sulphur dioxide, fly ash and soot. Large housing complexes or old and historical locations within the city are in need of pollution free centralized district heating systems. Natural gas imported from the Soviet Union is a solution for this problem. Lack of gas distribution network for high pressure gas within the city is the main bottle-neck for the heating systems utilizing natural gas. Concern of the safety of flammable high pressure gas circulating within the city is another drawback for the natural gas heating systems. Nuclear district heating is an environmentally viable option worth looking into it. Localized urban nuclear heating is an interesting solution for large urban areas with old and historical character. The results of a feasibility study on the HGR application for the Hacettepe University presented here, summarizes the concept of gas-cooled heating reactors specially designed for urban centers. The inherently safe characteristics of the pebble bed heating reactor makes localized urban nuclear heating a viable alternative to other heat sources. An economical analysis of various heat sources with equal power levels is done for the Beytepe campus of Hacettepe University in Ankara. Under special boundary conditions, the price for heat generation can be much lower for nuclear heating with GHR 20 than for hard coal or fuel oil. It is also possible that if the price escalation rate for natural gas exceeds 3%, then nuclear heating with GHR can be more competitive. It is concluded that the nuclear heating of Beytepe campus with a GHR 20 is feasible and economical. (author) 3 figs., 5 refs

  19. Optimization of phase analysis of refractory alloys in the gas-ion-reaction chamber

    International Nuclear Information System (INIS)

    Blumenkamp, H.J.; Hoven, H.; Koizlik, K.; Nickel, H.

    1980-04-01

    Reactor components outside the core which are under high thermal and mechanical stresses are made from refractory alloys. For basic research and for quality control, these materials are investigated by metallography, which is an independent group of characterization procedures as well as basis for many other methods. An important way of increasing the information about a material yielded by metallography is the expansions of phase contrast, in particular the phase contrasting in the gas-ion-reaction chamber. In this paper, the experimental procedure is described and the process of optimizing the procedure with respect to the Ni- and Fe-based refractory alloys examined in the IRW is discussed. (orig.) [de

  20. The denitration of simulated fast reactor highly active liquor waste

    International Nuclear Information System (INIS)

    Saum, C.J.; Ford, L.H.; Blatts, N.

    1981-01-01

    A short series of tests have been made with simulated HAL containing representative concentrations of palladium and phosphate ion. The information obtained has been confirmed in a small scale continuous denitration plant. These cases of four stirred pot reactors arranged in cascade. One possible advantage of this plant would be the low mean acidity in the first stage compared to the feed material which would limit to some extent the violence of the reaction. This would lead to a lower rate of gas evolution and may permit operation even with liquors where foaming is a problem. (DG)

  1. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  2. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  3. Set-Up and Validation of a Dynamic Solid/Gas Bioreactor

    KAUST Repository

    Lloyd-Randol, Jennifer D.

    2012-05-01

    The limited availability of fossil resourses mandates the development of new energy vectors, which is one of the Grand Challenges of the 21st Century [1]. Biocatalytic energy conversion is a promising solution to meet the increased energy demand of industrialized societies. Applications of biocatalysis in the gas-phase are so far limited to production of fine chemicals and pharmaceuticals. However, this technology has the potential for large scale biocatalytic applications [2], e.g. for the formation of novel energy carriers. The so-called solid/gas biocatalysis is defined as the application of a biocatalyst immobilized on solid-phase support acting on gaseous substrates [3]. This process combines the advantages of bio-catalysis (green chemistry, mild reaction conditions, high specicity & selectivity) and heterogeneous dynamic gas-phase processes (low diffusion limitation, high conversion, simple scale-up). This work presents the modifications of a PID Microactivity Reference reactor in order to make it suitable for solid/gas biocatalysis. The reactor design requirements are based on previously published laboratory scale solid/gas systems with a feed of saturated vapors [4]. These vapors are produced in saturation flasks, which were designed and optimized during this project. Other modifications included relocation of the gas mixing chamber, redesigning the location and heating mechanism for the reactor tube, and heating of the outlet gas line. The modified reactor system was verified based on the Candida antarctica lipase B catalyzed transesterication of ethyl acetate with 1-hexanol to hexyl acetate and ethanol and results were compared to liquid-phase model reactions. Products were analyzed on line by a gas chromatograph with a flame ionization detector. C. antarc- tica physisorbed on silica particles produced a 50% conversion of hexanol at 40 C in the gas-phase. A commercial immobilized lipase from Iris Biotech produced 99% and 97% conversions of hexanol in

  4. MSVAT-SPACE-STIR and SEMAC-STIR for Reduction of Metallic Artifacts in 3T Head and Neck MRI.

    Science.gov (United States)

    Hilgenfeld, T; Prager, M; Schwindling, F S; Nittka, M; Rammelsberg, P; Bendszus, M; Heiland, S; Juerchott, A

    2018-05-24

    The incidence of metallic dental restorations and implants is increasing, and head and neck MR imaging is becoming challenging regarding artifacts. Our aim was to evaluate whether multiple-slab acquisition with view angle tilting gradient based on a sampling perfection with application-optimized contrasts by using different flip angle evolution (MSVAT-SPACE)-STIR and slice-encoding for metal artifact correction (SEMAC)-STIR are beneficial regarding artifact suppression compared with the SPACE-STIR and TSE-STIR in vitro and in vivo. At 3T, 3D artifacts of 2 dental implants, supporting different single crowns, were evaluated. Image quality was evaluated quantitatively (normalized signal-to-noise ratio) and qualitatively (2 reads by 2 blinded radiologists). Feasibility was tested in vivo in 5 volunteers and 5 patients, respectively. Maximum achievable resolution and the normalized signal-to-noise ratio of MSVAT-SPACE-STIR were higher compared with SEMAC-STIR. Performance in terms of artifact correction was dependent on the material composition. For highly paramagnetic materials, SEMAC-STIR was superior to MSVAT-SPACE-STIR (27.8% smaller artifact volume) and TSE-STIR (93.2% less slice distortion). However, MSVAT-SPACE-STIR reduced the artifact size compared with SPACE-STIR by 71.5%. For low-paramagnetic materials, MSVAT-SPACE-STIR performed as well as SEMAC-STIR. Furthermore, MSVAT-SPACE-STIR decreased artifact volume by 69.5% compared with SPACE-STIR. The image quality of all sequences did not differ systematically. In vivo results were comparable with in vitro results. Regarding susceptibility artifacts and acquisition time, MSVAT-SPACE-STIR might be advantageous over SPACE-STIR for high-resolution and isotropic head and neck imaging. Only for materials with high-susceptibility differences to soft tissue, the use of SEMAC-STIR might be beneficial. Within limited acquisition times, SEMAC-STIR cannot exploit its full advantage over TSE-STIR regarding artifact

  5. The variation of particle gas-borne concentration with time in a gas cooled reactor

    International Nuclear Information System (INIS)

    Reed, J.; Hall, D.; Reeks, M.W.

    1985-01-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  6. The variation of particle gas-borne concentration with time in a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J; Hall, D; Reeks, M W [Central Electricity Generating Board, Berkeley Nuclear Laboratories (United Kingdom)

    1985-07-01

    If volatile fission products are released from fuel during a reactor fault, a significant fraction could become attached to small particles also present in the coolant. In such circumstances the retention of those particles by the reactor circuit will limit the level of gas-borne particle concentration and hence be important in reducing the potential release of fission product activity to the atmosphere. Clearly the retention of particles will be influenced by both the deposition and resuspension of particles from surfaces exposed to the coolant flow. In this paper we consider deposition and resuspension but pay particular attention to the role of resuspension, which in the past has been given little consideration. A recently developed model for the resuspension of small particles by a turbulent flow is outlined. Traditionally, resuspension has been interpreted as a force balance between the aerodynamic removal forces and the surface adhesive forces. In contrast, this new approach embodies an energy balance criterion for particle resuspension. Furthermore, the stochastic nature of this new model has shown that resuspension can be sub-divided into two regimes: (i) initial resuspension (resuspension occurring in times less than a second) which reduces the net deposition of particles to a surface; and (ii) longer term resuspension (resuspension after 1 second) which determines the asymptotic decay of particle gas-borne concentration. It is seen that the asymptotic decay varies almost inversely as the decay time. Force balance models are unsuccessful in accounting for the experimentally observed longer term resuspension. We show that a Volterra integro-differential equation best describes the variation of particle gas-borne concentration with time in a recirculating gas flow such as a gas cooled reactor. It is seen that the longer term resuspension has a major influence in the final decay of particle concentration. (author)

  7. Non-Linear Response to Periodic Forcing of Methane-Air Global and Detailed Kinetics in Continuous Stirred Tank Reactors Close to Extinction Conditions

    Directory of Open Access Journals (Sweden)

    Francesco Saverio Marra

    2015-09-01

    Full Text Available This paper focus on the behavior of a continuous stirred tank reactor (CSTR subject to perturbations of finite amplitude and frequency. Two main objectives are pursued: to determine the extinction line in the equivalence ratio (φ - residence time (τ plane, fixed the thermodynamic state conditions; and to characterize the response of the chemical system to periodic forcing of the residence time. Transient simulations of combustion of methane with air, using both global single-step and detailed chemical kinetic mechanisms, have been conducted and the corresponding asymptotic solutions analyzed. Results indicate very different dynamical behaviors, posing the issue of a proper choice of the kinetic scheme for the numerical study of combustion oscillations.

  8. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  9. Severe water ingress accident analysis for a Modular High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Scherer, Winfried

    1997-01-01

    This paper analyzes the severe water ingress accidents in the SIEMENS 200MW Modular High Temperature Gas Cooled Reactor (HTR-Module) under the assumption of no active safety protection systems in order to find the safety margin of the current HTR-Module design. A water, steam and helium multi-phase cavity model is originally developed and implemented in the DSNP simulation system. The developed DSNP system is used to simulate the primary circuit of HTR-Module power plant. The comparisons of the models with the TINTE calculations validate the current simulation. After analyzing the effects of blower separation on water droplets, the wall heat storage, etc., it is found that the maximum H 2 O density increase rate in the reactor core is smaller than 0.3 kg/(m 3 s). The liquid water vaporization in the steam generator and H 2 O transport from the steam generator to the reactor core reduces the impulse of the H 2 O in the reactor core. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600degC was not reached in any case. (author)

  10. Utility industry evaluation of the Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; Bitel, J.S.; Tramm, T.R.; High, M.D.; Neils, G.H.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the Modular High Temperature Gas-Cooled Reactor plant design, a current design created by an industrial team led by General Atomics under Department of Energy sponsorship and with support provided by utilities through Gas-Cooled Reactor Associates. The utility industry team concluded that the plant design should be considered a viable application of an advanced nuclear concept and deserves continuing development. Specific comments and recommendations are provided as a contribution toward improving a very promising plant design. 2 refs

  11. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  12. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld

  13. Small biogas plant with integrated gas and stirrer bellows. Kleinbiogasanlage mit integriertem Gas- und Ruehrbalg

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1985-09-12

    The content of a flexible rectangular septic tank is stirred under the pressure produced by the gas generated by the rotting mass by means of integrated gas and stirring bellows. Their volume is indirectly connected via a gas pipe with the volume of the container, so that the gas formed in the septic tank can reach the bellows via this pipe and can expand this, which causes mixing and at the same time the rotting liquid exerts a pressure on the gas in the bellows. In this way, one can provide gas constantly under pressure. The formation of sinking and floating layers is prevented.

  14. Gas release from a failed fuel pin after reactor shut-down

    International Nuclear Information System (INIS)

    Pshenichnikov, B.V.

    1975-01-01

    A mathematical model of gassing from a hypothetical core fuel element in the active zone of a stopped water-moderated reactor was analysed to investigate the process of liberation of gaseous fission products from an unpressurized fuel element. A one-dimensional problem was obtained as a result of the accepted hypotheses. A fault was assumed to have occured during reactor operation; at the same time, a vapour-gas mixture was considered to be present under the envelope at reactor working pressure by the moment of stoppage. An approximative estimation was made of the retardation time of pressure balancing at the open end of the fuel element, and also of the amount of total gas remaining in the gap under the fuel element envelope after pressure drop in the reactor. Estimation of retardation time permitted to conclude that pressure in the nonhermetic fuel element envelope follows pressure fluctuation in the reactor in the course of cooling, the retardation time of pressure balancing outside and inside the fuel element lasting but a few seconds

  15. Improvement of lipase production at different stirring speeds and oxygen levels

    Directory of Open Access Journals (Sweden)

    F.O.M. Alonso

    2005-03-01

    Full Text Available Lipase production by a Brazilian wild strain of Yarrowia lipolytica at different stirring speeds and air flow rates was studied. The relationship among lipid consumption, cell growth and lipase production by this microorganism is presented. The most pronounced effect of oxygen on lipase production was determined by stirring speed. Maximum lipase activity was detected in the late stationary phase at 200 rpm and an air flow rate of 1-2 dm³/min (0.8-1.7 vvm when the lipid source had been fully consumed. Higher stirring speeds resulted in mechanical and/or oxidative stress, while lower stirring speeds seemed to limit oxygen levels. An increase in the availability of oxygen at higher air flow rates led to faster lipid uptake and anticipation of enzyme release into the culture medium. The highest lipase production was obtained at 200 rpm and 1 dm³/min (0.8 vvm.

  16. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  17. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  18. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  19. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  20. Mechanical Property and Its Comparison of Superalloys for High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, D. W.; Ryu, W. S.; Han, C. H.; Yoon, J. H.; Chang, J.

    2005-01-01

    Since structural materials for high temperature gas cooled reactor are used during long period in nuclear environment up to 1000 .deg. C, it is important to have good properties at elevated temperature such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Thus, in order to select excellent materials for the high temperature gas cooled reactor, it is necessary to understand the material properties and to gather the data for them. In this report, the items related to material properties which are needed for designing the high temperature gas cooled reactor were presented. Mechanical properties; tensile, creep, and fatigue etc. were investigated for Haynes 230, Hastelloy-X, In 617 and Alloy 800H, which can be used as the major structural components, such as intermediate heat exchanger (IHX), hot duct and piping and internals. Effect of He and irradiation on these structural materials was investigated. Also, mechanical properties; physical properties, tensile properties, creep and creep crack growth rate were compared for them, respectively. These results of this report can be used as important data to select superior materials for high temperature gas reactor

  1. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard; Kumar, Akansha; Gougar, Hans

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations. Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.

  2. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  3. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  4. Gas Cooled Fast Reactors: Recent advances and prospects

    International Nuclear Information System (INIS)

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  5. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Erna Apriliani

    2011-01-01

    Full Text Available Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ensemble estimation by using the singular value decomposition (the SVD, and then we reduced the rank of the diagonal matrix of those singular values. We make a simulation by using Matlab program. We took some the number of ensemble such as 100, 200 and 500. We compared the computational time and the accuracy between the square root ensemble Kalman filter and the ensemble Kalman filter. The reduced rank ensemble Kalman filter can’t be applied in this problem because the dimension of state variable is too less.

  6. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  7. Influence of the stirring time on the exfoliation of the Cloisite 30 B clay in PVC composite: structural characterization by XRD

    International Nuclear Information System (INIS)

    Cabral, Andreia M.V.; Rodrigues, Meiry G.F.

    2009-01-01

    This study aims to evaluate the influence of the stirring time on the exfoliation efficiency of the montmorillonite clay in PVC composites, prepared by the polymerization 'in situ' process. The work was performed in 2 steps. In first stage: tests of expansion with Cloisite 30B clay in MVC, which was used to assess the degree of expansion in MVC of each of them at different stirring times: 2, 4 and 6 h. After stirring, each system was kept in observation for 3 days to evaluate the changes in the decanted volume of the clay in the reactor. Second stage: the Influence of the stirring time for the clay exfoliation. Cloisite 30B clay was used to compare the influence of the stirring time for exfoliation and characterized by X-ray diffraction (XRD). (author)

  8. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail: alanleyfly@gmail.com; Jiang, Zeng

    2014-03-15

    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  9. Gas-cooled reactors for advanced terrestrial applications

    International Nuclear Information System (INIS)

    Kesavan, K.; Lance, J.R.; Jones, A.R.; Spurrier, F.R.; Peoples, J.A.; Porter, C.A.; Bresnahan, J.D.

    1986-01-01

    Conceptual design of a power plant on an inert gas cooled nuclear coupled to an open, air Brayton power conversion cycle is presented. The power system, called the Westinghouse GCR/ATA (Gas-Cooled Reactors for Advanced Terrestrial Applications), is designed to meet modern military needs, and offers the advantages of secure, reliable and safe electrical power. The GCR/ATA concept is adaptable over a range of 1 to 10 MWe power output. Design descriptions of a compact, air-transportable forward base unit for 1 to 3 MWe output and a fixed-base, permanent installation for 3 to 10 MWe output are presented

  10. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  11. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  12. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  13. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  14. Discussion on Design Transients of Pebble-bed High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Wang Yan; Li Fu; Zheng Yanhua

    2014-01-01

    In order to assure high quality for the components and their supports in the reactor coolant system, etc., some thermal-hydraulic transient conditions will be selected and researched for equipment design evaluation to satisfy the requirements ASME code, which are based on the conservative estimates of the magnitude and frequency of the temperature and pressure transients resulting from various operating conditions in the plant. In the mature design on pressurized water reactor, five conditions are considered. For the developing advanced pebble-bed high temperature gas-cooled reactor(HTGR), its design and operation has much difference with other reactors, so the transients of the pebble-bed high temperature gas-cooled reactor have distinctive characteristics. In this paper, the possible design transients of the pebble-bed HTGR will be discussed, and the frequency of design transients for equipment fatigue analysis and stress analysis due to cyclic stresses is also studied. The results will provide support for the design and construct of the pebble-bed HTGR. (author)

  15. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  16. Influence of dissolved product gas on organism retention in biogas tower reactors; Der Einfluss geloester Produktgase auf den Organismenrueckhalt in Biogas-Turmreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, T.; Maerkl, H. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Bioprozess- und Bioverfahrenstechnik

    1999-07-01

    In biogas tower reactors, considerable oversaturations of CO{sub 2} dissolved in molecular form in the liquid phase can occur, compared to the thermodynamic steady state with the gas phase. In buildings of low height, upflow designs cause biological CO{sub 2} production along the reactor to saturate the liquid phase with carbonic acid, and also cause the pH value increasing from acid degradation to bind CO{sub 2} in the form of hydrogen carbonate HCO{sup -}{sub 3}. Where buildings are very high, the liquid phase becomes degassed through a decrease in CO{sub 2} partial pressure because of decreasing hydrostatic pressure along the length of the reactor. Rising gas bubbles in the liquid phase as well as enclosed gas bubbles in biomass particles slow down their sedimentation considerably and can result in flotation of biomass particles owing to gas expansion from declining hydrostatic pressure. A sedimentation characteristics for biomass under decreasing hydrostatic pressure is given. Conditions critical to biomass retention are energy input into CO{sub 2}-oversaturated liquids as well as dynamically rapid drops in pH value owing to associated CO{sub 2} degassing. (orig.) [German] In Biogas-Turmreaktoren koennen erhebliche Uebersaettigungen von molekular geloestem CO{sub 2} in der Fluessigphase gegenueber dem thermodynamischen Gleichgewichtszustand mit der Gasphase auftreten. Bei geringer Bauhoehe fuehrt bei upflow-Konzepten die biologische CO{sub 2}-Produktion entlang des Reaktors zu einer Aufsaettigung der Fluessigphase mit Kohlensaeure und der durch Saeureabbau ansteigende pH-Wert zu einer Bindung des CO{sub 2} in Form des Hydrogencarbonats HCO{sub 3}{sup -}. Sehr grosse Bauhoehen fuehren zu einer Entgasung der Fluessigphase durch Abnahme des CO{sub 2}-Partialdruckes aufgrund des abnehmenden hydrostatischen Druckes entlang der Reaktorhoehe. Aufsteigende Gasblasen in der Fluessigphase sowie eingeschlossene Gasblasen in Biomassepartikeln mindern deren

  17. Role of fission gas release in reactor licensing

    International Nuclear Information System (INIS)

    1975-11-01

    The release of fission gases from oxide pellets to the fuel rod internal voidage (gap) is reviewed with regard to the required safety analysis in reactor licensing. Significant analyzed effects are described, prominent gas release models are reviewed, and various methods used in the licensing process are summarized. The report thus serves as a guide to a large body of literature including company reports and government documents. A discussion of the state of the art of gas release analysis is presented

  18. A novel approach for toluene gas treatment using a downflow hanging sponge reactor.

    Science.gov (United States)

    Yamaguchi, Tsuyoshi; Nakamura, Syoichiro; Hatamoto, Masashi; Tamura, Eisuke; Tanikawa, Daisuke; Kawakami, Shuji; Nakamura, Akinobu; Kato, Kaoru; Nagano, Akihiro; Yamaguchi, Takashi

    2018-05-01

    A novel gas-scrubbing bioreactor based on a downflow hanging sponge (DHS) reactor was developed as a new volatile organic compound (VOC) treatment system. In this study, the effects of varying the space velocity and gas/liquid ratio were investigated to assess the effectiveness of using toluene gas as a model VOC. Under optimal conditions, the toluene removal rate was greater than 80%, and the maximum elimination capacity was observed at approximately 13 g-C m -3  h -1 . The DHS reactor demonstrated slight pressure loss (20 Pa) and a high concentration of suspended solids (up to 30,000 mg/L-sponge). Cloning analysis of the 16S rRNA and functional genes of toluene degradation pathways (tmoA, todC, tbmD, xylA, and bssA) revealed that the clones belonging to the toluene-degrading bacterium Pseudomonas putida constituted the predominant species detected at the bottom of the DHS reactor. The toluene-degrading bacteria Pseudoxanthomonas spadix and Pseudomonas sp. were also detected by tmoA- and todC-targeted cloning analyses, respectively. These results demonstrate the potential for the industrial application of this novel DHS reactor for toluene gas treatment.

  19. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  20. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)