WorldWideScience

Sample records for stimuli modulate lateral

  1. Negative “gossip” stimuli modulate left-lateralized P1 component while viewing neutral faces

    DEFF Research Database (Denmark)

    Weed, Ethan; Allen, Micah Galen; Gramm, Daniel

    , Anderson et al. (2011) showed that short “gossip” phrases modulated the length of time faces remained perceptually dominant. However, binocular rivalry is measured by self-report. We used EEG to investigate the timing of gossip’s early effect on face perception. Gossip stimuli were those used by Anderson...... et al. (2011), translated to Danish. Neutral faces were taken from the PUT database (Kasiński et al., 2008). Participants (n=30) viewed each face together with the gossip stimuli a total of six times. Following this encoding period, 32 channels of EEG were recorded while participants viewed the faces...... mixed with unfamiliar faces, and performed a distracter task. A post-test checked participants’ memory of the individual faces. We hypothesized that negative gossip would modulate the face-sensitive N170 component at electrodes P7 and P8. No differences were observed in the N170, and no memory effect...

  2. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  3. Responses of Medullary Lateral Line Units of the Goldfish, Carassius auratus, to Amplitude-Modulated Sinusoidal Wave Stimuli

    Directory of Open Access Journals (Sweden)

    Ramadan Ali

    2010-01-01

    Full Text Available This paper describes the responses of brainstem lateral line units in goldfish, Carassius auratus, to constant-amplitude and to amplitude-modulated sinusoidal water motions. If stimulated with constant-amplitude sinusoidal water motions, units responded with phasic (50% or with sustained (50% increases in dicharge rate. Based on isodisplacement curves, units preferred low (33 Hz, 12.5%, mid (50 Hz, 10% and 100 Hz, 30% or high (200 Hz, 47.5% frequencies. In most units, responses were weakly phase locked to the carrier frequency. However, at a carrier frequency of 50 Hz or 100 Hz, a substantial proportion of the units exhibited strong phase locking. If stimulated with amplitude-modulated water motions, units responded with a burst of discharge to each modulation cycle, that is, units phase locked to the amplitude modulation frequency. Response properties of brainstem units were in many respects comparable to those of midbrain units, suggesting that they emerge first in the lateral line brainstem.

  4. Vection is modulated by the semantic meaning of stimuli and experimental instructions.

    Science.gov (United States)

    Ogawa, Masaki; Seno, Takeharu

    2014-01-01

    Vection strength is modulated by the semantic meanings of stimuli. In experiment 1--even though vection stimuli were of uniform size, color, and luminance--when they also had semantic meaning as falling objects, vection was inhibited. Specifically, stimuli perceived as feathers, petals, and leaves did not effectively induce vection. In experiment 2 we used the downward motion of identical dots to induce vection. Participants observed stimuli while holding either an umbrella or a wooden sword. Results showed that vection was inhibited when participants held the umbrella and the stimuli was perceived as rain or snow falling. The two experiments suggest that vection is modulated by the semantic meaning of stimuli.

  5. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry.

    Science.gov (United States)

    Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J

    2018-01-01

    Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lateralized eye use towards video stimuli in bearded dragons (Pogona vitticeps

    Directory of Open Access Journals (Sweden)

    Anna Frohnwieser

    2017-08-01

    Full Text Available Lateralized eye use is thought to increase brain efficiency, as the two hemispheres process different information perceived by the eyes. It has been observed in a wide variety of vertebrate species and, in general, information about conspecifics appears to elicit a left eye preference whilst information about prey elicits the opposite. In reptiles, this phenomenon has only been investigated using live conspecifics in agonistic contexts, and so it is not clear whether it can be found when using video stimuli. Here, bearded dragons (Pogona vitticeps were presented with videos of female conspecifics and prey that either moved or were stationary, along with a control video of an empty background. Females exhibited a left eye bias towards conspecifics but males did not; however, both sexes looked at conspecifics significantly longer than prey. Further, animals used their left eye significantly longer when viewing moving stimuli of both categories. These results suggest that, in lizards, lateralized eye use when viewing conspecifics may be controlled by sex, and strongly influenced by stimulus movement. This study, therefore, provides important insights into the role of lateralized processing in lizard perception, and sets the scene for future work investigating the role of sex on perception of conspecifics and the role of motion in lateralized eye use.

  7. Responses to amplitude modulated infrared stimuli in the guinea pig inferior colliculus

    Science.gov (United States)

    Richter, Claus-Peter; Young, Hunter

    2013-03-01

    Responses of units in the central nucleus of the inferior colliculus of the guinea pig were recorded with tungsten electrodes. The set of data presented here is limited to high stimulus levels. The effect of changing the modulation frequency and the modulation depth was explored for acoustic and laser stimuli. The selected units responded to sinusoidal amplitude modulated (AM) tones, AM trains of clicks, and AM trains of laser pulses with a modulation of their spike discharge. At modulation frequencies of 20 Hz, some units tended to respond with 40 Hz to the acoustic stimuli, but only at 20 Hz for the trains of laser pulses. For all modes of stimulation the responses revealed a dominant response to the first cycle of the modulation, with decreasing number of action potential during successive cycles. While amplitude modulated tone bursts and amplitude modulated trains of acoustic clicks showed similar patterns, the response to trains of laser pulses was different.

  8. Visual laterality in dolphins: importance of the familiarity of stimuli

    Science.gov (United States)

    2012-01-01

    Background Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality. Results We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (Tursiops truncatus) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence. Conclusion Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system

  9. Visual laterality in dolphins: importance of the familiarity of stimuli

    Directory of Open Access Journals (Sweden)

    Blois-Heulin Catherine

    2012-01-01

    Full Text Available Abstract Background Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality. Results We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (Tursiops truncatus in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously to familiar objects (known but never manipulated to unfamiliar objects (unknown, never seen previously. At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence. Conclusion Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their

  10. Threat/reward-sensitivity and hypomanic-personality modulate cognitive-control and attentional neural processes to emotional stimuli.

    Science.gov (United States)

    Pornpattananangkul, Narun; Hu, Xiaoqing; Nusslock, Robin

    2015-11-01

    Temperamental-traits (e.g. threat/reward-sensitivity) are found to modulate cognitive-control and attentional-processes. Yet, it is unclear exactly how these traits interact with emotional-stimuli in the modulation of cognitive-control, as reflected by the N2 event-related potential (ERP), and attentional-processes, as reflected by the P2 and P3 ERPs. Here in an ERP emotional-Go/NoGo task, 36 participants were instructed to inhibit their response to Fearful- and Happy-faces. Individual-differences in threat-sensitivity, reward-sensitivity and hypomanic-personality were assessed through self-report. Hypomanic-personality was assessed, given its relationship with reward-sensitivity and relevance to mood-disorder symptoms. Concerning cognitive-control, individuals with elevated threat-sensitivity displayed more-negative N2s to Happy-NoGo (relative to Fearful-NoGo) faces, whereas both individuals with elevated reward-sensitivity and hypomanic-personality displayed more-negative N2s to Fearful-NoGo (relative to Happy-NoGo) faces. Accordingly, when cognitive-control is required (during Go/NoGo), a mismatch between one's temperament and the valence of the NoGo-stimulus elevates detection of the need for cognitive-control. Conversely, the modulation of attentional-processing was specific to threat-sensitivity, as there was no relationship between either reward-sensitivity or hypomanic-personality and attentional-processing. Elevated threat-sensitivity was associated with enhanced early (P2s) and later (P3s) attentional-processing to Fearful-NoGo (relative to Happy-NoGo) faces. These latter findings support the negative attentional-bias model relating elevated threat-sensitivity with attentional-biases toward negative-stimuli and away from positive-stimuli. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  12. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  13. Measures of extents of laterality for high-frequency ``transposed'' stimuli under conditions of binaural interference

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-09-01

    Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.

  14. Thoughts of death modulate psychophysical and cortical responses to threatening stimuli.

    Directory of Open Access Journals (Sweden)

    Elia Valentini

    Full Text Available Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS. Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations.

  15. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  16. Laterality of pain: modulation by placebo and participants' paranormal belief.

    Science.gov (United States)

    Klemenz, Caroline; Regard, Marianne; Brugger, Peter; Emch, Oliver

    2009-09-01

    To investigate the effects of placebo and paranormal belief on the laterality of pain perception. The right hemisphere is dominantly involved in both the mediation of pain sensation and the belief in paranormal phenomena. We set out to assess a possible influence of long-term belief systems on placebo analgesia in response to unilateral nociceptive stimuli. Forty healthy participants (20 high and 20 low believers as indexed by the Magical Ideation Scale) underwent a placebo analgesia study measuring stimulus detection, pain threshold, and pain tolerance by electrostimulation on the right and left hand. Placebo treatment consisted of the application of a sham cream on the hands. Placebo had a positive influence on pain perception in the 3 variables. Enhanced pain sensitivity for the left side was only found for the disbelievers. Placebo treatment resulted in a double dissociation: in believers, it increased tolerance exclusively on the left side, in disbelievers on the right side. Our results confirm laterality effects in pain perception. However, only disbelievers conformed to the expected higher left-sided sensitivity. Placebo effects were dissociated between believers and disbelievers suggesting that short-term reactions to a placebo are modulated by a person's long-term belief system.

  17. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    Science.gov (United States)

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  18. Modulation of instrumental responding by a conditioned threat stimulus requires lateral and central amygdala

    Directory of Open Access Journals (Sweden)

    Vincent eCampese

    2015-10-01

    Full Text Available Two studies explored the role of the amygdala in response modulation by an aversive conditioned stimulus (CS in rats. Experiment 1 investigated the role of amygdala circuitry in conditioned suppression using a paradigm in which licking for sucrose was inhibited by a tone CS that had been previously paired with footshock. Electrolytic lesions of the lateral amygdala impaired suppression relative to sham-operated animals, and produced the same pattern of results when applied to central amygdala. In addition, disconnection of the lateral and central amygdala, by unilateral lesion of each on opposite sides of the brain, also impaired suppression relative to control subjects that received lesions of both areas on the same side. In each case, lesions were placed following Pavlovian conditioning and instrumental training, but before testing. This procedure produced within-subjects measures of the effects of lesion on freezing and between-group comparisons for the effects on suppression. Experiment 2 extended this analysis to a task where an aversive CS suppressed shuttling responses that had been previously food reinforced and also found effects of bilateral lesions of the central amygdala in a pre-post design. Together, these studies demonstrate that connections between the lateral and central amygdala constitute a serial circuit involved in processing aversive Pavlovian stimuli, and add to a growing body of findings implicating central amygdala in the modulation of instrumental behavior.

  19. Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model

    DEFF Research Database (Denmark)

    Stein, A.; Ewert, Stephan; Wiegrebe, L.

    2005-01-01

    , autocorrelation is applied. Considering the large overlap in pitch and modulation perception, this is not parsimonious. Two experiments are presented to investigate the interaction between carrier periodicity, which produces strong pitch sensations, and envelope periodicity using broadband stimuli. Results show......Recent temporal models of pitch and amplitude modulation perception converge on a relatively realistic implementation of cochlear processing followed by a temporal analysis of periodicity. However, for modulation perception, a modulation filterbank is applied whereas for pitch perception...

  20. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  1. Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli.

    Science.gov (United States)

    Hullett, Patrick W; Hamilton, Liberty S; Mesgarani, Nima; Schreiner, Christoph E; Chang, Edward F

    2016-02-10

    The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior-posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception. Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli. Copyright © 2016 the authors 0270-6474/16/362014-13$15.00/0.

  2. An fMRI investigation into the effect of preceding stimuli during visual oddball tasks.

    Science.gov (United States)

    Fajkus, Jiří; Mikl, Michal; Shaw, Daniel Joel; Brázdil, Milan

    2015-08-15

    This study investigates the modulatory effect of stimulus sequence on neural responses to novel stimuli. A group of 34 healthy volunteers underwent event-related functional magnetic resonance imaging while performing a three-stimulus visual oddball task, involving randomly presented frequent stimuli and two types of infrequent stimuli - targets and distractors. We developed a modified categorization of rare stimuli that incorporated the type of preceding rare stimulus, and analyzed the event-related functional data according to this sequence categorization; specifically, we explored hemodynamic response modulation associated with increasing rare-to-rare stimulus interval. For two consecutive targets, a modulation of brain function was evident throughout posterior midline and lateral temporal cortex, while responses to targets preceded by distractors were modulated in a widely distributed fronto-parietal system. As for distractors that follow targets, brain function was modulated throughout a set of posterior brain structures. For two successive distractors, however, no significant modulation was observed, which is consistent with previous studies and our primary hypothesis. The addition of the aforementioned technique extends the possibilities of conventional oddball task analysis, enabling researchers to explore the effects of the whole range of rare stimuli intervals. This methodology can be applied to study a wide range of associated cognitive mechanisms, such as decision making, expectancy and attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Self-esteem modulates automatic attentional responses to self-relevant stimuli: Evidence from event-related brain potentials

    Directory of Open Access Journals (Sweden)

    Jie eChen

    2015-06-01

    Full Text Available Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials were recorded for subjects’ own names and close others’ names (the names of their friends while subjects performed a three-stimulus oddball task. The results showed larger P2 amplitudes for one’s own name than for close-other’s name in the low self-esteem group, whereas this P2 effect were not observed in the high self-esteem group. In addition, one’s own name elicited equivalent N250 amplitudes and larger P3 amplitudes compared with close-other’s name in both high and low self-esteem groups. However, no interaction effects were observed between self-esteem and self-relevant processing in the N250 and P3 components. Thus, we found that the modulation effects of self-esteem on self-relevant processing occurred at the early P2 stage, but not at the later N250 and P3 stages. These findings reflect that individuals with low self-esteem demonstrate automatic attention towards their own names.

  4. Binocular Combination of Second-Order Stimuli

    Science.gov (United States)

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  5. Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.

    Science.gov (United States)

    Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella

    2017-05-01

    Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2017, 10: 801-809. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  6. Basal forebrain projections to the lateral habenula modulate aggression reward.

    Science.gov (United States)

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  7. Age-related loss in attention-based modulation of tactile stimuli at early stages of somatosensory processing.

    Science.gov (United States)

    Bolton, David A E; Staines, W Richard

    2012-06-01

    Normal aging has been linked to impairments in gating of irrelevant sensory information and neural markers of diminished cognitive processing. Whilst much of the research in this area has focussed on visual and auditory modalities it is unclear to what degree these findings apply to somatosensation. Therefore we investigated how age impacts early event-related potentials (ERPs) arising from relevant or irrelevant vibrotactile stimuli to the fingertips. Specifically, we hypothesised that older adults would demonstrate reduced attention-based modulation of tactile ERPs generated at early stages of cortical somatosensory processing. In accord with previous research we also expected to observe diminished P300 responses to attended targets and behavioural deficits. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only (as instructed) with comparisons between two age groups: (1) Young adults (age range 20-39) and (2) Older adults (age range 62-89). ERP amplitudes for the P50, N70, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at several electrodes (C4, CP4, CP3 and FC4). The P300 in response to attended target stimuli was measured at CPZ. There was no effect of attention on the P50 and N70 however the P100, N140 and LLP were modulated with attention. In both age groups the P100 and LLP were more positive during trials where the stimuli were attended to, whilst the N140 was enhanced for non-attended stimuli. Comparisons between groups revealed a reduction in P100 attention-based modulation for the older adults versus the young adults. This effect was due to a loss of suppression of the non-attended stimuli in older subjects. Moreover, the P300 was both slower and reduced in peak amplitude for older subjects in response to attended targets. Finally, older adults demonstrated impaired performance in terms of both reduced target detection

  8. Self-esteem modulates automatic attentional responses to self-relevant stimuli: evidence from event-related brain potentials

    OpenAIRE

    Chen, Jie; Shui, Qing; Zhong, Yiping

    2015-01-01

    Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials (ERP) were recorded for subjects’ own names and close others’ names (the names of their friends) while...

  9. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    Science.gov (United States)

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  10. The role of the Drosophila lateral horn in olfactory information processing and behavioral response.

    Science.gov (United States)

    Schultzhaus, Janna N; Saleem, Sehresh; Iftikhar, Hina; Carney, Ginger E

    2017-04-01

    Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Role for the Autonomic Nervous System in Modulating the Immune Response during Mild Emotional Stimuli

    NARCIS (Netherlands)

    Croiset, Gerda; Heijnen, Cobi J.; Wal, Wim E. van der; Boer, Sietse F. de; Wied, David de

    1990-01-01

    The role of the autonomic nervous system in the modulation of the immune response to emotional stimuli, was established in rats subjected to the passive avoidance test. An increase in splenic primary antibody response directed against SRBC was found after exposure of rats to the passive avoidance

  12. Social learning modulates the lateralization of emotional valence.

    Science.gov (United States)

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  13. Behavioral and neural indices of affective coloring for neutral social stimuli

    Science.gov (United States)

    Schaefer, Stacey M; Lapate, Regina C; Schoen, Andrew J; Gresham, Lauren K; Mumford, Jeanette A; Davidson, Richard J

    2018-01-01

    Abstract Emotional processing often continues beyond the presentation of emotionally evocative stimuli, which can result in affective biasing or coloring of subsequently encountered events. Here, we describe neural correlates of affective coloring and examine how individual differences in affective style impact the magnitude of affective coloring. We conducted functional magnetic resonance imaging in 117 adults who passively viewed negative, neutral and positive pictures presented 2 s prior to neutral faces. Brain responses to neutral faces were modulated by the valence of preceding pictures, with greater activation for faces following negative (vs positive) pictures in the amygdala, dorsomedial and lateral prefrontal cortex, ventral visual cortices, posterior superior temporal sulcus, and angular gyrus. Three days after the magnetic resonance imaging scan, participants rated their memory and liking of previously encountered neutral faces. Individuals higher in trait positive affect and emotional reappraisal rated faces as more likable when preceded by emotionally arousing (negative or positive) pictures. In addition, greater amygdala responses to neutral faces preceded by positively valenced pictures were associated with greater memory for these faces 3 days later. Collectively, these results reveal individual differences in how emotions spill over onto the processing of unrelated social stimuli, resulting in persistent and affectively biased evaluations of such stimuli. PMID:29447377

  14. Modulations of 'late' event-related brain potentials in humans by dynamic audiovisual speech stimuli.

    Science.gov (United States)

    Lebib, Riadh; Papo, David; Douiri, Abdel; de Bode, Stella; Gillon Dowens, Margaret; Baudonnière, Pierre-Marie

    2004-11-30

    Lipreading reliably improve speech perception during face-to-face conversation. Within the range of good dubbing, however, adults tolerate some audiovisual (AV) discrepancies and lipreading, then, can give rise to confusion. We used event-related brain potentials (ERPs) to study the perceptual strategies governing the intermodal processing of dynamic and bimodal speech stimuli, either congruently dubbed or not. Electrophysiological analyses revealed that non-coherent audiovisual dubbings modulated in amplitude an endogenous ERP component, the N300, we compared to a 'N400-like effect' reflecting the difficulty to integrate these conflicting pieces of information. This result adds further support for the existence of a cerebral system underlying 'integrative processes' lato sensu. Further studies should take advantage of this 'N400-like effect' with AV speech stimuli to open new perspectives in the domain of psycholinguistics.

  15. Physical activity, pain responses to heat stimuli, and conditioned pain modulation in postmenopausal women.

    Science.gov (United States)

    Adrian, Amanda L; O'Connor, Patrick J; Ward-Ritacco, Christie L; Evans, Ellen M

    2015-08-01

    Postmenopausal women (PMW) are at high risk for disabling pain and physical inactivity. This study sought to enhance the understanding of relationships between physical activity (PA) and pain among PMW using heat pain sensitivity test and conditioned pain modulation test. We hypothesized that, compared with active women, (i) inactive women would report higher pain intensity and pain unpleasantness ratings; (ii) inactive women in disabling pain would report higher pain intensity and pain unpleasantness at high, but not low, stimulus intensities; and (iii) inactive women would have less modulation. Sixty-eight PMW rated the pain intensity and pain unpleasantness of hot stimuli presented to the thenar eminence of the hand. A subset of 31 women rated the pain intensity of a test stimulus (noxious heat) and a conditioning stimulus (cold water) as part of the conditioned pain modulation task. PA was assessed objectively with accelerometry. Mixed-model analysis of variance (2 × 4 × 2; PA × Temperature × Pain Status) showed that inactive women in disabling pain rated pain unpleasantness higher than active women in disabling pain (F3,192 = 3.526, ∂η = 0.052, P = 0.016). Significantly lower pain unpleasantness ratings were found at the highest stimulus intensity (49°C) only for active women in disabling pain compared with inactive women in disabling pain (t11 = 2.523, P = 0.028). The other hypotheses were not supported. PA is associated with a reduced sensitivity to the unpleasantness of painful high-intensity heat stimuli among women in disabling pain.

  16. Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations.

    Science.gov (United States)

    Yuasa, Kenichi; Yotsumoto, Yuko

    2015-01-01

    When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.

  17. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  18. Laterally vibrating resonator based elasto-optic modulation in aluminum nitride

    Directory of Open Access Journals (Sweden)

    Siddhartha Ghosh

    2016-06-01

    Full Text Available An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic (p coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

  19. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  20. Neurophysiological Modulations of Non-Verbal and Verbal Dual-Tasks Interference during Word Planning.

    Directory of Open Access Journals (Sweden)

    Raphaël Fargier

    Full Text Available Running a concurrent task while speaking clearly interferes with speech planning, but whether verbal vs. non-verbal tasks interfere with the same processes is virtually unknown. We investigated the neural dynamics of dual-task interference on word production using event-related potentials (ERPs with either tones or syllables as concurrent stimuli. Participants produced words from pictures in three conditions: without distractors, while passively listening to distractors and during a distractor detection task. Production latencies increased for tasks with higher attentional demand and were longer for syllables relative to tones. ERP analyses revealed common modulations by dual-task for verbal and non-verbal stimuli around 240 ms, likely corresponding to lexical selection. Modulations starting around 350 ms prior to vocal onset were only observed when verbal stimuli were involved. These later modulations, likely reflecting interference with phonological-phonetic encoding, were observed only when overlap between tasks was maximal and the same underlying neural circuits were engaged (cross-talk.

  1. Neurophysiological Modulations of Non-Verbal and Verbal Dual-Tasks Interference during Word Planning.

    Science.gov (United States)

    Fargier, Raphaël; Laganaro, Marina

    2016-01-01

    Running a concurrent task while speaking clearly interferes with speech planning, but whether verbal vs. non-verbal tasks interfere with the same processes is virtually unknown. We investigated the neural dynamics of dual-task interference on word production using event-related potentials (ERPs) with either tones or syllables as concurrent stimuli. Participants produced words from pictures in three conditions: without distractors, while passively listening to distractors and during a distractor detection task. Production latencies increased for tasks with higher attentional demand and were longer for syllables relative to tones. ERP analyses revealed common modulations by dual-task for verbal and non-verbal stimuli around 240 ms, likely corresponding to lexical selection. Modulations starting around 350 ms prior to vocal onset were only observed when verbal stimuli were involved. These later modulations, likely reflecting interference with phonological-phonetic encoding, were observed only when overlap between tasks was maximal and the same underlying neural circuits were engaged (cross-talk).

  2. Cortical oscillations modulated by congruent and incongruent audiovisual stimuli.

    Science.gov (United States)

    Herdman, A T; Fujioka, T; Chau, W; Ross, B; Pantev, C; Picton, T W

    2004-11-30

    Congruent or incongruent grapheme-phoneme stimuli are easily perceived as one or two linguistic objects. The main objective of this study was to investigate the changes in cortical oscillations that reflect the processing of congruent and incongruent audiovisual stimuli. Graphemes were Japanese Hiragana characters for four different vowels (/a/, /o/, /u/, and /i/). They were presented simultaneously with their corresponding phonemes (congruent) or non-corresponding phonemes (incongruent) to native-speaking Japanese participants. Participants' reaction times to the congruent audiovisual stimuli were significantly faster by 57 ms as compared to reaction times to incongruent stimuli. We recorded the brain responses for each condition using a whole-head magnetoencephalograph (MEG). A novel approach to analysing MEG data, called synthetic aperture magnetometry (SAM), was used to identify event-related changes in cortical oscillations involved in audiovisual processing. The SAM contrast between congruent and incongruent responses revealed greater event-related desynchonization (8-16 Hz) bilaterally in the occipital lobes and greater event-related synchronization (4-8 Hz) in the left transverse temporal gyrus. Results from this study further support the concept of interactions between the auditory and visual sensory cortices in multi-sensory processing of audiovisual objects.

  3. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  4. Auditory-visual aversive stimuli modulate the conscious experience of fear.

    Science.gov (United States)

    Taffou, Marine; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2013-01-01

    In a natural environment, affective information is perceived via multiple senses, mostly audition and vision. However, the impact of multisensory information on affect remains relatively undiscovered. In this study, we investigated whether the auditory-visual presentation of aversive stimuli influences the experience of fear. We used the advantages of virtual reality to manipulate multisensory presentation and to display potentially fearful dog stimuli embedded in a natural context. We manipulated the affective reactions evoked by the dog stimuli by recruiting two groups of participants: dog-fearful and non-fearful participants. The sensitivity to dog fear was assessed psychometrically by a questionnaire and also at behavioral and subjective levels using a Behavioral Avoidance Test (BAT). Participants navigated in virtual environments, in which they encountered virtual dog stimuli presented through the auditory channel, the visual channel or both. They were asked to report their fear using Subjective Units of Distress. We compared the fear for unimodal (visual or auditory) and bimodal (auditory-visual) dog stimuli. Dog-fearful participants as well as non-fearful participants reported more fear in response to bimodal audiovisual compared to unimodal presentation of dog stimuli. These results suggest that fear is more intense when the affective information is processed via multiple sensory pathways, which might be due to a cross-modal potentiation. Our findings have implications for the field of virtual reality-based therapy of phobias. Therapies could be refined and improved by implicating and manipulating the multisensory presentation of the feared situations.

  5. Lateralization of event-related potential effects during mental rotation of polygons.

    Science.gov (United States)

    Pellkofer, Julia; Jansen, Petra; Heil, Martin

    2012-07-11

    Numerous studies have shown that there is an amplitude modulation of the late positivity depending on the angular disparity during mental rotation performance. However, almost all of these studies used characters as stimulus material, whereas studies with different stimuli are rare. In the present experiment, 35 participants were instructed to rotate polygons mentally. Most importantly, with this stimulus material, the well-known event-related potential effects were also present at posterior electrode leads. Interestingly, the amplitude modulation were found to be larger and more reliable over left than over right posterior electrode leads, a finding reported previously for characters as stimuli, although not consistently. Thus, the present data suggest that the left lateralization of event-related potential effects during mental rotation of characters might not be because of their 'verbal nature', but might suggest a stronger involvement of the left parietal cortex during mental rotation per se, a suggestion that needs to be addressed with methods providing a higher spatial resolution.

  6. Attentional Capture by Emotional Stimuli Is Modulated by Semantic Processing

    Science.gov (United States)

    Huang, Yang-Ming; Baddeley, Alan; Young, Andrew W.

    2008-01-01

    The attentional blink paradigm was used to examine whether emotional stimuli always capture attention. The processing requirement for emotional stimuli in a rapid sequential visual presentation stream was manipulated to investigate the circumstances under which emotional distractors capture attention, as reflected in an enhanced attentional blink…

  7. Self-reference modulates the processing of emotional stimuli in the absence of explicit self-referential appraisal instructions

    Science.gov (United States)

    Pauli, Paul; Herbert, Beate M.

    2011-01-01

    Self-referential evaluation of emotional stimuli has been shown to modify the way emotional stimuli are processed. This study aimed at a new approach by investigating whether self-reference alters emotion processing in the absence of explicit self-referential appraisal instructions. Event-related potentials were measured while subjects spontaneously viewed a series of emotional and neutral nouns. Nouns were preceded either by personal pronouns (‘my’) indicating self-reference or a definite article (‘the’) without self-reference. The early posterior negativity, a brain potential reflecting rapid attention capture by emotional stimuli was enhanced for unpleasant and pleasant nouns relative to neutral nouns irrespective of whether nouns were preceded by personal pronouns or articles. Later brain potentials such as the late positive potential were enhanced for unpleasant nouns only when preceded by personal pronouns. Unpleasant nouns were better remembered than pleasant or neutral nouns when paired with a personal pronoun. Correlation analysis showed that this bias in favor of self-related unpleasant concepts can be explained by participants’ depression scores. Our results demonstrate that self-reference acts as a first processing filter for emotional material to receive higher order processing after an initial rapid attention capture by emotional content has been completed. Mood-congruent processing may contribute to this effect. PMID:20855295

  8. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  9. Emotional conditioning to masked stimuli and modulation of visuospatial attention.

    Science.gov (United States)

    Beaver, John D; Mogg, Karin; Bradley, Brendan P

    2005-03-01

    Two studies investigated the effects of conditioning to masked stimuli on visuospatial attention. During the conditioning phase, masked snakes and spiders were paired with a burst of white noise, or paired with an innocuous tone, in the conditioned stimulus (CS)+ and CS- conditions, respectively. Attentional allocation to the CSs was then assessed with a visual probe task, in which the CSs were presented unmasked (Experiment 1) or both unmasked and masked (Experiment 2), together with fear-irrelevant control stimuli (flowers and mushrooms). In Experiment 1, participants preferentially allocated attention to CS+ relative to control stimuli. Experiment 2 suggested that this attentional bias depended on the perceived aversiveness of the unconditioned stimulus and did not require conscious recognition of the CSs during both acquisition and expression. Copyright 2005 APA, all rights reserved.

  10. Viewing socio-affective stimuli increases connectivity within an extended default mode network.

    Science.gov (United States)

    Göttlich, Martin; Ye, Zheng; Rodriguez-Fornells, Antoni; Münte, Thomas F; Krämer, Ulrike M

    2017-03-01

    Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta-series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio-affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli

    Science.gov (United States)

    Bowen, Holly J.; Spaniol, Julia; Patel, Ronak; Voss, Andreas

    2016-01-01

    Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory. PMID:26784108

  12. Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus.

    Science.gov (United States)

    Eisenach, James C; Curry, Regina; Aschenbrenner, Carol A; Coghill, Robert C; Houle, Timothy T

    2017-03-01

    The locus coeruleus (LC) signals salience to sensory stimuli and these responses can modulate the experience of pain stimuli. The pupil dilation response (PDR) to noxious stimuli is thought to be a surrogate for LC responses, but PDR response to Peltier-controlled noxious heat stimuli, the most commonly used method in experimental pain research, has not been described. Healthy volunteers were presented with randomly presented heat stimuli of 5 sec duration and provided pain intensity ratings to each stimulus. Pupillometry was performed and a method developed to quantify the PDR relevant to these stimuli. The stimulus response, reliability, and effect of commonly used manipulations on pain experience were explored. A method of artifact removal and adjusting for lag from stimulus initiation to PDR response was developed, resulting in a close correlation between pain intensity rating and PDR across a large range of heat stimuli. A reliable assessment of PDR within an individual was achieved with fewer presentations as heat stimulus intensity increased. The correlation between pain rating and PDR was disrupted when cognitive load is increased by manipulating expectations or presenting a second pain stimulus. The PDR began later after skin heating than electrical stimuli and this is the first examination of the PDR using standard nociceptive testing and manipulations of expectations and competing noxious stimulation. A method is described applying PDR to standard heat nociceptive testing, demonstrating stimulus response, reliability, and disruption by cognitive manipulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Amygdala activity related to enhanced memory for pleasant and aversive stimuli.

    Science.gov (United States)

    Hamann, S B; Ely, T D; Grafton, S T; Kilts, C D

    1999-03-01

    Pleasant or aversive events are better remembered than neutral events. Emotional enhancement of episodic memory has been linked to the amygdala in animal and neuropsychological studies. Using positron emission tomography, we show that bilateral amygdala activity during memory encoding is correlated with enhanced episodic recognition memory for both pleasant and aversive visual stimuli relative to neutral stimuli, and that this relationship is specific to emotional stimuli. Furthermore, data suggest that the amygdala enhances episodic memory in part through modulation of hippocampal activity. The human amygdala seems to modulate the strength of conscious memory for events according to emotional importance, regardless of whether the emotion is pleasant or aversive.

  14. Seeing music: The perception of melodic 'ups and downs' modulates the spatial processing of visual stimuli.

    Science.gov (United States)

    Romero-Rivas, Carlos; Vera-Constán, Fátima; Rodríguez-Cuadrado, Sara; Puigcerver, Laura; Fernández-Prieto, Irune; Navarra, Jordi

    2018-05-10

    Musical melodies have "peaks" and "valleys". Although the vertical component of pitch and music is well-known, the mechanisms underlying its mental representation still remain elusive. We show evidence regarding the importance of previous experience with melodies for crossmodal interactions to emerge. The impact of these crossmodal interactions on other perceptual and attentional processes was also studied. Melodies including two tones with different frequency (e.g., E4 and D3) were repeatedly presented during the study. These melodies could either generate strong predictions (e.g., E4-D3-E4-D3-E4-[D3]) or not (e.g., E4-D3-E4-E4-D3-[?]). After the presentation of each melody, the participants had to judge the colour of a visual stimulus that appeared in a position that was, according to the traditional vertical connotations of pitch, either congruent (e.g., high-low-high-low-[up]), incongruent (high-low-high-low-[down]) or unpredicted with respect to the melody. Behavioural and electroencephalographic responses to the visual stimuli were obtained. Congruent visual stimuli elicited faster responses at the end of the experiment than at the beginning. Additionally, incongruent visual stimuli that broke the spatial prediction generated by the melody elicited larger P3b amplitudes (reflecting 'surprise' responses). Our results suggest that the passive (but repeated) exposure to melodies elicits spatial predictions that modulate the processing of other sensory events. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Reward modulates oculomotor competition between differently valued stimuli.

    Science.gov (United States)

    Bucker, Berno; Silvis, Jeroen D; Donk, Mieke; Theeuwes, Jan

    2015-03-01

    The present work explored the effects of reward in the well-known global effect paradigm in which two objects appear simultaneously in close spatial proximity. The experiment consisted of three phases (i) a pre-training phase that served as a baseline, (ii) a reward-training phase to associate differently colored stimuli with high, low and no reward value, and (iii) a post-training phase in which rewards were no longer delivered, to examine whether objects previously associated with higher reward value attracted the eyes more strongly than those associated with low or no reward value. Unlike previous reward studies, the differently valued objects directly competed with each other on the same trial. The results showed that initially eye movements were not biased towards any particular stimulus, while in the reward-training phase, eye movements started to land progressively closer towards stimuli that were associated with a high reward value. Even though rewards were no longer delivered, this bias remained robustly present in the post-training phase. A time course analysis showed that the effect of reward was present for the fastest saccades (around 170 ms) and increased with increasing latency. Although strategic effects for slower saccades cannot be ruled out, we suggest that fast oculomotor responses became habituated and were no longer under strategic attentional control. Together the results imply that reward affects oculomotor competition in favor of stimuli previously associated high reward, when multiple reward associated objects compete for selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Science.gov (United States)

    Pascucci, David; Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    Task Irrelevant Perceptual Learning (TIPL) shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  17. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Directory of Open Access Journals (Sweden)

    David Pascucci

    Full Text Available Task Irrelevant Perceptual Learning (TIPL shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  18. Sex-related memory recall and talkativeness for emotional stimuli

    Directory of Open Access Journals (Sweden)

    Benedetto eArnone

    2011-09-01

    Full Text Available Recent studies have evidenced an increasing interest in sex-related brain mechanisms and cerebral lateralization subserving emotional memory, language processing, and conversational behavior. We used event related potentials (ERP to examine the influence of sex and hemisphere on brain responses to emotional stimuli. Given that the P300 component of ERP is considered a cognitive neuroelectric phenomenon, we compared left and right hemisphere P300 responses to emotional stimuli in men and women. As indexed by both amplitude and latency measures, emotional stimuli elicited more robust P300 effects in the left hemisphere in women than in men, while a stronger P300 component was elicited in the right hemisphere in men compared to women. Our findings show that the variables of sex and hemisphere interacted significantly to influence the strength of the P300 component to the emotional stimuli. Emotional stimuli were also best recalled when given a long-term, incidental memory test, a fact potentially related to the differential P300 waves at encoding. Moreover, taking into account the sex-related differences in language processing and conversational behaviour, in the present study we evaluated possible talkativeness differences between the two genders in the recollection of emotional stimuli. Our data showed that women used a higher number of words, compared to men, to describe both arousal and neutral stories. Moreover, the present results support the view that sex differences in lateralization may not be a general feature of language processing but may be related to the specific condition, such as the emotional content of stimuli.

  19. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion

    OpenAIRE

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Münzberg, Heike

    2017-01-01

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHAGABA), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHAGABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHAGABA neurons that coexpress the neuropeptide galanin (LHAGal). These LHAGal n...

  20. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.; Sofronov, A. N., E-mail: sofronov@rphf.spbstu.ru; Firsov, D. A.; Vorobjev, L. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  1. Proper Analytic Point Spread Function for Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Shimizu, Kunio; Matsui, Norihiko

    2010-07-01

    For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.

  2. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    Science.gov (United States)

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  3. Emotional attention for erotic stimuli: Cognitive and brain mechanisms.

    Science.gov (United States)

    Sennwald, Vanessa; Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Bianchi-Demicheli, Francesco; Sander, David

    2016-06-01

    It has long been posited that among emotional stimuli, only negative threatening information modulates early shifts of attention. However, in the last few decades there has been an increase in research showing that attention is also involuntarily oriented toward positive rewarding stimuli such as babies, food, and erotic information. Because reproduction-related stimuli have some of the largest effects among positive stimuli on emotional attention, the present work reviews recent literature and proposes that the cognitive and cerebral mechanisms underlying the involuntarily attentional orientation toward threat-related information are also sensitive to erotic information. More specifically, the recent research suggests that both types of information involuntarily orient attention due to their concern relevance and that the amygdala plays an important role in detecting concern-relevant stimuli, thereby enhancing perceptual processing and influencing emotional attentional processes. © 2015 Wiley Periodicals, Inc.

  4. β-Adrenergic enhancement of neuronal excitability in the lateral amygdala is developmentally gated.

    Science.gov (United States)

    Fink, Ann E; LeDoux, Joseph E

    2018-05-01

    Noradrenergic signaling in the amygdala is important for processing threats and other emotionally salient stimuli, and β-adrenergic receptor activation is known to enhance neuronal spiking in the lateral amygdala (LA) of juvenile animals. Nevertheless, intracellular recordings have not yet been conducted to determine the effect of β-adrenergic receptor activation on spike properties in the adult LA, despite the potential significance of developmental changes between adolescence and adulthood. Here we demonstrate that the β-adrenergic agonist isoproterenol (15 μM) enhances spike frequency in dorsal LA principal neurons of juvenile male C57BL/6 mice and fails to do so in strain- and sex-matched adults. Furthermore, we find that the age-dependent effect of isoproterenol on spike frequency is occluded by the GABA A receptor blocker picrotoxin (75 μM), suggesting that β-adrenergic receptors downregulate tonic inhibition specifically in juvenile animals. These findings indicate a significant shift during adolescence in the cellular mechanisms of β-adrenergic modulation in the amygdala. NEW & NOTEWORTHY β-Adrenergic receptors (β-ARs) in amygdala are important in processing emotionally salient stimuli. Most cellular recordings have examined juvenile animals, while behavioral data are often obtained from adults. We replicate findings showing that β-ARs enhance spiking of principal cells in the lateral amygdala of juveniles, but we fail to find this in adults. These findings have notable scientific and clinical implications regarding the noradrenergic modulation of threat processing, alterations of which underlie fear and anxiety disorders.

  5. Cross-Modulation Interference with Lateralization of Mixed-Modulated Waveforms

    Science.gov (United States)

    Hsieh, I-Hui; Petrosyan, Agavni; Goncalves, Oscar F.; Hickok, Gregory; Saberi, Kourosh

    2010-01-01

    Purpose: This study investigated the ability to use spatial information in mixed-modulated (MM) sounds containing concurrent frequency-modulated (FM) and amplitude-modulated (AM) sounds by exploring patterns of interference when different modulation types originated from different loci as may occur in a multisource acoustic field. Method:…

  6. Modelling modulation perception : modulation low-pass filter or modulation filter bank?

    NARCIS (Netherlands)

    Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

    1995-01-01

    In current models of modulation perception, the stimuli are first filtered and nonlinearly transformed (mostly half-wave rectified). In order to model the low-pass characteristic of measured modulation transfer functions, the next stage in the models is a first-order low-pass filter with a typical

  7. Interaction of acupuncture treatment and manipulation laterality modulated by the default mode network.

    Science.gov (United States)

    Niu, Xuan; Zhang, Ming; Liu, Zhenyu; Bai, Lijun; Sun, Chuanzhu; Wang, Shan; Wang, Xiaocui; Chen, Zhen; Chen, Hongyan; Tian, Jie

    2017-01-01

    Appropriate selection of ipsilateral or contralateral electroacupuncture (corresponding to the pain site) plays an important role in reaching its better curative effect; however, the involving brain mechanism still remains unclear. Compared with the heat pain model generally established in previous study, capsaicin pain model induces reversible cutaneous allodynia and is proved to be better simulating aspects of clinical nociceptive and neuropathic pain. In the current study, 24 subjects were randomly divided into two groups with a 2 × 2 factorial design: laterality (ipsi- or contralateral side, inter-subject) × treatment with counter-balanced at an interval of one week (verum and placebo electroacupuncture, within-subject). We observed subjective pain intensity and brain activations changes induced by capsaicin allodynia pain stimuli before and after electroacupuncture treatment at acupoint LI4 for 30 min. Analysis of variance results indicated that ipsilateral electroacupuncture treatment produced significant pain relief and wide brain signal suppressions in pain-related brain areas compared with contralateral electroacupuncture. We also found that verum electroacupuncture at either ipsi- or contralateral side to the pain site exhibited comparable significant magnitudes of analgesic effect. By contrast, placebo electroacupuncture elicited significant pain reductions only on the ipsilateral rather than contralateral side. It was inferred that placebo analgesia maybe attenuated on the region of the body (opposite to pain site) where attention was less focused, suggesting that analgesic effect of placebo electroacupuncture mainly rely on the motivation of its spatial-specific placebo responses via attention mechanism. This inference can be further supported by the evidence that the significant interaction effect of manipulation laterality and treatment was exclusively located within the default mode network, including the bilateral superior parietal

  8. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Ansuja Pulickal Mathew

    2017-04-01

    Full Text Available The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.

  9. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    Science.gov (United States)

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  10. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects.

    Science.gov (United States)

    Wen, Fu-Lai; Wang, Yu-Chiun; Shibata, Tatsuo

    2017-06-20

    During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems. Copyright © 2017. Published by Elsevier Inc.

  11. Spatiotemporal Relationships among Audiovisual Stimuli Modulate Auditory Facilitation of Visual Target Discrimination.

    Science.gov (United States)

    Li, Qi; Yang, Huamin; Sun, Fang; Wu, Jinglong

    2015-03-01

    Sensory information is multimodal; through audiovisual interaction, task-irrelevant auditory stimuli tend to speed response times and increase visual perception accuracy. However, mechanisms underlying these performance enhancements have remained unclear. We hypothesize that task-irrelevant auditory stimuli might provide reliable temporal and spatial cues for visual target discrimination and behavioral response enhancement. Using signal detection theory, the present study investigated the effects of spatiotemporal relationships on auditory facilitation of visual target discrimination. Three experiments were conducted where an auditory stimulus maintained reliable temporal and/or spatial relationships with visual target stimuli. Results showed that perception sensitivity (d') to visual target stimuli was enhanced only when a task-irrelevant auditory stimulus maintained reliable spatiotemporal relationships with a visual target stimulus. When only reliable spatial or temporal information was contained, perception sensitivity was not enhanced. These results suggest that reliable spatiotemporal relationships between visual and auditory signals are required for audiovisual integration during a visual discrimination task, most likely due to a spread of attention. These results also indicate that auditory facilitation of visual target discrimination follows from late-stage cognitive processes rather than early stage sensory processes. © 2015 SAGE Publications.

  12. Exposure to Virtual Social Stimuli Modulates Subjective Pain Reports

    Directory of Open Access Journals (Sweden)

    Jacob M Vigil

    2014-01-01

    Full Text Available BACKGROUND: Contextual factors, including the gender of researchers, influence experimental and patient pain reports. It is currently not known how social stimuli influence pain percepts, nor which types of sensory modalities of communication, such as auditory, visual or olfactory cues associated with person perception and gender processing, produce these effects.

  13. Background music genre can modulate flavor pleasantness and overall impression of food stimuli.

    Science.gov (United States)

    Fiegel, Alexandra; Meullenet, Jean-François; Harrington, Robert J; Humble, Rachel; Seo, Han-Seok

    2014-05-01

    This study aimed to determine whether background music genre can alter food perception and acceptance, but also to determine how the effect of background music can vary as a function of type of food (emotional versus non-emotional foods) and source of music performer (single versus multiple performers). The music piece was edited into four genres: classical, jazz, hip-hop, and rock, by either a single or multiple performers. Following consumption of emotional (milk chocolate) or non-emotional food (bell peppers) with the four musical stimuli, participants were asked to rate sensory perception and impression of food stimuli. Participants liked food stimuli significantly more while listening to the jazz stimulus than the hip-hop stimulus. Further, the influence of background music on overall impression was present in the emotional food, but not in the non-emotional food. In addition, flavor pleasantness and overall impression of food stimuli differed between music genres arranged by a single performer, but not between those by multiple performers. In conclusion, our findings demonstrate that music genre can alter flavor pleasantness and overall impression of food stimuli. Furthermore, the influence of music genre on food acceptance varies as a function of the type of served food and the source of music performer. Published by Elsevier Ltd.

  14. Effect of expectation on pain assessment of lower- and higher-intensity stimuli.

    Science.gov (United States)

    Ružić, Valentina; Ivanec, Dragutin; Modić Stanke, Koraljka

    2017-01-01

    Pain modulation via expectation is a well-documented phenomenon. So far it has been shown that expectations about effectiveness of a certain treatment enhance the effectiveness of different analgesics and of drug-free pain treatments. Also, studies demonstrate that people assess same-intensity stimuli differently, depending on the experimentally induced expectations regarding the characteristics of the stimuli. Prolonged effect of expectation on pain perception and possible symmetry in conditions of lower- and higher-intensity stimuli is yet to be studied. Aim of this study is to determine the effect of expectation on the perception of pain experimentally induced by the series of higher- and lower-intensity stimuli. 192 healthy participants were assigned to four experimental groups differing by expectations regarding the intensity of painful stimuli series. Expectations of two groups were congruent with actual stimuli; one group expected and received lower-intensity stimuli and the other expected and received higher-intensity stimuli. Expectations of the remaining two groups were not congruent with actual stimuli; one group expected higher-intensity stimuli, but actually received lower-intensity stimuli while the other group expected lower-intensity stimuli, but in fact received higher-intensity ones. Each group received a series of 24 varied-intensity electrical stimuli rated by the participants on a 30° intensity scale. Expectation manipulation had statistically significant effect on pain intensity assessment. When expecting lower-intensity stimuli, the participants underestimated pain intensity and when expecting higher-intensity stimuli, they overestimated pain intensity. The effect size of expectations upon pain intensity assessment was equal for both lower- and higher-intensity stimuli. The obtained results imply that expectation manipulation can achieve the desired effect of decreasing or increasing both slight and more severe pain for a longer period of

  15. Attentional bias for positive emotional stimuli: A meta-analytic investigation.

    Science.gov (United States)

    Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Sander, David

    2016-01-01

    Despite an initial focus on negative threatening stimuli, researchers have more recently expanded the investigation of attentional biases toward positive rewarding stimuli. The present meta-analysis systematically compared attentional bias for positive compared with neutral visual stimuli across 243 studies (N = 9,120 healthy participants) that used different types of attentional paradigms and positive stimuli. Factors were tested that, as postulated by several attentional models derived from theories of emotion, might modulate this bias. Overall, results showed a significant, albeit modest (Hedges' g = .258), attentional bias for positive as compared with neutral stimuli. Moderator analyses revealed that the magnitude of this attentional bias varied as a function of arousal and that this bias was significantly larger when the emotional stimulus was relevant to specific concerns (e.g., hunger) of the participants compared with other positive stimuli that were less relevant to the participants' concerns. Moreover, the moderator analyses showed that attentional bias for positive stimuli was larger in paradigms that measure early, rather than late, attentional processing, suggesting that attentional bias for positive stimuli occurs rapidly and involuntarily. Implications for theories of emotion and attention are discussed. (c) 2015 APA, all rights reserved).

  16. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  17. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use.

    Science.gov (United States)

    Petersen, Nicole; Cahill, Larry

    2015-09-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to emotional stimuli in women using oral contraceptives, and compared their amygdala reactivity with that of naturally cycling women. Here, we show that women who use oral contraceptive pills have significantly decreased bilateral amygdala reactivity in response to negatively valenced, emotionally arousing stimuli compared with naturally cycling women. We suggest that by modulating amygdala reactivity, oral contraceptive pills may influence behaviors that have previously been shown to be amygdala dependent-in particular, emotional memory. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission

    Directory of Open Access Journals (Sweden)

    David J. Barker

    2017-11-01

    Full Text Available Summary: The lateral habenula (LHb is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO, little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. : Barker et al. show that distinct populations of lateral preoptic area glutamate and GABA neurons synapse together on single lateral habenula neurons and find that this “convergent neurotransmission” allows preoptic area neurons to exert bivalent control over single lateral habenula neurons and drive opposing motivational states. Keywords: preoptic, habenula, reward, aversion, synapse, glutamate, GABA, stress, calcium imaging, optogenetics, electron microscopy

  19. A Demonstration of Optimal Apodization Determination for Proper Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Komiya, Yuichi; Uga, Shinya

    2009-07-01

    We have realized effective ultrasound (US) beamformings by the steering of plural beams and apodizations for B-mode imaging with a high lateral resolution and accurate measurement of tissue or blood displacement vector and/or strain tensor using the multidimensional cross-spectrum phase gradient method (MCSPGM), or multidimensional autocorrelation or Doppler methods (MAM and MDM) using multidimensional analytic signals. For instance, the coherent superposition of the steered beams performed in the lateral cosine modulation method (LCM) has a higher potential for realizing a more accurate measurement of a displacement vector than the synthesis of the displacement vector using the accurately measured axial displacements obtained by the multidimensional synthetic aperture method (MDSAM), multidirectional transmission method (MTM) or the use of plural US transducers. Originally, the apodization function to be used for realizing a designed point spread function (PSF) was obtained by the Fraunhofer approximation (FA). However, to obtain the best approximated, designed PSF in the least-squares sense, we proposed a linear optimization (LO) method. Furthermore, on the basis of the knowledge about the losts of US energy during the propagation, we have recently developed a nonlinear optimization (NLO) method, in which the feet of the main lobes in apodization function are properly truncated. Thus, NLO also allows the decrease in the number of channels or the confinement of the effective aperture. In this study, to gain insight into the ideal shape of the PSF, the accuracies of the two-dimensional (2D) displacement vector measurements were compared for typical PSFs with distinct lateral envelope shapes, particularly, in terms of full width at half maximum (FWHM) and the length of the feet, i.e., the Gaussian function, Hanning window and parabolic function. It was confirmed that a PSF having a wide FWHM and short feet was ideal. Such a PSF yielded an echo with a high signal

  20. Optical properties of spontaneous lateral composition modulation in AlAs/InAs short-period superlattices

    International Nuclear Information System (INIS)

    Francoeur, S.; Zhang, Yong; Norman, A. G.; Alsina, F.; Mascarenhas, A.; Reno, J. L.; Jones, E. D.; Lee, S. R.; Follstaedt, D. M.

    2000-01-01

    The effect of lateral composition modulation, spontaneously generated during the epitaxial growth of an AlAs/InAs short-period superlattice, on the electronic band structure is investigated using phototransmission and photoluminescence spectroscopy. Compared with uniform layers of identical average composition, the presence of the composition modulation considerably reduces the band-gap energy and produces strongly polarized emission and absorption spectra. We demonstrate that the dominant polarization direction can selectively be aligned along the [1(bar sign)10] or [010] crystallographic directions. In compressively strained samples, the use of (001) InP substrates slightly miscut toward (111)A or (101) resulted in modulation directions along [110] or [100], respectively, and dominant polarization directions along a direction orthogonal to the respective composition modulation. Band-gap reductions as high as 350 and 310 meV are obtained for samples with composition modulation along [110] and [100], respectively. Ratios of polarized intensities up to 26 are observed in transmission spectra. (c) 2000 American Institute of Physics

  1. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  2. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli

    OpenAIRE

    Sakaki, Michiko; Niki, N.; Mather, M.

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for bio...

  3. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    Science.gov (United States)

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Developmental and Architectural Principles of the Lateral-line Neural Map

    Directory of Open Access Journals (Sweden)

    Hernan eLopez-Schier

    2013-03-01

    Full Text Available The transmission and central representation of sensory cues through the accurate construction of neural maps is essential for animals to react to environmental stimuli. Structural diversity of sensorineural maps along a continuum between discrete- and continuous-map architectures can influence behavior. The mechanosensory lateral line of fishes and amphibians, for example, detects complex hydrodynamics occurring around the animal body. It. It triggers innate fast escape reactions but also modulates complex navigation behaviors that require constant knowledge about the environment. The aim of this article is to summarize recent work in the zebrafish that has shed light on the development and structure of the lateralis neural map, which is helping to understand how individual sensory modalities generate appropriate behavioral responses to the sensory context.

  5. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Science.gov (United States)

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E; Abraham, Karen S; Alschuler, Daniel M; Alvarenga, Jorge E; Skipper, Jamie; Warner, Virginia; Bruder, Gerard E; Weissman, Myrna M

    2016-11-15

    Event-related potential (ERP) studies have provided evidence for an allocation of attentional resources to enhance perceptual processing of motivationally salient stimuli. Emotional modulation affects several consecutive components associated with stages of affective-cognitive processing, beginning as early as 100-200ms after stimulus onset. In agreement with the notion that the right parietotemporal region is critically involved during the perception of arousing affective stimuli, some ERP studies have reported asymmetric emotional ERP effects. However, it is difficult to separate emotional from non-emotional effects because differences in stimulus content unrelated to affective salience or task demands may also be associated with lateralized function or promote cognitive processing. Other concerns pertain to the operational definition and statistical independence of ERP component measures, their dependence on an EEG reference, and spatial smearing due to volume conduction, all of which impede the identification of distinct scalp activation patterns associated with affective processing. Building on prior research using a visual half-field paradigm with highly controlled emotional stimuli (pictures of cosmetic surgery patients showing disordered [negative] or healed [neutral] facial areas before or after treatment), 72-channel ERPs recorded from 152 individuals (ages 13-68years; 81 female) were transformed into reference-free current source density (CSD) waveforms and submitted to temporal principal components analysis (PCA) to identify their underlying neuronal generator patterns. Using both nonparametric randomization tests and repeated measures ANOVA, robust effects of emotional content were found over parietooccipital regions for CSD factors corresponding to N2 sink (212ms peak latency), P3 source (385ms) and a late centroparietal source (630ms), all indicative of greater positivity for negative than neutral stimuli. For the N2 sink, emotional effects were

  7. Positive mood broadens visual attention to positive stimuli.

    Science.gov (United States)

    Wadlinger, Heather A; Isaacowitz, Derek M

    2006-03-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states.

  8. Reward-dependent modulation of working memory in lateral prefrontal cortex.

    Science.gov (United States)

    Kennerley, Steven W; Wallis, Jonathan D

    2009-03-11

    Although research implicates lateral prefrontal cortex (PFC) in executive control and goal-directed behavior, it remains unclear how goals influence executive processes. One possibility is that goal-relevant information, such as expected rewards, could modulate the representation of information relating to executive control, thereby ensuring the efficient allocation of cognitive resources. To investigate this, we examined how reward modulated spatial working memory. Past studies investigating spatial working memory have focused on dorsolateral PFC, but this area only weakly connects with areas processing reward. Ventrolateral PFC has better connections in this regard. Thus, we contrasted the functional properties of single neurons in ventrolateral and dorsolateral PFC as two subjects performed a task that required them to hold spatial information in working memory under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. Neurons in ventrolateral PFC encoded both spatial and reward information earlier, stronger and in a more sustained manner than neurons in dorsolateral PFC. Within ventrolateral PFC, spatial selectivity was more prevalent on the inferior convexity than within the principal sulcus. Finally, when reward increased spatial selectivity, behavioral performance improved, whereas when reward decreased spatial selectivity, behavioral performance deteriorated. These results suggest that ventrolateral PFC may be a locus whereby information about expected rewards can modulate information in working memory. The pattern of results is consistent with a role for ventrolateral PFC in attentional control.

  9. Implications of Lateral Cerebellum in Proactive Control of Saccades.

    Science.gov (United States)

    Kunimatsu, Jun; Suzuki, Tomoki W; Tanaka, Masaki

    2016-06-29

    Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased

  10. Perceptual load modifies processing of unattended stimuli both in the presence and absence of attended stimuli.

    Science.gov (United States)

    Couperus, J W

    2010-11-26

    This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Opposing Subjective Temporal Experiences in Response to Unpredictable and Predictable Fear-Relevant Stimuli

    Directory of Open Access Journals (Sweden)

    Qian Cui

    2018-03-01

    Full Text Available Previous studies have found that the durations of fear-relevant stimuli were overestimated compared to those of neutral stimuli, even when the fear-relevant stimuli were only anticipated. The current study aimed to investigate the effect of the predictability of fear-relevant stimuli on sub-second temporal estimations. In Experiments 1a and 1b, a randomized design was employed to render the emotional valence of each trial unpredictable. In Experiments 2a and 2b, we incorporated a block design and a cueing paradigm, respectively, to render the emotional stimuli predictable. Compared with the neutral condition, the estimated blank interval was judged as being shorter under the unpredictable fear-relevant condition, while it was judged as being longer under the predictable fear-relevant condition. In other words, the unpredictable and predictable fear-relevant stimuli led to opposing temporal distortions. These results demonstrated that emotions modulate interval perception during different time processing stages.

  12. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  13. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  14. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    Science.gov (United States)

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  16. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Depersonalization disorder: disconnection of cognitive evaluation from autonomic responses to emotional stimuli.

    Directory of Open Access Journals (Sweden)

    Matthias Michal

    Full Text Available BACKGROUND: Patients with depersonalization disorder (DPD typically complain about emotional detachment. Previous studies found reduced autonomic responsiveness to emotional stimuli for DPD patients as compared to patients with anxiety disorders. We aimed to investigate autonomic responsiveness to emotional auditory stimuli of DPD patients as compared to patient controls. Furthermore, we examined the modulatory effect of mindful breathing on these responses as well as on depersonalization intensity. METHODS: 22 DPD patients and 15 patient controls balanced for severity of depression and anxiety, age, sex and education, were compared regarding 1 electrodermal and heart rate data during a resting period, and 2 autonomic responses and cognitive appraisal of standardized acoustic affective stimuli in two conditions (normal listening and mindful breathing. RESULTS: DPD patients rated the emotional sounds as significantly more neutral as compared to patient controls and standardized norm ratings. At the same time, however, they responded more strongly to acoustic emotional stimuli and their electrodermal response pattern was more modulated by valence and arousal as compared to patient controls. Mindful breathing reduced severity of depersonalization in DPD patients and increased the arousal modulation of electrodermal responses in the whole sample. Finally, DPD patients showed an increased electrodermal lability in the rest period as compared to patient controls. CONCLUSIONS: These findings demonstrated that the cognitive evaluation of emotional sounds in DPD patients is disconnected from their autonomic responses to those emotional stimuli. The increased electrodermal lability in DPD may reflect increased introversion and cognitive control of emotional impulses. The findings have important psychotherapeutic implications.

  18. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    Science.gov (United States)

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  19. Electrophysiological correlates of learning-induced modulation of visual motion processing in humans

    Directory of Open Access Journals (Sweden)

    Viktor Gál

    2010-01-01

    Full Text Available Training on a visual task leads to increased perceptual and neural responses to visual features that were attended during training as well as decreased responses to neglected distractor features. However, the time course of these attention-based modulations of neural sensitivity for visual features has not been investigated before. Here we measured event related potentials (ERP in response to motion stimuli with different coherence levels before and after training on a speed discrimination task requiring object-based attentional selection of one of the two competing motion stimuli. We found that two peaks on the ERP waveform were modulated by the strength of the coherent motion signal; the response amplitude associated with motion directions that were neglected during training was smaller than the response amplitude associated with motion directions that were attended during training. The first peak of motion coherence-dependent modulation of the ERP responses was at 300 ms after stimulus onset and it was most pronounced over the occipitotemporal cortex. The second peak was around 500 ms and was focused over the parietal cortex. A control experiment suggests that the earlier motion coherence-related response modulation reflects the extraction of the coherent motion signal whereas the later peak might index accumulation and readout of motion signals by parietal decision mechanisms. These findings suggest that attention-based learning affects neural responses both at the sensory and decision processing stages.

  20. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    Science.gov (United States)

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  1. Secondary hyperalgesia to heat stimuli after burn injury in man

    DEFF Research Database (Denmark)

    Pedersen, J L; Kehlet, H

    1998-01-01

    The aim of the study was to examine the presence of hyperalgesia to heat stimuli within the zone of secondary hyperalgesia to punctate mechanical stimuli. A burn was produced on the medial part of the non-dominant crus in 15 healthy volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min......), and assessments were made 70 min and 40 min before, and 0, 1, and 2 h after the burn injury. Hyperalgesia to mechanical and heat stimuli were examined by von Frey hairs and contact thermodes (3.75 and 12.5 cm2), and pain responses were rated with a visual analog scale (0-100). The area of secondary hyperalgesia...... to punctate stimuli was assessed with a rigid von Frey hair (462 mN). The heat pain responses to 45 degrees C in 5 s (3.75 cm2) were tested in the area just outside the burn, where the subjects developed secondary hyperalgesia, and on the lateral crus where no subject developed secondary hyperalgesia (control...

  2. Effects of emotional valence and three-dimensionality of visual stimuli on brain activation: an fMRI study.

    Science.gov (United States)

    Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro

    2013-01-01

    Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.

  3. Levels of conflict in reasoning modulate right lateral prefrontal cortex.

    Science.gov (United States)

    Stollstorff, Melanie; Vartanian, Oshin; Goel, Vinod

    2012-01-05

    Right lateral prefrontal cortex (rlPFC) has previously been implicated in logical reasoning under conditions of conflict. A functional magnetic resonance imaging (fMRI) study was conducted to explore its role in conflict more precisely. Specifically, we distinguished between belief-logic conflict and belief-content conflict, and examined the role of rlPFC under each condition. The results demonstrated that a specific region of rlPFC is consistently activated under both types of conflict. Moreover, the results of a parametric analysis demonstrated that the same region was modulated by the level of conflict contained in reasoning arguments. This supports the idea that this specific region is engaged to resolve conflict, including during deductive reasoning. This article is part of a Special Issue entitled "The Cognitive Neuroscience of Thought". Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Agnosia for mirror stimuli: a new case report with a small parietal lesion.

    Science.gov (United States)

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier

    2014-11-01

    Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Key scattering mechanisms limiting the lateral transport in a modulation-doped polar heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: nttien@ctu.edu.vn; Thao, Pham Thi Bich [College of Natural Sciences, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2016-06-07

    We present a study of the lateral transport of a two-dimensional electron gas (2DEG) in a modulation-doped polar heterojunction (HJ). In contrast to previous studies, we assume that the Coulomb correlation among ionized impurities and among charged dislocations in the HJ is so strong that the 2DEG low-temperature mobility is not limited by impurity and dislocation scattering. The mobility, however, is specified by alloy disorder scattering and combined roughness scattering, which is the total effect induced by both the potential barrier and polarization roughness. The obtained results show that the alloy disorder and combined roughness scattering strongly depend on the alloy content and on the near-interface electron distribution. Our theory is capable of explaining the bell-shaped dependence of the lateral mobility on alloy content observed in AlGaN/GaN and on 2DEG density observed in AlN/GaN, which have not previously been explained.

  6. Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.

    Science.gov (United States)

    Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R

    2017-07-01

    Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  8. Dissociating object-based from egocentric transformations in mental body rotation: effect of stimuli size.

    Science.gov (United States)

    Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne

    2018-01-01

    The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.

  9. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Yoshino, Atsuo; Okamoto, Yasumasa; Doi, Mitsuru; Okada, Go; Takamura, Masahiro; Ichikawa, Naho; Yamawaki, Shigeto

    2017-01-01

    Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS). However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder. PMID:29163243

  10. Functional Alterations of Postcentral Gyrus Modulated by Angry Facial Expressions during Intraoral Tactile Stimuli in Patients with Burning Mouth Syndrome: A Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Atsuo Yoshino

    2017-11-01

    Full Text Available Previous findings suggest that negative emotions could influence abnormal sensory perception in burning mouth syndrome (BMS. However, few studies have investigated the underlying neural mechanisms associated with BMS. We examined activation of brain regions in response to intraoral tactile stimuli when modulated by angry facial expressions. We performed functional magnetic resonance imaging on a group of 27 BMS patients and 21 age-matched healthy controls. Tactile stimuli were presented during different emotional contexts, which were induced via the continuous presentation of angry or neutral pictures of human faces. BMS patients exhibited higher tactile ratings and greater activation in the postcentral gyrus during the presentation of tactile stimuli involving angry faces relative to controls. Significant positive correlations between changes in brain activation elicited by angry facial images in the postcentral gyrus and changes in tactile rating scores by angry facial images were found for both groups. For BMS patients, there was a significant positive correlation between changes in tactile-related activation of the postcentral gyrus elicited by angry facial expressions and pain intensity in daily life. Findings suggest that neural responses in the postcentral gyrus are more strongly affected by angry facial expressions in BMS patients, which may reflect one possible mechanism underlying impaired somatosensory system function in this disorder.

  11. Effects of aversive stimuli on prospective memory. An event-related fMRI study.

    Directory of Open Access Journals (Sweden)

    Massimiliano Rea

    Full Text Available Prospective memory (PM describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10 and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10 would be involved in a slower and more deliberative analysis to guide goal-directed behaviour.

  12. The presence of a culturally similar or dissimilar social partner affects neural responses to emotional stimuli

    Directory of Open Access Journals (Sweden)

    Kate A. Woodcock

    2013-06-01

    Full Text Available Background: Emotional responding is sensitive to social context; however, little emphasis has been placed on the mechanisms by which social context effects changes in emotional responding. Objective: We aimed to investigate the effects of social context on neural responses to emotional stimuli to inform on the mechanisms underpinning context-linked changes in emotional responding. Design: We measured event-related potential (ERP components known to index specific emotion processes and self-reports of explicit emotion regulation strategies and emotional arousal. Female Chinese university students observed positive, negative, and neutral photographs, whilst alone or accompanied by a culturally similar (Chinese or dissimilar researcher (British. Results: There was a reduction in the positive versus neutral differential N1 amplitude (indexing attentional capture by positive stimuli in the dissimilar relative to alone context. In this context, there was also a corresponding increase in amplitude of a frontal late positive potential (LPP component (indexing engagement of cognitive control resources. In the similar relative to alone context, these effects on differential N1 and frontal LPP amplitudes were less pronounced, but there was an additional decrease in the amplitude of a parietal LPP component (indexing motivational relevance in response to positive stimuli. In response to negative stimuli, the differential N1 component was increased in the similar relative to dissimilar and alone (trend context. Conclusion: These data suggest that neural processes engaged in response to emotional stimuli are modulated by social context. Possible mechanisms for the social-context-linked changes in attentional capture by emotional stimuli include a context-directed modulation of the focus of attention, or an altered interpretation of the emotional stimuli based on additional information proportioned by the context.

  13. Oxytocin and vasopressin enhance responsiveness to infant stimuli in adult marmosets.

    Science.gov (United States)

    Taylor, Jack H; French, Jeffrey A

    2015-09-01

    The neuropeptides oxytocin (OT) and arginine-vasopressin (AVP) have been implicated in modulating sex-specific responses to offspring in a variety of uniparental and biparental rodent species. Despite the large body of research in rodents, the effects of these hormones in biparental primates are less understood. Marmoset monkeys (Callithrix jacchus) belong to a clade of primates with a high incidence of biparental care and also synthesize a structurally distinct variant of OT (proline instead of leucine at the 8th amino acid position; Pro(8)-OT). We examined the roles of the OT and AVP systems in the control of responses to infant stimuli in marmoset monkeys. We administered neuropeptide receptor agonists and antagonists to male and female marmosets, and then exposed them to visual and auditory infant-related and control stimuli. Intranasal Pro(8)-OT decreased latencies to respond to infant stimuli in males, and intranasal AVP decreased latencies to respond to infant stimuli in females. Our study is the first to demonstrate that Pro(8)-OT and AVP alter responsiveness to infant stimuli in a biparental New World monkey. Across species, the effects of OT and AVP on parental behavior appear to vary by species-typical caregiving responsibilities in males and females. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sensory modulation disorders in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  15. Beyond pleasure and arousal: appetitive erotic stimuli modulate electrophysiological brain correlates of early attentional processing.

    Science.gov (United States)

    Kuhr, Benjamin; Schomberg, Jessica; Gruber, Thomas; Quirin, Markus

    2013-03-27

    Previous studies investigating affective reactions to pictures that elicit a specific effect have mainly focused on the dimensions valence and arousal. Using an event-related picture-viewing paradigm in electroencephalography, we investigated whether erotica - that is appetitive, evolutionarily relevant stimuli - have effects on early stages of attentional processing that are distinct from those of other positive and arousing stimuli. Seventeen male students viewed arousing photos of erotic, nude women or pictures of extreme sport scenes, as well as control pictures of attractive, dressed women or daily activities. Erotic pictures differed from extreme sport pictures not only in late but also in early attentional processes, as indicated by event-related potentials appearing from 130 ms after stimulus onset (P1). The findings suggest (a) that the dimension of appetence should be considered in addition to valence and arousal when investigating psychophysiological reactions to affective-motivational stimuli and (b) that early attentional processing as mirrored by the P1 can be influenced by motivational systems.

  16. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)

    2017-03-01

    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Activity in the lateral occipital cortex between 200 and 300 ms distinguishes between physically identical seen and unseen stimuli

    Directory of Open Access Journals (Sweden)

    Ying eLiu

    2012-07-01

    Full Text Available There is converging evidence that electrophysiological responses over posterior cortical regions in the 200-300 ms range distinguish between physically identical stimuli that reach consciousness or remain unseen. Here, we attempt at determining the sources of this awareness-related activity using MEG. Fourteen subjects were presented with faint colored gratings at threshold for contrast and reported on each trial whether the grating was seen or unseen. Subjects were primed with a color cue that could be congruent or incongruent with the color of the grating, to probe to what extent two co-localized features (color and orientation would be bound in consciousness. The contrast between neural responses to seen and unseen physically identical gratings revealed a sustained posterior difference between 190 and 350 ms, thereby replicating prior studies. We further show that the main sources of the awareness-related activity were localized bilaterally on the lateral convexity of the occipito-temporal region, in the lateral occipital (LO complex, as well as in the right posterior infero-temporal region. No activity differentiating seen and unseen trials could be observed in frontal or parietal regions in this latency range, even at lower threshold. Color congruency did not improve gratings' detection, and the awareness-related activity was independent from color congruency. However, at the neural level, color congruency was processed differently in grating-present and grating-absent trials. The pattern of results suggests the existence of a neural process of color congruency engaging left parietal regions that is affected by the mere presence of another feature, whether this feature reaches consciousness or not. Altogether, our results reveal an occipital source of visual awareness insensitive to color congruency, and a simultaneous parietal source not engaged in visual awareness, but sensitive to the manipulation of co-localized features.

  18. Medial-lateral organization of the orbitofrontal cortex.

    Science.gov (United States)

    Rich, Erin L; Wallis, Jonathan D

    2014-07-01

    Emerging evidence suggests that specific cognitive functions localize to different subregions of OFC, but the nature of these functional distinctions remains unclear. One prominent theory, derived from human neuroimaging, proposes that different stimulus valences are processed in separate orbital regions, with medial and lateral OFC processing positive and negative stimuli, respectively. Thus far, neurophysiology data have not supported this theory. We attempted to reconcile these accounts by recording neural activity from the full medial-lateral extent of the orbital surface in monkeys receiving rewards and punishments via gain or loss of secondary reinforcement. We found no convincing evidence for valence selectivity in any orbital region. Instead, we report differences between neurons in central OFC and those on the inferior-lateral orbital convexity, in that they encoded different sources of value information provided by the behavioral task. Neurons in inferior convexity encoded the value of external stimuli, whereas those in OFC encoded value information derived from the structure of the behavioral task. We interpret these results in light of recent theories of OFC function and propose that these distinctions, not valence selectivity, may shed light on a fundamental organizing principle for value processing in orbital cortex.

  19. Distress intolerance moderation of motivated attention to cannabis and negative stimuli after induced stress among cannabis users: an ERP study.

    Science.gov (United States)

    Macatee, Richard J; Okey, Sarah A; Albanese, Brian J; Schmidt, Norman B; Cougle, Jesse R

    2018-05-07

    Prevalence of cannabis use is increasing, but many regular users do not develop cannabis use disorder (CUD); thus, CUD risk identification among current users is vital for targeted intervention development. Existing data suggest that high distress intolerance (DI), an individual difference reflective of the ability to tolerate negative affect, may be linked to CUD, but no studies have tested possible neurophysiological mechanisms. Increased motivated attentional processing of cannabis and negative emotional stimuli as indexed by neurophysiology [i.e. the late positive potential (LPP)], particularly during acute stress, may contribute to CUD among high DI users. Frequent cannabis users with high (n = 61) and low DI (n = 44) viewed cannabis, negative, and matched neutral images during electroencephalography (EEG) recording before and after a laboratory stressor. Cannabis cue-elicited modulation of the 1000- to 3000-milliseconds LPP was larger in high DI users at post-stressor only, although the effect was only robust in the 1000- to 2000-milliseconds window. Further, modulation magnitude in the high DI group covaried with stress-relief craving and some CUD indices in the 400- to 1000-milliseconds and 1000- to 3000-milliseconds windows, respectively. No significant effects of DI on negative stimuli-elicited LPP modulation were found, although inverse associations with some CUD indices were observed. Finally, exploratory analyses revealed some evidence for DI moderation of the relation between subjective stressor reactivity and negative stimuli-elicited LPP modulation such that greater stressor reactivity was associated with blunted versus enhanced modulation in the high and low DI groups, respectively. Negative and cannabis stimuli-elicited LPP modulation appear to index distinct, CUD-relevant neural processes in high DI cannabis users. © 2018 Society for the Study of Addiction.

  20. A neural network model of lateralization during letter identification.

    Science.gov (United States)

    Shevtsova, N; Reggia, J A

    1999-03-01

    The causes of cerebral lateralization of cognitive and other functions are currently not well understood. To investigate one aspect of function lateralization, a bihemispheric neural network model for a simple visual identification task was developed that has two parallel interacting paths of information processing. The model is based on commonly accepted concepts concerning neural connectivity, activity dynamics, and synaptic plasticity. A combination of both unsupervised (Hebbian) and supervised (Widrow-Hoff) learning rules is used to train the model to identify a small set of letters presented as input stimuli in the left visual hemifield, in the central position, and in the right visual hemifield. Each visual hemifield projects onto the contralateral hemisphere, and the two hemispheres interact via a simulated corpus callosum. The contribution of each individual hemisphere to the process of input stimuli identification was studied for a variety of underlying asymmetries. The results indicate that multiple asymmetries may cause lateralization. Lateralization occurred toward the side having larger size, higher excitability, or higher learning rate parameters. It appeared more intensively with strong inhibitory callosal connections, supporting the hypothesis that the corpus callosum plays a functionally inhibitory role. The model demonstrates clearly the dependence of lateralization on different hemisphere parameters and suggests that computational models can be useful in better understanding the mechanisms underlying emergence of lateralization.

  1. Neural evidence for reduced apprehensiveness of familiarized stimuli in a mere exposure paradigm.

    Science.gov (United States)

    Zebrowitz, Leslie A; Zhang, Yi

    2012-07-01

    Mere familiarization with a stimulus increases liking for it or similar stimuli ("mere exposure" effects) as well as perceptual fluency, indexed by the speed and accuracy of categorizing it or similar stimuli ("priming" effects). Candidate mechanisms proposed to explain mere exposure effects include both increased positive affect associated with greater perceptual fluency, and reduced negative affect associated with diminished apprehensiveness of novel stimuli. Although these two mechanisms are not mutually exclusive, it is difficult for behavioral measures to disentangle them, since increased liking or other indices of greater positive affect toward exposed stimuli could result from increases in positive feelings or decreases in negative feelings or both. The present study sought to clarify this issue by building on research showing a dissociation at the neural level in which the lateral orbitofrontal cortex (LOFC) is activated more by negatively valenced than by neutral or positively valenced stimuli, with the reverse effect for medial orbitofrontal cortex (MOFC). Supporting the reduced apprehensiveness hypothesis, we found lower LOFC activation to familiarized faces and objects (repetition suppression). We did not find evidence to support the positive affect hypothesis in increased activation to familiarized stimuli in MOFC or in other parts of the reward circuit that respond more to positively valenced stimuli (repetition enhancement), although enhancement effects were shown in some regions.

  2. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    Science.gov (United States)

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  3. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2016-01-01

    Full Text Available Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  4. Divided attention enhances the recognition of emotional stimuli: evidence from the attentional boost effect.

    Science.gov (United States)

    Rossi-Arnaud, Clelia; Spataro, Pietro; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo

    2018-01-01

    The present study examined predictions of the early-phase-elevated-attention hypothesis of the attentional boost effect (ABE), which suggests that transient increases in attention at encoding, as instantiated in the ABE paradigm, should enhance the recognition of neutral and positive items (whose encoding is mostly based on controlled processes), while having small or null effects on the recognition of negative items (whose encoding is primarily based on automatic processes). Participants were presented a sequence of negative, neutral and positive stimuli (pictures in Experiment 1, words in Experiment 2) associated to target (red) squares, distractor (green) squares or no squares (baseline condition). They were told to attend to the pictures/words and simultaneously press the spacebar of the computer when a red square appeared. In a later recognition task, stimuli associated to target squares were recognised better than stimuli associated to distractor squares, replicating the standard ABE. More importantly, we also found that: (a) the memory enhancement following target detection occurred with all types of stimuli (neutral, negative and positive) and (b) the advantage of negative stimuli over neutral stimuli was intact in the DA condition. These findings suggest that the encoding of negative stimuli depends on both controlled (attention-dependent) and automatic (attention-independent) processes.

  5. Cognitive conflict increases processing of negative, task-irrelevant stimuli.

    Science.gov (United States)

    Ligeza, Tomasz S; Wyczesany, Miroslaw

    2017-10-01

    The detection of cognitive conflict is thought to trigger adjustments in executive control. It has been recently shown that cognitive conflict increases processing of stimuli that are relevant to the ongoing task and that these modulations are exerted by the dorsolateral prefrontal cortex (DLPFC). However, it is still unclear whether such control influences are unspecific and might also affect the processing of task-irrelevant stimuli. The aim of the study was to examine if cognitive conflict affects processing of neutral and negative, task-irrelevant pictures. Participants responded to congruent (non-conflict) or to incongruent (conflict-eliciting) trials of a modified flanker task. Each response was followed by a presentation of a neutral or negative picture. The late positive potential (LPP) in response to picture presentation was used to assess the level of picture processing after conflict vs non-conflict trials. Connectivity between the DLPFC and attentional and perceptual areas during picture presentation was analysed to check if the DLPFC might be a source of these modulations. ERP results showed an effect of cognitive conflict only on processing of negative pictures: LPP in response to negative pictures was increased after conflict trials, whereas LPP in response to neutral pictures remained unchanged. Cortical connectivity analysis showed that conflict trials intensified information flow from the DLPFC towards attentional and perceptual regions. Results suggest that cognitive conflict increases processing of task-irrelevant stimuli; however, they must display high biological salience. Increase in cognitive control exerted by the DLPFC over attentional and perceptual regions is a probable mechanism of the effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modulation of Itch by Conditioning Itch and Pain Stimulation in Healthy Humans.

    Science.gov (United States)

    Andersen, Hjalte H; van Laarhoven, Antoinette I M; Elberling, Jesper; Arendt-Nielsen, Lars

    2017-12-01

    Little is known about endogenous descending control of itch. In chronic pain, descending pain inhibition is reduced as signified by lowered conditioned pain modulation. There are indications that patients with chronic itch may also exhibit reduced endogenous descending inhibition of itch and pain. This study aimed to investigate whether and the extent to which itch can be modulated by conditioning itch and pain stimuli. Twenty-six healthy volunteers participated. The study consisted of 5 conditions designed to systematically assess endogenous modulation of itch or pain: 1) itch-induced modulation of contralateral itch, 2) pain-induced modulation of contralateral itch, 3) pain-induced modulation of ipsilateral itch, 4) pain-induced modulation of contralateral pain, and 5) itch-induced modulation of contralateral pain. Conditioning stimuli were cold pressor-induced pain and histamine-evoked itch, whereas the test stimuli were electrical stimulation paradigms designed to evoke itch or pain. Pain was significantly reduced (conditioned pain modulation-effect) by the conditioning pain stimulus (P modulation-effect) by contra- as well as ipsilateral applied conditioning pain (both P modulation of itch as well as pain in humans. Future studies addressing potential aberrations in pain-evoked descending modulation of itch in chronic itch patients are warranted. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Optogenetic stimulation of lateral amygdala input to posterior piriform cortex modulates single-unit and ensemble odor processing

    Directory of Open Access Journals (Sweden)

    Benjamin eSadrian

    2015-12-01

    Full Text Available Olfactory information is synthesized within the olfactory cortex to provide not only an odor percept, but also a contextual significance that supports appropriate behavioral response to specific odor cues. The piriform cortex serves as a communication hub within this circuit by sharing reciprocal connectivity with higher processing regions, such as the lateral entorhinal cortex and amygdala. The functional significance of these descending inputs on piriform cortical processing of odorants is currently not well understood. We have employed optogenetic methods to selectively stimulate lateral and basolateral amygdala (BLA afferent fibers innervating the posterior piriform cortex (pPCX to quantify BLA modulation of pPCX odor-evoked activity. Single unit odor-evoked activity of anaesthetized BLA-infected animals was significantly modulated compared with control animal recordings, with individual cells displaying either enhancement or suppression of odor-driven spiking. In addition, BLA activation induced a decorrelation of odor-evoked pPCX ensemble activity relative to odor alone. Together these results indicate a modulatory role in pPCX odor processing for the BLA complex, which could contribute to learned changes in PCX activity following associative conditioning.

  8. Mirrored and rotated stimuli are not the same: A neuropsychological and lesion mapping study.

    Science.gov (United States)

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Champmartin, Cécile; Pouliquen, Dorothée; Cruypeninck, Yohann; Hannequin, Didier; Gérardin, Emmanuel

    2016-05-01

    Agnosia for mirrored stimuli is a rare clinical deficit. Only eight patients have been reported in the literature so far and little is known about the neural substrates of this agnosia. Using a previously developed experimental test designed to assess this agnosia, namely the Mirror and Orientation Agnosia Test (MOAT), as well as voxel-lesion symptom mapping (VLSM), we tested the hypothesis that focal brain-injured patients with right parietal damage would be impaired in the discrimination between the canonical view of a visual object and its mirrored and rotated images. Thirty-four consecutively recruited patients with a stroke involving the right or left parietal lobe have been included: twenty patients (59%) had a deficit on at least one of the six conditions of the MOAT, fourteen patients (41%) had a deficit on the mirror condition, twelve patients (35%) had a deficit on at least one the four rotated conditions and one had a truly selective agnosia for mirrored stimuli. A lesion analysis showed that discrimination of mirrored stimuli was correlated to the mesial part of the posterior superior temporal gyrus and the lateral part of the inferior parietal lobule, while discrimination of rotated stimuli was correlated to the lateral part of the posterior superior temporal gyrus and the mesial part of the inferior parietal lobule, with only a small overlap between the two. These data suggest that the right visual 'dorsal' pathway is essential for accurate perception of mirrored and rotated stimuli, with a selective cognitive process and anatomical network underlying our ability to discriminate between mirrored images, different from the process of discriminating between rotated images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gestalt perceptual organization of visual stimuli captures attention automatically: Electrophysiological evidence

    Directory of Open Access Journals (Sweden)

    Francesco Marini

    2016-08-01

    Full Text Available The visual system leverages organizational regularities of perceptual elements to create meaningful representations of the world. One clear example of such function, which has been formalized in the Gestalt psychology principles, is the perceptual grouping of simple visual elements (e.g., lines and arcs into unitary objects (e.g., forms and shapes. The present study sought to characterize automatic attentional capture and related cognitive processing of Gestalt-like visual stimuli at the psychophysiological level by using event-related potentials (ERPs. We measured ERPs during a simple visual reaction time task with bilateral presentations of physically matched elements with or without a Gestalt organization. Results showed that Gestalt (vs. non-Gestalt stimuli are characterized by a larger N2pc together with enhanced ERP amplitudes of non-lateralized components (N1, N2, P3 starting around 150ms post-stimulus onset. Thus, we conclude that Gestalt stimuli capture attention automatically and entail characteristic psychophysiological signatures at both early and late processing stages.

  10. Phase-dependent effects of stimuli locked to oscillatory activity in cultured cortical networks

    NARCIS (Netherlands)

    Stegenga, J.; le Feber, Jakob; Marani, Enrico; Rutten, Wim

    The archetypal activity pattern in cultures of dissociated neurons is spontaneous network-wide bursting. Bursts may interfere with controlled activation of synaptic plasticity, but can be suppressed by the application of stimuli at a sufficient rate. We sinusoidally modulated (4 Hz) the pulse rate

  11. Emotion regulation during the encoding of emotional stimuli: Effects on subsequent memory.

    Science.gov (United States)

    Leventon, Jacqueline S; Bauer, Patricia J

    2016-02-01

    In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral and electrophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Furthermore, we implemented a reappraisal instruction to manipulate (down-regulate) emotional arousal at encoding to examine the relation between emotional arousal and subsequent memory. Participants (8-year-old girls) viewed emotional scenes as electrophysiological (EEG) data were recorded and participated in a memory task 1 to 5days later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. The reappraisal instruction successfully reduced emotional arousal responses to negative stimuli but not positive stimuli. Similarly, recognition performance in both event-related potentials (ERPs) and behavior was impaired for reappraised negative stimuli but not positive stimuli. The findings indicate that ERPs are sensitive to the reappraisal of negative stimuli in children as young as 8years. Furthermore, the findings suggest an interaction of emotion and memory during the school years, implicating the explanatory role of emotional arousal at encoding on subsequent memory performance in female children as young as 8years. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.

    Science.gov (United States)

    Paraouty, Nihaad; Ewert, Stephan D; Wallaert, Nicolas; Lorenzi, Christian

    2016-07-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.

  13. Attention Strongly Modulates Reliability of Neural Responses to Naturalistic Narrative Stimuli.

    Science.gov (United States)

    Ki, Jason J; Kelly, Simon P; Parra, Lucas C

    2016-03-09

    Attentional engagement is a major determinant of how effectively we gather information through our senses. Alongside the sheer growth in the amount and variety of information content that we are presented with through modern media, there is increased variability in the degree to which we "absorb" that information. Traditional research on attention has illuminated the basic principles of sensory selection to isolated features or locations, but it provides little insight into the neural underpinnings of our attentional engagement with modern naturalistic content. Here, we show in human subjects that the reliability of an individual's neural responses with respect to a larger group provides a highly robust index of the level of attentional engagement with a naturalistic narrative stimulus. Specifically, fast electroencephalographic evoked responses were more strongly correlated across subjects when naturally attending to auditory or audiovisual narratives than when attention was directed inward to a mental arithmetic task during stimulus presentation. This effect was strongest for audiovisual stimuli with a cohesive narrative and greatly reduced for speech stimuli lacking meaning. For compelling audiovisual narratives, the effect is remarkably strong, allowing perfect discrimination between attentional state across individuals. Control experiments rule out possible confounds related to altered eye movement trajectories or order of presentation. We conclude that reliability of evoked activity reproduced across subjects viewing the same movie is highly sensitive to the attentional state of the viewer and listener, which is aided by a cohesive narrative. Copyright © 2016 Ki et al.

  14. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence From Modeling Chinese Character Recognition.

    Science.gov (United States)

    Hsiao, Janet H; Cheung, Kit

    2016-03-01

    In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.

  15. Coding of Stimuli by Animals: Retrospection, Prospection, Episodic Memory and Future Planning

    Science.gov (United States)

    Zentall, Thomas R.

    2010-01-01

    When animals code stimuli for later retrieval they can either code them in terms of the stimulus presented (as a retrospective memory) or in terms of the response or outcome anticipated (as a prospective memory). Although retrospective memory is typically assumed (as in the form of a memory trace), evidence of prospective coding has been found…

  16. Differential modulation of lateral septal vasopressin receptor blockade in spatial learning, social recognition, and anxiety-related behaviors in rats

    NARCIS (Netherlands)

    Everts, HGJ; Koolhaas, JM

    1999-01-01

    The role of lateral septal vasopressin (VP) in the modulation of spatial memory, social memory, and anxiety-related behavior was studied in adult, male Wistar rats. Animals were equipped with osmotic minipumps delivering the VP-antagonist d(CH2)5-D-Tyr(Et)VAVP (1 ng/0.5 mu l per h) bilaterally into

  17. Cardiorespiratory interactions to external stimuli.

    Science.gov (United States)

    Bernardi, L; Porta, C; Spicuzza, L; Sleight, P

    2005-09-01

    Respiration is a powerful modulator of heart rate variability, and of baro- or chemo-reflex sensitivity. This occurs via a mechanical effect of breathing that synchronizes all cardiovascular variables at the respiratory rhythm, particularly when this occurs at a particular slow rate coincident with the Mayer waves in arterial pressure (approximately 6 cycles/min). Recitation of the rosary prayer (or of most mantras), induces a marked enhancement of these slow rhythms, whereas random verbalization or random breathing does not. This phenomenon in turn increases baroreflex sensitivity and reduces chemoreflex sensitivity, leading to increases in parasympathetic and reductions in sympathetic activity. The opposite can be seen during either verbalization or mental stress tests. Qualitatively similar effects can be obtained even by passive listening to more or less rhythmic auditory stimuli, such as music, and the speed of the rhythm (rather than the style) appears to be one of the main determinants of the cardiovascular and respiratory responses. These findings have clinical relevance. Appropriate modulation of breathing, can improve/restore autonomic control of cardiovascular and respiratory systems in relevant diseases such as hypertension and heart failure, and might therefore help improving exercise tolerance, quality of life, and ultimately, survival.

  18. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  19. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  20. A validated set of tool pictures with matched objects and non-objects for laterality research.

    Science.gov (United States)

    Verma, Ark; Brysbaert, Marc

    2015-01-01

    Neuropsychological and neuroimaging research has established that knowledge related to tool use and tool recognition is lateralized to the left cerebral hemisphere. Recently, behavioural studies with the visual half-field technique have confirmed the lateralization. A limitation of this research was that different sets of stimuli had to be used for the comparison of tools to other objects and objects to non-objects. Therefore, we developed a new set of stimuli containing matched triplets of tools, other objects and non-objects. With the new stimulus set, we successfully replicated the findings of no visual field advantage for objects in an object recognition task combined with a significant right visual field advantage for tools in a tool recognition task. The set of stimuli is available as supplemental data to this article.

  1. Ultrashort-period lateral composition modulation in TlInGaAsN/TlInP structures

    International Nuclear Information System (INIS)

    Ishimaru, Manabu; Tanaka, Yuusuke; Hasegawa, Shigehiko; Asahi, Hajime; Sato, Kazuhisa; Konno, Toyohiko J.

    2009-01-01

    We prepared TlInGaAsN/TlInP quantum well structures using gas source molecular-beam epitaxy and characterized them by means of transmission electron microscopy and scanning transmission electron microscopy. It was found that naturally formed vertical quantum wells, so-called lateral composition modulation (LCM), with a periodicity of ∼1 nm are formed in TlInGaAsN layers. We discuss their formation process using a simple kinetic Ising model for layer-by-layer growth, and point out that the formation of ultrashort-period LCM is a universal phenomenon in most of epitaxially grown III-V semiconductor alloys.

  2. Investigation of language lateralization mechanism by Positron Emission Tomography

    International Nuclear Information System (INIS)

    Belin, Pascal

    1997-01-01

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry [fr

  3. Clustering Words to Match Conditions: An Algorithm for Stimuli Selection in Factorial Designs

    Science.gov (United States)

    Guasch, Marc; Haro, Juan; Boada, Roger

    2017-01-01

    With the increasing refinement of language processing models and the new discoveries about which variables can modulate these processes, stimuli selection for experiments with a factorial design is becoming a tough task. Selecting sets of words that differ in one variable, while matching these same words into dozens of other confounding variables…

  4. Audiovisual Capture with Ambiguous Audiovisual Stimuli

    Directory of Open Access Journals (Sweden)

    Jean-Michel Hupé

    2011-10-01

    Full Text Available Audiovisual capture happens when information across modalities get fused into a coherent percept. Ambiguous multi-modal stimuli have the potential to be powerful tools to observe such effects. We used such stimuli made of temporally synchronized and spatially co-localized visual flashes and auditory tones. The flashes produced bistable apparent motion and the tones produced ambiguous streaming. We measured strong interferences between perceptual decisions in each modality, a case of audiovisual capture. However, does this mean that audiovisual capture occurs before bistable decision? We argue that this is not the case, as the interference had a slow temporal dynamics and was modulated by audiovisual congruence, suggestive of high-level factors such as attention or intention. We propose a framework to integrate bistability and audiovisual capture, which distinguishes between “what” competes and “how” it competes (Hupé et al., 2008. The audiovisual interactions may be the result of contextual influences on neural representations (“what” competes, quite independent from the causal mechanisms of perceptual switches (“how” it competes. This framework predicts that audiovisual capture can bias bistability especially if modalities are congruent (Sato et al., 2007, but that is fundamentally distinct in nature from the bistable competition mechanism.

  5. Effects of Temporal Congruity Between Auditory and Visual Stimuli Using Rapid Audio-Visual Serial Presentation.

    Science.gov (United States)

    An, Xingwei; Tang, Jiabei; Liu, Shuang; He, Feng; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2016-10-01

    Combining visual and auditory stimuli in event-related potential (ERP)-based spellers gained more attention in recent years. Few of these studies notice the difference of ERP components and system efficiency caused by the shifting of visual and auditory onset. Here, we aim to study the effect of temporal congruity of auditory and visual stimuli onset on bimodal brain-computer interface (BCI) speller. We designed five visual and auditory combined paradigms with different visual-to-auditory delays (-33 to +100 ms). Eleven participants attended in this study. ERPs were acquired and aligned according to visual and auditory stimuli onset, respectively. ERPs of Fz, Cz, and PO7 channels were studied through the statistical analysis of different conditions both from visual-aligned ERPs and audio-aligned ERPs. Based on the visual-aligned ERPs, classification accuracy was also analyzed to seek the effects of visual-to-auditory delays. The latencies of ERP components depended mainly on the visual stimuli onset. Auditory stimuli onsets influenced mainly on early component accuracies, whereas visual stimuli onset determined later component accuracies. The latter, however, played a dominate role in overall classification. This study is important for further studies to achieve better explanations and ultimately determine the way to optimize the bimodal BCI application.

  6. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues

    Science.gov (United States)

    Fraser, Matthew; McKay, Colette M.

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425

  7. Using a Microbial Physiologic and Genetic Approach to Investigate How Bacteria Sense Physical Stimuli

    Science.gov (United States)

    Mussi, María Alejandra; Actis, Luis A.; de Mendoza, Diego; Cybulski, Larisa E.

    2014-01-01

    A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of "Bacillus subtilis" to show that temperature modulates gene expression, resulting ultimately in modification…

  8. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    Directory of Open Access Journals (Sweden)

    Pamela L. Tannenbaum

    2014-05-01

    Full Text Available The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem and antihistamine (diphenhydramine administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram, electrooculogram, and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus or presented randomly (neutral stimulus. Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in this species thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

  9. Effects of hand orientation on motor imagery--event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task.

    Science.gov (United States)

    Jongsma, Marijtje L A; Meulenbroek, Ruud G J; Okely, Judith; Baas, C Marjolein; van der Lubbe, Rob H J; Steenbergen, Bert

    2013-01-01

    Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs.

  10. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Amygdala reactivity to negative stimuli is influenced by oral contraceptive use

    OpenAIRE

    Petersen, Nicole; Cahill, Larry

    2015-01-01

    The amygdala is a highly interconnected region of the brain that is critically important to emotional processing and affective networks. Previous studies have shown that the response of the amygdala to emotionally arousing stimuli can be modulated by sex hormones. Because oral contraceptive pills dramatically lower circulating sex hormone levels with potent analogs of those hormones, we performed a functional magnetic resonance imaging experiment to measure amygdala reactivity in response to ...

  12. Reliability of Laterality Effects in a Dichotic Listening Task with Words and Syllables

    Science.gov (United States)

    Russell, Nancy L.; Voyer, Daniel

    2004-01-01

    Large and reliable laterality effects have been found using a dichotic target detection task in a recent experiment using word stimuli pronounced with an emotional component. The present study tested the hypothesis that the magnitude and reliability of the laterality effects would increase with the removal of the emotional component and variations…

  13. Approach motivation and cognitive resources combine to influence memory for positive emotional stimuli.

    Science.gov (United States)

    Crowell, Adrienne; Schmeichel, Brandon J

    2016-01-01

    Inspired by the elaborated intrusion theory of desire, the current research tested the hypothesis that persons higher in trait approach motivation process positive stimuli deeply, which enhances memory for them. Ninety-four undergraduates completed a measure of trait approach motivation, viewed positive or negative image slideshows in the presence or absence of a cognitive load, and one week later completed an image memory test. Higher trait approach motivation predicted better memory for the positive slideshow, but this memory boost disappeared under cognitive load. Approach motivation did not influence memory for the negative slideshow. The current findings support the idea that individuals higher in approach motivation spontaneously devote limited resources to processing positive stimuli.

  14. Visual hierarchical processing and lateralization of cognitive functions through domestic chicks' eyes.

    Directory of Open Access Journals (Sweden)

    Cinzia Chiandetti

    Full Text Available Hierarchical stimuli have proven effective for investigating principles of visual organization in humans. A large body of evidence suggests that the analysis of the global forms precedes the analysis of the local forms in our species. Studies on lateralization also indicate that analytic and holistic encoding strategies are separated between the two hemispheres of the brain. This raises the question of whether precedence effects may reflect the activation of lateralized functions within the brain. Non-human animals have perceptual organization and functional lateralization that are comparable to that of humans. Here we trained the domestic chick in a concurrent discrimination task involving hierarchical stimuli. Then, we evaluated the animals for analytic and holistic encoding strategies in a series of transformational tests by relying on a monocular occlusion technique. A local precedence emerged in both the left and the right hemisphere, adding further evidence in favour of analytic processing in non-human animals.

  15. Generalization of the disruptive effects of alternative stimuli when combined with target stimuli in extinction.

    Science.gov (United States)

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila; Jonas Chan, C K; Bland, Vikki J; Bai, John Y H

    2017-09-01

    Differential-reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior. © 2017 Society for the Experimental Analysis of Behavior.

  16. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults.

    Directory of Open Access Journals (Sweden)

    Erich S Tusch

    Full Text Available The inhibitory deficit hypothesis of cognitive aging posits that older adults' inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1 observed under an auditory-ignore, but not auditory-attend condition, 2 attenuated in individuals with high executive capacity (EC, and 3 augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study's findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.

  17. Implicit attitudes toward eating stimuli differentiate eating disorder and non-eating disorder groups and predict eating disorder behaviors.

    Science.gov (United States)

    Smith, April R; Forrest, Lauren N; Velkoff, Elizabeth A; Ribeiro, Jessica D; Franklin, Joseph

    2018-04-01

    The current study tested whether people with and without eating disorders (EDs) varied in their implicit attitudes toward ED-relevant stimuli. Additionally, the study tested whether implicit evaluations of ED-relevant stimuli predicted ED symptoms and behaviors over a 4-week interval. Participants were people without EDs (N = 85) and people seeking treatment for EDs (N = 92). All participants completed self-report questionnaires and a version of the affect misattribution procedure (AMP) at baseline. The AMP indexed implicit evaluations of average body stimuli, eating stimuli, and ED-symptom stimuli. Participants with EDs completed weekly follow-up measures of ED symptoms and behaviors for 4 weeks. Contrary to predictions, the anorexia nervosa (AN) group did not differ from the no ED group on implicit attitudes toward ED-symptom stimuli, and the bulimia nervosa (BN) group had less positive implicit attitudes toward ED-symptom stimuli relative to the no ED group. In line with predictions, people with AN and BN had more negative implicit attitudes toward average body and eating stimuli relative to the no ED group. In addition, among the ED group more negative implicit attitudes toward eating stimuli predicted ED symptoms and behaviors 4 weeks later, over and above baseline ED symptoms and behaviors. Taken together, implicit evaluations of eating stimuli differentiated people with AN and BN from people without EDs and longitudinally predicted ED symptoms and behaviors. Interventions that increase implicit liking of eating-related stimuli may reduce ED behaviors. © 2018 Wiley Periodicals, Inc.

  18. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    Science.gov (United States)

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  19. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations

    International Nuclear Information System (INIS)

    Toga, A.W.; Collins, R.C.

    1981-01-01

    The functional organization of the visual system was studied in the albino rat. Metabolic differences were measured using the 14 C-2-deoxyglucose (DG) autoradiographic technique during visual stimulation of one entire retina in unrestrained animals. All optic centers responded to changes in light intensity but to different degrees. The greatest change occurred in the superior colliculus, less in the lateral geniculate, and considerably less in second-order sites such as layer IV of visual cortex. These optic centers responded in particular to on/off stimuli, but showed no incremental change during pattern reversal or movement of orientation stimuli. Both the superior colliculus and lateral geniculate increased their metabolic rate as the frequency of stimulation increased, but the magnitude was twice as great in the colliculus. The histological pattern of metabolic change in the visual system was not homogenous. In the superior colliculus glucose utilization increased only in stratum griseum superficiale and was greatest in visuotopic regions representing the peripheral portions of the visual field. Similarly, in the lateral geniculate, only the dorsal nucleus showed an increased response to greater stimulus frequencies. Second-order regions of the visual system showed changes in metabolism in response to visual stimulation, but no incremental response specific for type or frequency of stimuli. To label proteins of axoplasmic transport to study the terminal fields of retinal projections 14 C-amino acids were used. This was done to study how the differences in the magnitude of the metabolic response among optic centers were related to the relative quantity of retinofugal projections to these centers

  20. Olfactory or auditory stimulation and their hedonic valúes differentially modulate visual working memory

    Directory of Open Access Journals (Sweden)

    ANA M DONOSO

    2008-12-01

    Full Text Available Working memory (WM designates the retention of objects or events in conscious awareness when these are not present in the environment. Many studies have focused on the interference properties of distracter stimuli in working memory, but these studies have mainly examined the influence of the intensity of these stimuli. Little is known about the memory modulation of hedonic content of distracter stimuli as they also may affect WM performance or attentional tasks. In this paper, we have studied the performance of a visual WM task where subjects recollect from five to eight visually presented objects while they are simultaneously exposed to additional - albeit weak- auditory or olfactory distracter stimulus. We found that WM performance decreases as the number of Ítems to remember increases, but this performance was unaltered by any of the distracter stimuli. However, when performance was correlated to the subject's perceived hedonic valúes, distracter stimuli classified as negative exhibit higher error rates than positive, neutral or control stimuli. We demónstrate that some hedonic content of otherwise neutral stimuli can strongly modulate memory processes.

  1. Attentional modulation of reflex cough.

    Science.gov (United States)

    Janssens, Thomas; Silva, Mitchell; Davenport, Paul W; Van Diest, Ilse; Dupont, Lieven J; Van den Bergh, Omer

    2014-07-01

    Reflex cough is a defensive response generated in the brainstem in response to chemical and mechanical stimulation of the airways. However, converging evidence shows that reflex cough is also influenced by central neural control processes. In this study, we investigate whether reflex cough can be modulated by attentional focus on either external stimuli or internal cough-related stimuli. Healthy volunteers (N = 24; seven men; age range, 18-25 years) completed four blocks of citric acid-induced cough challenges while, simultaneously, auditory stimuli were presented. Within each block, four concentrations were administered (30, 100, 300 and 1,000 mM, randomized). During two subsequent blocks, participants focused their attention externally (counting tones). During the other two blocks, participants focused their attention internally (counting coughs). The order of attentional focus was counterbalanced across participants. Ratings of the urge to cough were collected after each challenge. Cough frequency was determined by audio recording. Cough frequency was higher when participants focused their attention internally vs externally (P Reflex cough can be modulated by attentional focus. Internally focused attention may be a mechanism involved in excessive (idiopathic) cough, while an external focus may be introduced as part of treatments targeting excessive cough.

  2. Tuned Normalization Explains the Size of Attention Modulations

    Science.gov (United States)

    Ni, Amy M.; Ray, Supratim; Maunsell, John H. R.

    2012-01-01

    SUMMARY The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron’s receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the non-preferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. PMID:22365552

  3. Tuned normalization explains the size of attention modulations.

    Science.gov (United States)

    Ni, Amy M; Ray, Supratim; Maunsell, John H R

    2012-02-23

    The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron's receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the nonpreferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Response inhibition is modulated by functional cerebral asymmetries for facial expression perception

    Directory of Open Access Journals (Sweden)

    Sebastian eOcklenburg

    2013-11-01

    Full Text Available The efficacy of executive functions is critically modulated by information processing in earlier cognitive stages. For example, initial processing of verbal stimuli in the language-dominant left-hemisphere leads to more efficient response inhibition than initial processing of verbal stimuli in the non-dominant right hemisphere. However, it is unclear whether this organizational principle is specific for the language system, or a general principle that also applies to other types of lateralized cognition. To answer this question, we investigated the neurophysiological correlates of early attentional processes, facial expression perception and response inhibition during tachistoscopic presentation of facial ‘Go’ and ‘Nogo’ stimuli in the left and the right visual field. Participants committed fewer false alarms after Nogo-stimulus presentation in the left compared to the right visual field. This right-hemispheric asymmetry on the behavioral level was also reflected in the neurophysiological correlates of face perception, specifically in a right-sided asymmetry in the N170 amplitude. Moreover, the right-hemispheric dominance for facial expression processing also affected event-related potentials typically related to response inhibition, namely the Nogo-N2 and Nogo-P3. These findings show that an effect of hemispheric asymmetries in early information processing on the efficacy of higher cognitive functions is not limited to left-hemispheric language functions, but can be generalized to predominantly right-hemispheric functions.

  5. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  6. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  7. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  8. Perceiving, imaging, and preferring physiognomic stimuli.

    Science.gov (United States)

    Lindauer, M S

    1986-01-01

    Physiognomic color responses in perception, imagery, and affect were investigated. Maluma and taketa, nonsense stimuli defined by many investigators as physiognomic, were utilized as prototypical physiognomic stimuli, along with eight other stimuli of various sorts. In Experiment 1, 22 subjects matched the colors of the stimuli; in Experiment 2, 27 subjects reported their imagery to the stimuli; and in Experiment 3, 16 subjects gave their color preferences for the stimuli. The Munsell sets of colors were employed throughout. Significant differences between the physiognomic and other stimuli were found on the brightness and saturation of color matches, images, and preferences. Other differences (e.g., the latency of color images) were also present. Distinctions were also noted between the two physiognomic stimuli. These results support the priority of innate and perceptual processes in physiognomy over those of learning and memory, although some ambiguities still remain.

  9. Emotional stimuli-provoked seizures potentially misdiagnosed as psychogenic non-epileptic attacks: A case of temporal lobe epilepsy with amygdala enlargement

    Directory of Open Access Journals (Sweden)

    Hidetaka Tamune

    Full Text Available The association between emotional stimuli and temporal lobe epilepsy (TLE is largely unknown. Here, we report the case of a depressed, 50-year-old female complaining of episodes of a “spaced out” experience precipitated by emotional stimuli. Psychogenic non-epileptic attacks were suspected. However, video-EEG coupled with emotional stimuli-provoked procedures and MRI findings of amygdala enlargement, led to the diagnosis of left TLE. Accurate diagnosis and explanation improved her subjective depression and seizure frequency. This case demonstrated that emotional stimuli can provoke seizures in TLE and suggested the involvement of the enlarged amygdala and the modulation of emotion-related neural circuits. Keywords: Video-EEG, Psychogenic non-epileptic attacks, Temporal lobe epilepsy, Amygdala enlargement, Reflex seizure, Provoked seizure

  10. Spatial and Semantic Processing between Audition and Vision: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Xiaoxi Chen

    2011-10-01

    Full Text Available Using a crossmodal priming paradigm, this study investigated how the brain bound the spatial and semantic features in multisensory processing. The visual stimuli (pictures of animals were presented after the auditory stimuli (sounds of animals, and the stimuli from different modalities may match spatially (or semantically or not. Participants were required to detect the head orientation of the visual target (an oddball paradigm. The event-related potentials (ERPs to the visual stimuli was enhanced by spatial attention (150–170 ms irrespectively of semantic information. The early crossmodal attention effect for the visual stimuli was more negative in the spatial-congruent condition than in the spatial-incongruent condition. By contrast, the later effects of spatial ERPs were significant only for the semantic- congruent condition (250–300 ms. These findings indicated that spatial attention modulated early visual processing, and semantic and spatial features were simultaneously used to orient attention and modulate later processing stages.

  11. Temporal-order judgment of visual and auditory stimuli: Modulations in situations with and without stimulus discrimination

    Directory of Open Access Journals (Sweden)

    Elisabeth eHendrich

    2012-08-01

    Full Text Available Temporal-order judgment (TOJ tasks are an important paradigm to investigate processing times of information in different modalities. There are a lot of studies on how temporal order decisions can be influenced by stimuli characteristics. However, so far it has not been investigated whether the addition of a choice reaction time task has an influence on temporal-order judgment. Moreover, it is not known when during processing the decision about the temporal order of two stimuli is made. We investigated the first of these two questions by comparing a regular TOJ task with a dual task. In both tasks, we manipulated different processing stages to investigate whether the manipulations have an influence on temporal-order judgment and to determine thereby the time of processing at which the decision about temporal order is made. The results show that the addition of a choice reaction time task does have an influence on the temporal-order judgment, but the influence seems to be linked to the kind of manipulation of the processing stages that is used. The results of the manipulations indicate that the temporal order decision in the dual task paradigm is made after perceptual processing of the stimuli.

  12. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  13. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of Ramadan fasting on spatial attention through emotional stimuli

    Directory of Open Access Journals (Sweden)

    Molavi M

    2016-05-01

    tended to react faster and prefer to relay on the type of facial emotions than to gaze direction while doing the task. Because of happy facial expression stimuli, right hemisphere activation was more than that of the left hemisphere. It indicated the consistency of the emotional lateralization concept rather than the valence concept of emotional processing.Keywords: fasting, emotion, spatial attention, ERP, hemisphere lateralization

  15. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  16. Valuation of Go Stimuli or Devaluation of No-Go Stimuli? Evidence of an Increased Preference for Attended Go Stimuli Following a Go/No-Go Task.

    Science.gov (United States)

    Inoue, Kazuya; Sato, Nobuya

    2017-01-01

    Attentional inhibition that occurs during discrimination tasks leads to the negative evaluation of distractor stimuli. This phenomenon, known as the distractor devaluation effect also occurs when go/no-go tasks require response inhibition. However, it remains unclear whether there are interactions between attention and response controls when the distractor devaluation effect occurs. The aims of this study were to investigate whether attention to stimuli in the go/no-go task plays a facilitative role in distractor devaluation through response inhibition, and to clarify whether this effect reflects a decreased preference for no-go stimuli. Participants evaluated the preference for pictures before and after a go/no-go task. In Experiments 1 and 2, they made a go or no-go response depending on the category of pictures displayed (gummy candies or rice crackers), whereas in Experiment 3 they did on the basis digit category, even or odd numbers, superimposed on such pictures. Experiments 1 and 2 demonstrated that the pictures presented as no-go stimuli in the preceding go/no-go task were evaluated as less positive than the pictures presented as go stimuli. This devaluation effect reflected an increased preference for the go stimuli but not a decreased preference for the no-go stimuli. Experiment 3 indicated that response inhibition did not affect the preference for the pictures that had not received attention in a preceding go/no-go task. These results suggest that although attention plays an important role in differential ratings for go and no-go stimuli, such differences, in fact, reflect the valuation of go stimuli.

  17. Behold the voice of wrath: Cross-modal modulation of visual attention by anger prosody

    OpenAIRE

    Brosch, Tobias; Grandjean, Didier Maurice; Sander, David; Scherer, Klaus R.

    2008-01-01

    Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined withinmodality effects, most frequently using pictures of emotional stimuli to modulate visual attention. In this study, we used simultaneously presented utterances with emotional and neutral prosody as cues for a visually presented tar...

  18. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  19. Chronic Lateral Epicondylalgia Does Not Exhibit Mechanical Pain Modulation in Response to Noxious Conditioning Heat Stimulus.

    Science.gov (United States)

    Lim, Edwin Choon Wyn; Sterling, Michele; Vicenzino, Bill

    2017-10-01

    The impaired attenuation of pain by the application of a noxious conditioning stimulus at a segmentally distinct site, known as conditioned pain modulation (CPM), has been implicated in clinical pain states. Chronic lateral epicondylalgia (LE), which is characterized by lower pressure pain thresholds (PPTs) at sites remote to the affected elbow and spinal cord hyperexcitability, is a clinical pain state that might plausibly involve less efficacious CPM. This study aimed to determine whether LE exhibits a less efficacious CPM compared with that in pain-free controls. Results: Twenty participants with LE, aged 50.7 years (SD=7.05) and who had their condition for 10.2 months (range: 2 to 80 mo), were matched by age and sex to 22 pain-free participants. All participants indicated their PPT over the lateral epicondyle(s) before and during a conditioning noxious heat stimulus that was applied over the calf. A CPM score was calculated as the difference between the PPT before and during the heat pain-conditioning stimulus expressed as a percentage of PPT before the heat pain-conditioning stimulus. The condition (LE vs. control) by side (affected vs. unaffected) analysis of variance revealed a significant condition effect (P=0.001), but not side effect (P=0.192) or side-by-condition interaction effect (P=0.951). Follow-up tests for the effect of condition revealed a mean deficit in CPM of -24.5% (95% confidence interval, -38.0 to -11.0) in LE compared with that in pain-free participants. The results that suggest an impaired ability to modulate pain might be associated with the previously observed spinal cord hyperexcitability and the mechanical hyperalgesia that characterizes LE.

  20. Effects of testosterone on attention and memory for emotional stimuli in male rhesus monkeys.

    Science.gov (United States)

    King, Hanna M; Kurdziel, Laura B; Meyer, Jerrold S; Lacreuse, Agnès

    2012-03-01

    Increasing evidence in humans and other animals suggests that testosterone (T) plays an important role in modulating emotion. We previously reported that T treatment in rhesus monkeys undergoing chemically induced hypogonadism results in increased watching time of videos depicting fights between unfamiliar conspecifics (Lacreuse et al., 2010). In the current study, we aimed to further investigate the effect of T manipulations on attention and memory for emotional stimuli in male rhesus monkeys. Six males (7 years old) were administered Depot Lupron to suppress endogenous T levels and treated with either testosterone enanthate (TE, 5 mg/kg) or oil, before crossing over to the alternate treatment. Animals were tested for 16 weeks on two computerized touchscreen tasks with both social and nonsocial emotional and neutral stimuli. The Dot-Probe task was used to measure attention, and the Delayed-Non-Matching-to-Sample task with a 1s delay (DNMS) was used to measure recognition memory for these stimuli. Performance on the two tasks was examined during each of four month-long phases: Baseline, Lupron alone, Lupron+TE and Lupron+oil. It was predicted that T administration would lead to increased attention to negative social stimuli (i.e., negative facial expressions of unfamiliar conspecifics) and would improve memory for such stimuli. We found no evidence to support these predictions. In the Dot-Probe task, an attentional bias towards negative social stimuli was observed at baseline, but T treatment did not enhance this bias. Instead, monkeys had faster response times when treated with T compared to oil, independently of the emotional valence or social relevance of stimuli, perhaps reflecting an enhancing effect of T on reward sensitivity or general arousal. In the DNMS, animals had better memory for nonsocial compared to social stimuli and showed the poorest performance in the recognition of positive facial expressions. However, T did not affect performance on the task

  1. Effect of Size Change and Brightness Change of Visual Stimuli on Loudness Perception and Pitch Perception of Auditory Stimuli

    Directory of Open Access Journals (Sweden)

    Syouya Tanabe

    2011-10-01

    Full Text Available People obtain a lot of information from visual and auditory sensation on daily life. Regarding the effect of visual stimuli on perception of auditory stimuli, studies of phonological perception and sound localization have been made in great numbers. This study examined the effect of visual stimuli on perception in loudness and pitch of auditory stimuli. We used the image of figures whose size or brightness was changed as visual stimuli, and the sound of pure tone whose loudness or pitch was changed as auditory stimuli. Those visual and auditory stimuli were combined independently to make four types of audio-visual multisensory stimuli for psychophysical experiments. In the experiments, participants judged change in loudness or pitch of auditory stimuli, while they judged the direction of size change or the kind of a presented figure in visual stimuli. Therefore they cannot neglect visual stimuli while they judged auditory stimuli. As a result, perception in loudness and pitch were promoted significantly around their difference limen, when the image was getting bigger or brighter, compared with the case in which the image had no changes. This indicates that perception in loudness and pitch were affected by change in size and brightness of visual stimuli.

  2. [Responses of bat cochlear nucleus neurons to ultrasonic stimuli].

    Science.gov (United States)

    Vasil'ev, A G; Grigor'eva, T I

    1977-01-01

    The responses of cochlear nuclei single units in Vespertilionidae and Rhinolophidae were studied by means of ultrasound stimuli of different frequencies. Most neurons were found to have one or two complementary response areas with best frequencies equal to 1/2 and 1/3 of the highest one (which we regard as the basic best frequency). In Vespertilionidae which emit frequency-modulated signals some neurons have complementary areas with upper thresholds. The latency of responses do not correlate with the stimulus frequency. This suggests that there is no correlative reception of echosignals at this level of auditory system in bats.

  3. Assessment of the hemispheric lateralization of grapheme-color synesthesia with Stroop-type tests.

    Directory of Open Access Journals (Sweden)

    Mathieu J Ruiz

    Full Text Available Grapheme-color synesthesia, the idiosyncratic, arbitrary association of colors to letters or numbers, develops in childhood once reading is mastered. Because language processing is strongly left-lateralized in most individuals, we hypothesized that grapheme-color synesthesia could be left-lateralized as well. We used synesthetic versions of the Stroop test with colored letters and numbers presented either in the right or the left visual field of thirty-four synesthetes. Interference by synesthetic colors was stronger for stimuli in the right hemifield (first experiment, color naming task. Synesthetes were also faster in the right hemifield when naming the synesthetic color of graphemes (second experiment. Overall, the lateralization effect was 7 ms (the 95% confidence interval was [1.5 12] ms, a delay compatible with an additional callosal transfer for stimuli presented in the left hemifield. Though weak, this effect suggests that the association of synesthetic colors to graphemes may be preferentially processed in the left hemisphere. We speculate that this left-lateralization could be a landmark of synesthetic grapheme-color associations, if not found for color associations learnt by non-synesthete adults.

  4. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors

    Directory of Open Access Journals (Sweden)

    Daniela eLaricchiuta

    2014-12-01

    Full Text Available Approach and avoidance behaviors - the primary responses to the environmental stimuli of danger, novelty and reward - are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation and depression that allows responding to salient positive and negative stimuli.

  5. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.

    Science.gov (United States)

    Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J

    This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This

  6. Frontal brain activity and behavioral indicators of affective states are weakly affected by thermal stimuli in sheep living in different housing conditions

    Directory of Open Access Journals (Sweden)

    Sabine eVögeli

    2015-05-01

    Full Text Available Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative, intermediate, and cold (as presumably positive. We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g. locomotor activity, aversive behaviors and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found.

  7. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  8. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  9. Converging prefrontal pathways support associative and perceptual features of conditioned stimuli.

    Science.gov (United States)

    Howard, James D; Kahnt, Thorsten; Gottfried, Jay A

    2016-05-04

    Perceptually similar stimuli often predict vastly different outcomes, requiring the brain to maintain specific associations in the face of potential ambiguity. This could be achieved either through local changes in stimulus representations, or through modulation of functional connections between stimulus-coding and outcome-coding regions. Here we test these competing hypotheses using classical conditioning of perceptually similar odours in the context of human fMRI. Pattern-based analyses of odour-evoked fMRI activity reveal that odour category, identity and value are coded in piriform (PC), orbitofrontal (OFC) and ventromedial prefrontal (vmPFC) cortices, respectively. However, we observe no learning-related reorganization of category or identity representations. Instead, changes in connectivity between vmPFC and OFC are correlated with learning-related changes in value, whereas connectivity changes between vmPFC and PC predict changes in perceived odour similarity. These results demonstrate that dissociable neural pathways support associative and perceptual representations of sensory stimuli.

  10. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    Science.gov (United States)

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  11. Emotional stimuli and motor conversion disorder

    NARCIS (Netherlands)

    Voon, V.; Brezing, C.; Gallea, C.; Ameli, R.; Roelofs, K.; LaFrance, W.C.; Hallett, M.

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli,

  12. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  13. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  14. Level of processing modulates the neural correlates of emotional memory formation.

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  15. Level of processing modulates the neural correlates of emotional memory formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  16. Gaming Increases Craving to Gaming-Related Stimuli in Individuals With Internet Gaming Disorder.

    Science.gov (United States)

    Dong, Guangheng; Wang, Lingxiao; Du, Xiaoxia; Potenza, Marc N

    2017-07-01

    Internet gaming disorder (IGD) has been proposed as a behavioral addiction warranting additional investigation. Craving is considered a core component of addictions. However, few studies to date have investigated craving in IGD. In the current study, we investigated how gaming was associated with changes in response to gaming-related stimuli in subjects with IGD and those with recreational game use (RGU). Behavioral and functional magnetic resonance imaging data were collected from 27 individuals with IGD and 43 individuals with RGU. Subjects' craving responses to gaming-related stimuli were measured before and after 30 minutes of gaming. The comparison between post- and pregaming measures showed that for IGD, gaming was associated with increased craving and increased brain activation of the lateral and prefrontal cortex, the striatum, and the precuneus when exposed to gaming-related stimuli. In individuals with RGU, no enhanced brain activity was observed. These results suggest that gaming behavior enhances craving responses in subjects with IGD but not in subjects with RGU, provide insight into potential mechanisms underlying IGD, and suggest behavioral and neurobiological targets for IGD-related interventions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Impaired endocannabinoid signalling in the rostral ventromedial medulla underpins genotype-dependent hyper-responsivity to noxious stimuli.

    Science.gov (United States)

    Rea, Kieran; Olango, Weredeselam M; Okine, Bright N; Madasu, Manish K; McGuire, Iseult C; Coyle, Kathleen; Harhen, Brendan; Roche, Michelle; Finn, David P

    2014-01-01

    Pain is both a sensory and an emotional experience, and is subject to modulation by a number of factors including genetic background modulating stress/affect. The Wistar-Kyoto (WKY) rat exhibits a stress-hyper-responsive and depressive-like phenotype and increased sensitivity to noxious stimuli, compared with other rat strains. Here, we show that this genotype-dependent hyperalgesia is associated with impaired pain-related mobilisation of endocannabinoids and transcription of their synthesising enzymes in the rostral ventromedial medulla (RVM). Pharmacological blockade of the Cannabinoid1 (CB1) receptor potentiates the hyperalgesia in WKY rats, whereas inhibition of the endocannabinoid catabolising enzyme, fatty acid amide hydrolase, attenuates the hyperalgesia. The latter effect is mediated by CB1 receptors in the RVM. Together, these behavioural, neurochemical, and molecular data indicate that impaired endocannabinoid signalling in the RVM underpins hyper-responsivity to noxious stimuli in a genetic background prone to heightened stress/affect. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  19. Emotional Stimuli and Motor Conversion Disorder

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Ameli, Rezvan; Roelofs, Karin; LaFrance, W. Curt, Jr.; Hallett, Mark

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli, and greater activity to negative relative to…

  20. Neural correlates of top-down processing in emotion perception: an ERP study of emotional faces in white noise versus noise-alone stimuli.

    Science.gov (United States)

    Lee, Kyu-Yong; Lee, Tae-Ho; Yoon, So-Jeong; Cho, Yang Seok; Choi, June-Seek; Kim, Hyun Taek

    2010-06-14

    In the present study, we investigated the neural correlates underlying the perception of emotion in response to facial stimuli in order to elucidate the extent to which emotional perception is affected by the top-down process. Subjects performed a forced, two-choice emotion discrimination task towards ambiguous visual stimuli consisted of emotional faces embedded in different levels of visual white noise, including white noise-alone stimuli. ERP recordings and behavioral responses were analyzed according to the four response categories: hit, miss, false alarm and correct rejection. We observed enlarged EPN and LPP amplitudes when subjects reported seeing fearful faces and a typical emotional EPN response in the white noise-alone conditions when fearful faces were not presented. The two components of the ERP data which imply the characteristic modulation reflecting emotional processing showed the type of emotion each individual subjectively perceived. The results suggest that top-down modulations might be indispensable for emotional perception, which consists of two distinct stages of stimulus processing in the brain. (c) 2010 Elsevier B.V. All rights reserved.

  1. Disgust and Suppression of the Visual Cortex: Lateralization Effects?

    Directory of Open Access Journals (Sweden)

    Moon Wilton

    2012-05-01

    Full Text Available Research has shown that unlike other threat emotions, disgust does not evoke a typical sympathetic fight or flight response. Rather, disgust induces a parasympathetic response. A recent EEG study has demonstrated that this inhibitory reaction is also present in neuronal systems. Disgust stimuli elicited diminished Visual Event Related Potential (VERP amplitude in comparison to neutral and fear stimuli at P1 in the posterior Oz electrode (Kruesmark and Li, 2011 J Neurosci 31 (9, 3429–3434. In order to investigate whether VERPs were sensitive to different domains of disgust, we presented participants with random sequence of neutral, sociomoral, mutilation, and contamination images derived from the IAPS database. EEG results indicated no significant effect at Oz contrary to prior research. The results did, however, demonstrate lateralization effects. Whilst no differences were found between the disgust conditions themselves, the left P1 potential for all the disgust conditions was significantly attenuated compared to neutral. Conversely, this effect did not occur in the right posterior electrodes. In a second study, we presented the different disgust images in blocks in order to investigate the role of anticipation. Again, the left sided P1 was attenuated compared to neutral; however, on the right, mutilation elicited significantly greater P1 amplitude than did all other conditions. The results suggest suppressed visual processing for disgust elicitors in the left posterior regions and heightened activity for mutilation stimuli in the right, when mutilation was expected. These results may reflect a lateralized approach-avoidance mechanism, which begins as early as 125 ms after stimulus onset.

  2. Annoyance of wind-turbine noise as a function of amplitude-modulation parameters

    DEFF Research Database (Denmark)

    Ioannidou, Christina; Santurette, Sébastien; Jeong, Cheol-Ho

    to which AM depth, frequency, and type affect WTN annoyance is a matter of debate. In most subjective studies, the temporal variations of WTN AM have not been considered. Here, a sinusoidally modulated WTN model accounting for temporal AM variations was used to generate realistic artificial stimuli...... the spectrotemporal characteristics of the original far-field stimuli were included in the model and the temporal AM variations were taken into account by varying the modulation index over time, neither AM frequency nor AM type were found to significantly affect annoyance. These findings suggest that the effect of AM...

  3. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    Science.gov (United States)

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  4. Tongue Pressure Modulation during Swallowing: Water versus Nectar-Thick Liquids

    Science.gov (United States)

    Steele, Catriona M.; Bailey, Gemma L.; Molfenter, Sonja M.

    2010-01-01

    Purpose: Evidence of tongue-palate pressure modulation during swallowing between thin and nectar-thick liquids stimuli has been equivocal. This mirrors a lack of clear evidence in the literature of tongue and hyoid movement modulation between nectar-thick and thin liquid swallows. In the current investigation, the authors sought to confirm whether…

  5. Effects of hemisphere speech dominance and seizure focus on patterns of behavioral response errors for three types of stimuli.

    Science.gov (United States)

    Rausch, R; MacDonald, K

    1997-03-01

    We used a protocol consisting of a continuous presentation of stimuli with associated response requests during an intracarotid sodium amobarbital procedure (IAP) to study the effects of hemisphere injected (speech dominant vs. nondominant) and seizure focus (left temporal lobe vs. right temporal lobe) on the pattern of behavioral response errors for three types of visual stimuli (pictures of common objects, words, and abstract forms). Injection of the left speech dominant hemisphere compared to the right nondominant hemisphere increased overall errors and affected the pattern of behavioral errors. The presence of a seizure focus in the contralateral hemisphere increased overall errors, particularly for the right temporal lobe seizure patients, but did not affect the pattern of behavioral errors. Left hemisphere injections disrupted both naming and reading responses at a rate similar to that of matching-to-sample performance. Also, a short-term memory deficit was observed with all three stimuli. Long-term memory testing following the left hemisphere injection indicated that only for pictures of common objects were there fewer errors during the early postinjection period than for the later long-term memory testing. Therefore, despite the inability to respond to picture stimuli, picture items, but not words or forms, could be sufficiently encoded for later recall. In contrast, right hemisphere injections resulted in few errors, with a pattern suggesting a mild general cognitive decrease. A selective weakness in learning unfamiliar forms was found. Our findings indicate that different patterns of behavioral deficits occur following the left vs. right hemisphere injections, with selective patterns specific to stimulus type.

  6. Behold the Voice of Wrath: Cross-Modal Modulation of Visual Attention by Anger Prosody

    Science.gov (United States)

    Brosch, Tobias; Grandjean, Didier; Sander, David; Scherer, Klaus R.

    2008-01-01

    Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined "within-modality" effects, most frequently using pictures of emotional stimuli to…

  7. Motivational incentives modulate age differences in visual perception.

    Science.gov (United States)

    Spaniol, Julia; Voss, Andreas; Bowen, Holly J; Grady, Cheryl L

    2011-12-01

    This study examined whether motivational incentives modulate age-related perceptual deficits. Younger and older adults performed a perceptual discrimination task in which bicolored stimuli had to be classified according to their dominating color. The valent color was associated with either a positive or negative payoff, whereas the neutral color was not associated with a payoff. Effects of incentives on perceptual efficiency and response bias were estimated using the diffusion model (Ratcliff, 1978). Perception of neutral stimuli showed age-related decline, whereas perception of valent stimuli, both positive and negative, showed no age difference. This finding is interpreted in terms of preserved top-down control over the allocation of perceptual processing resources in healthy aging.

  8. The neural response to maternal stimuli: an ERP study.

    Directory of Open Access Journals (Sweden)

    Lili Wu

    Full Text Available Mothers are important to all humans. Research has established that maternal information affects individuals' cognition, emotion, and behavior. We measured event-related potentials (ERPs to examine attentional and evaluative processing of maternal stimuli while participants completed a Go/No-go Association Task that paired mother or others words with good or bad evaluative words. Behavioral data showed that participants responded faster to mother words paired with good than the mother words paired with bad but showed no difference in response to these others across conditions, reflecting a positive evaluation of mother. ERPs showed larger P200 and N200 in response to mother than in response to others, suggesting that mother attracted more attention than others. In the subsequent time window, mother in the mother + bad condition elicited a later and larger late positive potential (LPP than it did in the mother + good condition, but this was not true for others, also suggesting a positive evaluation of mother. These results suggest that people differentiate mother from others during initial attentional stage, and evaluative mother positively during later stage.

  9. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Indian Institute of Science, Department of Materials Engineering (India)

    2015-08-15

    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  10. Modulations of the processing of line discontinuities under selective attention conditions?

    Science.gov (United States)

    Giersch, Anne; Fahle, Manfred

    2002-01-01

    We examined whether the processing of discontinuities involved in figure-ground segmentation, like line ends, can be modulated under selective attention conditions. Subjects decided whether a gap in collinear or parallel lines was located to the right or left. Two stimuli were displayed in immediate succession. When the gaps were on the same side, reaction times (RTs) for the second stimulus increased when collinear lines followed parallel lines, or the reverse, but only when the two stimuli shared the same orientation and location. The effect did not depend on the global form of the stimuli or on the relative orientation of the gaps. A frame drawn around collinear elements affected the results, suggesting a crucial role of the "amodal" orthogonal lines produced when line ends are aligned. Including several gaps in the first stimulus also eliminated RT variations. By contrast, RT variations remained stable across several experimental blocks and were significant for interstimulus intervals from 50 to 600 msec between the two stimuli. These results are interpreted in terms of a modulation of the processing of line ends or the production of amodal lines, arising when attention is selectively drawn to a gap.

  11. Medication overuse reinstates conditioned pain modulation in women with migraine.

    Science.gov (United States)

    Guy, Nathalie; Voisin, Daniel; Mulliez, Aurélien; Clavelou, Pierre; Dallel, Radhouane

    2018-05-01

    Background This study investigated the effects of medication overuse and withdrawal on modulation of pain processing in women with migraine. Temporal summation of laser-evoked thermal pain was used to measure the effects of conditioned pain modulation. Methods 36 female participants (12 healthy volunteers, 12 with episodic migraine and 12 with medication overuse headache) were included in a two session protocol. Medication overuse headache subjects were also tested three weeks after medication overuse headache withdrawal. Mechanical and laser-evoked thermal pain thresholds were measured on the back of the non-dominant hand where, later, temporal summation of laser-evoked thermal pain to repetitive thermal stimuli was elicited for 30 min, at an intensity producing moderate pain. Between the 10 th and 20 th minutes, the contralateral foot was immersed into a water bath at a not painful (30℃) or painfully cold (8℃; conditioned pain modulation) temperature. Results Episodic migraine, medication overuse headache and medication overuse headache withdrawal were associated with an increase in extracephalic temporal summation of laser-evoked thermal pain as compared to healthy volunteer subjects, while there was no alteration of laser-evoked thermal and mechanical extracephalic pain thresholds in these subjects. Conditioned pain modulation was highly efficient in temporal summation of laser-evoked thermal pain in healthy volunteer subjects, with a solid post-effect (reduction of pain). Conditioned pain modulation was still present, but reduced, in episodic migraine. By contrast, conditioned pain modulation was normal in medication overuse headache and strongly reduced in medication overuse headache withdrawal. Furthermore, in medication overuse headache withdrawal, the post-effect was no longer a decrease, but a facilitation of pain. Conclusions These data show that a decrease in conditioned pain modulation does not underlie medication overuse headache in women. On

  12. Latent memory of unattended stimuli reactivated by practice: an FMRI study on the role of consciousness and attention in learning.

    Science.gov (United States)

    Meuwese, Julia D I; Scholte, H Steven; Lamme, Victor A F

    2014-01-01

    Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli.

  13. Latent memory of unattended stimuli reactivated by practice: an FMRI study on the role of consciousness and attention in learning.

    Directory of Open Access Journals (Sweden)

    Julia D I Meuwese

    Full Text Available Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness or with an inattention paradigm (which only interferes with attention. One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli.

  14. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  15. Emotion and Attention Interaction: a trade-off between stimuli relevance, motivation and individual differences

    Directory of Open Access Journals (Sweden)

    Leticia eOliveira

    2013-07-01

    Full Text Available Mounting evidence suggests that the neural processing of emotional stimuli is prioritized. However, whether the processing of emotional stimuli is dependent on attention remains debatable. Several studies have investigated this issue by testing the capacity of emotional distracters to divert processing resources from an attentional main task. The attentional load theory postulates that the perceptual load of the main task determines the selective processing of the distracter. Although we agree with this theory, we also suggest that other factors could be important in determining the association between the load of the main task and distracter processing, namely, (1 the relevance of the to-be ignored stimuli and (2 the engagement in the main task resulting from motivation. We postulate that these factors function as opposite forces to influence distracter processing. In addition, we propose that this trade-off is modulated by individual differences. In summary, we suggest that the relationship between emotion and attention is flexible rather than rigid and depends on several factors. Considering this perspective may help us to understand the divergence in the results described by several studies in this field.

  16. Emotion and attention interaction: a trade-off between stimuli relevance, motivation and individual differences

    Science.gov (United States)

    Oliveira, Leticia; Mocaiber, Izabela; David, Isabel A.; Erthal, Fátima; Volchan, Eliane; Pereira, Mirtes G.

    2013-01-01

    Mounting evidence suggests that the neural processing of emotional stimuli is prioritized. However, whether the processing of emotional stimuli is dependent on attention remains debatable. Several studies have investigated this issue by testing the capacity of emotional distracters to divert processing resources from an attentional main task. The attentional load theory postulates that the perceptual load of the main task determines the selective processing of the distracter. Although we agree with this theory, we also suggest that other factors could be important in determining the association between the load of the main task and distracter processing, namely, (1) the relevance of the to-be ignored stimuli and (2) the engagement in the main task due to motivation. We postulate that these factors function as opposite forces to influence distracter processing. In addition, we propose that this trade-off is modulated by individual differences. In summary, we suggest that the relationship between emotion and attention is flexible rather than rigid and depends on several factors. Considering this perspective may help us to understand the divergence in the results described by several studies in this field. PMID:23874284

  17. Emotion and attention interaction: a trade-off between stimuli relevance, motivation and individual differences.

    Science.gov (United States)

    Oliveira, Leticia; Mocaiber, Izabela; David, Isabel A; Erthal, Fátima; Volchan, Eliane; Pereira, Mirtes G

    2013-01-01

    Mounting evidence suggests that the neural processing of emotional stimuli is prioritized. However, whether the processing of emotional stimuli is dependent on attention remains debatable. Several studies have investigated this issue by testing the capacity of emotional distracters to divert processing resources from an attentional main task. The attentional load theory postulates that the perceptual load of the main task determines the selective processing of the distracter. Although we agree with this theory, we also suggest that other factors could be important in determining the association between the load of the main task and distracter processing, namely, (1) the relevance of the to-be ignored stimuli and (2) the engagement in the main task due to motivation. We postulate that these factors function as opposite forces to influence distracter processing. In addition, we propose that this trade-off is modulated by individual differences. In summary, we suggest that the relationship between emotion and attention is flexible rather than rigid and depends on several factors. Considering this perspective may help us to understand the divergence in the results described by several studies in this field.

  18. Whole Module Offgas Test Report: Space-Xl Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    On September 26 and September 28,2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 m1 evacuated canisters from the sealed Space-Xl Dragon Module. One sample was also acquired from Space-X Facility near the module at the start of the test. Samples of the module air were taken in triplicate once the module had been sealed, and then taken again in triplicate 1.98 days later. Ofthe triplicate samples, the first served as a line purge, and the last two were analyzed. The results of 5 samples are reported.

  19. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.

    Science.gov (United States)

    Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S

    2017-09-06

    The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent

  20. Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation

    DEFF Research Database (Denmark)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.

    2011-01-01

    Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent...... skill of maxilla-facial surgery strongly relies on enhanced touch perception, as measured in reaction times and discrimination ability in bi-modal vibro-auditory conditions. These observations suggest that acquisition of mandibular surgery skill has brought to an enhanced representation of vibro......-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound....

  1. Expected reward modulates encoding-related theta activity before an event.

    Science.gov (United States)

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Can persons with dementia be engaged with stimuli?

    Science.gov (United States)

    Cohen-Mansfield, Jiska; Marx, Marcia S; Dakheel-Ali, Maha; Regier, Natalie G; Thein, Khin

    2010-04-01

    To determine which stimuli are 1) most engaging 2) most often refused by nursing home residents with dementia, and 3) most appropriate for persons who are more difficult to engage with stimuli. Participants were 193 residents of seven Maryland nursing homes. All participants had a diagnosis of dementia. Stimulus engagement was assessed by the Observational Measure of Engagement. The most engaging stimuli were one-on-one socializing with a research assistant, a real baby, personalized stimuli based on the person's self-identity, a lifelike doll, a respite video, and envelopes to stamp. Refusal of stimuli was higher among those with higher levels of cognitive function and related to the stimulus' social appropriateness. Women showed more attention and had more positive attitudes for live social stimuli, simulated social stimuli, and artistic tasks than did men. Persons with comparatively higher levels of cognitive functioning were more likely to be engaged in manipulative and work tasks, whereas those with low levels of cognitive functioning spent relatively more time responding to social stimuli. The most effective stimuli did not differ for those most likely to be engaged and those least likely to be engaged. Nursing homes should consider both having engagement stimuli readily available to residents with dementia, and implementing a socialization schedule so that residents receive one-on-one interaction. Understanding the relationship among type of stimulus, cognitive function, and acceptance, attention, and attitude toward the stimuli can enable caregivers to maximize the desired benefit for persons with dementia.

  3. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    Science.gov (United States)

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  4. Effects of nicotine and nicotine expectancy on attentional bias for emotional stimuli.

    Science.gov (United States)

    Adams, Sally; Attwood, Angela S; Munafò, Marcus R

    2015-06-01

    Nicotine's effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of nicotine abstinence (Experiment 1), and nicotine challenge and expectancy (Experiment 2) on attentional bias towards facial emotional stimuli differing in emotional valence. In Experiment 1, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In Experiment 2, 96 nicotine-deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. In Experiment 1, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In Experiment 2, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine's modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task.

    Science.gov (United States)

    Goto, Nobuhiko; Mushtaq, Faisal; Shee, Dexter; Lim, Xue Li; Mortazavi, Matin; Watabe, Motoki; Schaefer, Alexandre

    2017-09-01

    We investigated whether well-known neural markers of selective attention to motivationally-relevant stimuli were modulated by variations in subjective preference towards consumer goods in a virtual shopping task. Specifically, participants viewed and rated pictures of various goods on the extent to which they wanted each item, which they could potentially purchase afterwards. Using the event-related potentials (ERP) method, we found that variations in subjective preferences for consumer goods strongly modulated positive slow waves (PSW) from 800 to 3000 milliseconds after stimulus onset. We also found that subjective preferences modulated the N200 and the late positive potential (LPP). In addition, we found that both PSW and LPP were modulated by subsequent buying decisions. Overall, these findings show that well-known brain event-related potentials reflecting selective attention processes can reliably index preferences to consumer goods in a shopping environment. Based on a large body of previous research, we suggest that early ERPs (e.g. the N200) to consumer goods could be indicative of preferences driven by unconditional and automatic processes, whereas later ERPs such as the LPP and the PSW could reflect preferences built upon more elaborative and conscious cognitive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    Science.gov (United States)

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  7. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    Science.gov (United States)

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  8. The self-pleasantness judgment modulates the encoding performance and the Default Mode Network activity

    Directory of Open Access Journals (Sweden)

    Perrone-Bertolotti eMarcela

    2016-03-01

    Full Text Available In this functional magnetic resonance imaging (fMRI study, we evaluated the effect of self-relevance on cerebral activity and behavioral performance during an incidental encoding task. Recent findings suggest that pleasantness judgments reliably induce self-oriented (internal thoughts and increase default mode network (DMN activity. We hypothesized that this increase in DMN activity would relate to increased memory recognition for pleasantly-judged stimuli (which depend on internally-oriented attention but decreased recognition for unpleasantly-judged items (which depend on externally-oriented attention. To test this hypothesis, brain activity was recorded from 21 healthy participants while they performed a pleasantness judgment requiring them to rate visual stimuli as pleasant or unpleasant. One hour later, participants performed a surprise memory recognition test outside of the scanner. Thus, we were able to evaluate the effects of pleasant and unpleasant judgments on cerebral activity and incidental encoding. The behavioral results showed that memory recognition was better for items rated as pleasant than items rated as unpleasant. The whole brain analysis indicated that successful encoding activates the inferior frontal and lateral temporal cortices, whereas unsuccessful encoding recruits two key medial posterior DMN regions, the posterior cingulate cortex and precuneus. A region of interest analysis including classic DMN areas, revealed significantly greater involvement of the medial Prefrontal Cortex in pleasant compared to unpleasant judgments, suggesting this region’s involvement in self-referential (i.e., internal processing. This area may be responsible for the greater recognition performance seen for pleasant stimuli. Furthermore, a significant interaction between the encoding performance (successful vs. unsuccessful and pleasantness was observed for the posterior cingulate cortex, precuneus and inferior frontal gyrus. Overall, our

  9. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  10. Latent Memory of Unattended Stimuli Reactivated by Practice: An fMRI Study on the Role of Consciousness and Attention in Learning

    Science.gov (United States)

    Meuwese, Julia D. I.; Scholte, H. Steven; Lamme, Victor A. F.

    2014-01-01

    Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli. PMID:24603676

  11. TV commercial and rTMS: can brain lateralization give us information about consumer preference?

    Directory of Open Access Journals (Sweden)

    Federica Leanza

    2017-04-01

    Full Text Available The current research aimed at investigating the brain lateralization effect in response to TV advertising of different commercial sectors. This study explored the effects of dorsolateral prefrontal cortex (DLPFC stimulation on subjective evaluation (semantic differential, in response to some consumer goods. We adopted rTMS (low-frequency 1Hz on left and right DLPFC to modulate the consumers’ (N=thirty-three response during the vision of five commercials. After three hours from the first evaluation of TV commercials without stimulation, rTMS was delivered in brain frontal areas (F3 and F4 areas before the vision of each stimulus. Following the stimulation, subjects evaluated advertising a second time by using the same semantic differential. An increase of TV commercials preference occurred in subjects who were inhibited on right DLPFC; while a decrease of advertising preference was shown in subjects who were inhibited on left DLPFC. These results reveal the important role of DLPFC for emotions’ elaboration. In particular, the left and right DLPFC seem to be related respectively to positive and negative evaluation of emotional stimuli.

  12. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  13. Cascaded Amplitude Modulations in Sound Texture Perception

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2017-01-01

    . In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...

  14. Modulation of attentional networks by food-related disinhibition.

    Science.gov (United States)

    Hege, Maike A; Stingl, Krunoslav T; Veit, Ralf; Preissl, Hubert

    2017-07-01

    The risk of weight gain is especially related to disinhibition, which indicates the responsiveness to external food stimuli with associated disruptions in eating control. We adapted a food-related version of the attention network task and used functional magnetic resonance imaging to study the effects of disinhibition on attentional networks in 19 normal-weight participants. High disinhibition scores were associated with a rapid reorienting response to food pictures after invalid cueing and with an enhanced alerting effect of a warning cue signalizing the upcoming appearance of a food picture. Imaging data revealed activation of a right-lateralized ventral attention network during reorienting. The faster the reorienting and the higher the disinhibition score, the less activation of this network was observed. The alerting contrast showed activation in visual, temporo-parietal and anterior sites. These modulations of attentional networks by food-related disinhibition might be related to an attentional bias to energy dense and palatable food and increased intake of food in disinhibited individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Top-down knowledge modulates onset capture in a feedforward manner.

    Science.gov (United States)

    Becker, Stefanie I; Lewis, Amanda J; Axtens, Jenna E

    2017-04-01

    How do we select behaviourally important information from cluttered visual environments? Previous research has shown that both top-down, goal-driven factors and bottom-up, stimulus-driven factors determine which stimuli are selected. However, it is still debated when top-down processes modulate visual selection. According to a feedforward account, top-down processes modulate visual processing even before the appearance of any stimuli, whereas others claim that top-down processes modulate visual selection only at a late stage, via feedback processing. In line with such a dual stage account, some studies found that eye movements to an irrelevant onset distractor are not modulated by its similarity to the target stimulus, especially when eye movements are launched early (within 150-ms post stimulus onset). However, in these studies the target transiently changed colour due to a colour after-effect that occurred during premasking, and the time course analyses were incomplete. The present study tested the feedforward account against the dual stage account in two eye tracking experiments, with and without colour after-effects (Exp. 1), as well when the target colour varied randomly and observers were informed of the target colour with a word cue (Exp. 2). The results showed that top-down processes modulated the earliest eye movements to the onset distractors (feedforward account of top-down modulation.

  16. Developing Affective Mental Imagery Stimuli with Multidimensional Scaling

    Directory of Open Access Journals (Sweden)

    Matthew J. Facciani

    2015-06-01

    Full Text Available The goal of this paper is to provide an example of how multidimensional scaling (MDS can be used for stimuli development. The study described in this paper illustrates this process by developing affective mental imagery stimuli using the circumplex model of affect as a guide. The circumplex model of affect argues that all emotions can be described in terms of two underlying primary dimensions: valence and arousal (Russel, 1980. We used MDS to determine if affective mental imagery stimuli obtained from verbal prompts could be separated by arousal and valence to create four distinct categories (high –positive, low-positive, high-negative, and low-negative as seen in other stimuli. 60 students from the University of South Carolina participated in the first experiment to evaluate three sets of stimuli. After being analyzed using MDS, selected stimuli were then assessed again in a second experiment to validate their robust valence and arousal distinctions. The second experiment was conducted with 34 subjects to validate 40 of the best stimuli from experiment 1. It was found that mental imagery stimuli can produce a reliable affective response for the dimensions of valence and arousal and that MDS can be an effective tool for stimuli development.

  17. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  18. Online Modulation of Selective Attention is not Impaired in Healthy Aging.

    Science.gov (United States)

    Sekuler, Robert; Huang, Jie; Sekuler, Allison B; Bennett, Patrick J

    2017-01-01

    Background/Study Context: Reduced processing speed pervades a great many aspects of human aging and cognition. However, little is known about one aspect of cognitive aging in which speed is of the essence, namely, the speed with which older adults can deploy attention in response to a cue. The authors compared rapid temporal modulation of cued visual attention in younger (M age  = 22.3 years) and older (M age  = 68.9 years) adults. On each trial of a short-term memory task, a cue identified which of two briefly presented stimuli was task relevant and which one should be ignored. After a short delay, subjects demonstrated recall by reproducing from memory the task-relevant stimulus. This produced estimates of (i) accuracy with which the task-relevant stimulus was recalled, (ii) the influence of stimuli encountered on previous trials (a prototype effect), and (iii) the influence of the trial's task-irrelevant stimulus. For both groups, errors in recall were considerably smaller when selective attention was cued before rather than after presentation of the stimuli. Both groups showed serial position effects to the same degree, and both seemed equally adept at exploiting the stimuli encountered on previous trials as a means of supplementing recall accuracy on the current trial. Younger and older subjects may not differ reliably in capacity for cue-directed temporal modulation of selective attention, or in ability to draw on previously seen stimuli as memory support.

  19. Possible evolutionary origins of cognitive brain lateralization.

    Science.gov (United States)

    Vallortigara, G; Rogers, L J; Bisazza, A

    1999-08-01

    Despite the substantial literature on the functional architecture of the asymmetries of the human brain, which has been accumulating for more than 130 years since Dax and Broca's early reports, the biological foundations of cerebral asymmetries are still poorly understood. Recent advances in comparative cognitive neurosciences have made available new animal models that have started to provide unexpected insights into the evolutionary origins and neuronal mechanisms of cerebral asymmetries. Animal model-systems, particularly those provided by the avian brain, highlight the interrelations of genetic, hormonal and environmental events to produce neural and behavioural asymmetries. Novel evidences showing that functional and structural lateralization of the brain is widespread among vertebrates (including fish, reptiles and amphibians) have accumulated rapidly. Perceptual asymmetries, in particular, seem to be ubiquitous in everyday behaviour of most species of animals with laterally placed eyes; in organisms with wider binocular overlap (e.g., amphibians), they appear to be retained for initial detection of stimuli in the extreme lateral fields. We speculate that adjustment of head position and eye movements may play a similar role in mammals with frontal vision as does the choice for right or left lateral visual fields in animals with laterally placed eyes. A first attempt to trace back the origins of brain asymmetry to early vertebrates is presented, based on the hypothesis that functional incompatibility between the logical demands associated with very basic cognitive functions is central to the phenomenon of cerebral lateralization.

  20. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    Science.gov (United States)

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.

  1. Attention that covers letters is necessary for the left-lateralization of an early print-tuned ERP in Japanese hiragana.

    Science.gov (United States)

    Okumura, Yasuko; Kasai, Tetsuko; Murohashi, Harumitsu

    2015-03-01

    Extensive experience with reading develops expertise in acquiring information from print, and this is reflected in specific enhancement of the left-lateralized N170 component in event-related potentials. The N170 is generally considered to reflect visual/orthographic processing; while modulations of its left-lateralization related to phonological processes have also been indicated. However, in our previous study, N170-like response to Hiragana strings lacked left-lateralization when the stimuli were completely task-irrelevant in rapid-presentation sequences [Okumura et al. (2014). Early print-tuned ERP response with minimal involvement of linguistic processing in Japanese Hiragana strings. Neuroreport 25, 410-414]. This suggests that, despite the highly transparent character-to-syllable correspondence, the phonological mapping of Hiragana strings requires some kind of attention toward print. To verify this notion, the present study examined ERPs under the same experimental condition as in the previous study, except that the task required attention to a stimulus attribute (i.e., color). As a result, Hiragana words and nonwords elicited left-lateralized negative deflection in the occipito-temporal region during 130-170ms post-stimulus in comparison to symbol strings, but only when the print had a narrow intercharacter spacing. Moreover, we observed the enhancement of very early occipital ERP in response to words during 70-100ms. The present results suggest that visual attention plays a role in early print processing, which may contribute to our understanding of the mechanisms that underlie expert as well as impaired reading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Age-Related Differences in Cortical Activity during a Visuo-Spatial Working Memory Task with Facial Stimuli

    OpenAIRE

    Belham, Fl?via Schechtman; Satler, Corina; Garcia, Ana; Tomaz, Carlos; Gasbarri, Antonella; Rego, Artur; Tavares, Maria Clotilde H.

    2013-01-01

    Emotion, importantly displayed by facial expressions, is one of the most significant memory modulators. The interaction between memory and the different emotional valences change across lifespan, while young adults (YA) are expected to better recall negative events (Negativity Bias Hypothesis), older adults (OA) tend to focus on positive stimuli (Positivity Effect Hypothesis). This research work aims at verifying whether cortical electrical activity of these two age groups would also be diffe...

  3. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  4. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  5. Effect of task demands on dual coding of pictorial stimuli.

    Science.gov (United States)

    Babbitt, B C

    1982-01-01

    Recent studies have suggested that verbal labeling of a picture does not occur automatically. Although several experiments using paired-associate tasks produced little evidence indicating the use of a verbal code with picture stimuli, the tasks were probably not sensitive to whether the codes were activated initially. It is possible that verbal labels were activated at input, but not used later in performing the tasks. The present experiment used a color-naming interference task in order to assess, with a more sensitive measure, the amount of verbal coding occurring in response to word or picture input. Subjects named the color of ink in which words were printed following either word or picture input. If verbal labeling of the input occurs, then latency of color naming should increase when the input item and color-naming word are related. The results provided substantial evidence of such verbal activation when the input items were words. However, the presence of verbal activation with picture input was a function of task demands. Activation occurred when a recall memory test was used, but not when a recognition memory test was used. The results support the conclusion that name information (labels) need not be activated during presentation of visual stimuli.

  6. Lateralization of the human mirror neuron system.

    Science.gov (United States)

    Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2006-03-15

    A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.

  7. Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.

    Science.gov (United States)

    Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2014-07-01

    Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Electrophysiological evidence for enhanced representation of food stimuli in working memory.

    Science.gov (United States)

    Rutters, Femke; Kumar, Sanjay; Higgs, Suzanne; Humphreys, Glyn W

    2015-02-01

    Studies from our laboratory have shown that, relative to neutral objects, food-related objects kept in working memory (WM) are particularly effective in guiding attention to food stimuli (Higgs et al. in Appetite, 2012). Here, we used electrophysiological measurements to investigate the neural representation of food versus non-food items in WM. Subjects were presented with a cue (food or non-food item) to either attend to or hold in WM. Subsequently, they had to search for a target, while the target and distractor were each flanked by a picture of a food or non-food item. Behavioural data showed that a food cue held in WM modulated the deployment of visual attention to a search target more than a non-food cue, even though the cue was irrelevant for target selection. Electrophysiological measures of attention, memory and retention of memory (the P3, LPP and SPCN components) were larger when food was kept in WM, compared to non-food items. No such effect was observed in a priming task, when the initial cue was merely identified. Overall, our electrophysiological data are consistent with the suggestion that food stimuli are particularly strongly represented in the WM system.

  9. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment

    Science.gov (United States)

    McCabe, Ciara; Mishor, Zevic; Cowen, Philip J.; Harmer, Catherine J.

    2010-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment. PMID:20034615

  10. Representation of dynamical stimuli in populations of threshold neurons.

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2011-10-01

    Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.

  11. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  12. Action video game players' visual search advantage extends to biologically relevant stimuli.

    Science.gov (United States)

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The content of lexical stimuli and self-reported physiological state modulate error-related negativity amplitude.

    Science.gov (United States)

    Benau, Erik M; Moelter, Stephen T

    2016-09-01

    The Error-Related Negativity (ERN) and Correct-Response Negativity (CRN) are brief event-related potential (ERP) components-elicited after the commission of a response-associated with motivation, emotion, and affect. The Error Positivity (Pe) typically appears after the ERN, and corresponds to awareness of having committed an error. Although motivation has long been established as an important factor in the expression and morphology of the ERN, physiological state has rarely been explored as a variable in these investigations. In the present study, we investigated whether self-reported physiological state (SRPS; wakefulness, hunger, or thirst) corresponds with ERN amplitude and type of lexical stimuli. Participants completed a SRPS questionnaire and then completed a speeded Lexical Decision Task with words and pseudowords that were either food-related or neutral. Though similar in frequency and length, food-related stimuli elicited increased accuracy, faster errors, and generated a larger ERN and smaller CRN than neutral words. Self-reported thirst correlated with improved accuracy and smaller ERN and CRN amplitudes. The Pe and Pc (correct positivity) were not impacted by physiological state or by stimulus content. The results indicate that physiological state and manipulations of lexical content may serve as important avenues for future research. Future studies that apply more sensitive measures of physiological and motivational state (e.g., biomarkers for satiety) or direct manipulations of satiety may be a useful technique for future research into response monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  15. Neural Habituation to Painful Stimuli Is Modulated by Dopamine: Evidence from a Pharmacological fMRI Study

    Directory of Open Access Journals (Sweden)

    Eva M. Bauch

    2017-12-01

    Full Text Available In constantly changing environments, it is crucial to adaptively respond to threatening events. In particular, painful stimuli are not only processed in terms of their absolute intensity, but also with respect to their context. While contextual pain processing can simply entail the repeated processing of information (i.e., habituation, it can, in a more complex form, be expressed through predictions of magnitude before the delivery of nociceptive information (i.e., adaptive coding. Here, we investigated the brain regions involved in the adaptation to nociceptive electrical stimulation as well as their link to dopaminergic neurotransmission (placebo/haloperidol. The main finding is that haloperidol changed the habituation to the absolute pain intensity over time. More precisely, in the placebo condition, activity in left postcentral gyrus and midcingulate cortex increased linearly with pain intensity only in the beginning of the experiment and subsequently habituated. In contrast, when the dopaminergic system was blocked by haloperidol, a linear increase with pain intensity was present throughout the entire experiment. Finally, there were no adaptive coding effects in any brain regions. Together, our findings provide novel insights into the nature of pain processing by suggesting that dopaminergic neurotransmission plays a specific role for the habituation to painful stimuli over time.

  16. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    Science.gov (United States)

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  17. Accessory stimulus modulates executive function during stepping task.

    Science.gov (United States)

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo; Nojima, Ippei

    2015-07-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. Copyright © 2015 the American Physiological Society.

  18. The processing of infrequently-presented low-intensity stimuli during natural sleep: An event-related potential study

    Directory of Open Access Journals (Sweden)

    Alexandra Muller-Gass

    2010-01-01

    Full Text Available Event-related potentials (ERPs provide an exquisite means to measure the extent of processing of external stimuli during the sleep period. This study examines ERPs elicited by stimuli with physical characteristics akin to environmental noise encountered during sleep. Brief duration 40, 60 or 80 dB sound pressure level (SPL tones were presented either rapidly (on average every two seconds or slowly (on average every 10 seconds. The rates of presentation and intensity of the stimuli were similar to those observed in environmental studies of noise. ERPs were recorded from nine young adults during sleep and wakefulness. During wakefulness, the amplitude of an early negative ERP, N1, systematically increased as intensity level increased. A later positivity, the P3a, was apparent following the loudest 80 dB stimulus regardless of the rate of stimulus presentation; it was also apparent following the 60 dB stimulus, when stimuli were presented slowly. The appearance of the N1-P3a deflections suggests that operations of the central executive controlling ongoing cognitive activity was interrupted, forcing subjects to become aware of the obtrusive task-irrelevant stimuli. The auditory stimuli elicited very different ERP patterns during sleep. During non-rapid eye movement (NREM sleep, the ERP was characterized by an enhanced (relative to wakefulness early positivity, P2, followed by a very prominent negativity, the N350. Both deflections systematically varied in amplitude with stimulus intensity level; in addition, N350 was much larger when stimuli were presented at slow rates. The N350, a sleep-specific ERP, is thought to reflect the inhibition of processing of potentially sleep-disrupting stimulus input. During rapid eye movement (REM sleep, a small amplitude N1 was apparent in the ERP, but only for the loudest, 80 dB stimulus. A small (nonsignificant P3a-like deflection was also visible following the 80 dB stimulus, but only when stimuli were presented

  19. Neural dynamics of morphological processing in spoken word comprehension: Laterality and automaticity

    Directory of Open Access Journals (Sweden)

    Caroline M. Whiting

    2013-11-01

    Full Text Available Rapid and automatic processing of grammatical complexity is argued to take place during speech comprehension, engaging a left-lateralised fronto-temporal language network. Here we address how neural activity in these regions is modulated by the grammatical properties of spoken words. We used combined magneto- and electroencephalography (MEG, EEG to delineate the spatiotemporal patterns of activity that support the recognition of morphologically complex words in English with inflectional (-s and derivational (-er affixes (e.g. bakes, baker. The mismatch negativity (MMN, an index of linguistic memory traces elicited in a passive listening paradigm, was used to examine the neural dynamics elicited by morphologically complex words. Results revealed an initial peak 130-180 ms after the deviation point with a major source in left superior temporal cortex. The localisation of this early activation showed a sensitivity to two grammatical properties of the stimuli: 1 the presence of morphological complexity, with affixed words showing increased left-laterality compared to non-affixed words; and 2 the grammatical category, with affixed verbs showing greater left-lateralisation in inferior frontal gyrus compared to affixed nouns (bakes vs. beaks. This automatic brain response was additionally sensitive to semantic coherence (the meaning of the stem vs. the meaning of the whole form in fronto-temporal regions. These results demonstrate that the spatiotemporal pattern of neural activity in spoken word processing is modulated by the presence of morphological structure, predominantly engaging the left-hemisphere’s fronto-temporal language network, and does not require focused attention on the linguistic input.

  20. The effect of Ramadan fasting on spatial attention through emotional stimuli

    Science.gov (United States)

    Molavi, Maziyar; Yunus, Jasmy; Utama, Nugraha P

    2016-01-01

    Fasting can influence psychological and mental states. In the current study, the effect of periodical fasting on the process of emotion through gazed facial expression as a realistic multisource of social information was investigated for the first time. The dynamic cue-target task was applied via behavior and event-related potential measurements for 40 participants to reveal the temporal and spatial brain activities – before, during, and after fasting periods. The significance of fasting included several effects. The amplitude of the N1 component decreased over the centroparietal scalp during fasting. Furthermore, the reaction time during the fasting period decreased. The self-measurement of deficit arousal as well as the mood increased during the fasting period. There was a significant contralateral alteration of P1 over occipital area for the happy facial expression stimuli. The significant effect of gazed expression and its interaction with the emotional stimuli was indicated by the amplitude of N1. Furthermore, the findings of the study approved the validity effect as a congruency between gaze and target position, as indicated by the increment of P3 amplitude over centroparietal area as well as slower reaction time from behavioral response data during incongruency or invalid condition between gaze and target position compared with those during valid condition. Results of this study proved that attention to facial expression stimuli as a kind of communicative social signal was affected by fasting. Also, fasting improved the mood of practitioners. Moreover, findings from the behavioral and event-related potential data analyses indicated that the neural dynamics of facial emotion are processed faster than that of gazing, as the participants tended to react faster and prefer to relay on the type of facial emotions than to gaze direction while doing the task. Because of happy facial expression stimuli, right hemisphere activation was more than that of the left

  1. Catastrophizing Interferes with Cognitive Modulation of Pain in Women with Fibromyalgia.

    Science.gov (United States)

    Ellingson, Laura D; Stegner, Aaron J; Schwabacher, Isaac J; Lindheimer, Jacob B; Cook, Dane B

    2018-02-21

    Pain modulation is a critical function of the nociceptive system that includes the ability to engage descending pain control systems to maintain a functional balance between facilitation and inhibition of incoming sensory stimuli. Dysfunctional pain modulation is associated with increased risk for chronic pain and is characteristic of fibromyalgia (FM). Catastrophizing is also common in FM. However, its influence on pain modulation is poorly understood. To determine the role of catastrophizing on central nervous system processing during pain modulation in FM via examining brain responses and pain sensitivity during an attention-distraction paradigm. Twenty FM patients and 18 healthy controls (CO) underwent functional magnetic resonance imaging while receiving pain stimuli, administered alone and during distracting cognitive tasks. Pain ratings were assessed after each stimulus. Catastrophizing was assessed with the Pain Catastrophizing Scale (PCS). The ability to modulate pain during distraction varied among FM patients and was associated with catastrophizing. This was demonstrated by significant positive relationships between PCS scores and pain ratings (P modulation did not differ between FM and CO (P > 0.05). FM patients with higher levels of catastrophizing were less able to distract themselves from pain, indicative of catastrophizing-related impairments in pain modulation. These results suggest that the tendency to catastrophize interacts with attention-resource allocation and may represent a mechanism of chronic pain exacerbation and/or maintenance. Reducing catastrophizing may improve FM symptoms via improving central nervous system regulation of pain.

  2. Instructed fear stimuli bias visual attention

    NARCIS (Netherlands)

    Deltomme, Berre; Mertens, G.; Tibboel, Helen; Braem, Senne

    We investigated whether stimuli merely instructed to be fear-relevant can bias visual attention, even when the fear relation was never experienced before. Participants performed a dot-probe task with pictures of naturally fear-relevant (snake or spider) or -irrelevant (bird or butterfly) stimuli.

  3. Attribute amnesia is greatly reduced with novel stimuli

    Directory of Open Access Journals (Sweden)

    Weijia Chen

    2017-11-01

    Full Text Available Attribute amnesia is the counterintuitive phenomenon where observers are unable to report a salient aspect of a stimulus (e.g., its colour or its identity immediately after the stimulus was presented, despite both attending to and processing the stimulus. Almost all previous attribute amnesia studies used highly familiar stimuli. Our study investigated whether attribute amnesia would also occur for unfamiliar stimuli. We conducted four experiments using stimuli that were highly familiar (colours or repeated animal images or that were unfamiliar to the observers (unique animal images. Our results revealed that attribute amnesia was present for both sets of familiar stimuli, colour (p < .001 and repeated animals (p = .001; but was greatly attenuated, and possibly eliminated, when the stimuli were unique animals (p = .02. Our data shows that attribute amnesia is greatly reduced for novel stimuli.

  4. Auditory laterality in a nocturnal, fossorial marsupial (Lasiorhinus latifrons) in response to bilateral stimuli.

    Science.gov (United States)

    Descovich, K A; Reints Bok, T E; Lisle, A T; Phillips, C J C

    2013-01-01

    Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance, and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events, and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ(2) (1)=10.65, p=.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context.

  5. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning

    Directory of Open Access Journals (Sweden)

    Mary M. Heitzeg

    2015-12-01

    Full Text Available This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n = 40 were recruited from the Michigan Longitudinal Study (MLS. Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n = 20 or controls with minimal marijuana use. Two facets of emotional functioning—negative emotionality and resiliency (a self-regulatory mechanism—were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes.

  6. Early development and gravitropic response of lateral roots in Arabidopsis thaliana.

    Science.gov (United States)

    Guyomarc'h, S; Léran, S; Auzon-Cape, M; Perrine-Walker, F; Lucas, M; Laplaze, L

    2012-06-05

    Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.

  7. Emotional Intensity Modulates the Integration of Bimodal Angry Expressions: ERP Evidence

    Directory of Open Access Journals (Sweden)

    Zhihui Pan

    2017-06-01

    Full Text Available Integration of information from face and voice plays a central role in social interactions. The present study investigated the modulation of emotional intensity on the integration of facial-vocal emotional cues by recording EEG for participants while they were performing emotion identification task on facial, vocal, and bimodal angry expressions varying in emotional intensity. Behavioral results showed the rates of anger and reaction speed increased as emotional intensity across modalities. Critically, the P2 amplitudes were larger for bimodal expressions than for the sum of facial and vocal expressions for low emotional intensity stimuli, but not for middle and high emotional intensity stimuli. These findings suggested that emotional intensity modulates the integration of facial-vocal angry expressions, following the principle of Inverse Effectiveness (IE in multimodal sensory integration.

  8. Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni).

    Science.gov (United States)

    Byrnes, Evan E; Vila Pouca, Catarina; Brown, Culum

    2016-05-15

    Cerebral lateralization is an evolutionarily deep-rooted trait, ubiquitous among the vertebrates and present even in some invertebrates. Despite the advantages of cerebral lateralization in enhancing cognition and facilitating greater social cohesion, large within population laterality variation exists in many animal species. It is proposed that this variation is maintained due links with inter-individual personality trait differences. Here we explored for lateralization in Port Jackson sharks (Heterodontus portusjacksoni) using T-maze turn and rotational swimming tasks. Additionally, we explored for a link between personality traits, boldness and stress reactivity, and cerebral lateralization. Sharks demonstrated large individual and sex biased laterality variation, with females demonstrating greater lateralization than males overall. Stress reactivity, but not boldness, was found to significantly correlate with lateralization strength. Stronger lateralized individuals were more reactive to stress. Demonstrating laterality in elasmobranchs for the first time indicates ancient evolutionary roots of vertebrate lateralization approximately 240 million years old. Greater lateralization in female elasmobranchs may be related enhancing females' ability to process multiple stimuli during mating, which could increase survivability and facilitate insemination. Despite contrasting evidence in teleost fishes, the results of this study suggest that stress reactivity, and other personality traits, may be linked to variation in lateralization. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An applet for the Gabor similarity scaling of the differences between complex stimuli.

    Science.gov (United States)

    Margalit, Eshed; Biederman, Irving; Herald, Sarah B; Yue, Xiaomin; von der Malsburg, Christoph

    2016-11-01

    It is widely accepted that after the first cortical visual area, V1, a series of stages achieves a representation of complex shapes, such as faces and objects, so that they can be understood and recognized. A major challenge for the study of complex shape perception has been the lack of a principled basis for scaling of the physical differences between stimuli so that their similarity can be specified, unconfounded by early-stage differences. Without the specification of such similarities, it is difficult to make sound inferences about the contributions of later stages to neural activity or psychophysical performance. A Web-based app is described that is based on the Malsburg Gabor-jet model (Lades et al., 1993), which allows easy specification of the V1 similarity of pairs of stimuli, no matter how intricate. The model predicts the psycho physical discriminability of metrically varying faces and complex blobs almost perfectly (Yue, Biederman, Mangini, von der Malsburg, & Amir, 2012), and serves as the input stage of a large family of contemporary neurocomputational models of vision.

  10. Populations of striatal medium spiny neurons encode vibrotactile frequency in rats: modulation by slow wave oscillations.

    Science.gov (United States)

    Hawking, Thomas G; Gerdjikov, Todor V

    2013-01-01

    Dorsolateral striatum (DLS) is implicated in tactile perception and receives strong projections from somatosensory cortex. However, the sensory representations encoded by striatal projection neurons are not well understood. Here we characterized the contribution of DLS to the encoding of vibrotactile information in rats by assessing striatal responses to precise frequency stimuli delivered to a single vibrissa. We applied stimuli in a frequency range (45-90 Hz) that evokes discriminable percepts and carries most of the power of vibrissa vibration elicited by a range of complex fine textures. Both medium spiny neurons and evoked potentials showed tactile responses that were modulated by slow wave oscillations. Furthermore, medium spiny neuron population responses represented stimulus frequency on par with previously reported behavioral benchmarks. Our results suggest that striatum encodes frequency information of vibrotactile stimuli which is dynamically modulated by ongoing brain state.

  11. Adaptive gain modulation in V1 explains contextual modifications during bisection learning.

    Directory of Open Access Journals (Sweden)

    Roland Schäfer

    2009-12-01

    Full Text Available The neuronal processing of visual stimuli in primary visual cortex (V1 can be modified by perceptual training. Training in bisection discrimination, for instance, changes the contextual interactions in V1 elicited by parallel lines. Before training, two parallel lines inhibit their individual V1-responses. After bisection training, inhibition turns into non-symmetric excitation while performing the bisection task. Yet, the receptive field of the V1 neurons evaluated by a single line does not change during task performance. We present a model of recurrent processing in V1 where the neuronal gain can be modulated by a global attentional signal. Perceptual learning mainly consists in strengthening this attentional signal, leading to a more effective gain modulation. The model reproduces both the psychophysical results on bisection learning and the modified contextual interactions observed in V1 during task performance. It makes several predictions, for instance that imagery training should improve the performance, or that a slight stimulus wiggling can strongly affect the representation in V1 while performing the task. We conclude that strengthening a top-down induced gain increase can explain perceptual learning, and that this top-down signal can modify lateral interactions within V1, without significantly changing the classical receptive field of V1 neurons.

  12. Responsiveness to distracting stimuli, though increased in Parkinson's disease, is decreased in asymptomatic PINK1 and Parkin mutation carriers

    DEFF Research Database (Denmark)

    Verleger, Rolf; Hagenah, Johann; Weiss, Manuel

    2010-01-01

    Patients with Parkinson's disease (PD) are more sensitive than healthy controls to response-triggering by irrelevant flanking stimuli in speeded choice-response tasks. This increased responsiveness may either indicate a lack of executive control or reflect compensatory efforts to cope...... motor system. Disease progression might prevent symptomatic PD patients from using this compensatory mechanism, leading to increased disinhibition of their lateral motor system....

  13. Tuning of Human Modulation Filters Is Carrier-Frequency Dependent

    Science.gov (United States)

    Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David

    2013-01-01

    Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759

  14. Medio-lateral postural instability in subjects with tinnitus

    Directory of Open Access Journals (Sweden)

    Zoi eKapoula

    2011-05-01

    Full Text Available Background: Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus.Methods: Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40cm for 51s; posturography was performed with the platform (Technoconcept, 40Hz for both the eyes open and eyes closed conditions.Results: For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx. This was corroborated by fast Fourrier Transformation (FFTx and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Conclusions: Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus and attention.

  15. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning.

    Science.gov (United States)

    Heitzeg, Mary M; Cope, Lora M; Martz, Meghan E; Hardee, Jillian E; Zucker, Robert A

    2015-12-01

    This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Recall and recognition hypermnesia for Socratic stimuli.

    Science.gov (United States)

    Kazén, Miguel; Solís-Macías, Víctor M

    2016-01-01

    In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.

  17. fMRI correlates of object-based attentional facilitation versus suppression of irrelevant stimuli, dependent on global grouping and endogenous cueing.

    Directory of Open Access Journals (Sweden)

    Elliot D Freeman

    2014-02-01

    Full Text Available Theories of object-based attention often make two assumptions: that attentional resources are facilitatory, and that they spread automatically within grouped objects. Consistent with this, ignored visual stimuli can be easier to process, or more distracting, when perceptually grouped with an attended target stimulus. But in past studies, the ignored stimuli often shared potentially relevant features or locations with the target. In this fMRI study, we measured the effects of attention and grouping on Blood Oxygenation Level Dependent (BOLD responses in the human brain to entirely task-irrelevant events.Two checkerboards were displayed each in opposite hemifields, while participants responded to check-size changes in one pre-cued hemifield, which varied between blocks. Grouping (or segmentation between hemifields was manipulated between blocks, using common (versus distinct motion cues. Task-irrelevant transient events were introduced by randomly changing the colour of either checkerboard, attended or ignored, at unpredictable intervals. The above assumptions predict heightened BOLD signals for irrelevant events in attended versus ignored hemifields for ungrouped contexts, but less such attentional modulation under grouping, due to automatic spreading of facilitation across hemifields. We found the opposite pattern, in primary visual cortex. For ungrouped stimuli, BOLD signals associated with task-irrelevant changes were lower, not higher, in the attended versus ignored hemifield; furthermore, attentional modulation was not reduced but actually inverted under grouping, with higher signals for events in the attended versus ignored hemifield.

  18. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    Science.gov (United States)

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  19. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    Directory of Open Access Journals (Sweden)

    Marc R. Kamke

    2014-06-01

    Full Text Available The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color. In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  20. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  1. Cholecystokinin A receptor (CCKAR gene variation is associated with language lateralization.

    Directory of Open Access Journals (Sweden)

    Sebastian Ocklenburg

    Full Text Available Schizophrenia is a psychiatric disorder associated with atypical handedness and language lateralization. However, the molecular mechanisms underlying these functional changes are still poorly understood. Therefore, the present study was aimed at investigating whether variation in schizophrenia-related genes modulates individual lateralization patterns. To this end, we genotyped 16 single nucleotide polymorphisms that have previously been linked to schizophrenia on a meta-analysis level in a sample of 444 genetically unrelated healthy participants and examined the association of these polymorphisms with handedness, footedness and language lateralization. We found a significant association of the cholecystokinin-A receptor (CCKAR gene variation rs1800857 and language lateralization assessed using the dichotic listening task. Individuals carrying the schizophrenia risk allele C of this polymorphism showed a marked reduction of the typical left-hemispheric dominance for language processing. Since the cholecystokinin A receptor is involved in dopamine release in the central nervous system, these findings suggest that genetic variation in this receptor may modulate language lateralization due to its impact on dopaminergic pathways.

  2. Objects but not concepts modulate the size of the attended region.

    Science.gov (United States)

    Goodhew, Stephanie C; Edwards, Mark

    2017-07-01

    Here we investigated the types of stimuli that modulate the size of the attentional spotlight. In particular, it has been previously shown that conceptual cues that either directly refer to or are semantically related to particular spatial locations can shift attention to that location (known as "conceptual cueing"). For example, reading the word sun or joy can shift attention upward whereas the word boot or hostile can shift attention downward. Here, therefore, we tested whether words could modulate the size of the attended area. Across five experiments, we found that words that either directly referred to, or were abstractly associated with, particular sizes (small versus large) did not change the size of the attentional spotlight, whereas the presence of differently sized stimuli did, as evidenced by faster responses to targets when the spotlight is small than when it is large. This suggests that physical but not conceptual inducers can modulate the size of the attentional spotlight. This highlights an important difference between the regulation of spotlight size and shifts of attention, supporting the notion that they are subserved by distinct mechanisms.

  3. Endogenous attention modulates attentional and motor interference from distractors: Evidence from behavioral and electrophysiological results.

    Directory of Open Access Journals (Sweden)

    Elisa eMartín-Arévalo

    2015-02-01

    Full Text Available Selective visual attention enhances the processing of relevant stimuli and filters out irrelevant stimuli and/or distractors. However, irrelevant information is sometimes processed, as demonstrated by the Simon effect (Simon & Rudell, 1967. We examined whether fully irrelevant distractors (task and target-irrelevant produce interference (measured as the Simon effect, and whether endogenous orienting modulated this interference. Despite being fully irrelevant, distractors were attentionally coded (as reflected by the distractor-related N2pc component, and interfered with the processing of the target response (as reflected by the target-related LRP component. Distractor’s attentional capture depended on endogenous attention, and their interference with target responses was modulated by both endogenous attention and distractor location repetition. These results demonstrate both endogenous attentional and motor modulations over the Simon effect produced by fully irrelevant distractors.

  4. Mismatched summation mechanisms in older adults for the perception of small moving stimuli.

    Science.gov (United States)

    McDougall, Thomas J; Nguyen, Bao N; McKendrick, Allison M; Badcock, David R

    2018-01-01

    Previous studies have found evidence for reduced cortical inhibition in aging visual cortex. Reduced inhibition could plausibly increase the spatial area of excitation in receptive fields of older observers, as weaker inhibitory processes would allow the excitatory receptive field to dominate and be psychophysically measureable over larger areas. Here, we investigated aging effects on spatial summation of motion direction using the Battenberg summation method, which aims to control the influence of locally generated internal noise changes by holding overall display size constant. This method produces more accurate estimates of summation area than conventional methods that simply increase overall stimulus dimensions. Battenberg stimuli have a checkerboard arrangement, where check size (luminance-modulated drifting gratings alternating with mean luminance areas), but not display size, is varied and compared with performance for a full field stimulus to provide a measure of summation. Motion direction discrimination thresholds, where contrast was the dependent variable, were measured in 14 younger (24-34 years) and 14 older (62-76 years) adults. Older observers were less sensitive for all check sizes, but the relative sensitivity across sizes, also differed between groups. In the older adults, the full field stimulus offered smaller performance improvements compared to that for younger adults, specifically for the small checked Battenberg stimuli. This suggests aging impacts on short-range summation mechanisms, potentially underpinned by larger summation areas for the perception of small moving stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Autoshaping a leverpress in rats with lateral, medial, or complete septal lesions.

    Science.gov (United States)

    Poplawsky, A; Phillips, C L

    1986-05-01

    Rats with either control operations or lateral, medial, or complete septal lesions received 600 trials of leverpress training using an autoshaping procedure, i.e., food delivery followed a 10 s illuminated lever presentation, or occurred immediately after a leverpress. Rats with complete septal lesions acquired the leverpress faster than controls and had more food-tray entries per minute during the first 100 trials than the other groups. Rats with lateral or medial septal lesions had leverpress and food-tray entries equivalent to controls. The facilitation of autoshaping a leverpress may partially be explained by the general increase in motor reactivity to stimuli found following septal lesions.

  6. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    Science.gov (United States)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  7. Medial temporal lobe damage impairs representation of simple stimuli

    Directory of Open Access Journals (Sweden)

    David E Warren

    2010-05-01

    Full Text Available Medial temporal lobe damage in humans is typically thought to produce a circumscribed impairment in the acquisition of new enduring memories, but recent reports have documented deficits even in short-term maintenance. We examined possible maintenance deficits in a population of medial temporal lobe amnesics, with the goal of characterizing their impairments as either representational drift or outright loss of representation over time. Patients and healthy comparisons performed a visual search task in which the similarity of various lures to a target was varied parametrically. Stimuli were simple shapes varying along one of several visual dimensions. The task was performed in two conditions, one presenting a sample target simultaneously with the search array and the other imposing a delay between sample and array. Eye-movement data collected during search revealed that the duration of fixations to items varied with lure-target similarity for all participants, i.e., fixations were longer for items more similar to the target. In the simultaneous condition, patients and comparisons exhibited an equivalent effect of similarity on fixation durations. However, imposing a delay modulated the effect differently for the two groups: in comparisons, fixation duration to similar items was exaggerated; in patients, the original effect was diminished. These findings indicate that medial temporal lobe lesions subtly impair short-term maintenance of even simple stimuli, with performance reflecting not the complete loss of the maintained representation but rather a degradation or progressive drift of the representation over time.

  8. Augmenting one-session treatment of children's specific phobias with attention training to positive stimuli.

    Science.gov (United States)

    Waters, Allison M; Farrell, Lara J; Zimmer-Gembeck, Melanie J; Milliner, Ella; Tiralongo, Evelin; Donovan, Caroline L; McConnell, Harry; Bradley, Brendan P; Mogg, Karin; Ollendick, Thomas H

    2014-11-01

    This study examined the efficacy of combining two promising approaches to treating children's specific phobias, namely attention training and one 3-h session of exposure therapy ('one-session treatment', OST). Attention training towards positive stimuli (ATP) and OST (ATP+OST) was expected to have more positive effects on implicit and explicit cognitive mechanisms and clinical outcome measures than an attention training control (ATC) condition plus OST (ATC+OST). Thirty-seven children (6-17 years) with a specific phobia were randomly assigned to ATP+OST or ATC+OST. In ATP+OST, children completed 160 trials of attention training responding to a probe that always followed the happy face in happy-angry face pairs. In ATC+OST, the probe appeared equally often after angry and happy faces. In the same session, children completed OST targeting their phobic situation/object. Clinical outcomes included clinician, parent and child report measures. Cognitive outcomes were assessed in terms of change in attention bias to happy and angry faces and in danger and coping expectancies. Assessments were completed before and after treatment and three-months later. Compared to ATC+OST, the ATP+OST condition produced (a) significantly greater reductions in children's danger expectancies about their feared situations/object during the OST and at three-month follow-up, and (b) significantly improved attention bias towards positive stimuli at post-treatment, which in turn, predicted a lower level of clinician-rated phobia diagnostic severity three-months after treatment. There were no significant differences between ATP+OST and ATC+OST conditions in clinician, parent, or child-rated clinical outcomes. Training children with phobias to focus on positive stimuli is effective in increasing attention towards positive stimuli and reducing danger expectancy biases. Studies with larger sample sizes and a stronger 'dose' of ATP prior to the OST may reveal promising outcomes on clinical measures

  9. Lateral organisation in nineteenth-century studio photographs is influenced by the direction of writing: a comparison of Iranian and Spanish photographs.

    Science.gov (United States)

    Pérez González, Carmen

    2012-01-01

    The direction of reading has been found to have a significant effect upon aesthetic preference, with left-to-right readers showing a preference for stimuli with a rightward directionality while right-to-left readers prefer stimuli with a leftward directionality. This study looks at a large set of posed, studio photographs to study the cultural interaction between direction of reading and lateral organisation, comparing a corpus of 735 nineteenth-century photographs from Iran (right-to-left reading) with a similar corpus of 898 photographs from Spain (left-to-right readers). Five separate types of composition were studied: linear ordering, usually by height; couples; individuals posing by a chair; individuals posing by a table; and portraits. Lateral preferences were found for all five types of photograph, with the lateral organisation of Iranian photographs being the reverse of that in the Spanish photographs. These data provide support for the influence of direction of reading upon aesthetic organisation in naturalistically produced photographs.

  10. Self-esteem modulates amygdala-ventrolateral prefrontal cortex connectivity in response to mortality threats.

    Science.gov (United States)

    Yanagisawa, Kuniaki; Abe, Nobuhito; Kashima, Emiko S; Nomura, Michio

    2016-03-01

    Reminders of death often elicit defensive responses in individuals, especially among those with low self-esteem. Although empirical evidence indicates that self-esteem serves as a buffer against mortality threats, the precise neural mechanism underlying this effect remains unknown. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that self-esteem modulates neural responses to death-related stimuli, especially functional connectivity within the limbic-frontal circuitry, thereby affecting subsequent defensive reactions. As predicted, individuals with high self-esteem subjected to a mortality threat exhibited increased amygdala-ventrolateral prefrontal cortex (VLPFC) connectivity during the processing of death-related stimuli compared with individuals who have low self-esteem. Further analysis revealed that stronger functional connectivity between the amygdala and the VLPFC predicted a subsequent decline in responding defensively to those who threaten one's beliefs. These results suggest that the amygdala-VLPFC interaction, which is modulated by self-esteem, can reduce the defensiveness caused by death-related stimuli, thereby providing a neural explanation for why individuals with high self-esteem exhibit less defensive reactions to mortality threats. (c) 2016 APA, all rights reserved).

  11. Model theory and modules

    CERN Document Server

    Prest, M

    1988-01-01

    In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of module

  12. Steady-state VEP responses to uncomfortable stimuli.

    Science.gov (United States)

    O'Hare, Louise

    2017-02-01

    Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  14. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Directory of Open Access Journals (Sweden)

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  15. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  16. Amylin and GLP-1 target different populations of area postrema neurons that are both modulated by nutrient stimuli.

    Science.gov (United States)

    Züger, Daniela; Forster, Karoline; Lutz, Thomas A; Riediger, Thomas

    2013-03-15

    amylin-induced c-Fos and CTR (68%), no c-Fos/CTR co-localization occurred after treatment with GLP-1 or the GLP-1R agonist exendin 4 (2 μg/kg ip). Similarly, LiCl (76 mg/kg ip) or AngII (50 μg/kg sc) led to c-Fos expression only in CTR negative AP neurons. In conclusion, our findings support a protein-dependent modulation of behavioral and neuronal amylin responsiveness under equicaloric feeding conditions. Amino acids might contribute to the inhibitory effect of diet-derived protein to reduce amylin-induced neuronal AP activation. Neuronal AP responsiveness to GLP-1 is also increased in the fasted state suggesting that diet-derived nutrients may also interfere with AP-mediated GLP-1 effects. Nevertheless, the primary target neurons for amylin appear to be distinct from cells targeted by GLP-1 and by stimuli producing aversion (LiCl) or contributing to blood pressure regulation (AngII) via the AP. Since amylin and GLP-1 analogs are targets for the treatment of obesity, the nutrient-dependent modulation of AP responsiveness might entail implications for such therapeutic approaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  18. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.

    Science.gov (United States)

    Job, Xavier E; de Fockert, Jan W; van Velzen, José

    2016-08-01

    Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Audiovisual Integration Delayed by Stimulus Onset Asynchrony Between Auditory and Visual Stimuli in Older Adults.

    Science.gov (United States)

    Ren, Yanna; Yang, Weiping; Nakahashi, Kohei; Takahashi, Satoshi; Wu, Jinglong

    2017-02-01

    Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21-24 years) and 20 older adults (61-80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., -50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.

  20. Emotion attribution to basic parametric static and dynamic stimuli

    NARCIS (Netherlands)

    Visch, V.; Goudbeek, M.B.; Cohn, J.; Nijholt, A.; Pantic, P.

    2009-01-01

    The following research investigates the effect of basic visual stimuli on the attribution of basic emotions by the viewer. In an empirical study (N = 33) we used two groups of visually minimal expressive stimuli: dynamic and static. The dynamic stimuli consisted of an animated circle moving

  1. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  2. Stress Effects on Working Memory, Explicit Memory, and Implicit Memory for Neutral and Emotional Stimuli in Healthy Men

    OpenAIRE

    Luethi, Mathias; Meier, Beat; Sandi, Carmen

    2009-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  3. Visual and auditory stimuli associated with swallowing. An fMRI study

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Watanabe, Yutaka; Tonogi, Morio; Yamane, Gen-yuki; Abe, Shinichi; Yamada, Yoshiaki; Callan, Akiko

    2009-01-01

    We focused on brain areas activated by audiovisual stimuli related to swallowing motions. In this study, three kinds of stimuli related to human swallowing movement (auditory stimuli alone, visual stimuli alone, or audiovisual stimuli) were presented to the subjects, and activated brain areas were measured using functional MRI (fMRI) and analyzed. When auditory stimuli alone were presented, the supplementary motor area was activated. When visual stimuli alone were presented, the premotor and primary motor areas of the left and right hemispheres and prefrontal area of the left hemisphere were activated. When audiovisual stimuli were presented, the prefrontal and premotor areas of the left and right hemispheres were activated. Activation of Broca's area, which would have been characteristic of mirror neuron system activation on presentation of motion images, was not observed; however, activation of brain areas related to swallowing motion programming and performance was verified for auditory, visual and audiovisual stimuli related to swallowing motion. These results suggest that audiovisual stimuli related to swallowing motion could be applied to the treatment of patients with dysphagia. (author)

  4. Perceptual Sensitivity and Response to Strong Stimuli Are Related

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2017-09-01

    Full Text Available To shed new light on the long-standing debate about the (independence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS theory (Tops et al., 2010, 2014. Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid. PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007. Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account.

  5. Laterality of proprioception in the orofacial muscles and temporomandibular joint.

    Science.gov (United States)

    Frayne, Ellie; Coulson, Susan; Adams, Roger; Croxson, Glen; Waddington, Gordon

    2016-12-02

    Laterality of function in the orofacial musculature suggests there may be side-to-side asymmetry of proprioceptive acuity in lip movement compared to the temporomandibular joint (TMJ). In the present work, 14 young adults were tested for acuity of lip and TMJ closure movements onto plugs varying from 5 to 8mm without visual feedback. Testing was conducted on both left and right sides, using the same psychophysical task and stimuli. Results showed superior proprioceptive acuity at the lips, with no significant side effect. However, there was side-to-side asymmetry in the correlations between proprioceptive performance for the two anatomical structures, with performance on the right side strongly correlated but not on the left. This is consistent with the need for coordination between structures during chewing. When acuity at different points in the stimulus range was examined, the right side lips were better with small stimuli. Overall, results support enhanced use-specific proprioception. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Dopamine, paranormal belief, and the detection of meaningful stimuli.

    Science.gov (United States)

    Krummenacher, Peter; Mohr, Christine; Haker, Helene; Brugger, Peter

    2010-08-01

    Dopamine (DA) is suggested to improve perceptual and cognitive decisions by increasing the signal-to-noise ratio. Somewhat paradoxically, a hyperdopaminergia (arguably more accentuated in the right hemisphere) has also been implied in the genesis of unusual experiences such as hallucinations and paranormal thought. To test these opposing assumptions, we used two lateralized decision tasks, one with lexical (tapping left-hemisphere functions), the other with facial stimuli (tapping right-hemisphere functions). Participants were 40 healthy right-handed men, of whom 20 reported unusual, "paranormal" experiences and beliefs ("believers"), whereas the remaining participants were unexperienced and critical ("skeptics"). In a between-subject design, levodopa (200 mg) or placebo administration was balanced between belief groups (double-blind procedure). For each task and visual field, we calculated sensitivity (d') and response tendency (criterion) derived from signal detection theory. Results showed the typical right visual field advantage for the lexical decision task and a higher d' for verbal than facial stimuli. For the skeptics, d' was lower in the levodopa than in the placebo group. Criterion analyses revealed that believers favored false alarms over misses, whereas skeptics displayed the opposite preference. Unexpectedly, under levodopa, these decision preferences were lower in both groups. We thus infer that levodopa (1) decreases sensitivity in perceptual-cognitive decisions, but only in skeptics, and (2) makes skeptics less and believers slightly more conservative. These results stand at odd to the common view that DA generally improves signal-to-noise ratios. Paranormal ideation seems an important personality dimension and should be assessed in investigations on the detection of signals in noise.

  7. Stimuli-Adaptable Materials

    DEFF Research Database (Denmark)

    Frankær, Sarah Maria Grundahl

    The work presented in this Thesis deals with the development of a stimuli-adaptable polymer material based on the UV-induced dimerisation of cinnamic acid and its derivatives. It is in the nature of an adhesive to adhere very well to its substrate and therefore problems can arise upon removal...

  8. Lateralized Interactive Social Content and Valence Processing within the Human Amygdala

    OpenAIRE

    Vrticka Pascal; Sander David; Vuilleumier Patrik

    2013-01-01

    In the past, the amygdala has generally been conceptualized as a fear-processing module. Recently, however, it has been proposed to respond to all stimuli that are relevant with respect to the current needs, goals, and values of an individual. This raises the question of whether the human amygdala may differentiate between separate kinds of relevance. A distinction between emotional (vs. neutral) and social (vs. non-social) relevance is supported by previous studies showing that the human amy...

  9. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    Science.gov (United States)

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  10. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  11. External-stimuli responsive systems for cancer theranostic

    Directory of Open Access Journals (Sweden)

    Jianhui Yao

    2016-10-01

    Full Text Available The upsurge of novel nanomaterials and nanotechnologies has inspired the researchers who are striving for designing safer and more efficient drug delivery systems for cancer therapy. Stimuli responsive nanomaterial offered an alternative to design controllable drug delivery system on account of its spatiotemporally controllable properties. Additionally, external stimuli (light, magnetic field and ultrasound could develop into theranostic applications for personalized medicine use because of their unique characteristics. In this review, we give a brief overview about the significant progresses and challenges of certain external-stimuli responsive systems that have been extensively investigated in drug delivery and theranostics within the last few years.

  12. Selective effects of cholinergic modulation on task performance during selective attention.

    Science.gov (United States)

    Furey, Maura L; Pietrini, Pietro; Haxby, James V; Drevets, Wayne C

    2008-03-01

    The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4-7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (pattention to houses condition (pattention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (pattention to faces condition (pselective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention.

  13. Speed and lateral inhibition of stimulus processing contribute to individual differences in Stroop-task performance

    Directory of Open Access Journals (Sweden)

    Marnix eNaber

    2016-06-01

    Full Text Available The Stroop task is a popular neuropsychological test that measures executive control. Strong Stroop interference is commonly interpreted in neuropsychology as a diagnostic marker of an impairment in executive control, possibly reflecting executive dysfunction. However, popular models of the Stroop task indicate that several other aspects of colour and word processing may also account for individual differences in the Stroop task, independent of executive control. Here we use new approaches to investigate the degree to which individual differences in Stroop interference correlate with the relative processing speed of word and colour stimuli, and the lateral inhibition between visual stimuli. We conducted an electrophysiological and behavioural experiment to measure (1 how quickly an individual’s brain processes words and colours presented in isolation (P3 latency, and (2 the strength of an individual’s lateral inhibition between visual representations with a visual illusion. Both measures explained at least 40% of the variance in Stroop interference across individuals. As these measures were obtained in contexts not requiring any executive control, we conclude that the Stroop effect also measures an individual’s pre-set way of processing visual features such as words and colours. This study highlights the important contributions of stimulus processing speed and lateral inhibition to individual differences in Stroop interference, and challenges the general view that the Stroop task primarily assesses executive control.

  14. Speed and Lateral Inhibition of Stimulus Processing Contribute to Individual Differences in Stroop-Task Performance.

    Science.gov (United States)

    Naber, Marnix; Vedder, Anneke; Brown, Stephen B R E; Nieuwenhuis, Sander

    2016-01-01

    The Stroop task is a popular neuropsychological test that measures executive control. Strong Stroop interference is commonly interpreted in neuropsychology as a diagnostic marker of impairment in executive control, possibly reflecting executive dysfunction. However, popular models of the Stroop task indicate that several other aspects of color and word processing may also account for individual differences in the Stroop task, independent of executive control. Here we use new approaches to investigate the degree to which individual differences in Stroop interference correlate with the relative processing speed of word and color stimuli, and the lateral inhibition between visual stimuli. We conducted an electrophysiological and behavioral experiment to measure (1) how quickly an individual's brain processes words and colors presented in isolation (P3 latency), and (2) the strength of an individual's lateral inhibition between visual representations with a visual illusion. Both measures explained at least 40% of the variance in Stroop interference across individuals. As these measures were obtained in contexts not requiring any executive control, we conclude that the Stroop effect also measures an individual's pre-set way of processing visual features such as words and colors. This study highlights the important contributions of stimulus processing speed and lateral inhibition to individual differences in Stroop interference, and challenges the general view that the Stroop task primarily assesses executive control.

  15. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    Science.gov (United States)

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  16. The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males.

    Science.gov (United States)

    Seo, Y; Jeong, B; Kim, J-W; Choi, J

    2010-01-01

    The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.

  17. Material specific lateralization of medial temporal lobe function: An fMRI investigation.

    Science.gov (United States)

    Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier

    2016-03-01

    The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL. © 2015 Wiley Periodicals, Inc.

  18. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  19. VEP Responses to Op-Art Stimuli.

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    Full Text Available Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  20. VEP Responses to Op-Art Stimuli.

    Science.gov (United States)

    O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  1. Gender differences in identifying emotions from auditory and visual stimuli.

    Science.gov (United States)

    Waaramaa, Teija

    2017-12-01

    The present study focused on gender differences in emotion identification from auditory and visual stimuli produced by two male and two female actors. Differences in emotion identification from nonsense samples, language samples and prolonged vowels were investigated. It was also studied whether auditory stimuli can convey the emotional content of speech without visual stimuli, and whether visual stimuli can convey the emotional content of speech without auditory stimuli. The aim was to get a better knowledge of vocal attributes and a more holistic understanding of the nonverbal communication of emotion. Females tended to be more accurate in emotion identification than males. Voice quality parameters played a role in emotion identification in both genders. The emotional content of the samples was best conveyed by nonsense sentences, better than by prolonged vowels or shared native language of the speakers and participants. Thus, vocal non-verbal communication tends to affect the interpretation of emotion even in the absence of language. The emotional stimuli were better recognized from visual stimuli than auditory stimuli by both genders. Visual information about speech may not be connected to the language; instead, it may be based on the human ability to understand the kinetic movements in speech production more readily than the characteristics of the acoustic cues.

  2. Contextual modulation and stimulus selectivity in extrastriate cortex.

    Science.gov (United States)

    Krause, Matthew R; Pack, Christopher C

    2014-11-01

    Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  5. Lateralization of noise-burst trains based on onset and ongoing interaural delays.

    Science.gov (United States)

    Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M

    2010-07-01

    The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.

  6. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    Science.gov (United States)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  7. Meaning in meaninglessness: The propensity to perceive meaningful patterns in coincident events and randomly arranged stimuli is linked to enhanced attention in early sensory processing.

    Science.gov (United States)

    Rominger, Christian; Schulter, Günter; Fink, Andreas; Weiss, Elisabeth M; Papousek, Ilona

    2018-05-01

    Perception of objectively independent events or stimuli as being significantly connected and the associated proneness to perceive meaningful patterns constitute part of the positive symptoms of schizophrenia, which are associated with altered attentional processes in lateralized speech perception. Since perceiving meaningful patterns is to some extent already prevalent in the general population, the aim of the study was to investigate whether the propensity to experience meaningful patterns in co-occurring events and random stimuli may be associated with similar altered attentional processes in lateralized speech perception. Self-reported and behavioral indicators of the perception of meaningful patterns were assessed in non-clinical individuals, along with EEG auditory evoked potentials during the performance of an attention related lateralized speech perception task (Dichotic Listening Test). A greater propensity to perceive meaningful patterns was associated with higher N1 amplitudes of the evoked potentials to the onset of the dichotically presented consonant-vowel syllables, indicating enhanced automatic attention in early sensory processing. The study suggests that more basic mechanisms in how people associate events may play a greater role in the cognitive biases that are manifest in personality expressions such as positive schizotypy, rather than that positive schizotypy moderates these cognitive biases directly. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gap Detection in School-Age Children and Adults: Effects of Inherent Envelope Modulation and the Availability of Cues across Frequency

    Science.gov (United States)

    Buss, Emily; Hall, Joseph W., III; Porter, Heather; Grose, John H.

    2014-01-01

    Purpose: The present study evaluated the effects of inherent envelope modulation and the availability of cues across frequency on behavioral gap detection with noise-band stimuli in school-age children. Method: Listeners were 34 normal-hearing children (ages 5.2-15.6 years) and 12 normal-hearing adults (ages 18.5-28.8 years). Stimuli were…

  9. Modulation of taste responsiveness by the satiation hormone peptide YY

    Science.gov (United States)

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  10. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  11. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    Science.gov (United States)

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.

  12. Selection History Modulates Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Bo-Cheng Kuo

    2016-10-01

    Full Text Available Recent studies have shown that past selection history affects the allocation of attention on target selection. However, it is unclear whether context-driven selection history can modulate the efficacy of attention allocation on working memory (WM representations. This study tests the influences of selection history on WM capacity. A display of one item (low load or three/four items (high load was shown for the participants to hold in WM in a delayed response task. Participants then judged whether a probe item was in the memory display or not. Selection history was defined as the number of items attended across trials in the task context within a block, manipulated by the stimulus set-size in the contexts with fewer possible stimuli (4-item or 5-item context or more possible stimuli (8-item or 9-item context from which the memorized content was selected. The capacity measure (i.e. the K parameter was estimated to reflect the number of items that can be held in WM. Across four behavioral experiments, the results revealed that the capacity was significantly reduced in the context with more possible stimuli relative to the context with fewer possible stimuli. Moreover, the reduction in capacity was significant for high WM load and not observed when the focus was on only a single item. Together, these findings indicate that context-driven selection history and focused attention influence WM capacity.

  13. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Stevens, Jennifer S; Hamann, Stephan

    2012-06-01

    -analysis findings indicate that the amygdala, a key region for emotion processing, exhibits valence-dependent sex differences in activation to emotional stimuli. The greater left amygdala response to negative emotion for women accords with previous reports that women respond more strongly to negative emotional stimuli, as well as with hypothesized links between increased neurobiological reactivity to negative emotion and increased prevalence of depression and anxiety disorders in women. The finding of greater left amygdala activation for positive emotional stimuli in men suggests that greater amygdala responses reported previously for men for specific types of positive stimuli may also extend to positive stimuli more generally. In summary, this study extends efforts to characterize sex differences in brain activation during emotion processing by providing the largest and most comprehensive quantitative meta-analysis to date, and for the first time examining sex differences as a function of positive vs. negative emotional valence. The current findings highlight the importance of considering sex as a potential factor modulating emotional processing and its underlying neural mechanisms, and more broadly, the need to consider individual differences in understanding the neurobiology of emotion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Investigating local network interactions underlying first- and second-order processing.

    Science.gov (United States)

    Ellemberg, Dave; Allen, Harriet A; Hess, Robert F

    2004-01-01

    We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.

  15. Perceived duration of visual and tactile stimuli depends on perceived speed

    Directory of Open Access Journals (Sweden)

    Alice eTomassini

    2011-09-01

    Full Text Available It is known that the perceived duration of visual stimuli is strongly influenced by speed: faster moving stimuli appear to last longer. To test whether this is a general property of sensory systems we asked participants to reproduce the duration of visual and tactile gratings, and visuo-tactile gratings moving at a variable speed (3.5 – 15 cm/s for three different durations (400, 600 and 800 ms. For both modalities, the apparent duration of the stimulus increased strongly with stimulus speed, more so for tactile than for visual stimuli. In addition, visual stimuli were perceived to last approximately 200 ms longer than tactile stimuli. The apparent duration of visuo-tactile stimuli lay between the unimodal estimates, as the Bayesian account predicts, but the bimodal precision of the reproduction did not show the theoretical improvement. A cross-modal speed-matching task revealed that visual stimuli were perceived to move faster than tactile stimuli. To test whether the large difference in the perceived duration of visual and tactile stimuli resulted from the difference in their perceived speed, we repeated the time reproduction task with visual and tactile stimuli matched in apparent speed. This reduced, but did not completely eliminate the difference in apparent duration. These results show that for both vision and touch, perceived duration depends on speed, pointing to common strategies of time perception.

  16. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lepping

    Full Text Available Anterior cingulate cortex (ACC and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD. Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.Nineteen MDD and 20 never-depressed (ND control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  17. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex

    OpenAIRE

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2008-01-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cor...

  18. Facilitation of responses by task-irrelevant complex deviant stimuli.

    Science.gov (United States)

    Schomaker, J; Meeter, M

    2014-05-01

    Novel stimuli reliably attract attention, suggesting that novelty may disrupt performance when it is task-irrelevant. However, under certain circumstances novel stimuli can also elicit a general alerting response having beneficial effects on performance. In a series of experiments we investigated whether different aspects of novelty--stimulus novelty, contextual novelty, surprise, deviance, and relative complexity--lead to distraction or facilitation. We used a version of the visual oddball paradigm in which participants responded to an occasional auditory target. Participants responded faster to this auditory target when it occurred during the presentation of novel visual stimuli than of standard stimuli, especially at SOAs of 0 and 200 ms (Experiment 1). Facilitation was absent for both infrequent simple deviants and frequent complex images (Experiment 2). However, repeated complex deviant images did facilitate responses to the auditory target at the 200 ms SOA (Experiment 3). These findings suggest that task-irrelevant deviant visual stimuli can facilitate responses to an unrelated auditory target in a short 0-200 millisecond time-window after presentation. This only occurs when the deviant stimuli are complex relative to standard stimuli. We link our findings to the novelty P3, which is generated under the same circumstances, and to the adaptive gain theory of the locus coeruleus-norepinephrine system (Aston-Jones and Cohen, 2005), which may explain the timing of the effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss.

    Directory of Open Access Journals (Sweden)

    Merri J Rosen

    Full Text Available The acoustic rearing environment can alter central auditory coding properties, yet altered neural coding is seldom linked with specific deficits to adult perceptual skills. To test whether developmental hearing loss resulted in comparable changes to perception and sensory coding, we examined behavioral and neural detection thresholds for sinusoidally amplitude modulated (sAM stimuli. Behavioral sAM detection thresholds for slow (5 Hz modulations were significantly worse for animals reared with bilateral conductive hearing loss (CHL, as compared to controls. This difference could not be attributed to hearing thresholds, proficiency at the task, or proxies for attention. Detection thresholds across the groups did not differ for fast (100 Hz modulations, a result paralleling that seen in humans. Neural responses to sAM stimuli were recorded in single auditory cortex neurons from separate groups of awake animals. Neurometric analyses indicated equivalent thresholds for the most sensitive neurons, but a significantly poorer detection threshold for slow modulations across the population of CHL neurons as compared to controls. The magnitude of the neural deficit matched that of the behavioral differences, suggesting that a reduction of sensory information can account for limitations to perceptual skills.

  20. Modulation of aesthetic value by semantic context: An fMRI study

    DEFF Research Database (Denmark)

    Kirk, Ulrich; Skov, Martin; Hulme, Oliver

    2009-01-01

    Aesthetic judgments, like most judgments, depend on context. Whether an object or image is seen in daily life or in an art gallery can significantly modulate the aesthetic value humans attach to it. We investigated the neural system supporting this modulation by presenting human subjects....... This contextual modulation correlated with activity in the medial orbitofrontal cortex and prefrontal cortex, whereas the context, independent of aesthetic value, correlated with bilateral activations of temporal pole and bilateral entorhinal cortex. This shows that prefrontal and orbitofrontal cortices recruited...... by aesthetic judgments are significantly biased by subjects' prior expectations about the likely hedonic value of stimuli according to their source....

  1. Signaling pathway underlying the octopaminergic modulation of myogenic contraction in the cricket lateral oviduct.

    Science.gov (United States)

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    Octopamine (OA), a biogenic monoamine, is a neurotransmitter and neuromodulator in invertebrates. Here, we report the effect of OA on the spontaneous rhythmic contractions (SRCs) of the lateral oviduct of the cricket Gryllus bimaculatus and the possible signaling pathway involved. Application of OA increased both the frequency and amplitude of SRCs in a dose-dependent manner. The effect of OA was inhibited by subsequent application of the OA receptor antagonist epinastine, indicating that the action of OA is mediated by OA receptor. To investigate the predominant signaling pathway underlying the action of OA, we first examined a possible involvement of the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway. Application of the membrane-permeable cAMP analog 8-Br-cAMP had little effect on SRCs and the effect of OA was not influenced by subsequent application of the PKA inhibitor H89, indicating that the cAMP/PKA signaling pathway is not the predominant pathway in the action of OA. Next, we examined a possible involvement of the second messenger inositol 1,4,5-trisphosphate in the action of OA. The effect of OA on SRCs was inhibited by subsequent application of the phosphoinositide-specific phospholipase C (PLC) inhibitor U73122, indicating that the PLC pathway is involved in the action of OA. The OA-induced increase in the frequency of SRCs was inhibited by pretreatment of the cell with the ryanodine receptor antagonist tetracaine but was not significantly affected by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB). On the other hand, the OA-induced increase in the amplitude of SRCs was inhibited by pretreatment of the cells with 2-APB but was not significantly affected by tetracaine. Taken together, these results suggest that the OA-induced excitatory effect on SRCs is mediated by the PLC signaling pathway: Ca2+ release from IP3 receptors may contribute to the modulation of the amplitude of SRCs, whereas Ca2+ release from ryanodine

  2. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    OpenAIRE

    Sandra dePedro; Xavier Munoz-Berbel; Rosalia Rodríguez-Rodríguez; Jordi Sort; Jose Antonio Plaza; Juergen Brugger; Andreu Llobera; Victor J Cadarso

    2016-01-01

    Stimuli-responsive materials undergo physicochemical and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of polydimethylsiloxane (PDMS)-based stimuli-responsive elastomers (SRE) has seldomly been presented. Here, we present the structural, biological, optical, magnetic, and mechanical properties of several magnetic SRE (M-SRE) obtained...

  3. Magnocellular Bias in Exogenous Attention to Biologically Salient Stimuli as Revealed by Manipulating Their Luminosity and Color.

    Science.gov (United States)

    Carretié, Luis; Kessel, Dominique; García-Rubio, María J; Giménez-Fernández, Tamara; Hoyos, Sandra; Hernández-Lorca, María

    2017-10-01

    Exogenous attention is a set of mechanisms that allow us to detect and reorient toward salient events-such as appetitive or aversive-that appear out of the current focus of attention. The nature of these mechanisms, particularly the involvement of the parvocellular and magnocellular visual processing systems, was explored. Thirty-four participants performed a demanding digit categorization task while salient (spiders or S) and neutral (wheels or W) stimuli were presented as distractors under two figure-ground formats: heterochromatic/isoluminant (exclusively processed by the parvocellular system, Par trials) and isochromatic/heteroluminant (preferentially processed by the magnocellular system, Mag trials). This resulted in four conditions: SPar, SMag, WPar, and WMag. Behavioral (RTs and error rates in the task) and electrophysiological (ERPs) indices of exogenous attention were analyzed. Behavior showed greater attentional capture by SMag than by SPar distractors and enhanced modulation of SMag capture as fear of spiders reported by participants increased. ERPs reflected a sequence from magnocellular dominant (P1p, ≃120 msec) to both magnocellular and parvocellular processing (N2p and P2a, ≃200 msec). Importantly, amplitudes in one N2p subcomponent were greater to SMag than to SPar and WMag distractors, indicating greater magnocellular sensitivity to saliency. Taking together, results support a magnocellular bias in exogenous attention toward distractors of any nature during initial processing, a bias that remains in later stages when biologically salient distractors are present.

  4. Separating discriminative and function-altering effects of verbal stimuli

    OpenAIRE

    Schlinger, Henry D.

    1993-01-01

    Ever since Skinner's first discussion of rule-governed behavior, behavior analysts have continued to define rules, either explicitly or implicitly, as verbal discriminative stimuli. Consequently, it is not difficult to find, in the literature on rule-governed behavior, references to stimulus control, antecedent control, or to rules occasioning behavior. However, some verbal stimuli have effects on behavior that are not easily described as discriminative. Such stimuli don't evoke behavior as d...

  5. Natural stimuli improve auditory BCIs with respect to ergonomics and performance

    Science.gov (United States)

    Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael

    2012-08-01

    Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.

  6. Impaired early visual response modulations to spatial information in chronic schizophrenia

    Science.gov (United States)

    Knebel, Jean-François; Javitt, Daniel C.; Murray, Micah M.

    2011-01-01

    Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia. PMID:21764264

  7. Alleged Approach-Avoidance Conflict for Food Stimuli in Binge Eating Disorder.

    Directory of Open Access Journals (Sweden)

    Elisabeth J Leehr

    Full Text Available Food stimuli are omnipresent and naturally primary reinforcing stimuli. One explanation for the intake of high amounts of food in binge eating disorder (BED is a deviant valuation process. Valuation of food stimuli is supposed to influence approach or avoidance behaviour towards food. Focusing on self-reported and indirect (facial electromyography valuation process, motivational aspects in the processing of food stimuli were investigated.We compared an overweight sample with BED (BED+ with an overweight sample without BED (BED- and with normal weight controls (NWC regarding their self-reported and indirect (via facial electromyography valuation of food versus non-food stimuli.Regarding the self-reported valuation, the BED+ sample showed a significantly stronger food-bias compared to the BED- sample, as food stimuli were rated as significantly more positive than the non-food stimuli in the BED+ sample. This self-reported valuation pattern could not be displayed in the indirect valuation. Food stimuli evoked negative indirect valuation in all groups. The BED+ sample showed the plainest approach-avoidance conflict marked by a diverging self-reported (positive and indirect (negative valuation of food stimuli.BED+ showed a deviant self-reported valuation of food as compared to BED-. The valuation process of the BED+ sample seems to be characterized by a motivational ambivalence. This ambivalence should be subject of further studies and may be of potential use for therapeutic interventions.

  8. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  9. Spatially tuned normalization explains attention modulation variance within neurons.

    Science.gov (United States)

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical

  10. Age-related differences in cortical activity during a visuo-spatial working memory task with facial stimuli.

    Directory of Open Access Journals (Sweden)

    Flávia Schechtman Belham

    Full Text Available Emotion, importantly displayed by facial expressions, is one of the most significant memory modulators. The interaction between memory and the different emotional valences change across lifespan, while young adults (YA are expected to better recall negative events (Negativity Bias Hypothesis, older adults (OA tend to focus on positive stimuli (Positivity Effect Hypothesis. This research work aims at verifying whether cortical electrical activity of these two age groups would also be differently influenced by emotional valences in a visuo-spatial working memory task. 27 YA (13 males and 25 OA (14 males, all healthy volunteers, underwent electroencephalographic recordings (21 scalp electrodes montage, while performing the Spatial Delayed Recognition Span Task using a touch screen with different stimuli categories: neutral, positive and negative faces and geometric pictures. YA obtained higher scores than OA, and showed higher activation of theta and alpha bands in the frontal and midline regions, besides a more evident right-hemispheric asymmetry on alpha band when compared to OA. For both age groups, performance in the task was worse for positive faces than to negative and to neutral faces. Facial stimuli induced a better performance and higher alpha activation on the pre-frontal region for YA, and on the midline, occipital and left temporal regions for OA when compared to geometric figures. The superior performance of YA was expected due to the natural cognitive deficits connected to ageing, as was a better performance with facial stimuli due to the evolutionary importance of faces. These results were related to cortical activity on areas of importance for action-planning, decision making and sustained attention. Taken together, they are in accordance with the Negativity Bias but do not support the Positivity Effect. The methodology used was able to identify age-related differences in cortical activity during emotional mnemonic processing and

  11. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing.

    Science.gov (United States)

    Black, Emily; Stevenson, Jennifer L; Bish, Joel P

    2017-08-01

    The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.

  12. The prelimbic cortex uses contextual cues to modulate responding towards predictive stimuli during fear renewal.

    Science.gov (United States)

    Sharpe, Melissa; Killcross, Simon

    2015-02-01

    Previous research suggests the prelimbic (PL) cortex is involved in expression of conditioned fear (Burgos-Robles, Vidal-Gonzalez, & Quirk, 2009; Corcoran & Quirk, 2007). However, there is a long history of research in the appetitive domain which implicates this region in using higher-order cues to modulate a behavioural response (Birrell & Brown, 2000; Floresco, Block, & Tse, 2008; Marquis, Killcross, & Haddon, 2007; Sharpe & Killcross, 2014). For example, the PL cortex is necessary to allow animals to use contextual cues to disambiguate response conflict in ambiguous circumstances (Marquis et al., 2007). Using an ABA fear renewal procedure, we assessed the role of the PL cortex in using contextual cues to modulate a response towards a conditioned stimulus (CS) in an aversive setting. We found that pre-training lesions of the PL cortex did not impact on the expression or extinction of conditioned fear. Rather, they selectively abolished renewal. Functional inactivation of the PL cortex during extinction did not disrupt the subsequent renewal of conditioned fear or the ability of animals to exhibit fear towards a CS during the extinction session. However, PL inactivation during the renewal test session disrupted the ability of animals to demonstrate a reinstatement of responding in the renewal context. An analysis of orienting responses showed that renewal deficits were accompanied by a lack of change in attentional responding towards the CS. These data suggest the PL cortex uses contextual cues to modulate both a behavioural and an attentional response during aversive procedures. We argue that the role of the PL cortex in the expression of conditioned fear is to use higher-order information to modulate responding towards predictive cues in ambiguous circumstance. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Threat perception in the chameleon (Chamaeleo chameleon): evidence for lateralized eye use.

    Science.gov (United States)

    Lustig, Avichai; Keter-Katz, Hadas; Katzir, Gadi

    2012-07-01

    Chameleons are arboreal lizards with highly independent, large amplitude eye movements. In response to an approaching threat, a chameleon on a vertical pole moves so as to keep itself away from the threat. In so doing, it shifts between monocular and binocular scanning of the threat and of the environment. We analyzed eye movements in the Common chameleon, Chamaeleo chameleon, during avoidance response for lateralization, that is, asymmetry at the functional/behavioral levels. The chameleons were exposed to a threat, approaching horizontally from clockwise or anti-clockwise directions, and that could be viewed monocularly or binocularly. Our results show three broad patterns of eye use, as determined by durations spent viewing the threat and by frequency of eye shifts. Under binocular viewing, two of the patterns were found to be both side dependent, that is, lateralized and role dependent ("leading" or "following"). However, under monocular viewing, no such lateralization was detected. We discuss these findings in light of the situation not uncommon in vertebrates, of independent eye movements and a high degree of optic nerve decussation and that lateralization may well occur in organisms that are regularly exposed to critical stimuli from all spatial directions. We point to the need of further investigating lateralization at fine behavioral levels.

  14. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  15. Multi-Functional Stimuli-Responsive Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Supramolecular polymers based on non-covalent interactions can display a wide array of stimuli-responsive attributes. They can be tailored to change shape, actuate...

  16. Long-latency auditory evoked potentials with verbal and nonverbal stimuli.

    Science.gov (United States)

    Oppitz, Sheila Jacques; Didoné, Dayane Domeneghini; Silva, Débora Durigon da; Gois, Marjana; Folgearini, Jordana; Ferreira, Geise Corrêa; Garcia, Michele Vargas

    2015-01-01

    Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000Hz - frequent and 4000Hz - rare); and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare). Considering the component N2 for tone burst, the lowest latency found was 217.45ms for the BA/DI stimulus; the highest latency found was 256.5ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  18. Food-related attentional bias. Word versus pictorial stimuli and the importance of stimuli calorific value in the dot probe task.

    Science.gov (United States)

    Freijy, Tanya; Mullan, Barbara; Sharpe, Louise

    2014-12-01

    The primary aim of this study was to extend previous research on food-related attentional biases by examining biases towards pictorial versus word stimuli, and foods of high versus low calorific value. It was expected that participants would demonstrate greater biases to pictures over words, and to high-calorie over low-calorie foods. A secondary aim was to examine associations between BMI, dietary restraint, external eating and attentional biases. It was expected that high scores on these individual difference variables would be associated with a bias towards high-calorie stimuli. Undergraduates (N = 99) completed a dot probe task including matched word and pictorial food stimuli in a controlled setting. Questionnaires assessing eating behaviour were administered, and height and weight were measured. Contrary to predictions, there were no main effects for stimuli type (pictures vs words) or calorific value (high vs low). There was, however, a significant interaction effect suggesting a bias towards high-calorie pictures, but away from high-calorie words; and a bias towards low-calorie words, but away from low-calorie pictures. No associations between attentional bias and any of the individual difference variables were found. The presence of a stimulus type by calorific value interaction demonstrates the importance of stimuli type in the dot probe task, and may help to explain inconsistencies in prior research. Further research is needed to clarify associations between attentional bias and BMI, restraint, and external eating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum.

    Science.gov (United States)

    Filosa, Alessandro; Barker, Alison J; Dal Maschio, Marco; Baier, Herwig

    2016-05-04

    Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Frequency modulation of neural oscillations according to visual task demands.

    Science.gov (United States)

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  1. Lingering representations of stimuli influence recall organization

    Science.gov (United States)

    Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.

    2017-01-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858

  2. Lingering representations of stimuli influence recall organization.

    Science.gov (United States)

    Chan, Stephanie C Y; Applegate, Marissa C; Morton, Neal W; Polyn, Sean M; Norman, Kenneth A

    2017-03-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the "fading embers" of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lateral root organogenesis - from cell to organ.

    Science.gov (United States)

    Benková, Eva; Bielach, Agnieszka

    2010-12-01

    Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Early development and gravitropic response of lateral roots in Arabidopsis thaliana

    OpenAIRE

    Guyomarc'h, S.; Leran, S.; Auzon-Cape, M.; Perrine-Walker, F.; Lucas, Mikaël; Laplaze, Laurent

    2012-01-01

    Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observati...

  5. The mere exposure effect with scene stimuli

    OpenAIRE

    八木 , 善彦

    2016-01-01

     The mere exposure effect refers to the phenomenon where previous exposures to stimuli increasesubsequent affective preference for those stimuli. It has been indicated that with specific stimulus-category(i.e., paintings, matrices, and photographs of scene), repeated exposure has little or oppositeeffect on affective ratings. In this study, two experiments were conducted in order to explore theeffect of stimulus-category on the mere exposure effects. Photographs of young woman’s(Experiment1)a...

  6. The processing of auditory and visual recognition of self-stimuli.

    Science.gov (United States)

    Hughes, Susan M; Nicholson, Shevon E

    2010-12-01

    This study examined self-recognition processing in both the auditory and visual modalities by determining how comparable hearing a recording of one's own voice was to seeing photograph of one's own face. We also investigated whether the simultaneous presentation of auditory and visual self-stimuli would either facilitate or inhibit self-identification. Ninety-one participants completed reaction-time tasks of self-recognition when presented with their own faces, own voices, and combinations of the two. Reaction time and errors made when responding with both the right and left hand were recorded to determine if there were lateralization effects on these tasks. Our findings showed that visual self-recognition for facial photographs appears to be superior to auditory self-recognition for voice recordings. Furthermore, a combined presentation of one's own face and voice appeared to inhibit rather than facilitate self-recognition and there was a left-hand advantage for reaction time on the combined-presentation tasks. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Laterally Vibrating Resonator Based Elasto-Optic Modulation in Aluminum Nitride

    Science.gov (United States)

    2016-08-15

    the adjoining test setup used to probe the devices. Following the design of a laterally vibrating piezoelectric contour...licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4945356] The interaction of acoustic waves with light provides a useful resource to perform optical signal...recent years, several types of acousto-optic interactions have been demonstrated in a wide va- riety of devices, including the use of

  8. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  9. Behavioural laterality as a factor in emotional regulation.

    Science.gov (United States)

    Rempala, Daniel M

    2014-01-01

    Individuals who perform a variety of tasks using one side of their bodies (i.e., high-dominance people) are thought to differ from individuals who perform a variety of tasks with both sides of their body (i.e., low-dominance people) in several neurological and cognitive characteristics. We examined whether behavioural laterality predicted the efficacy of different emotional regulation strategies. Specifically, we thought that behavioural laterality would influence verbal strategies (associated with left hemisphere activation) when regulating anxiety (associated with right hemisphere activation). In three studies participants presented in front of small audiences. Behavioural laterality (as measured by a modified handedness inventory) positively correlated with presentation anxiety, such that "low-dominance" participants reported less anxiety than "high-dominance" participants, but only when using cognitive reappraisal (a verbal strategy), not attention deployment or response modulation (behavioural strategies). These results provide preliminary evidence that individual differences in behavioural laterality mediate the efficacy of certain emotional regulation strategies.

  10. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  11. Sex-specific lateralization of event-related potential effects during mental rotation of polygons.

    Science.gov (United States)

    Pellkofer, Julia; Jansen, Petra; Heil, Martin

    2014-08-06

    Mental rotation performance has been found to produce one of the largest sex differences in cognition. Many theories suggest that this effect should be accompanied by a sex difference in functional cerebral asymmetry, but empirical data are more than equivocal probably because of (a) the use of inappropriate stimuli and (b) insufficient power of most neurophysiological studies. Therefore, sex differences in mental rotation of polygons were investigated in 122 adults. Men outperformed women on mental rotation speed (as well as on response time and accuracy). On the basis of the electrophysiological brain correlates of mental rotation, we observed a bilateral brain activity for men, whereas women's brain activity was clearly lateralized toward the left hemisphere if and only if mental rotation was involved. Thus, sex differences in functional cerebral asymmetry can indeed be observed if appropriate stimuli are used in a sufficiently large sample.

  12. Self-esteem modulates the time course of self-positivity bias in explicit self-evaluation.

    Science.gov (United States)

    Zhang, Hua; Guan, Lili; Qi, Mingming; Yang, Juan

    2013-01-01

    Researchers have suggested that certain individuals may show a self-positivity bias, rating themselves as possessing more positive personality traits than others. Previous evidence has shown that people evaluate self-related information in such a way as to maintain or enhance self-esteem. However, whether self-esteem would modulate the time course of self-positivity bias in explicit self-evaluation has never been explored. In the present study, 21 participants completed the Rosenberg self-esteem scale and then completed a task where they were instructed to indicate to what extent positive/negative traits described themselves. Behavioral data showed that participants endorsed positive traits as higher in self-relevance compared to the negative traits. Further, participants' self-esteem levels were positively correlated with their self-positivity bias. Electrophysiological data revealed smaller N1 amplitude and larger late positive component (LPC) amplitude to stimuli consistent with the self-positivity bias (positive-high self-relevant stimuli) when compared to stimuli that were inconsistent with the self-positivity bias (positive-low self-relevant stimuli). Moreover, only in individuals with low self-esteem, the latency of P2 was more pronounced in processing stimuli that were consistent with the self-positivity bias (negative-low self-relevant stimuli) than to stimuli that were inconsistent with the self-positivity bias (positive-low self-relevant stimuli). Overall, the present study provides additional support for the view that low self-esteem as a personality variable would affect the early attentional processing.

  13. Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Sherwood, Chet C; Duka, Tetyana; Stimpson, Cheryl D

    2010-01-01

    Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin-immunoreacti......Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin...... density. In contrast, puncta densities were symmetrical in right-handed chimpanzees. These findings support the conclusion that synapse asymmetry is modulated by lateralization of skilled motor behavior in chimpanzees....

  14. Spin-dependent tunneling transport in a lateral magnetic diode

    International Nuclear Information System (INIS)

    Wang, Yu; Shi, Ying

    2012-01-01

    Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.

  15. Minho Affective Sentences (MAS): Probing the roles of sex, mood, and empathy in affective ratings of verbal stimuli.

    Science.gov (United States)

    Pinheiro, Ana P; Dias, Marcelo; Pedrosa, João; Soares, Ana P

    2017-04-01

    During social communication, words and sentences play a critical role in the expression of emotional meaning. The Minho Affective Sentences (MAS) were developed to respond to the lack of a standardized sentence battery with normative affective ratings: 192 neutral, positive, and negative declarative sentences were strictly controlled for psycholinguistic variables such as numbers of words and letters and per-million word frequency. The sentences were designed to represent examples of each of the five basic emotions (anger, sadness, disgust, fear, and happiness) and of neutral situations. These sentences were presented to 536 participants who rated the stimuli using both dimensional and categorical measures of emotions. Sex differences were also explored. Additionally, we probed how personality, empathy, and mood from a subset of 40 participants modulated the affective ratings. Our results confirmed that the MAS affective norms are valid measures to guide the selection of stimuli for experimental studies of emotion. The combination of dimensional and categorical ratings provided a more fine-grained characterization of the affective properties of the sentences. Moreover, the affective ratings of positive and negative sentences were not only modulated by participants' sex, but also by individual differences in empathy and mood state. Together, our results indicate that, in their quest to reveal the neurofunctional underpinnings of verbal emotional processing, researchers should consider not only the role of sex, but also of interindividual differences in empathy and mood states, in responses to the emotional meaning of sentences.

  16. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  17. Impaired autonomic responses to emotional stimuli in autoimmune limbic encephalitis

    Directory of Open Access Journals (Sweden)

    Olga eSchröder

    2015-11-01

    Full Text Available Limbic encephalitis (LE is an autoimmune-mediated disorder that affects structures of the limbic system, in particular the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion-evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2-antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence and arousal ratings. The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala.

  18. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli

    Science.gov (United States)

    Field, Brent A.; Buck, Cara L.; McClure, Samuel M.; Nystrom, Leigh E.; Kahneman, Daniel; Cohen, Jonathan D.

    2015-01-01

    Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value. PMID:26158468

  19. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli.

    Directory of Open Access Journals (Sweden)

    Brent A Field

    Full Text Available Studies of subjective well-being have conventionally relied upon self-report, which directs subjects' attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure by using functional magnetic resonance imaging (fMRI to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly the activity of brain mechanisms thought to represent hedonic value.

  20. Circadian modulation of short-term memory in Drosophila.

    Science.gov (United States)

    Lyons, Lisa C; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.

  1. Perceptual multistability in figure-ground segregation using motion stimuli.

    Science.gov (United States)

    Gori, Simone; Giora, Enrico; Pedersini, Riccardo

    2008-11-01

    In a series of experiments using ambiguous stimuli, we investigate the effects of displaying ordered, discrete series of images on the dynamics of figure-ground segregation. For low frame presentation speeds, the series were perceived as a sequence of discontinuous, static images, while for high speeds they were perceived as continuous. We conclude that using stimuli varying continuously along one parameter results in stronger hysteresis and reduces spontaneous switching compared to matched static stimuli with discontinuous parameter changes. The additional evidence that the size of the hysteresis effects depended on trial duration is consistent with the stochastic nature of the dynamics governing figure-ground segregation. The results showed that for continuously changing stimuli, alternative figure-ground organizations are resolved via low-level, dynamical competition. A second series of experiments confirmed these results with an ambiguous stimulus based on Petter's effect.

  2. Generating Stimuli for Neuroscience Using PsychoPy.

    Science.gov (United States)

    Peirce, Jonathan W

    2008-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  3. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli.

    Science.gov (United States)

    Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M; Born, Jan

    2018-01-01

    Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word "baby" (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented "standard" stimulus, whereas another unfamiliar voice served as the "unfamiliar deviant" stimulus, and the voice of the infant's mother served as the "familiar deviant." Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother's voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300-400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200-300 ms post-stimulus interval. Overall

  4. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Tae [The Catholic Magnetic Resonance Research Center, Seoul (Korea, Republic of)

    1999-12-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate.

  5. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    International Nuclear Information System (INIS)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun; Kim, Tae

    1999-01-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate

  6. Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Crespi, Chiara; Cerami, Chiara; Dodich, Alessandra; Canessa, Nicola; Iannaccone, Sandro; Corbo, Massimo; Lunetta, Christian; Falini, Andrea; Cappa, Stefano F

    2016-01-01

    Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions). As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.

  7. Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

    Science.gov (United States)

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.

    2015-01-01

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263

  8. Teaching children with autism spectrum disorder to tact olfactory stimuli.

    Science.gov (United States)

    Dass, Tina K; Kisamore, April N; Vladescu, Jason C; Reeve, Kenneth F; Reeve, Sharon A; Taylor-Santa, Catherine

    2018-05-28

    Research on tact acquisition by children with autism spectrum disorder (ASD) has often focused on teaching participants to tact visual stimuli. It is important to evaluate procedures for teaching tacts of nonvisual stimuli (e.g., olfactory, tactile). The purpose of the current study was to extend the literature on secondary target instruction and tact training by evaluating the effects of a discrete-trial instruction procedure involving (a) echoic prompts, a constant prompt delay, and error correction for primary targets; (b) inclusion of secondary target stimuli in the consequent portion of learning trials; and (c) multiple exemplar training on the acquisition of item tacts of olfactory stimuli, emergence of category tacts of olfactory stimuli, generalization of category tacts, and emergence of category matching, with three children diagnosed with ASD. Results showed that all participants learned the item and category tacts following teaching, participants demonstrated generalization across category tacts, and category matching emerged for all participants. © 2018 Society for the Experimental Analysis of Behavior.

  9. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    Science.gov (United States)

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  10. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Diana eAmantea

    2015-04-01

    Full Text Available The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs that contribute to blood–brain barrier (BBB disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF and interleukin (IL-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF-beta, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate towards several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13 or TGF-beta. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair.Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.

  11. Visually guided avoidance in the chameleon (Chamaeleo chameleon): response patterns and lateralization.

    Science.gov (United States)

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2012-01-01

    The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators.

  12. Visually guided avoidance in the chameleon (Chamaeleo chameleon: response patterns and lateralization.

    Directory of Open Access Journals (Sweden)

    Avichai Lustig

    Full Text Available The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators.

  13. Generating stimuli for neuroscience using PsychoPy

    Directory of Open Access Journals (Sweden)

    Jonathan W Peirce

    2009-01-01

    Full Text Available PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.. The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  14. Temporal summation of heat pain in humans: Evidence supporting thalamocortical modulation.

    Science.gov (United States)

    Tran, Tuan D; Wang, Heng; Tandon, Animesh; Hernandez-Garcia, Luis; Casey, Kenneth L

    2010-07-01

    Noxious cutaneous contact heat stimuli (48 degrees C) are perceived as increasingly painful when the stimulus duration is extended from 5 to 10s, reflecting the temporal summation of central neuronal activity mediating heat pain. However, the sensation of increasing heat pain disappears, reaching a plateau as stimulus duration increases from 10 to 20s. We used functional magnetic resonance imaging (fMRI) in 10 healthy subjects to determine if active central mechanisms could contribute to this psychophysical plateau. During heat pain durations ranging from 5 to 20s, activation intensities in the bilateral orbitofrontal cortices and the activation volume in the left primary (S1) somatosensory cortex correlated only with perceived stimulus intensity and not with stimulus duration. Activation volumes increased with both stimulus duration and perceived intensity in the left lateral thalamus, posterior insula, inferior parietal cortex, and hippocampus. In contrast, during the psychophysical plateau, both the intensity and volume of thalamic and cortical activations in the right medial thalamus, right posterior insula, and left secondary (S2) somatosensory cortex continued to increase with stimulus duration but not with perceived stimulus intensity. Activation volumes in the left medial and right lateral thalamus, and the bilateral mid-anterior cingulate, left orbitofrontal, and right S2 cortices also increased only with stimulus duration. The increased activity of specific thalamic and cortical structures as stimulus duration, but not perceived intensity, increases is consistent with the recruitment of a thalamocortical mechanism that participates in the modulation of pain-related cortical responses and the temporal summation of heat pain. Published by Elsevier B.V.

  15. Interpretative bias in spider phobia: Perception and information processing of ambiguous schematic stimuli.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Filipp

    2015-09-01

    This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Presentation of Aural Stimuli to Newborns and Premature Infants: An Audiological Perspective.

    Science.gov (United States)

    Cassidy

    1999-01-01

    The purpose of this study was twofold: (a) to examine extant research in the field of music with premature and full term infants in order to identify protocols being used in the presentation of musical stimuli to neonates and (b) to use knowledge gleaned from audiology as a basis for suggesting a standardized protocol for use of musical stimuli with infants. Articles considered appropriate for inclusion in the analysis met the following criteria: (a) presented data for the effects of music on a dependent measure, (b) had subjects who were identified as either premature or term newborns receiving treatment after birth and prior to discharge from the hospital, and (c) used music for some or all of the aural stimuli. Articles (N = 20) were categorized by demographic information, types of aural stimuli, independent variables, dependent measures, and protocol used to present the musical stimuli. Of primary importance to this study was the protocol used in each study to present musical stimuli. Data regarding total duration of stimuli per day, longest duration of stimuli per day, method of stimuli presentation, placement of speakers, decibel level of stimuli, and where;he decibel level was measured reveal that there is no standard protocol being followed with regard to the presentation of aural stimuli. Recommendations include future research on (a) determining a minimum gestational age where music therapy may be appropriate, (b) determining the frequency spectrum perceived by a premature infant, (c) determining the decibel levels reaching the ear drum and assessing appropriate levels for minimum stimulation with maximum results, and (d) carefully considering the method of stimulus presentation as it will have an impact on the decibel level reaching the ear drum of these infants.

  17. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.

    Science.gov (United States)

    Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno

    2017-07-19

    Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically

  18. Testing the race model inequality in redundant stimuli with variable onset asynchrony

    DEFF Research Database (Denmark)

    Gondan, Matthias

    2009-01-01

    distributions of response times for the single-modality stimuli. It has been derived for synchronous stimuli and for stimuli with stimulus onset asynchrony (SOA). In most experiments with asynchronous stimuli, discrete SOA values are chosen and the race model inequality is separately tested for each SOA. Due...... to SOAs at which the violation of the race model prediction is expected to be large. In addition, the method enables data analysis for experiments in which stimuli are presented with SOA from a continuous distribution rather than in discrete steps.......In speeded response tasks with redundant signals, parallel processing of the signals is tested by the race model inequality. This inequality states that given a race of two signals, the cumulative distribution of response times for redundant stimuli never exceeds the sum of the cumulative...

  19. Generating Stimuli for Neuroscience Using PsychoPy

    OpenAIRE

    Peirce, Jonathan W.

    2009-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scrip...

  20. The precedence effect for lateralization at low sensation levels.

    Science.gov (United States)

    Goverts, S T; Houtgast, T; van Beek, H H

    2000-10-01

    Using dichotic signals presented by headphone, stimulus onset dominance (the precedence effect) for lateralization at low sensation levels was investigated for five normal hearing subjects. Stimuli were based on 2400-Hz low pass filtered 5-ms noise bursts. We used the paradigm, as described by Aoki and Houtgast (Hear. Res., 59 (1992) 25-30) and Houtgast and Aoki (Hear. Res., 72 (1994) 29-36), in which the stimulus is divided into a leading and a lagging part with opposite lateralization cues (i.e. an interaural time delay of 0.2 ms). The occurrence of onset dominance was investigated by measuring lateral perception of the stimulus, with fixed equal duration of leading and lagging part, while decreasing absolute signal level or adding a filtered white noise with the signal level set at 65 dBA. The dominance of the leading part was quantified by measuring the perceived lateral position of the stimulus as a function of the relative duration of the leading (and thus the lagging) part. This was done at about 45 dB SL without masking noise and also at a signal-to-noise ratio resulting in a sensation level of 10 dB. The occurrence and strength of the precedence effect was found to depend on sensation level, which was decreased either by lowering the signal level or by adding noise. With the present paradigm, besides a decreased lateralization accuracy, a decrease in the precedence effect was found for sensation levels below about 30-40 dB. In daily-life conditions, with a sensation level in noise of typically 10 dB, the onset dominance was still manifest, albeit degraded to some extent.

  1. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  2. Stimulus-Dominance Effects and Lateral Asymmetries for Language in Normal Subjects and in Patients with a Single Functional Hemisphere

    Science.gov (United States)

    Di Stefano, Marirosa; Marano, Elena; Viti, Marzia

    2004-01-01

    The assessment of language laterality by the dichotic fused-words test may be impaired by interference effects revealed by the dominant report of one member of the stimuli-pair. Stimulus-dominance and ear asymmetry were evaluated in normal population (48 subjects of both sex and handedness) and in 2 patients with a single functional hemisphere.…

  3. Filtering the reality: functional dissociation of lateral and medial pain systems during sleep in humans.

    Science.gov (United States)

    Bastuji, Hélène; Mazza, Stéphanie; Perchet, Caroline; Frot, Maud; Mauguière, François; Magnin, Michel; Garcia-Larrea, Luis

    2012-11-01

    Behavioral reactions to sensory stimuli during sleep are scarce despite preservation of sizeable cortical responses. To further understand such dissociation, we recorded intracortical field potentials to painful laser pulses in humans during waking and all-night sleep. Recordings were obtained from the three cortical structures receiving 95% of the spinothalamic cortical input in primates, namely the parietal operculum, posterior insula, and mid-anterior cingulate cortex. The dynamics of responses during sleep differed among cortical sites. In sleep Stage 2, evoked potential amplitudes were similarly attenuated relative to waking in all three cortical regions. During paradoxical, or rapid eye movements (REM), sleep, opercular and insular potentials remained stable in comparison with Stage 2, whereas the responses from mid-anterior cingulate abated drastically, and decreasing below background noise in half of the subjects. Thus, while the lateral operculo-insular system subserving sensory analysis of somatic stimuli remained active during paradoxical-REM sleep, mid-anterior cingulate processes related to orienting and avoidance behavior were suppressed. Dissociation between sensory and orienting-motor networks might explain why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject. Copyright © 2011 Wiley Periodicals, Inc.

  4. Vortex pinning in superconductors laterally modulated by nanoscale self-assembled arrays

    DEFF Research Database (Denmark)

    Vanacken, J.; Vinckx, W.; Moshchalkov, V.V.

    2008-01-01

    Being the exponent of the so-called "bottom-up" approach, self-assembled structures are now-a-days attracting a lot of attention in the fields of science and technology. In this work, we show that nanoscale self-assembled arrays used as templates can provide periodic modulation in superconducting...

  5. Stimuli-responsive liquid crystalline materials

    NARCIS (Netherlands)

    Debije, M.G.; Schenning, A.P.H.J.; Hashmi, Saleem

    2016-01-01

    Stimuli-responsive materials which respond to triggers from the environment by changing their properties are one of the focal points in materials science. For precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals

  6. Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage.

    Science.gov (United States)

    Delfour, F; Marten, K

    2006-01-10

    Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.

  7. Collaboration enhances later individual memory for emotional material.

    Science.gov (United States)

    Bärthel, Gwennis A; Wessel, Ineke; Huntjens, Rafaële J C; Verwoerd, Johan

    2017-05-01

    Research on collaborative remembering suggests that collaboration hampers group memory (i.e., collaborative inhibition), yet enhances later individual memory. Studies examining collaborative effects on memory for emotional stimuli are scarce, especially concerning later individual memory. In the present study, female undergraduates watched an emotional movie and recalled it either collaboratively (n = 60) or individually (n = 60), followed by an individual free recall test and a recognition test. We replicated the standard collaborative inhibition effect. Further, in line with the literature, the collaborative condition displayed better post-collaborative individual memory. More importantly, in post-collaborative free recall, the centrality of the information to the movie plot did not play an important role. Recognition rendered slightly different results. Although collaboration rendered more correct recognition for more central details, it did not enhance recognition of background details. Secondly, the collaborative and individual conditions did not differ with respect to overlap of unique correct items in free recall. Yet, during recognition former collaborators more unanimously endorsed correct answers, as well as errors. Finally, extraversion, neuroticism, social anxiety, and depressive symptoms did not moderate the influence of collaboration on memory. Implications for the fields of forensic and clinical psychology are discussed.

  8. Enhanced brain susceptibility to negative stimuli in adolescents: ERP evidences

    Directory of Open Access Journals (Sweden)

    Jiajin eYuan

    2015-04-01

    Full Text Available Background: previous studies investigated neural substrates of emotional face processing in adolescents and its comparison with adults. As emotional faces elicit more of emotional expression recognition rather than direct emotional responding, it remains undetermined how adolescents are different from adults in brain susceptibility to emotionally stressful stimuli. Methods: Event-Related Potentials were recorded for highly negative (HN, moderately negative (MN and Neutral pictures in 20 adolescents and 20 adults while subjects performed a standard/deviant distinction task by pressing different keys, irrespective of the emotionality of deviant stimuli. Results: Adolescents exhibited more negative amplitudes for HN versus neutral pictures in N1 (100-150ms, P2 (130-190ms, N2 (210-290ms and P3 (360-440ms components. In addition, adolescents showed more negative amplitudes for MN compared to neutral pictures in N1, P2 and N2 components. By contrast, adults exhibited significant emotion effects for HN stimuli in N2 and P3 amplitudes but not in N1 and P2 amplitudes, and they did not exhibit a significant emotion effect for MN stimuli at all these components. In the 210-290ms time interval, the emotion effect for HN stimuli was significant across frontal and central regions in adolescents, while this emotion effect was noticeable only in the central region for adults. Conclusions: Adolescents are more emotionally sensitive to negative stimuli compared to adults, regardless of the emotional intensity of the stimuli, possibly due to the immature prefrontal control system over the limbic emotional inputs during adolescence. Keywords: Event-Related Potentials (ERPs; Adolescence; Emotion intensity; Negative pictures; Emotional Susceptibility

  9. The Lateral Habenula and Its Input to the Rostromedial Tegmental Nucleus Mediates Outcome-Specific Conditioned Inhibition.

    Science.gov (United States)

    Laurent, Vincent; Wong, Felix L; Balleine, Bernard W

    2017-11-08

    Animals can readily learn that stimuli predict the absence of specific appetitive outcomes; however, the neural substrates underlying such outcome-specific conditioned inhibition remain largely unexplored. Here, using female and male rats as subjects, we examined the involvement of the lateral habenula (LHb) and of its inputs onto the rostromedial tegmental nucleus (RMTg) in inhibitory learning. In these experiments, we used backward conditioning and contingency reversal to establish outcome-specific conditioned inhibitors for two distinct appetitive outcomes. Then, using the Pavlovian-instrumental transfer paradigm, we assessed the effects of manipulations of the LHb and the LHb-RMTg pathway on that inhibitory encoding. In control animals, we found that an outcome-specific conditioned inhibitor biased choice away from actions delivering that outcome and toward actions earning other outcomes. Importantly, this bias was abolished by both electrolytic lesions of the LHb and selective ablation of LHb neurons using Cre-dependent Caspase3 expression in Cre-expressing neurons projecting to the RMTg. This deficit was specific to conditioned inhibition; an excitatory predictor of a specific outcome-biased choice toward actions delivering the same outcome to a similar degree whether the LHb or the LHb-RMTg network was intact or not. LHb lesions also disrupted the ability of animals to inhibit previously encoded stimulus-outcome contingencies after their reversal, pointing to a critical role of the LHb and of its inputs onto the RMTg in outcome-specific conditioned inhibition in appetitive settings. These findings are consistent with the developing view that the LHb promotes a negative reward prediction error in Pavlovian conditioning. SIGNIFICANCE STATEMENT Stimuli that positively or negatively predict rewarding outcomes influence choice between actions that deliver those outcomes. Previous studies have found that a positive predictor of a specific outcome biases choice

  10. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies.

    Science.gov (United States)

    Hietanen, Jari K; Kirjavainen, Ilkka; Nummenmaa, Lauri

    2014-12-01

    The early visual event-related 'N170 response' is sensitive to human body configuration and it is enhanced to nude versus clothed bodies. We tested whether the N170 response as well as later EPN and P3/LPP responses to nude bodies reflect the effect of increased arousal elicited by these stimuli, or top-down allocation of object-based attention to the nude bodies. Participants saw pictures of clothed and nude bodies and faces. In each block, participants were asked to direct their attention towards stimuli from a specified target category while ignoring others. Object-based attention did not modulate the N170 amplitudes towards attended stimuli; instead N170 response was larger to nude bodies compared to stimuli from other categories. Top-down attention and affective arousal had additive effects on the EPN and P3/LPP responses reflecting later processing stages. We conclude that nude human bodies have a privileged status in the visual processing system due to the affective arousal they trigger. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analyzing the user behavior towards Electronic Commerce stimuli

    OpenAIRE

    Carlota Lorenzo-Romero; María-del-Carmen Alarcón-del-Amo

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e. navigational structure as utilitarian stimulus) versus nonverbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this resea...

  12. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    Science.gov (United States)

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  13. Haptic and Audio-visual Stimuli: Enhancing Experiences and Interaction

    NARCIS (Netherlands)

    Nijholt, Antinus; Dijk, Esko O.; Lemmens, Paul M.C.; Luitjens, S.B.

    2010-01-01

    The intention of the symposium on Haptic and Audio-visual stimuli at the EuroHaptics 2010 conference is to deepen the understanding of the effect of combined Haptic and Audio-visual stimuli. The knowledge gained will be used to enhance experiences and interactions in daily life. To this end, a

  14. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    Science.gov (United States)

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  15. Gender-specific effects of emotional modulation on visual temporal order thresholds.

    Science.gov (United States)

    Liang, Wei; Zhang, Jiyuan; Bao, Yan

    2015-09-01

    Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.

  16. Chromatic summation and receptive field properties of blue-on and blue-off cells in marmoset lateral geniculate nucleus.

    Science.gov (United States)

    Eiber, C D; Pietersen, A N J; Zeater, N; Solomon, S G; Martin, P R

    2017-11-22

    The "blue-on" and "blue-off" receptive fields in retina and dorsal lateral geniculate nucleus (LGN) of diurnal primates combine signals from short-wavelength sensitive (S) cone photoreceptors with signals from medium/long wavelength sensitive (ML) photoreceptors. Three questions about this combination remain unresolved. Firstly, is the combination of S and ML signals in these cells linear or non-linear? Secondly, how does the timing of S and ML inputs to these cells influence their responses? Thirdly, is there spatial antagonism within S and ML subunits of the receptive field of these cells? We measured contrast sensitivity and spatial frequency tuning for four types of drifting sine gratings: S cone isolating, ML cone isolating, achromatic (S + ML), and counterphase chromatic (S - ML), in extracellular recordings from LGN of marmoset monkeys. We found that responses to stimuli which modulate both S and ML cones are well predicted by a linear sum of S and ML signals, followed by a saturating contrast-response relation. Differences in sensitivity and timing (i.e. vector combination) between S and ML inputs are needed to explain the amplitude and phase of responses to achromatic (S + ML) and counterphase chromatic (S - ML) stimuli. Best-fit spatial receptive fields for S and/or ML subunits in most cells (>80%) required antagonistic surrounds, usually in the S subunit. The surrounds were however generally weak and had little influence on spatial tuning. The sensitivity and size of S and ML subunits were correlated on a cell-by-cell basis, adding to evidence that blue-on and blue-off receptive fields are specialised to signal chromatic but not spatial contrast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Altered processing of rewarding and aversive basic taste stimuli in symptomatic women with anorexia nervosa and bulimia nervosa: An fMRI study.

    Science.gov (United States)

    Monteleone, Alessio Maria; Monteleone, Palmiero; Esposito, Fabrizio; Prinster, Anna; Volpe, Umberto; Cantone, Elena; Pellegrino, Francesca; Canna, Antonietta; Milano, Walter; Aiello, Marco; Di Salle, Francesco; Maj, Mario

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have displayed a dysregulation in the way in which the brain processes pleasant taste stimuli in patients with anorexia nervosa (AN) and bulimia nervosa (BN). However, exactly how the brain processes disgusting basic taste stimuli has never been investigated, even though disgust plays a role in food intake modulation and AN and BN patients exhibit high disgust sensitivity. Therefore, we investigated the activation of brain areas following the administration of pleasant and aversive basic taste stimuli in symptomatic AN and BN patients compared to healthy subjects. Twenty underweight AN women, 20 symptomatic BN women and 20 healthy women underwent fMRI while tasting 0.292 M sucrose solution (sweet taste), 0.5 mM quinine hydrochloride solution (bitter taste) and water as a reference taste. In symptomatic AN and BN patients the pleasant sweet stimulus induced a higher activation in several brain areas than that induced by the aversive bitter taste. The opposite occurred in healthy controls. Moreover, compared to healthy controls, AN patients showed a decreased response to the bitter stimulus in the right amygdala and left anterior cingulate cortex, while BN patients showed a decreased response to the bitter stimulus in the right amygdala and left insula. These results show an altered processing of rewarding and aversive taste stimuli in ED patients, which may be relevant for understanding the pathophysiology of AN and BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  20. Analyzing the User Behavior toward Electronic Commerce Stimuli

    OpenAIRE

    Lorenzo-Romero, Carlota; Alarcón-del-Amo, María-del-Carmen; Gómez-Borja, Miguel-Ángel

    2016-01-01

    Based on the Stimulus-Organism-Response paradigm this research analyzes the main differences between the effects of two types of web technologies: Verbal web technology (i.e., navigational structure as utilitarian stimulus) versus non-verbal web technology (music and presentation of products as hedonic stimuli). Specific webmosphere stimuli have not been examined yet as separate variables and their impact on internal and behavioral responses seems unknown. Therefore, the objective of this res...

  1. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans

    Directory of Open Access Journals (Sweden)

    Andoni Mujika

    2017-12-01

    Full Text Available This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.

  2. Do emotional stimuli enhance or impede recall relative to neutral stimuli? An investigation of two "false memory" tasks.

    Science.gov (United States)

    Monds, Lauren A; Paterson, Helen M; Kemp, Richard I

    2017-09-01

    Many eyewitness memory situations involve negative and distressing events; however, many studies investigating "false memory" phenomena use neutral stimuli only. The aim of the present study was to determine how both the Deese-Roediger-McDermott (DRM) procedure and the Misinformation Effect Paradigm tasks were related to each other using distressing and neutral stimuli. Participants completed the DRM (with negative and neutral word lists) and viewed a distressing or neutral film. Misinformation for the film was introduced and memory was assessed. Film accuracy and misinformation susceptibility were found to be greater for those who viewed the distressing film relative to the neutral film. Accuracy responses on both tasks were related, however, susceptibility to the DRM illusion and Misinformation Effect were not. The misinformation findings support the Paradoxical Negative Emotion (PNE) hypothesis that negative stimuli will lead to remembering more accurate details but also greater likelihood of memory distortion. However, the PNE hypothesis was not supported for the DRM results. The findings also suggest that the DRM and Misinformation tasks are not equivalent and may have differences in underlying mechanisms. Future research should focus on more ecologically valid methods of assessing false memory.

  3. Microstructural Correlates of Emotional Attribution Impairment in Non-Demented Patients with Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Chiara Crespi

    Full Text Available Impairments in the ability to recognize and attribute emotional states to others have been described in amyotrophic lateral sclerosis patients and linked to the dysfunction of key nodes of the emotional empathy network. Microstructural correlates of such disorders are still unexplored. We investigated the white-matter substrates of emotional attribution deficits in a sample of amyotrophic lateral sclerosis patients without cognitive decline. Thirteen individuals with either probable or definite amyotrophic lateral sclerosis and 14 healthy controls were enrolled in a Diffusion Tensor Imaging study and administered the Story-based Empathy Task, assessing the ability to attribute mental states to others (i.e., Intention and Emotion attribution conditions. As already reported, a significant global reduction of empathic skills, mainly driven by a failure in Emotion Attribution condition, was found in amyotrophic lateral sclerosis patients compared to healthy subjects. The severity of this deficit was significantly correlated with fractional anisotropy along the forceps minor, genu of corpus callosum, right uncinate and inferior fronto-occipital fasciculi. The involvement of frontal commissural fiber tracts and right ventral associative fronto-limbic pathways is the microstructural hallmark of the impairment of high-order processing of socio-emotional stimuli in amyotrophic lateral sclerosis. These results support the notion of the neurofunctional and neuroanatomical continuum between amyotrophic lateral sclerosis and frontotemporal dementia.

  4. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  5. Absent Audiovisual Integration Elicited by Peripheral Stimuli in Parkinson's Disease.

    Science.gov (United States)

    Ren, Yanna; Suzuki, Keisuke; Yang, Weiping; Ren, Yanling; Wu, Fengxia; Yang, Jiajia; Takahashi, Satoshi; Ejima, Yoshimichi; Wu, Jinglong; Hirata, Koichi

    2018-01-01

    The basal ganglia, which have been shown to be a significant multisensory hub, are disordered in Parkinson's disease (PD). This study was to investigate the audiovisual integration of peripheral stimuli in PD patients with/without sleep disturbances. Thirty-six age-matched normal controls (NC) and 30 PD patients were recruited for an auditory/visual discrimination experiment. The mean response times for each participant were analyzed using repeated measures ANOVA and race model. The results showed that the response to all stimuli was significantly delayed for PD compared to NC (all p audiovisual stimuli was significantly faster than that to unimodal stimuli in both NC and PD ( p audiovisual integration was absent in PD; however, it did occur in NC. Further analysis showed that there was no significant audiovisual integration in PD with/without cognitive impairment or in PD with/without sleep disturbances. Furthermore, audiovisual facilitation was not associated with Hoehn and Yahr stage, disease duration, or the presence of sleep disturbances (all p > 0.05). The current results showed that audiovisual multisensory integration for peripheral stimuli is absent in PD regardless of sleep disturbances and further suggested the abnormal audiovisual integration might be a potential early manifestation of PD.

  6. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  7. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core–shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells†

    NARCIS (Netherlands)

    Melle, A.; Balaceanu, A.; Kather, M.; Wu, Yaodong; Gau, E.; Sun, W.; Huang, Xiaobin; Shi, X; Karperien, Hermanus Bernardus Johannes; Pich, A.

    2016-01-01

    Herein we report the synthesis of biocompatible stimuli-responsive core–shell microgels consisting of a poly(N-vinylcaprolactam) (PVCL) core and a poly(2-methoxyethyl acrylate) (PMEA) corona via one-step surfactant-free precipitation copolymerization. The copolymerization process was investigated by

  8. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  9. Lateralization for dynamic facial expressions in human superior temporal sulcus.

    Science.gov (United States)

    De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2015-02-01

    Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not

  10. Middle latency response correlates of single and double deviant stimuli in a multi-feature paradigm.

    Science.gov (United States)

    Althen, H; Huotilainen, M; Grimm, S; Escera, C

    2016-01-01

    This study aimed to test single and double deviance-related modulations of the middle latency response (MLR) and the applicability of the optimum-2 multi-feature paradigm. The MLR and the MMN to frequency, intensity and double-feature deviants of an optimum-2 multi-feature paradigm and the MMN to double-feature deviants of an oddball paradigm were recorded in young adults. Double deviants elicited significant enhancements of the Nb and Pb MLR waves compared with the waves elicited by standard stimuli. These enhancements equalled approximately the sum of the numerical amplitude differences elicited by the single deviants. In contrast, the MMN to double deviants did not show such additivity. MMNs elicited by double deviants of the multi-feature and the oddball paradigm showed no significant difference in amplitude or latency. The optimum-2 multi-feature paradigm is suitable for recording double deviance-related modulations of the MLR. Interspersed intensity and frequency deviants in the standard trace of the optimum-2 condition multi-feature paradigm did not weaken the double MMN. The optimum-2 multi-feature paradigm could be especially beneficial for clinical studies on early deviance-related modulations in the MLR, due to its optimized utilization of the recording time. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    Science.gov (United States)

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  12. Dissociating Long and Short-term Memory in Three-Month-Old Infants Using the Mismatch Response to Voice Stimuli

    Directory of Open Access Journals (Sweden)

    Katharina Zinke

    2018-01-01

    Full Text Available Auditory event-related potentials (ERPs have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011, to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word “baby” (400 ms, interstimulus interval: 600 ms, 10 min overall duration pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented “standard” stimulus, whereas another unfamiliar voice served as the “unfamiliar deviant” stimulus, and the voice of the infant’s mother served as the “familiar deviant.” Data collection was successful for 31 infants (mean age = 100 days. The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother’s voice was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300–400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200–300 ms

  13. Interference Control Modulations Over Conscious Perception

    Directory of Open Access Journals (Sweden)

    Itsaso Colás

    2017-05-01

    Full Text Available The relation between attention and consciousness has been a controversial topic over the last decade. Although there seems to be an agreement on their distinction at the functional level, no consensus has been reached about attentional processes being or not necessary for conscious perception. Previous studies have explored the relation of alerting and orienting systems of attention and conscious perception, but the impact of the anterior executive attention system on conscious access remains unexplored. In the present study, we investigated the behavioral interaction between executive attention and conscious perception, testing control mechanisms both at stimulus-level representation and after error commission. We presented a classical Stroop task, manipulating the proportion of congruent and incongruent trials, and analyzed the effect of reactive and proactive control on the conscious perception of near-threshold stimuli. Reactive control elicited under high proportion congruent conditions influenced participants’ decision criterion, whereas proactive control elicited under low proportion congruent conditions was ineffective in modulating conscious perception. In addition, error commission affected both perceptual sensitivity to detect near-threshold information and response criterion. These results suggest that reactivation of task goals through reactive control strategies in conflict situations impacts decision stages of conscious processing, whereas interference control elicited by error commission impacts both perceptual sensitivity and decision stages of conscious processing. We discuss the implications of our results for the gateway hypothesis about attention and consciousness, as they showed that interference control (both at stimulus-level representation and after error commission can modulate the conscious access of near-threshold stimuli.

  14. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  15. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  16. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.

    Science.gov (United States)

    Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang

    2018-06-01

    Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Beta receptor-mediated modulation of the late positive potential in humans.

    Science.gov (United States)

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  18. The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear.

    Directory of Open Access Journals (Sweden)

    Melissa Judith Sharpe

    2015-01-01

    Full Text Available The prelimbic (PL cortex allows rodents to adapt their responding under changing experimental circumstances. In line with this, the PL cortex has been implicated in strategy set shifting, attentional set shifting, the resolution of response conflict, and the modulation of attention towards predictive stimuli. One interpretation of this research is that the PL cortex is involved in using information garnered from higher-order cues in the environment to modulate how an animal responds to environmental stimuli. However, data supporting this view of PL function in the aversive domain are lacking. In the following experiments, we attempted to answer two questions. Firstly, we wanted to investigate whether the role of the PL cortex in using higher-order cues to influence responding generalizes across appetitive and aversive domains. Secondly, as much of the research has focused on a role for the PL cortex in performance, we wanted to assess whether this region is also involved in the acquisition of hierarchal associations which facilitate an ability to use higher-order cues to modulate responding. In order to answer these questions, we assessed the impact of PL inactivation during both the acquisition and expression of a contextual bi-conditional discrimination. A contextual bi-conditional discrimination involves presenting two stimuli. In one context, one stimulus is paired with shock while the other is presented without shock. In another context, these contingencies are reversed. Thus, animals have to use the present contextual cues to disambiguate the significance of the stimulus and respond appropriately. We found that PL inactivation disrupted both the encoding and expression of these context-dependent associations. This supports a role for the PL cortex in allowing higher-order cues to modulate both learning about, and responding towards, different cues. We discuss these findings in the broader context of functioning in the medial prefrontal

  19. Effects of methylphenidate and MDMA on appraisal of erotic stimuli and intimate relationships.

    Science.gov (United States)

    Schmid, Yasmin; Hysek, Cédric M; Preller, Katrin H; Bosch, Oliver G; Bilderbeck, Amy C; Rogers, Robert D; Quednow, Boris B; Liechti, Matthias E

    2015-01-01

    Methylphenidate mainly enhances dopamine neurotransmission whereas 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") mainly enhances serotonin neurotransmission. However, both drugs also induce a weaker increase of cerebral noradrenaline exerting sympathomimetic properties. Dopaminergic psychostimulants are reported to increase sexual drive, while serotonergic drugs typically impair sexual arousal and functions. Additionally, serotonin has also been shown to modulate cognitive perception of romantic relationships. Whether methylphenidate or MDMA alter sexual arousal or cognitive appraisal of intimate relationships is not known. Thus, we evaluated effects of methylphenidate (40 mg) and MDMA (75 mg) on subjective sexual arousal by viewing erotic pictures and on perception of romantic relationships of unknown couples in a double-blind, randomized, placebo-controlled, crossover study in 30 healthy adults. Methylphenidate, but not MDMA, increased ratings of sexual arousal for explicit sexual stimuli. The participants also sought to increase the presentation time of implicit sexual stimuli by button press after methylphenidate treatment compared with placebo. Plasma levels of testosterone, estrogen, and progesterone were not associated with sexual arousal ratings. Neither MDMA nor methylphenidate altered appraisal of romantic relationships of others. The findings indicate that pharmacological stimulation of dopaminergic but not of serotonergic neurotransmission enhances sexual drive. Whether sexual perception is altered in subjects misusing methylphenidate e.g., for cognitive enhancement or as treatment for attention deficit hyperactivity disorder is of high interest and warrants further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  20. Lateral septal vasopressin in rats : Role in social and object recognition?

    NARCIS (Netherlands)

    Everts, H.G J; Koolhaas, J.M.

    1997-01-01

    The capacity of male rats to remember familiar conspecifics is called social recognition. It is a form of short-term memory modulated by lateral septal (LS) vasopressin (VP). The specificity of this phenomenon was studied by examining whether recognition of previously investigated objects is also

  1. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  2. Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells

    Science.gov (United States)

    Gerhardts, Rolf R.

    2015-11-01

    Model calculations for commensurability oscillations of the low-field magnetoresistance of two-dimensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal structure, are compared with recent experiments. The relevant harmonics of the effective modulation potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on the nature of the modulation. While higher harmonics of an electrostatically generated surface modulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene resist on the surface before cooling down the sample.

  3. Self-construal priming selectively modulates the scope of visual attention

    Directory of Open Access Journals (Sweden)

    Zhuozhuo eLiu

    2015-09-01

    Full Text Available Self-concept is one of the major factors to explain the cultural differences between East Asians and Westerners. In the field of visual attention, most studies have focused on the modulation of visual spatial-based attention, whereas possible influences of culture or self-concept on other types of visual attention remain largely unexplored. The present study investigated the possible modulation of visual feature-based attention by self-concept, using a within-group self-construal priming design. The experiment paradigm employed visual stimuli consisted of two intermixing random dot clouds presented in the focal visual field with red and green colors. After primed with an interdependent, independent or neutral self-construal, the participants were instructed to attend to one of the focally presented dot cloud and respond to occasional luminance decrement events of the attended dot cloud. The detection of the focal events was found to be significantly faster when exogenously cued by a peripheral dot cloud of either the same or different colors as the attended focal dot cloud (congruent / incongruent, compared to the uncued condition. More importantly, the self-construal priming took effect only on the reaction time (RT differences between the congruent and incongruent cued conditions: the participants responded much slower to incongruent cued events than congruent cued events under interdependent self-construal priming, while the RT difference was significantly smaller under independent self-construal priming. A closer look on the results suggests that the attention scope is selectively modulated by self-construal priming, and the modulation is mainly reflected by varying the degree of suppression on the processing of the incongruent contextual stimuli that do not share visual features with the focal object. Our findings provide new evidences that could possibly extend the current understanding on the cultural influence on visual attention.

  4. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    2014-01-01

    Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.

  5. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission

    Science.gov (United States)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.

    2014-09-01

    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  6. Dissociable modulation of overt visual attention in valence and arousal revealed by topology of scan path.

    Directory of Open Access Journals (Sweden)

    Jianguang Ni

    Full Text Available Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness and arousal (intensity of evoked emotion, have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS that were graded for affective levels of valence and arousal (high, medium, and low. Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal.

  7. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance

    NARCIS (Netherlands)

    Okazaki, Y.O.; Horschig, J.; Luther, L.M.; Oostenveld, R.; Murakami, I.; Jensen, O.

    2015-01-01

    It has been demonstrated that alpha activity is lateralized when attention is directed to the left or right visual hemifield. We investigated whether real-time neurofeedback training of the alpha lateralization enhances participants' ability to modulate posterior alpha lateralization and causes

  8. Dealing with ocular artifacts on lateralized ERPs in studies of visual-spatial attention and memory: ICA correction versus epoch rejection.

    Science.gov (United States)

    Drisdelle, Brandi Lee; Aubin, Sébrina; Jolicoeur, Pierre

    2017-01-01

    The objective of the present study was to assess the robustness and reliability of independent component analysis (ICA) as a method for ocular artifact correction in electrophysiological studies of visual-spatial attention and memory. The N2pc and sustained posterior contralateral negativity (SPCN), electrophysiological markers of visual-spatial attention and memory, respectively, are lateralized posterior ERPs typically observed following the presentation of lateral stimuli (targets and distractors) along with instructions to maintain fixation on the center of the visual search for the entire trial. Traditionally, trials in which subjects may have displaced their gaze are rejected based on a cutoff threshold, minimizing electrophysiological contamination by saccades. Given the loss of data resulting from rejection, we examined ocular correction by comparing results using standard fixation instructions against a condition where subjects were instructed to shift their gaze toward possible targets. Both conditions were analyzed using a rejection threshold and ICA correction for saccade activity management. Results demonstrate that ICA conserves data that would have otherwise been removed and leaves the underlying neural activity intact, as demonstrated by experimental manipulations previously shown to modulate the N2pc and the SPCN. Not only does ICA salvage and not distort data, but also large eye movements had only subtle effects. Overall, the findings provide convincing evidence for ICA correction for not only special cases (e.g., subjects did not follow fixation instruction) but also as a candidate for standard ocular artifact management in electrophysiological studies interested in visual-spatial attention and memory. © 2016 Society for Psychophysiological Research.

  9. Heightened attentional capture by visual food stimuli in Anorexia Nervosa

    NARCIS (Netherlands)

    Neimeijer, Renate A.M.; Roefs, Anne; de Jong, Peter J.

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent

  10. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  11. Under pressure: adolescent substance users show exaggerated neural processing of aversive interoceptive stimuli

    NARCIS (Netherlands)

    Berk, L.; Stewart, J.L.; May, A.C.; Wiers, R.W.; Davenport, P.W.; Paulus, M.P.; Tapert, S.F.

    2015-01-01

    Aims: Adolescents with substance use disorders (SUD) exhibit hyposensitivity to pleasant internally generated (interoceptive) stimuli and hypersensitivity to external rewarding stimuli. It is unclear whether similar patterns exist for aversive interoceptive stimuli. We compared activation in the

  12. Impact of body posture on laterality judgement and explicit recognition tasks performed on self and others' hands.

    Science.gov (United States)

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; De Bellis, Francesco; Grossi, Dario; Trojano, Luigi

    2015-04-01

    Judgments on laterality of hand stimuli are faster and more accurate when dealing with one's own than others' hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one's own hands, but not during explicit one's own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants' body posture during self and others' hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest ("flexed self-touch posture") or with their hand placed on a wooden smooth surface in correspondence with their chest ("flexed proprioceptive-only posture"). In an "extended control posture", both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others' hand ("self-disadvantage") independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one's own body representation selectively favouring implicit self-hands processing.

  13. Anagrus breviphragma Soyka Short Distance Search Stimuli

    Directory of Open Access Journals (Sweden)

    Elisabetta Chiappini

    2015-01-01

    Full Text Available Anagrus breviphragma Soyka (Hymenoptera: Mymaridae successfully parasitises eggs of Cicadella viridis (L. (Homoptera: Cicadellidae, embedded in vegetal tissues, suggesting the idea of possible chemical and physical cues, revealing the eggs presence. In this research, three treatments were considered in order to establish which types of cue are involved: eggs extracted from leaf, used as a control, eggs extracted from leaf and cleaned in water and ethanol, used to evaluate the presence of chemicals soluble in polar solvents, and eggs extracted from leaf and covered with Parafilm (M, used to avoid physical stimuli due to the bump on the leaf surface. The results show that eggs covered with Parafilm present a higher number of parasitised eggs and a lower probing starting time with respect to eggs washed with polar solvents or eggs extracted and untreated, both when the treatments were singly tested or when offered in sequence, independently of the treatment position. These results suggest that the exploited stimuli are not physical due to the bump but chemicals that can spread in the Parafilm, circulating the signal on the whole surface, and that the stimuli that elicit probing and oviposition are not subjected to learning.

  14. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  15. Attentional capture by social stimuli in young infants

    Directory of Open Access Journals (Sweden)

    Maxie eGluckman

    2013-08-01

    Full Text Available We investigated the possibility that a range of social stimuli capture the attention of 6-month-old infants when in competition with other non-face objects. Infants viewed a series of six-item arrays in which one target item was a face, body part, or animal as their eye movements were recorded. Stimulus arrays were also processed for relative salience of each item in terms of color, luminance, and amount of contour. Targets were rarely the most visually salient items in the arrays, yet infants’ first looks toward all three target types were above chance, and dwell times for targets exceeded other stimulus types. Girls looked longer at faces than did boys, but there were no sex differences for other stimuli. These results are interpreted in a context of learning to discriminate between different classes of animate stimuli, perhaps in line with affordances for social interaction, and origins of sex differences in social attention.

  16. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Science.gov (United States)

    Stippekohl, Bastian; Winkler, Markus H; Walter, Bertram; Kagerer, Sabine; Mucha, Ronald F; Pauli, Paul; Vaitl, Dieter; Stark, Rudolf

    2012-01-01

    An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users) whereas others are discontent (dissonant users). Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli) and stimuli associated with the terminal stage (END-smoking-stimuli) of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula) in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex) compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli) are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli) seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant smokers

  17. Neural responses to smoking stimuli are influenced by smokers' attitudes towards their own smoking behaviour.

    Directory of Open Access Journals (Sweden)

    Bastian Stippekohl

    Full Text Available An important feature of addiction is the high drug craving that may promote the continuation of consumption. Environmental stimuli classically conditioned to drug-intake have a strong motivational power for addicts and can elicit craving. However, addicts differ in the attitudes towards their own consumption behavior: some are content with drug taking (consonant users whereas others are discontent (dissonant users. Such differences may be important for clinical practice because the experience of dissonance might enhance the likelihood to consider treatment. This fMRI study investigated in smokers whether these different attitudes influence subjective and neural responses to smoking stimuli. Based on self-characterization, smokers were divided into consonant and dissonant smokers. These two groups were presented smoking stimuli and neutral stimuli. Former studies have suggested differences in the impact of smoking stimuli depending on the temporal stage of the smoking ritual they are associated with. Therefore, we used stimuli associated with the beginning (BEGIN-smoking-stimuli and stimuli associated with the terminal stage (END-smoking-stimuli of the smoking ritual as distinct stimulus categories. Stimulus ratings did not differ between both groups. Brain data showed that BEGIN-smoking-stimuli led to enhanced mesolimbic responses (amygdala, hippocampus, insula in dissonant compared to consonant smokers. In response to END-smoking-stimuli, dissonant smokers showed reduced mesocortical responses (orbitofrontal cortex, subcallosal cortex compared to consonant smokers. These results suggest that smoking stimuli with a high incentive value (BEGIN-smoking-stimuli are more appetitive for dissonant than consonant smokers at least on the neural level. To the contrary, smoking stimuli with low incentive value (END-smoking-stimuli seem to be less appetitive for dissonant smokers than consonant smokers. These differences might be one reason why dissonant

  18. Rule-violations sensitise towards negative and authority-related stimuli.

    Science.gov (United States)

    Wirth, Robert; Foerster, Anna; Rendel, Hannah; Kunde, Wilfried; Pfister, Roland

    2018-05-01

    Rule violations have usually been studied from a third-person perspective, identifying situational factors that render violations more or less likely. A first-person perspective of the agent that actively violates the rules, on the other hand, is only just beginning to emerge. Here we show that committing a rule violation sensitises towards subsequent negative stimuli as well as subsequent authority-related stimuli. In a Prime-Probe design, we used an instructed rule-violation task as the Prime and a word categorisation task as the Probe. Also, we employed a control condition that used a rule inversion task as the Prime (instead of rule violations). Probe targets were categorised faster after a violation relative to after a rule-based response if they related to either, negative valence or authority. Inversions, however, primed only negative stimuli and did not accelerate the categorisation of authority-related stimuli. A heightened sensitivity towards authority-related targets thus seems to be specific to rule violations. A control experiment showed that these effects cannot be explained in terms of semantic priming. Therefore, we propose that rule violations necessarily activate authority-related representations that make rule violations qualitatively different from simple rule inversions.

  19. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  20. The Effect of Non-Visual Working Memory Load on Top-Down Modulation of Visual Processing

    Science.gov (United States)

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2009-01-01

    While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of…

  1. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    Science.gov (United States)

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  2. Function Lateralization via Measuring Coherence Laterality

    Science.gov (United States)

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  3. Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded.

    Science.gov (United States)

    Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian; Rubinstein, Jay T

    2014-06-01

    Won et al. (J Acoust Soc Am 132:1113-1119, 2012) reported that cochlear implant (CI) speech processors generate amplitude-modulation (AM) cues recovered from broadband speech frequency modulation (FM) and that CI users can use these cues for speech identification in quiet. The present study was designed to extend this finding for a wide range of listening conditions, where the original speech cues were severely degraded by manipulating either the acoustic signals or the speech processor. The manipulation of the acoustic signals included the presentation of background noise, simulation of reverberation, and amplitude compression. The manipulation of the speech processor included changing the input dynamic range and the number of channels. For each of these conditions, multiple levels of speech degradation were tested. Speech identification was measured for CI users and compared for stimuli having both AM and FM information (intact condition) or FM information only (FM condition). Each manipulation degraded speech identification performance for both intact and FM conditions. Performance for the intact and FM conditions became similar for stimuli having the most severe degradations. Identification performance generally overlapped for the intact and FM conditions. Moreover, identification performance for the FM condition was better than chance performance even at the maximum level of distortion. Finally, significant correlations were found between speech identification scores for the intact and FM conditions. Altogether, these results suggest that despite poor frequency selectivity, CI users can make efficient use of AM cues recovered from speech FM in difficult listening situations.

  4. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.

    Science.gov (United States)

    MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars

    2017-06-01

    The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.

  5. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  6. Utility-based early modulation of processing distracting stimulus information.

    Science.gov (United States)

    Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2014-12-10

    Humans are selective information processors who efficiently prevent goal-inappropriate stimulus information to gain control over their actions. Nonetheless, stimuli, which are both unnecessary for solving a current task and liable to cue an incorrect response (i.e., "distractors"), frequently modulate task performance, even when consistently paired with a physical feature that makes them easily discernible from target stimuli. Current models of cognitive control assume adjustment of the processing of distractor information based on the overall distractor utility (e.g., predictive value regarding the appropriate response, likelihood to elicit conflict with target processing). Although studies on distractor interference have supported the notion of utility-based processing adjustment, previous evidence is inconclusive regarding the specificity of this adjustment for distractor information and the stage(s) of processing affected. To assess the processing of distractors during sensory-perceptual phases we applied EEG recording in a stimulus identification task, involving successive distractor-target presentation, and manipulated the overall distractor utility. Behavioral measures replicated previously found utility modulations of distractor interference. Crucially, distractor-evoked visual potentials (i.e., posterior N1) were more pronounced in high-utility than low-utility conditions. This effect generalized to distractors unrelated to the utility manipulation, providing evidence for item-unspecific adjustment of early distractor processing to the experienced utility of distractor information. Copyright © 2014 the authors 0270-6474/14/3416720-06$15.00/0.

  7. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  8. Emotion processing in the aging brain is modulated by semantic elaboration

    OpenAIRE

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M.; Cabeza, Roberto

    2010-01-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs’ capacity for controlled elaboration. However, the role of semantic elaboration...

  9. Happiness takes you right: the effect of emotional stimuli on line bisection.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Boehringer, Jana; Gallucci, Marcello; Girelli, Luisa; Carbon, Claus-Christian

    2014-01-01

    Emotion recognition is mediated by a complex network of cortical and subcortical areas, with the two hemispheres likely being differently involved in processing positive and negative emotions. As results on valence-dependent hemispheric specialisation are quite inconsistent, we carried out three experiments with emotional stimuli with a task being sensitive to measure specific hemispheric processing. Participants were required to bisect visual lines that were delimited by emotional face flankers, or to haptically bisect rods while concurrently listening to emotional vocal expressions. We found that prolonged (but not transient) exposition to concurrent happy stimuli significantly shifted the bisection bias to the right compared to both sad and neutral stimuli, indexing a greater involvement of the left hemisphere in processing of positively connoted stimuli. No differences between sad and neutral stimuli were observed across the experiments. In sum, our data provide consistent evidence in favour of a greater involvement of the left hemisphere in processing positive emotions and suggest that (prolonged) exposure to stimuli expressing happiness significantly affects allocation of (spatial) attentional resources, regardless of the sensory (visual/auditory) modality in which the emotion is perceived and space is explored (visual/haptic).

  10. Harm avoidance in adolescents modulates late positive potentials during affective picture processing.

    Science.gov (United States)

    Zhang, Wenhai; Lu, Jiamei; Ni, Ziyin; Liu, Xia; Wang, Dahua; Shen, Jiliang

    2013-08-01

    Research in adults has shown that individual differences in harm avoidance (HA) modulate electrophysiological responses to affective stimuli. To determine whether HA in adolescents modulates affective information processing, we collected event-related potentials from 70 adolescents while they viewed 90 pictures from the Chinese affective picture system. Multiple regressions revealed that HA negatively predicted late positive potential (LPP) for positive pictures and positively predicted for negative pictures; however, HA did not correlate with LPP for neutral pictures. The results suggest that at the late evaluative stage, high-HA adolescents display attentional bias to negative pictures while low-HA adolescents display attentional bias to negative pictures. Moreover, these dissociable attentional patterns imply that individual differences in adolescents' HA modulate the late selective attention mechanism of affective information. Copyright © 2013. Published by Elsevier Ltd.

  11. Multisensory stimuli improve relative localisation judgments compared to unisensory auditory or visual stimuli

    OpenAIRE

    Bizley, Jennifer; Wood, Katherine; Freeman, Laura

    2018-01-01

    Observers performed a relative localisation task in which they reported whether the second of two sequentially presented signals occurred to the left or right of the first. Stimuli were detectability-matched auditory, visual, or auditory-visual signals and the goal was to compare changes in performance with eccentricity across modalities. Visual performance was superior to auditory at the midline, but inferior in the periphery, while auditory-visual performance exceeded both at all locations....

  12. Characterizing acupuncture stimuli using brain imaging with FMRI--a systematic review and meta-analysis of the literature.

    Directory of Open Access Journals (Sweden)

    Wenjing Huang

    Full Text Available The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1 differences between verum and sham acupuncture, 2 differences due to various methods of acupuncture manipulation, 3 differences between patients and healthy volunteers, 4 differences between different acupuncture points.We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture. 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum.Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the

  13. Effects of stimulus type and strategy on mental rotation network:an Activation Likelihood Estimation meta-analysis

    Directory of Open Access Journals (Sweden)

    Barbara eTomasino

    2016-01-01

    Full Text Available We could predict how an object would look like if we were to see it from different viewpoints. The brain network governing mental rotation (MR has been studied using a variety of stimuli and tasks instructions. By using activation likelihood estimation (ALE meta-analysis we tested whether different MR networks can be modulated by the type of stimulus (body vs. non body parts or by the type of tasks instructions (motor imagery-based vs. non-motor imagery-based MR instructions. Testing for the bodily and non-bodily stimulus axis revealed a bilateral sensorimotor activation for bodily-related as compared to non bodily-related stimuli and a posterior right lateralized activation for non bodily-related as compared to bodily-related stimuli. A top-down modulation of the network was exerted by the MR tasks instructions frame with a bilateral (preferentially sensorimotor left network for motor imagery- vs. non-motor imagery-based MR instructions and the latter activating a preferentially posterior right occipito-temporal-parietal network. The present quantitative meta-analysis summarizes and amends previous descriptions of the brain network related to MR and shows how it is modulated by top-down and bottom-up experimental factors.

  14. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  15. The Motivating Effect of Antecedent Stimuli on the Web Shop: A Conjoint Analysis of the Impact of Antecedent Stimuli at the Point of Online Purchase

    Science.gov (United States)

    Fagerstrom, Asle

    2010-01-01

    This article introduces the concept of motivating operation (MO) to the field of online consumer research. A conjoint analysis was conducted to assess the motivating impact of antecedent stimuli on online purchasing. Stimuli tested were in-stock status, price, other customers' reviews, order confirmation procedures, and donation to charity. The…

  16. Affective picture modulation: valence, arousal, attention allocation and motivational significance.

    Science.gov (United States)

    Leite, Jorge; Carvalho, Sandra; Galdo-Alvarez, Santiago; Alves, Jorge; Sampaio, Adriana; Gonçalves, Oscar F

    2012-03-01

    The present study analyses the modulatory effects of affective pictures in the early posterior negativity (EPN), the late positive potential (LPP) and the human startle response on both the peripheral (eye blink EMG) and central neurophysiological levels (Probe P3), during passive affective pictures viewing. The affective pictures categories were balanced in terms of valence (pleasant; unpleasant) and arousal (high; low). The data shows that EPN may be sensitive to specific stimulus characteristics (affective relevant pictures versus neutral pictures) associated with early stages of attentional processing. In later stages, the heightened attentional resource allocation as well as the motivated significance of the affective stimuli was found to elicit enhanced amplitudes of slow wave processes thought to be related to enhanced encoding, namely LPP,. Although pleasant low arousing pictures were effective in engaging the resources involved in the slow wave processes, the highly arousing affective stimuli (pleasant and unpleasant) were found to produce the largest enhancement of the LPP, suggesting that high arousing stimuli may are associated with increased motivational significance. Additionally the response to high arousing stimuli may be suggestive of increased motivational attention, given the heightened attentional allocation, as expressed in the P3 probe, especially for the pleasant pictures. The hedonic valence may then serve as a mediator of the attentional inhibition to the affective priming, potentiating or inhibiting a shift towards defensive activation, as measured by the startle reflex. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis

    OpenAIRE

    Kim, Jungmook; Lee, Han Woo

    2013-01-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPO...

  18. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications

    Directory of Open Access Journals (Sweden)

    Jaime Plazas-Tuttle

    2015-06-01

    Full Text Available Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.

  19. Attention bias towards personally relevant stimuli: the individual emotional Stroop task.

    Science.gov (United States)

    Wingenfeld, Katja; Bullig, Renate; Mensebach, Christoph; Hartje, Wolfgang; Driessen, Martin; Beblo, Thomas

    2006-12-01

    The emotional Stroop task is a widely used method for investigating attentional bias towards stimuli due to mood or affect. In general, standardized stimuli are used, which might not be appropriate when investigating individual contextual frameworks. It was investigated whether words chosen to be related to individuals' personal life events would produce more pronounced Stroop interference (as an indicator of attentional bias) than stimuli without any personal relevance. Twenty-six nonclinical subjects, 20 female and 6 male, participated in the study. Mean age was 36.1 yr. (SD = 18.1). All were recruited by means of local advertising. Stimulus material consisted of four word types: personal words related to negative life events with and without current personal relevance, and negative and neutral words without any personal relevance. Words were presented in three blocks. Analysis of variance showed main effects for word type and blocks, with slower reactions in the personally relevant conditions than in the negative, or neutral conditions, and in response to the first blocks as opposed to the last. These findings indicate that regardless of the word valence, personally relevant stimuli evoke more pronounced Stroop interference than do stimuli without personal relevance.

  20. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    Science.gov (United States)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  1. Response inhibition of face stimuli linked to inferior frontal gyrus microstructure in adolescents

    DEFF Research Database (Denmark)

    Holm-Skjold, Jonathan; Baaré, William Frans Christiaan; Jernigan, Terry Lynne

    matter underlying these regions continues to develop throughout childhood and adolescence, as indicated by in an increase in fractional anisotropy (FA), possibly reflecting ongoing myelination, and/or increase in axon diameter and density7,8. Here we used an emotional Go/Nogo task to test the hypothesis......The ability to inhibit inappropriate behavior is an essential cognitive and social skill. Response inhibition of pre-potent motor responses as measured with a stop-signal or a Go/Nogo task improves throughout adolescence1,2. Performance on these tasks can be modulated by the valence of task stimuli....... Inhibition of negative faces has been shown to be more difficult than that of positive faces1,3. The brain network underlying response inhibition includes the right inferior frontal gyrus (IFG), right presupplementary motor area (preSMA), and superior longitudinal fasciculus (SLF) bilaterally 4–6. The white...

  2. Effect of stimuli, transducers and gender on acoustic change complex

    Directory of Open Access Journals (Sweden)

    Hemanth N. Shetty

    2012-08-01

    Full Text Available The objective of this study was to investigate the effect of stimuli, transducers and gender on the latency and amplitude of acoustic change complex (ACC. ACC is a multiple overlapping P1-N1-P2 complex reflecting acoustic changes across the entire stimulus. Fifteen males and 15 females, in the age range of 18 to 25 (mean=21.67 years, having normal hearing participated in the study. The ACC was recorded using the vertical montage. The naturally produced stimuli /sa/ and /si/ were presented through the insert earphone/loud speaker to record the ACC. The ACC obtained from different stimuli presented through different transducers from male/female participants were analyzed using mixed analysis of variance. Dependent t-test and independent t-test were performed when indicated. There was a significant difference in latency of 2N1 at the transition, with latency for /sa/ being earlier; but not at the onset portions of ACC. There was no significant difference in amplitude of ACC between the stimuli. Among the transducers, there was no significant difference in latency and amplitude of ACC, for both /sa/ and /si/ stimuli. Female participants showed earlier latency for 2N1 and larger amplitude of N1 and 2P2 than male participants, which was significant. ACC provides important insight in detecting the subtle spectral changes in each stimulus. Among the transducers, no difference in ACC was noted as the spectra of stimuli delivered were within the frequency response of the transducers. The earlier 2N1 latency and larger N1 and 2P2 amplitudes noticed in female participants could be due to smaller head circumference. The findings of this study will be useful in determining the capacity of the auditory pathway in detecting subtle spectral changes in the stimulus at the level of the auditory cortex.

  3. Behavioral and neural lateralization of vision in courtship singing of the zebra finch.

    Science.gov (United States)

    George, Isabelle; Hara, Erina; Hessler, Neal A

    2006-09-01

    Along with human speech and language processing, birdsong has been one of the best-characterized model systems for understanding the relationship of lateralization of brain function to behavior. Lateralization of song production has been extensively characterized, and lateralization of song perception has begun to be studied. Here we have begun to examine whether behavior and brain function are lateralized in relation to communicative aspects of singing, as well. In order to monitor central brain function, we assayed the levels of several activity dependent immediate early genes after directed courtship singing. Consistent with a lateralization of visual processing during communication, there were higher levels of expression of both egr-1 and c-fos in the left optic tectum after directed singing. Because input from the eyes to the brain is almost completely contralateral in birds, these results suggest that visual input from the right eye should be favored during normal singing to females. Consistent with this, we further found that males sang more when they could use only their right eye compared to when they could use only their left eye. Normal levels of singing, though, required free use of both eyes to view the female. These results suggest that there is a preference for visual processing by the right eye and left brain hemisphere during courtship singing. This may reflect a proposed specialization of the avian left hemisphere in sustaining attention on stimuli toward which a motor response is planned.

  4. Product perception from sensory stimuli: the case of vacuum cleaner.

    Science.gov (United States)

    Almeida e Silva, Caio Márcio; Okimoto, Maria Lúciar R L; Tanure, Raffaela Leane Zenni

    2012-01-01

    This paper discusses the importance of consideration of different sensory stimuli in the perception of the product. So we conducted an experiment that examined whether there is a difference between the perception of sensory stimuli from artificially isolated. The result is an analysis of the different sensory modalities, relating them to product an between them.

  5. Testing aggressive behaviour in a feeding context: Importance of ethologically relevant stimuli.

    Science.gov (United States)

    González, Daniel; Szenczi, Péter; Bánszegi, Oxána; Hudson, Robyn

    2018-05-01

    The choice of stimuli used in tests of animal behaviour can have a critical effect on the outcome. Here we report two experiments showing how different foods influenced aggressive behaviour in competition tests at weaning among littermates of the domestic cat. Whereas in Experiment 1 canned food elicited almost no overt competition, a piece of raw beef rib elicited clearly aggressive behaviour among littermates. In Experiment 2 the food stimuli were chosen to differ from raw beef rib in various combinations of taste/smell, texture and monopolizability. Kittens showed different levels of aggression in response to the five stimuli tested, which suggests that the strong effect of beef rib in eliciting aggressive behaviour was due to a complex combination of features. We suggest that using stimuli approximating the evolved, functional significance to the species concerned is more likely to result in robust, biologically relevant behaviours than more artificial stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Intimate stimuli result in fronto-parietal activation changes in anorexia nervosa

    NARCIS (Netherlands)

    van Zutphen, L; Maier, S; Siep, N; Jacob, G A; Tüscher, O; van Elst, L Tebartz; Zeeck, A; Arntz, A; O'Connor, M-F; Stamm, H; Hudek, M; Joos, Andreas

    2018-01-01

    BACKGROUND: Intimacy is a key psychological problem in anorexia nervosa (AN). Empirical evidence, including neurobiological underpinnings, is however, scarce. OBJECTIVE: In this study, we evaluated various emotional stimuli including intimate stimuli experienced in patients with AN and non-patients,

  7. Heightened attentional capture by visual food stimuli in anorexia nervosa.

    Science.gov (United States)

    Neimeijer, Renate A M; Roefs, Anne; de Jong, Peter J

    2017-08-01

    The present study was designed to test the hypothesis that anorexia nervosa (AN) patients are relatively insensitive to the attentional capture of visual food stimuli. Attentional avoidance of food might help AN patients to prevent more elaborate processing of food stimuli and the subsequent generation of craving, which might enable AN patients to maintain their strict diet. Participants were 66 restrictive AN spectrum patients and 55 healthy controls. A single-target rapid serial visual presentation task was used with food and disorder-neutral cues as critical distracter stimuli and disorder-neutral pictures as target stimuli. AN spectrum patients showed diminished task performance when visual food cues were presented in close temporal proximity of the to-be-identified target. In contrast to our hypothesis, results indicate that food cues automatically capture AN spectrum patients' attention. One explanation could be that the enhanced attentional capture of food cues in AN is driven by the relatively high threat value of food items in AN. Implications and suggestions for future research are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Stress improves selective attention towards emotionally neutral left ear stimuli.

    Science.gov (United States)

    Hoskin, Robert; Hunter, M D; Woodruff, P W R

    2014-09-01

    Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli....

  10. The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth1[OPEN

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Mysore, Kirankumar S.

    2017-01-01

    Legume roots form two types of postembryonic organs, lateral roots and symbiotic nodules. Nodule formation is the result of the interaction of legumes with rhizobia and requires the mitotic activation and differentiation of root cells as well as an independent, but coordinated, program that allows infection by rhizobia. MicroRNA390 (miR390) is an evolutionarily conserved microRNA that targets the Trans-Acting Short Interference RNA3 (TAS3) transcript. Cleavage of TAS3 by ARGONAUTE7 results in the production of trans-acting small interference RNAs, which target mRNAs encoding AUXIN RESPONSE FACTOR2 (ARF2), ARF3, and ARF4. Here, we show that activation of the miR390/TAS3 regulatory module by overexpression of miR390 in Medicago truncatula promotes lateral root growth but prevents nodule organogenesis, rhizobial infection, and the induction of two key nodulation genes, Nodulation Signaling Pathway1 (NSP1) and NSP2. Accordingly, inactivation of the miR390/TAS3 module, either by expression of a miR390 target mimicry construct or mutations in ARGONAUTE7, enhances nodulation and rhizobial infection, alters the spatial distribution of the nodules, and increases the percentage of nodules with multiple meristems. Our results revealed a key role of the miR390/TAS3 pathway in legumes as a modulator of lateral root organs, playing opposite roles in lateral root and nodule development. PMID:28663332

  11. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system

    International Nuclear Information System (INIS)

    Rana, Suresh; Zeidan, Omar; Ramirez, Eric; Rains, Michael; Gao, Junfang; Zheng, Yuanshui

    2013-01-01

    Purpose: The main purposes of this study were to (1) investigate the dependency of lateral penumbra (80%–20% distance) of uniform scanning proton beams on various factors such as air gap, proton range, modulation width, compensator thickness, and depth, and (2) compare the lateral penumbra calculated by a treatment planning system (TPS) with measurements.Methods: First, lateral penumbra was measured using solid–water phantom and radiographic films for (a) air gap, ranged from 0 to 35 cm, (b) proton range, ranged from 8 to 30 cm, (c) modulation, ranged from 2 to 10 cm, (d) compensator thickness, ranged from 0 to 20 cm, and (e) depth, ranged from 7 to 15 cm. Second, dose calculations were computed in a virtual water phantom using the XiO TPS with pencil beam algorithm for identical beam conditions and geometrical configurations that were used for the measurements. The calculated lateral penumbra was then compared with the measured one for both the horizontal and vertical scanning magnets of our uniform scanning proton beam delivery system.Results: The results in the current study showed that the lateral penumbra of horizontal scanning magnet was larger (up to 1.4 mm for measurement and up to 1.0 mm for TPS) compared to that of vertical scanning magnet. Both the TPS and measurements showed an almost linear increase in lateral penumbra with increasing air gap as it produced the greatest effect on lateral penumbra. Lateral penumbra was dependent on the depth and proton range. Specifically, the width of lateral penumbra was found to be always lower at shallower depth than at deeper depth within the spread out Bragg peak (SOBP) region. The lateral penumbra results were less sensitive to the variation in the thickness of compensator, whereas lateral penumbra was independent of modulation. Overall, the comparison between the results of TPS with that of measurements indicates a good agreement for lateral penumbra, with TPS predicting higher values compared to

  12. P1 and N170 components distinguish human-like and animal-like makeup stimuli.

    Science.gov (United States)

    Luo, Shuwei; Luo, Wenbo; He, Weiqi; Chen, Xu; Luo, Yuejia

    2013-06-19

    This study used event-related potentials to investigate the sensitivity of P1 and N170 components to human-like and animal-like makeup stimuli, which were derived from pictures of Peking opera characters. As predicted, human-like makeup stimuli elicited larger P1 and N170 amplitudes than did animal-like makeup stimuli. Interestingly, a right hemisphere advantage was observed for human-like but not for animal-like makeup stimuli. Dipole source analyses of 130-200-ms window showed that the bilateral fusiform face area may contribute to the differential sensitivity of the N170 component in response to human-like and animal-like makeup stimuli. The present study suggests that the amplitudes of both the P1 and the N170 are sensitive for the mouth component of face-like stimuli.

  13. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    Directory of Open Access Journals (Sweden)

    Patrick Neff

    2017-05-01

    Full Text Available Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM sounds (two pure tones, noise, music, and frequency modulated (FM sounds and unmodulated sounds (pure tone, noise regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively.Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min, and loudness (reduced by 30 dB and linear fade out. Repeated measures mixed model analyses of variance (ANOVA were calculated to assess differences in loudness growth between the stimuli for each block separately.Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes with strongest suppression right after stimulus offset [F(6, 1331 = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink

  14. Physiological responses induced by pleasant stimuli.

    Science.gov (United States)

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  15. Blind Braille readers mislocate tactile stimuli.

    Science.gov (United States)

    Sterr, Annette; Green, Lisa; Elbert, Thomas

    2003-05-01

    In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.

  16. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura.

    Science.gov (United States)

    Granovsky, Yelena; Shor, Merav; Shifrin, Alla; Sprecher, Elliot; Yarnitsky, David; Bar-Shalita, Tami

    2018-03-27

    Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Psychophysiological effects of audiovisual stimuli during cycle exercise.

    Science.gov (United States)

    Barreto-Silva, Vinícius; Bigliassi, Marcelo; Chierotti, Priscila; Altimari, Leandro R

    2018-05-01

    Immersive environments induced by audiovisual stimuli are hypothesised to facilitate the control of movements and ameliorate fatigue-related symptoms during exercise. The objective of the present study was to investigate the effects of pleasant and unpleasant audiovisual stimuli on perceptual and psychophysiological responses during moderate-intensity exercises performed on an electromagnetically braked cycle ergometer. Twenty young adults were administered three experimental conditions in a randomised and counterbalanced order: unpleasant stimulus (US; e.g. images depicting laboured breathing); pleasant stimulus (PS; e.g. images depicting pleasant emotions); and neutral stimulus (NS; e.g. neutral facial expressions). The exercise had 10 min of duration (2 min of warm-up + 6 min of exercise + 2 min of warm-down). During all conditions, the rate of perceived exertion and heart rate variability were monitored to further understanding of the moderating influence of audiovisual stimuli on perceptual and psychophysiological responses, respectively. The results of the present study indicate that PS ameliorated fatigue-related symptoms and reduced the physiological stress imposed by the exercise bout. Conversely, US increased the global activity of the autonomic nervous system and increased exertional responses to a greater degree when compared to PS. Accordingly, audiovisual stimuli appear to induce a psychophysiological response in which individuals visualise themselves within the story presented in the video. In such instances, individuals appear to copy the behaviour observed in the videos as if the situation was real. This mirroring mechanism has the potential to up-/down-regulate the cardiac work as if in fact the exercise intensities were different in each condition.

  18. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    Science.gov (United States)

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  19. Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Masataka Kikuchi

    Full Text Available Alzheimer's disease (AD, the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs, we identified the PINs expressed in three brain regions: the entorhinal cortex (EC, hippocampus (HIP and superior frontal gyrus (SFG. Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system.

  20. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.