WorldWideScience

Sample records for stimulates glutamate release

  1. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    Science.gov (United States)

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated

  2. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes.

    Science.gov (United States)

    Tawfik, Vivianne L; Chang, Su-Youne; Hitti, Frederick L; Roberts, David W; Leiter, James C; Jovanovic, Svetlana; Lee, Kendall H

    2010-08-01

    Several neurological disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's disease and epilepsy remain largely unknown. To investigate the role of specific neurotransmitters in deep brain stimulation and determine the role of non-neuronal cells in its mechanism of action. We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in high-frequency stimulation-mediated abolishment of spindle oscillations. In this series of experiments, we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na channel blocker tetrodotoxin, but was eliminated with the vesicular H-ATPase inhibitor bafilomycin and the calcium chelator 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of 2-bis (2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester inhibited glutamate release in this setting. Vesicular astrocytic neurotransmitter release may be an important mechanism by which deep brain stimulation is able to achieve clinical benefits.

  3. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  4. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes

    International Nuclear Information System (INIS)

    Salazar, Miguel; Pariente, Jose Antonio; Salido, Gines Maria; Gonzalez, Antonio

    2008-01-01

    We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca 2+ ] c in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20 μM) dose dependently increases [Ca 2+ ] c , stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca 2+ -dependent, because incubation of astrocytes in the absence of extracellular Ca 2+ (medium containing 0.5 mM EGTA) and in the presence of the intracellular Ca 2+ chelator BAPTA (10 μM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage

  5. Real-time monitoring of extracellular l-glutamate levels released by high-frequency stimulation at region CA1 of hippocampal slices with a glass capillary-based l-glutamate sensor

    Directory of Open Access Journals (Sweden)

    Yuki Ikegami

    2014-12-01

    Full Text Available Real-time monitoring of l-glutamate released by high-frequency stimulation in region CA1 of mouse hippocampal slices was performed with a glass capillary-based sensor, in combination with the recoding of excitatory postsynaptic potentials (fEPSPs. A method for extracting l-glutamate currents from the recorded ones was described and applied for determining the level of extracellular l-glutamate released by 100 Hz stimulation. Recording of an l-glutamate current with a current sampling interval of 1 Hz was found to be useful for acquiring a Faradaic current that reflects l-glutamate level released by the high-frequency stimulation of 7 trains, each 20 stimuli at 100 Hz and inter-train interval of 3 s. The l-glutamate level was obtained as 15 ± 6 μM (n = 8 for the persistent enhancement of fEPSPs, i.e., the induction of long-term potentiation (LTP, and 3 ± 1 μM (n = 5 for the case of no LTP induction. Based on these observations, the level of the extracellular l-glutamate was shown to play a crucial role in the induction of LTP.

  6. Fluorescence imaging of glutamate release in neurons

    International Nuclear Information System (INIS)

    Wang, Ziqiang; Yeung, Edward S.

    1999-01-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to μM levels of glutamate with reasonable response time (∼30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from μM to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy

  7. Response of hippocampal mossy fiber zinc to excessive glutamate release.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto

    2007-01-01

    The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.

  8. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  9. Paraventricular Stimulation with Glutamate Elicits Bradycardia and Pituitary Responses

    Science.gov (United States)

    Darlington, Daniel N.; Miyamoto, Michael; Keil, Lanny C.; Dallman, Mary F.

    1989-01-01

    The excitatory neurotransmitter, L-glutamate (0.5 M, pH 7.4), or the organic acid, acetate (0.5 M, pH 7.4), was microinjected (50 nl over 2 min) directly into the paraventricular nuclei (PVN) of pentobarbital sodium-anesthetized rats while arterial blood pressure and heart rate and plasma adrenocorticotropic hormone (ACTH), vasopressin, and oxytocin were measured. Activation of PVN neurons with L-glutamate led to increases in plasma ACTH, vasopressin, and oxytocin and a profound bradycardia (-80 beats/min) with little change in arterial blood pressure. Microinjection of acetate had no effect on the above variables. The decrease in heart rate was shown to be dependent on the concentration of glutamate injected and the volume of injectate. The bradycardia was mediated through the autonomic nervous system because ganglionic blockade (pentolinium tartrate) eliminated the response; atropine and propranolol severely attenuated the bradycardia. The bradycardia was greatest when L-glutamate was microinjected into the caudal PVN. Injections into the rostral PVN or into nuclei surrounding the PVN led to small or nonsignificant decreases in heart rate. Focal electric stimulation (2-50 pA) of the PVN also led to decreases in heart rate and arterial blood pressure. These data suggest that activation of PVN neurons leads to the release of ACTH, vasopressin, and oxytocin from the pituitary and a bradycardia that is mediated by the autonomic nervous system.

  10. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  12. Interactions of MK-801 with glutamate-, glutamine- and methamphetamine-evoked release of [3H]dopamine from striatal slices

    International Nuclear Information System (INIS)

    Bowyer, J.F.; Scallet, A.C.; Holson, R.R.; Lipe, G.W.; Slikker, W. Jr.; Ali, S.F.

    1991-01-01

    The interactions of MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine], glutamate and glutamine with methamphetamine (METH)-evoked release of [ 3 H]dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg 2+ present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated [ 3 H]dopamine and [ 3 H]metabolite (tritium) release of 3 to 6 and 12 to 16% of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg 2+ present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg 2+ present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg 2+ present, 1 mM glutamine increased glutamate release and induced the release of [ 3 H]dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%

  13. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices.

    Science.gov (United States)

    Bennett, G C; Boarder, M R

    2000-10-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release. Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K(+) in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (0.2 mM). High K(+) substantially increased efflux of glutamate from the slices. Basal glutamate release was unchanged by the presence of nucleotides or adenosine at concentrations of 300 microM. Adenosine, ATP, ADP and adenosine 5'-O-(3-thiotriphoshate) at 300 microM attenuated depolarisation-evoked release of glutamate. However UTP, 2-methylthio ATP, 2-methylthio ADP, and alpha,beta-methylene ATP at 300 microM had no effect on stimulated glutamate efflux. Adenosine deaminase blocked the effect of adenosine, but left the response to ATP unchanged. The A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine antagonised the inhibitory effect of both adenosine and ATP. Cibacron blue 3GA inhibited stimulus-evoked glutamate release when applied alone. When cibacron blue 3GA was present with ATP, stimulus-evoked glutamate release was almost eliminated. However, this P2 antagonist had no effect on the inhibition by adenosine. These results show that the release of glutamate from depolarised nerve terminals of the rat cerebral cortex is inhibited by adenosine and ATP. ATP appears to act directly and not through conversion to adenosine.

  14. A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release

    Directory of Open Access Journals (Sweden)

    Xiling Li

    2018-05-01

    Full Text Available Summary: We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ. We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment. : Homeostatic mechanisms stabilize synaptic strength, but the signaling systems remain enigmatic. Li et al. suggest the existence of a homeostat operating at the Drosophila neuromuscular junction that responds to excess glutamate through an autocrine mechanism to adaptively inhibit presynaptic neurotransmitter release. This system parallels forms of plasticity at central synapses. Keywords: homeostatic synaptic plasticity, glutamate homeostasis, synaptic depression, Drosophila neuromuscular junction

  15. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  16. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  17. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells.

    Science.gov (United States)

    Sanzgiri, R P; Araque, A; Haydon, P G

    1999-11-05

    Recent Ca(2+) imaging studies in cell culture and in situ have shown that Ca(2+) elevations in astrocytes stimulate glutamate release and increase neuronal Ca(2+) levels, and that this astrocyte-neuron signaling can be stimulated by prostaglandin E(2) (PGE(2)). We investigated the electrophysiological consequences of the PGE(2)-mediated astrocyte-neuron signaling using whole-cell recordings on cultured rat hippocampal cells. Focal application of PGE(2) to astrocytes evoked a Ca(2+) elevation in the stimulated cell by mobilizing internal Ca(2+) stores, which further propagated as a Ca(2+) wave to neighboring astrocytes. Whole-cell recordings from neurons revealed that PGE(2) evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca(2+) wave and was mediated through both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE(2)-evoked Ca(2+) elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. Copyright 1999 John Wiley & Sons, Inc.

  18. Vesicular glutamate release from central axons contributes to myelin damage.

    Science.gov (United States)

    Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert

    2018-03-12

    The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.

  19. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices

    OpenAIRE

    Bennett, Gillian C; Boarder, Michael R

    2000-01-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release.Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K+ in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxyl...

  20. RANTES modulates the release of glutamate in human neocortex.

    Science.gov (United States)

    Musante, Veronica; Longordo, Fabio; Neri, Elisa; Pedrazzi, Marco; Kalfas, Fotios; Severi, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2008-11-19

    The effects of the recombinant chemokine human RANTES (hRANTES) on the release of glutamate from human neocortex glutamatergic nerve endings were investigated. hRANTES facilitated the spontaneous release of d [(3)H]D-aspartate ([(3)H]DASP-) by binding Pertussis toxin-sensitive G-protein-coupled receptors (GPCRs), whose activation caused Ca(2+) mobilization from inositol trisphosphate-sensitive stores and cytosolic tyrosine kinase-mediated phosphorylations. Facilitation of release switched to inhibition when the effects of hRANTES on the 12 mM K(+)-evoked [(3)H]D-ASP exocytosis were studied. Inhibition of exocytosis relied on activation of Pertussis toxin-sensitive GPCRs negatively coupled to adenylyl cyclase. Both hRANTES effects were prevented by met-RANTES, an antagonist at the chemokine receptors (CCRs) of the CCR1, CCR3, and CCR5 subtypes. Interestingly, human neocortex glutamatergic nerve endings seem to possess all three receptor subtypes. Blockade of CCR1 and CCR5 by antibodies against the extracellular domain of CCRs prevented both the hRANTES effect on [(3)H]D-ASP release, whereas blockade of CCR3 prevented inhibition, but not facilitation, of release. The effects of RANTES on the spontaneous and the evoked release of [(3)H]D-ASP were also observed in experiments with mouse cortical synaptosomes, which may therefore represent an appropriate animal model to study RANTES-induced effects on neurotransmission. It is concluded that glutamate transmission can be modulated in opposite directions by RANTES acting at distinct CCR receptor subtypes coupled to different transduction pathways, consistent with the multiple and sometimes contrasting effects of the chemokine.

  1. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture.

    Science.gov (United States)

    Johnson, M D

    1994-02-01

    Serotonergic neurons are thought to play a role in depression and obsessive compulsive disorder. However, their functional transmitter repertoire is incompletely known. To investigate this repertoire, intracellular recordings were obtained from 132 cytochemically identified rat mesopontine serotonergic neurons that had re-established synapses in microcultures. Approximately 60% of the neurons evoked excitatory glutamatergic potentials in themselves or in target neurons. Glutamatergic transmission was frequently observed in microcultures containing a solitary serotonergic neuron. Evidence for co-release of serotonin and glutamate from single raphe neurons was also obtained. However, evidence for gamma-aminobutyric acid release by serotonergic neurons was observed in only two cases. These findings indicate that many cultured serotonergic neurons form glutamatergic synapses and may explain several observations in slices and in vivo.

  2. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  3. Abnormal glutamate release in aged BTBR mouse model of autism.

    Science.gov (United States)

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  4. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1993-01-01

    differences in the mode of action of the two depolarizing stimuli were reflected in the properties of the increase in [Ca++]i elicited by 55 mM K+ and 100 microM glutamate, respectively. The K(+)-induced increase in [Ca++]i was reduced by both verapamil and Ca(++)-free media whereas the corresponding...... neurotransmitter glutamate (100 microM). Both depolarizing stimuli exerted prompt increases in the release of preloaded [3H]GABA as well as in [Ca++]i. However, the basic properties of transmitter release and the increase in [Ca++]i under a variety of conditions were different during stimulation with K...... was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  5. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    Science.gov (United States)

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects.

  6. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  7. Off-line concomitant release of dopamine and glutamate involvement in taste memory consolidation.

    Science.gov (United States)

    Guzmán-Ramos, Kioko; Osorio-Gómez, Daniel; Moreno-Castilla, Perla; Bermúdez-Rattoni, Federico

    2010-07-01

    It has been postulated that memory consolidation process requires post-learning molecular changes that will support long-term experiences. In the present study, we assessed with in vivo microdialysis and capillary electrophoresis whether such changes involve the release of neurotransmitters at post-acquisition stages. Using conditioned taste aversion paradigm we observed spontaneous off-line (i.e. in absence of stimulation) dopamine and glutamate reactivation within the insular cortex about 45 min after the stimuli association. These increments did not appear in control groups that were unable to acquire the task, and it seems to be dependent on amygdala activity since its reversible inactivation by tetrodotoxin impaired cortical off-line release of both neurotransmitters and memory consolidation. In addition, blockade of dopaminergic D1 and/or NMDA receptors before the off-line activity impaired long- but not short-term memory. These results suggest that off-line extracellular increments of glutamate and dopamine have a significant functional role in consolidation of taste memory.

  8. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  9. Group I mGlu receptors potentiate synaptosomal [3H]glutamate release independently of exogenously applied arachidonic acid

    International Nuclear Information System (INIS)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J.

    1999-01-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [ 3 H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 μM) increased 4AP-evoked [ 3 H]glutamate release (143.32±2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC 50 =1.60±0.25 μM; E max =147.61±10.96% control) 4AP-evoked [ 3 H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu 1 receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 μM) and was BSA-insensitive. The selective mGlu 5 receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300μM) was without effect. DHPG (100 μM) also potentiated both 30 mM and 50 mM K + -evoked [ 3 H]glutamate release (121.60±12.77% and 121.50±4.45% control, respectively). DHPG (100 μM) failed to influence both 4AP-stimulated 45 Ca 2+ influx and 50 mM K + -induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A 1 receptor, group II/III mGlu receptors or GABA B receptor activity is unlikely since 4AP-evoked [ 3 H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-α-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu 1 receptor-like' receptor potentiates [ 3 H]glutamate release from cerebrocortical synaptosomes in the absence of exogenously applied arachidonic acid. This PKC dependent effect is unlikely to be via modulation of synaptosomal membrane

  10. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  11. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan (China); Lu, Cheng-Wei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Wang, Chia-Chuan; Lu, Jyh-Feng [School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China)

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  12. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    International Nuclear Information System (INIS)

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-01-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K + channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca 2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] C ), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na + /Ca 2+ exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca 2+ entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did

  13. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  14. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  15. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  16. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    Science.gov (United States)

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  17. Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus.

    Science.gov (United States)

    White, B D; Du, F; Higginbotham, D A

    2003-12-01

    Moderately low-protein diets lead to a rapid increase in food intake and body fat. The increase in feeding is associated with a decrease in the concentration of serum urea nitrogen, suggesting that the low-protein-induced increase in food intake may be related to the decreased metabolism of nitrogen from amino acids. We hypothesized that low dietary protein would be associated with a decrease in the synaptic release of two nitrogen-containing neurotransmitters, GABA and glutamate, whose nitrogen can be derived from amino acids. In this study, we examined the effects of a low-protein diet (10% casein) in Sprague-Dawley rats on the in vitro release of 3H-GABA and 14C-glutamate from the lateral and medial hypothalamus. The low-protein diet increased food intake by about 25% after one day. After four days, the in vitro release of radiolabeled GABA and glutamate was assessed. The calcium-dependent, potassium-stimulated release of radiolabeled GABA and glutamate from the lateral hypothalamus was decreased in rats fed the low-protein diet. The magnitude of neurotransmitter release from the lateral hypothalamus inversely correlated with food intake. No dietary differences in the release of neurotransmitters from the medial hypothalamus were observed. These results support the contention that alterations in nitrogen metabolism are associated with low-protein-induced feeding.

  18. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  19. Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3

    Directory of Open Access Journals (Sweden)

    Johannes eZimmermann

    2015-09-01

    Full Text Available The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3 is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamatergic neurons has been demonstrated, the interplay between VGLUT3 and the neuron’s characteristic neurotransmitter transporter, particularly in the case of GABAergic neurons, at the synaptic and vesicular level is less clear. In this study, we explore how exogenous expression of VGLUT3 in striatal GABAergic neurons affects the packaging and release of glutamate and GABA in synaptic vesicles. We found that VGLUT3 expression in isolated, autaptic GABAergic neurons leads to action potential evoked release of glutamate. Under these conditions, glutamate and GABA could be packaged together in single vesicles release either spontaneously or asynchronously. However, the presence of glutamate in GABAergic vesicles did not affect uptake of GABA itself, suggesting a lack of synergy in vesicle filling for these transmitters. Finally, we found postsynaptic detection of glutamate released from GABAergic terminals difficult when bona fide glutamatergic synapses were present, suggesting that co-released glutamate cannot induce postsynaptic glutamate receptor clustering.

  20. Gastrin-releasing peptide stimulates glycoconjugate release from feline trachea

    International Nuclear Information System (INIS)

    Lundgren, J.D.; Baraniuk, J.N.; Ostrowski, N.L.; Kaliner, M.A.; Shelhamer, J.H.

    1990-01-01

    The effect of gastrin-releasing peptide (GRP) on respiratory glycoconjugate (RGC) secretion was investigated in a feline tracheal organ culture model. RGC secretion was stimulated by GRP in a dose-dependent fashion at concentrations from 10(-8) to 10(-5) M (range 15-38% increase above control) with a peak effect within 0.5-1 h of incubation. GRP-(14-27), the receptor binding portion of GRP, and the related molecule, bombesin, also stimulated RGC secretion by approximately 20% above control. Acetyl-GRP-(20-27) stimulated RGC release by 10%, whereas GRP-(1-16) was inactive. Autoradiographic studies with 125I-GRP revealed that specific binding was restricted to the submucosal glands and the surface epithelium. A specific radioimmunoassay showed the content of GRP in feline trachea after extraction with ethanol-acetic acid to be 156 +/- 91 fmol/g wet wt. Indirect immunohistochemistry indicated that ganglion cells located just outside the cartilage contained GRP-immunoreactive materials. GRP is a novel mucus secretagogue that may participate in regulating airway mucosal gland secretion

  1. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  2. Group I mGlu receptors potentiate synaptosomal [{sup 3}H]glutamate release independently of exogenously applied arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J. [Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom)

    1999-04-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [{sup 3}H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 {mu}M) increased 4AP-evoked [{sup 3}H]glutamate release (143.32{+-}2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC{sub 50}=1.60{+-}0.25 {mu}M; E{sub max}=147.61{+-}10.96% control) 4AP-evoked [{sup 3}H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu{sub 1} receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 {mu}M) and was BSA-insensitive. The selective mGlu{sub 5} receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300{mu}M) was without effect. DHPG (100 {mu}M) also potentiated both 30 mM and 50 mM K{sup +}-evoked [{sup 3}H]glutamate release (121.60{+-}12.77% and 121.50{+-}4.45% control, respectively). DHPG (100 {mu}M) failed to influence both 4AP-stimulated {sup 45}Ca{sup 2+} influx and 50 mM K{sup +}-induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A{sub 1} receptor, group II/III mGlu receptors or GABA{sub B} receptor activity is unlikely since 4AP-evoked [{sup 3}H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-{alpha}-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu{sub 1} receptor-like' receptor potentiates [{sup 3}H]glutamate release from cerebrocortical synaptosomes in the absence of

  3. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  4. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...

  5. NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses

    Directory of Open Access Journals (Sweden)

    Abigail Kalmbach

    2010-07-01

    Full Text Available Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB to the lateral superior olive (LSO is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs. To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapse, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDARs antagonist APV. APV, however, has no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. Small NMDAR-mediated calcium responses were also observed under physiological levels of extracellular magnesium concentrations indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors decreased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.

  6. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents.

    Science.gov (United States)

    Glavinovíc, M I

    1999-02-01

    The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding

  7. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  8. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    Science.gov (United States)

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  9. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  10. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  11. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    Directory of Open Access Journals (Sweden)

    Kilbride Seán M

    2011-07-01

    Full Text Available Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2 and complex IV (cytochrome c oxidase EC 1.9.3.1 are reduced by 30-70% in Huntington's disease and Alzheimer's disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  12. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    LENUS (Irish Health Repository)

    Kilbride, Sean M

    2011-07-26

    Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2) and complex IV (cytochrome c oxidase EC 1.9.3.1) are reduced by 30-70% in Huntington\\'s disease and Alzheimer\\'s disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes) depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  13. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    Science.gov (United States)

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  14. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    International Nuclear Information System (INIS)

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-01-01

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na + -channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  15. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    Science.gov (United States)

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  16. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe...... stimulated the release of insulin. The effect of L-leucine OMe was maximal at 5 mmol/liter. Whereas the Km for glucose-stimulated insulin release was unaffected by 1 mmol/liter L-leucine OMe, the maximal release of D-glucose was increased by the amino acid derivative that appeared more effective than L......-leucine. L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells...

  17. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Wei; Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Chia-Ying [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Chemistry, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang District, New Taipei City 24205, Taiwan (China); Huang, Shu-Kuei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan (China); Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan (China)

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{sub 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  18. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  19. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  20. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  1. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    Science.gov (United States)

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  2. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    Science.gov (United States)

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  3. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  4. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  5. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release

    DEFF Research Database (Denmark)

    Bortz, D M; Mikkelsen, J D; Bruno, J P

    2013-01-01

    The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate levels...

  6. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    International Nuclear Information System (INIS)

    Jiang, Huixin; Kobayashi, Takaomi

    2017-01-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm 3 ) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm 3 of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  7. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huixin; Kobayashi, Takaomi, E-mail: takaomi@nagaokaut.ac.jp

    2017-06-01

    Ultrasound (US) stimulated drug release was examined in this study using a chitin hydrogel matrix loaded with gallic acid (GA), a drug used for wound healing and anticancer. Using phase inversion, GA-chitin hydrogels were prepared from chitin-dimethylacetamide (DMAc)/lithium chloride (LiCl) solution in the presence of GA, with 24 h exposure of the solution to water vapor. The GA release from the GA-chitin hydrogel was examined under different US powers of 0–30 W at 43 kHz. The effects of GA loading amounts in the hydrogels (0.54, 0.43, and 0.25 mg/cm{sup 3}) and chitin concentrations (0.1, 0.5, and 1 wt%) on the release behaviors were recorded under 43 kHz US exposure at 30 W. Results show that US accelerated the release efficiencies for all samples. Furthermore, the release efficiency increased concomitantly with increasing US power, GA loading amount, and decrease of the chitin concentration. The highest release rate of 0.74 μg/mL·min was obtained from 0.54 mg/cm{sup 3} of GA-loaded hydrogel fabricated from a 0.1 wt% chitin mixture solution under 43 kHz US exposure at 30 W: nine times higher than that of the sample without US exposure. The hydrogel viscoelasticity demonstrated that the US irradiation rigidified the material. FT-IR showed that US can break the hydrogen bonds in the GA-chitin hydrogels. - Highlights: • Ultrasound (US) stimulated Gallic acid (GA) release from chitin hydrogel was studied. • The release efficiency of GA from chitin hydrogel increased nine times when irradiated by 43 kHz US compared with the sample without US. • Generalized 2D correlation and deconvolution study of FT-IR showed that US could promote the GA release by breaking hydrogen bonds.

  8. ATP secretion from nerve trunks and Schwann cells mediated by glutamate.

    Science.gov (United States)

    Liu, Guo Jun; Bennett, Max R

    2003-11-14

    ATP release from rat sciatic nerves and from cultured Schwann cells isolated from the nerves was investigated using an online bioluminescence technique. ATP was released in relatively large amounts from rat sciatic nerve trunks during electrical stimulation. This release was blocked by the sodium channel inhibitor tetrodotoxin and the non-NMDA glutamate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Schwann cells isolated from the nerve trunks did not release ATP when electrically stimulated but did in response to glutamate in a concentration-dependent manner. Glutamate-stimulated ATP release was inhibited by specific non-competitive AMPA receptor antagonist GYKI 52466 and competitive non-NMDA receptor antagonist CNQX. Glutamate-stimulated ATP release was decreased by inhibition of anion transporter inhibitors by furosemide, cystic fibrosis transmembrane conductance regulator by glibenclamide and exocytosis by botulinum toxin A, indicating that anion transporters and exocytosis provide the main secretion mechanisms for ATP release from the Schwann cells.

  9. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    Science.gov (United States)

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  10. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  11. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  12. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake

    DEFF Research Database (Denmark)

    Colleoni, Simona; Jensen, Anders Asbjørn; Landucci, Elisa

    2008-01-01

    on the three hEAAT subtypes. (-)-HIP-A maintained the remarkable property, previously reported with the racemates, of inhibiting synaptosomal glutamate-induced [3H]D-aspartate release (reverse transport) at concentrations significantly lower than those inhibiting [3H]L-glutamate uptake. New data suggest...

  13. Estradiol induces dendritic spines by enhancing glutamate release independent of transcription: A mechanism for organizational sex differences

    Science.gov (United States)

    Schwarz, Jaclyn M.; Liang, Shu-Ling; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    SUMMARY The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the model is the ability to treat neonatal females with estradiol to permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a non-genomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases inducing dendritic spine formation. These results reveal a trans-neuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning. PMID:18498739

  14. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal

  15. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    Science.gov (United States)

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A

    2002-01-01

    The lipid mediators generated by phospholipases A(2) (PLA(2)), free arachidonic acid (AA), eicosanoids, and platelet-activating factor, modulate neuronal activity; when overproduced, some of them become potent neurotoxins. We have shown, using primary cortical neuron cultures, that glutamate...... and secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate......) and in minor changes in other phospholipids. A similar profile, although of greater magnitude, was observed 20 hr posttreatment. Glutamate (80 microM) induced much less mobilization of (3)H-AA than did sPLA(2) and resulted in a threefold greater degradation of (3)H-AA PE than of (3)H-AA PC by 20 hr...

  17. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    International Nuclear Information System (INIS)

    Ritchie, D.G.

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with [ 14 C]glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant [ 14 C]glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, [ 14 C]glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6

  18. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Andersen, Jens V

    2017-01-01

    by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during...

  19. Release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices: comparison with endogenous and exogenous labeled GABA

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1983-01-01

    To compare the storage and release of endogenous GABA, of [ 3 H]GABA formed endogenously from glutamate, and of exogenous [ 14 C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4- 3 H]1-glutamate and 0.5 microCi/ml [U- 14 C]GABA and then were superfused in the presence or absence of Ca + with either 50 mM K + or 50 microM veratridine. Exogenous [ 14 C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [ 3 H]GABA stayed constant over a 48 min period. In the presence of Ca + 50 mM K + and in the presence or absence of Ca2 + veratridine released exogenous [ 14 C]GABA more rapidly than endogenous or endogenously formed [ 3 H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [ 14 C]GABA was three times, while that of endogenously formed [ 3 H]GABA was only 50% higher than that in the slices. The observation that endogenous GABA and [ 3 H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [ 3 H] glutamate can enter a glutamate pool that normally serves as precursor of GABA

  20. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  1. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  2. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  3. Cyclic ADP ribose-dependent Ca2+ release by group I metabotropic glutamate receptors in acutely dissociated rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    Full Text Available Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5 exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+. In this study, we characterized the cellular mechanisms underlying Ca(2+ mobilization induced by (RS-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR, while the PLC/IP(3 signaling pathway was not involved in Ca(2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4, led to transient Ca(2+ mobilization by mGluR5 and Ca(2+ influx through L-type Ca(2+ channels. We found no evidence that mGluR5-mediated Ca(2+ release and Ca(2+ influx through L-type Ca(2+ channels interact to generate supralinear Ca(2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+ mobilization by mGluR5 in the somata of hippocampal neurons.

  4. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  5. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  6. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice

    Directory of Open Access Journals (Sweden)

    Flóra Gölöncsér

    2017-10-01

    Full Text Available Serotonergic and glutamatergic neurons of median raphe region (MRR play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7 are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM, whereas the selective 5-HT1A agonist buspirone (0.1 μM was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM, and AZ-10606120 (0.1 μM. Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the

  7. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  8. Glucose deprivation stimulates Cu(2+) toxicity in cultured cerebellar granule neurons and Cu(2+)-dependent zinc release.

    Science.gov (United States)

    Isaev, Nickolay K; Genrikhs, Elisaveta E; Aleksandrova, Olga P; Zelenova, Elena A; Stelmashook, Elena V

    2016-05-27

    Copper chloride (0.01mM, 2h) did not have significant influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution. However, CuCl2 caused severe neuronal damage by glucose deprivation (GD). The glutamate NMDA-receptors blocker MK-801 partially and antioxidant N-acetyl-l-cysteine (NAC) or Zn(2+) chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) almost entirely protected CGNs from this toxic effect. Measurements of intracellular calcium ions using Fluo-4 AM, or zinc ions with FluoZin-3 AM demonstrated that 1 h-exposure to GD induced intensive increase of Fluo-4 but not FluoZin-3 fluorescence in neurons. The supplementation of solution with CuCl2 caused an increase of FluoZin-3, Fluo-4 and CellROX Green (reactive oxygen species probe) fluorescence by GD. The stimulation of Fluo-4 but not FluoZin-3 fluorescence by copper could be prevented partially by MK-801 and as well as CellROX Green fluorescence by NAC at GD. This data imply that during GD copper ions induce intense displacement zinc ions from intracellular stores, in addition free radical production, glutamate release and Ca(2+) overload of CGNs, that causes death of neurons as a result. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    Science.gov (United States)

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  10. HGF is released from buccal fibroblasts after smokeless tobacco stimulation

    DEFF Research Database (Denmark)

    Dabelsteen, S; Christensen, S; Gron, B

    2005-01-01

    on exposure time and on concentration of the tobacco extract. High concentration increased production of HGF 4-fold. KGF production was doubled when high concentration of tobacco was used, low concentration did not stimulate cells. GM-CSF production was low in both stimulated and non-stimulated cells......To investigate the effect of smokeless tobacco (ST) on (1) HGF, KGF and GM-CSF expression by buccal fibroblasts and (2) on keratinocyte and fibroblast proliferation. Buccal fibroblasts were stimulated with different concentrations of ST extracts in a double dilution from 0.50% w/v to 0.03% w....... Keratinocytes and fibroblasts showed no increase in proliferation after stimulation with increased concentrations of ST. The results suggest that HGF and KGF may play an important role as a paracrine growth factor in epithelial hyperplasia in ST lesions....

  11. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.; Niemeyer, M. I.; Machler, P.; Ruminot, I.; Lerchundi, R.; Wyss, M. T.; Stobart, J.; Fernandez-Moncada, I.; Valdebenito, R.; Garrido-Gerter, P.; Contreras-Baeza, Y.; Schneider, B. L.; Aebischer, P.; Lengacher, S.; San Martin, A.; Le Douce, J.; Bonvento, G.; Magistretti, Pierre J.; Sepulveda, F. V.; Weber, B.; Barros, L. F.

    2015-01-01

    in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  12. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  13. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    OpenAIRE

    Garcia, Bonnie G.; Neely, M. Diana; Deutch, Ariel Y.

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if dec...

  14. Stimulation of GPR30 increases release of EMMPRIN-containing microvesicles in human uterine epithelial cells.

    Science.gov (United States)

    Burnett, Lindsey A; Light, Mallory M; Mehrotra, Pavni; Nowak, Romana A

    2012-12-01

    Uterine remodeling is highly dependent on the glycosylated transmembrane protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN). Previous studies indicate estradiol can increase EMMPRIN expression in uterine cells and promote subsequent induction of MMP production. The aim of this study was to investigate the role of G protein-coupled receptor 30 (GPR30) stimulation on EMMPRIN microvesicle release in the human uterine epithelial cell line hTERT-EEC (EECs). We examined EMMPRIN release by human EECs in response to GPR30 stimulation by microvesicle isolation, Western blot, and immunocytochemistry. We employed a pharmacological approach using the GPR30-selective agonist G1 and the antagonist G15 to determine the receptor specificity of this response. We demonstrated GPR30 expression in EECs and release of EMMPRIN in microvesicles in response to stimulation of GPR30. G1, estradiol, and cholera toxin stimulated EMMPRIN release in microvesicles as detected by Western blot and immunocytochemistry, indicating that stimulation of GPR30 can induce EMMPRIN microvesicle release. These data indicate that EMMPRIN release in microvesicles can be mediated by stimulation of GPR30 in human EECs, suggesting that inappropriate stimulation or expression of this receptor may be significant in uterine pathology.

  15. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    Science.gov (United States)

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  16. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  17. Lack of stimulation of 24-hour growth hormone release by hypocaloric diet in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Juul, A; Kjems, L L

    1995-01-01

    . This suggests a reversible defect in GH release, rather than a persistent preexisting disorder. It is hypothesized that enhanced bioavailability of IGF-I, acting in concert with elevated proinsulin and insulin levels, may account for the lack of stimulation of 24-hr GH release by the hypocaloric diet in obese...... subjects. We conclude that the increase in 24-h spontaneous GH release and IGFBP-1 levels observed in normal subjects during the last 24 h of a 96-h VLCD is abolished in obese subjects. The lack of short term hypocaloric stimulation of spontaneous GH release may promote the retention of body fat...

  18. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  19. Staphylococcus aureus and influenza A virus stimulate human bronchoalveolar cells to release histamine and leukotrienes

    DEFF Research Database (Denmark)

    Clementsen, P; Bisgaard, H; Pedersen, M

    1989-01-01

    persons were stimulated with Staph. aureus no release of leukotriene C4 was found. The mediator release caused by bacteria and virus might be of importance for the exacerbation of bronchial asthma in upper respiratory tract infections, since histamine is assumed to increase the epithelial permeability...

  20. Ultraviolet radiation stimulates the release of arachidonic acid from mammalian cells in culture

    International Nuclear Information System (INIS)

    De Leo, V.A.; Hanson, D.; Weinstein, I.B.; Harber, L.C.

    1985-01-01

    C3H 10T1/2 cells in culture were prelabelled with [ 3 H]arachidonic acid and exposed to UVB radiation. Almost immediately after irradiation cells released labelled arachidonate metabolites into media in a dose dependent manner. This release was inhibited by removing calcium ions from the system and by the addition of dexamethasone and parabromophenacyl bromide to the system. This suggests that the UVB stimulated release of arachidonic acid from membrane phospholipids is, in part, mediated by a phospholipase A 2 enzyme system. Thin layer chromatographic examination of media extracts revealed a dose dependent UVB stimulation of prostaglandin production by cultured cells. (author)

  1. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  2. Oxygen sensitivity of potassium- and angiotensin II-stimulated aldosterone release by bovine adrenal cells.

    Science.gov (United States)

    Brickner, R C; Raff, H

    1991-04-01

    Angiotensin II (AII) and extracellular K+, acting through different intracellular mechanisms, stimulate aldosterone release in a synergistic fashion. We have previously shown that decreases in oxygen (O2) within the physiological range inhibit AII, cyclic AMP (cAMP) and ACTH-stimulated aldosterone release. The present experiment evaluated the effect of various concentrations of O2 on K+-stimulated aldosterone release in the presence and absence of AII. Dispersed bovine adrenal glomerulosa cells were incubated with different concentrations of K+ (0.9-5.4 mmol/l) without and with AII (10 nmol/l) under different concentrations of O2 (0, 5 or 50%); 21% O2 (pO2 = 19.9 +/- 0.5 kPa,n = 9) was used as reference control for comparison. In all cases, increases in K+ stimulated aldosterone release, an effect augmented by AII. Under 0% O2 (pO2 = 8.1 +/- 0.3 kPa, n = 3) and 5% O2 (pO2 = 12.8 +/- 0.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly inhibited compared with that under 21% O2. Conversely, under 50% O2 (pO2 = 36.3 +/- 2.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly augmented. Cortisol secretion was not significantly affected by 5% or 50% O2 but was significantly decreased under 0% O2. The effect of O2 on K+/AII stimulation of aldosterone release, as well as previous experiments with cAMP, progesterone and ACTH, suggest a final common post-receptor oxygen-sensitive component of the aldosterone synthetic pathway. It is suggested that one or more enzymes in the aldosterone synthetic pathway is/are exquisitely sensitive to small changes in O2 within the physiological range.

  3. The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke

    Science.gov (United States)

    Dohare, Preeti; Hyzinski-García, María C.; Vipani, Aarshi; Bowens, Nicole H.; Nalwalk, Julia W.; Feustel, Paul J.; Keller, Richard W.; Jourd’heuil, David; Mongin, Alexander A.

    2014-01-01

    The contribution of oxidative stress to ischemic brain damage is well established. Nevertheless, for unknown reasons, several clinically tested antioxidant therapies failed to show benefits in human stroke. Based on our previous in vitro work, we hypothesized that the neuroprotective potency of antioxidants is related to their ability to limit release of the excitotoxic amino acids, glutamate and aspartate. We explored the effects of two antioxidants, tempol and edaravone, on amino acid release in the brain cortex, in a rat model of transient occlusion of the middle cerebral artery (MCAo). Amino acid levels were quantified using a microdialysis approach, with the probe positioned in the ischemic penumbra as verified by a laser Doppler technique. Two-hour MCAo triggered a dramatic increase in the levels of glutamate, aspartate, taurine and alanine. Microdialysate delivery of 10 mM tempol reduced the amino acid release by 60–80%, while matching levels of edaravone had no effect. In line with these latter data, an intracerebroventri-cular injection of tempol but not edaravone (500 nmols each, 15 minutes prior to MCAo) reduced infarction volumes by ~50% and improved neurobehavioral outcomes. In vitro assays showed that tempol was superior in removing superoxide anion, whereas edaravone was more potent in scavenging hydrogen peroxide, hydroxyl radical, and peroxynitrite. Overall, our data suggests that the neuroprotective properties of tempol are likely related to its ability to reduce tissue levels of the superoxide anion and pathological glutamate release, and, in such a way, limit progression of brain infarction within ischemic penumbra. These new findings may be instrumental in developing new antioxidant therapies for treatment of stroke. PMID:25224033

  4. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  5. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    Science.gov (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  6. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    International Nuclear Information System (INIS)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  7. Exogenous glutamate induces short and long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Pessia, M; Pettorossi, V E

    2001-08-08

    In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.

  8. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  9. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.

  10. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    International Nuclear Information System (INIS)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters

  11. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    to the presynaptic neurons as the nonexcitatory amino acid glutamine. The cycle was initially thought to function with a 1:1 ratio between glutamate released and glutamine taken up by neurons. However, studies of glutamate metabolism in astrocytes have shown that a considerable proportion of glutamate undergoes...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH......The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...

  12. Increased cerebral (R-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2011-06-01

    Full Text Available Abstract Background The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI and to relate these findings to glutamate release. Procedures Sequential dynamic (R-[11C]PK11195 PET scans were performed in rats 24 hours before (baseline, and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno-histochemistry. Results Ten days after TBI, (R-[11C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p -1 as compared with the sham procedure (6.4 ± 3.6 μmol·L-1. Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B. Conclusions Increased cerebral uptake of (R-[11C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.

  13. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  14. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.

    Science.gov (United States)

    Lee, Joonsup; Wen, Beryl; Carter, Elizabeth A; Combes, Valery; Grau, Georges E R; Lay, Peter A

    2017-07-01

    Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. © FASEB.

  15. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1993-01-01

    was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  16. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  17. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    Science.gov (United States)

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans. Copyright © 2010 Wiley Periodicals, Inc., Inc.

  18. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    Science.gov (United States)

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Kisspeptin stimulates growth hormone release by utilizing Neuropeptide Y pathways and is dependent on the presence of ghrelin

    Science.gov (United States)

    Although kisspeptin is the primary stimulator of gonadotropin releasing hormone secretion and therefore the hypothalamic-pituitary gonadal axis, new findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Central delivery of kisspep...

  20. Dopamine inhibits maitotoxin-stimulated pituitary 45Ca2+ efflux and prolactin release

    International Nuclear Information System (INIS)

    Login, I.S.; Judd, A.M.; MacLeod, R.M.

    1986-01-01

    The authors examined the hypothesis that dopaminergic inhibition of prolactin release is coupled to modulation of cellular calcium flux. Dispersed female rat pituitary cells were prelabeled in 45 Ca 2+ and perifused to determine simultaneously fractional calcium efflux and prolactin release, as stimulated by maitotoxin, a calcium channel activator. The integrated response of each parameter to 5 ng/ml maitotoxin was obtained in individual perifusion columns in the absence or presence of various concentrations of dopamine. Maitotoxin-stimulated calcium efflux was suppressed by dopamine concentrations of 0.01 μM and greater and achieved a maximal effect at ∼0.1 μM, at which calcium efflux was reduced by 50%. Maitotoxin-stimulated prolactin release was inhibited by 0.03 μM dopamine and greater concentrations, and at a concentration of ∼10.0 μM dopamine the effect became maximal at ∼85% suppression. Haloperidol (0.1 μM) blocked the effects of 0.1 μM dopamine on both parameters. Simultaneous suppression of maitotoxin-stimulated calcium efflux and prolactin release by concentrations of dopamine within the nonomolar range suggests that dopamine receptor activation is negatively coupled to modulation of calcium flux in the physiological regulation of prolactin secretion

  1. Mechanism of S100b release from rat cortical slices determined under basal and stimulated conditions.

    Science.gov (United States)

    Gürsoy, Murat; Büyükuysal, R Levent

    2010-03-01

    Incubation of rat cortical slices in a medium that was not containing oxygen and glucose (oxygen-glucose deprivation, OGD) caused a 200% increase in the release of S100B. However, when slices were transferred to a medium containing oxygen and glucose (reoxygenation conditions, or REO), S100B release reached 500% of its control value. Neither inhibition of nitric oxide (NO) synthase by L-NAME nor addition of the NO donors sodium nitroprussid (SNP) or hydroxylamine (HA) to the medium altered basal S100B release. Similarly, the presence of SNP, HA or NO precursor L: -arginine in the medium, or inhibition of NO synthase by L-NAME also failed to alter OGD- and REO-induced S100B outputs. Moreover, individual inhibition of PKC, PLA(2) or PLC all failed to attenuate the S100B release determined under control condition or enhanced by either OGD or REO. Blockade of calcium channels with verapamil, chelating the Ca(+2) ions with BAPTA or blockade of sodium channels with tetrodotoxin (TTX) did not alter OGD- and REO-induced S100B release. In contrast to the pharmacologic manipulations mentioned above, glutamate and alpha-ketoglutarate added at high concentrations to the medium prevented both OGD- and REO-induced S100B outputs. These results indicate that neither NO nor the activation of PKC, PLA(2) or PLC seem to be involved in basal or OGD- and REO-induced S100B outputs. Additionally, calcium and sodium currents that are sensitive to verapamil and TTX, respectively, are unlikely to contribute to the enhanced S100B release observed under these conditions.

  2. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  3. Glutamate acts as a neurotransmitter for gastrin releasing peptide-sensitive and insensitive itch-related synaptic transmission in mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Ling Jennifer

    2011-06-01

    Full Text Available Abstract Itch sensation is one of the major sensory experiences of human and animals. Recent studies have proposed that gastrin releasing peptide (GRP is a key neurotransmitter for itch in spinal cord. However, no direct evidence is available to indicate that GRP actually mediate responses between primary afferent fibers and dorsal horn neurons. Here we performed integrative neurobiological experiments to test this question. We found that a small population of rat dorsal horn neurons responded to GRP application with increases in calcium signaling. Whole-cell patch-clamp recordings revealed that a part of superficial dorsal horn neurons responded to GRP application with the increase of action potential firing in adult rats and mice, and these dorsal horn neurons received exclusively primary afferent C-fiber inputs. On the other hands, few Aδ inputs receiving cells were found to be GRP positive. Finally, we found that evoked sensory responses between primary afferent C fibers and GRP positive superficial dorsal horn neurons are mediated by glutamate but not GRP. CNQX, a blocker of AMPA and kainate (KA receptors, completely inhibited evoked EPSCs, including in those Fos-GFP positive dorsal horn cells activated by itching. Our findings provide the direct evidence that glutamate is the principal excitatory transmitter between C fibers and GRP positive dorsal horn neurons. Our results will help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic disease.

  4. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  5. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2015-02-01

    Full Text Available It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI’s exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all 5 currently used SSRIs to stimulate the 5-HT2B receptor equipotentially incultured astrocyteshas been known for several years,and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 daystogether with effects ofanti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.

  6. Vinpocetine inhibits glutamate release induced by the convulsive agent 4-aminopyridine more potently than several antiepileptic drugs.

    Science.gov (United States)

    Sitges, M; Sanchez-Tafolla, B M; Chiu, L M; Aldana, B I; Guarneros, A

    2011-10-01

    4-Aminopyridine (4-AP) is a convulsing agent that in vivo preferentially releases Glu, the most important excitatory amino acid neurotransmitter in the brain. Here the ionic dependence of 4-AP-induced Glu release and the effects of several of the most common antiepileptic drugs (AEDs) and of the new potential AED, vinpocetine on 4-AP-induced Glu release were characterized in hippocampus isolated nerve endings pre-loaded with labelled Glu ([3H]Glu). 4-AP-induced [3H]Glu release was composed by a tetrodotoxin (TTX) sensitive and external Ca2+ dependent fraction and a TTX insensitive fraction that was sensitive to the excitatory amino acid transporter inhibitor, TBOA. The AEDs: carbamazepine, phenytoin, lamotrigine and oxcarbazepine at the highest dose tested only reduced [3H]Glu release to 4-AP between 50-60%, and topiramate was ineffective. Vinpocetine at a much lower concentration than the above AEDs, abolished [3H]Glu release to 4-AP. We conclude that the decrease in [3H]Glu release linked to the direct blockade of presynaptic Na+ channels, may importantly contribute to the anticonvulsant actions of all the drugs tested here (except topiramate); and that the significantly greater vinpocetine effect in magnitude and potency on [3H]Glu release when excitability is exacerbated like during seizures, may involve the increase additionally exerted by vinpocetine in some K+ channels permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. alpha-difluoromethylornithine modifies gonadotropin-releasing hormone release and follicle-stimulating hormone secretion in the immature female rat.

    Science.gov (United States)

    Thyssen, S M; Becú-Villalobos, D; Lacau-Mengido, I M; Libertun, C

    1997-06-01

    Polyamines play an essential role in tissue growth and differentiation, in body weight increment, in brain organization, and in the molecular mechanisms of hormonal action, intracellular signaling, and cell-to-cell communication. In a previous study, inhibition of their synthesis by alpha-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase, during development in female rats, was followed by prolonged high follicle-stimulating hormone (FSH) serum level and a delayed puberty onset. Those changes were relatively independent of body mass and did not impair posterior fertility. The present work studies the mechanisms and site of action of polyamine participation in FSH secretion during development. DFMO was injected in female rats between Days 1 and 9 on alternate days. At 10 days of age, hypothalami from control and DFMO rats were perifused in vitro, and basal and potassium-induced gonadotropin-releasing hormone (GnRH) release were measured. The response to membrane depolarization was altered in DFMO hypothalami. Increased GnRH release in response to a low K+ concentration was evidenced. Adenohypophyses of the same treated prepubertal rats were perifused in vitro and the response to GnRH pulses was checked. In DFMO-treated rats, higher FSH release was observed, with no changes in LH or PRL secretion. Finally, pituitary GnRH receptor number in adenohypophyseal membranes from treated and control groups was quantified. A significant reduction in specific binding was evident in hypophyses from DFMO-treated rats when compared with binding in the control group. In summary, DFMO treatment in a critical developmental period in the female rat impacts the immature GnRH neuronal network and immature gonadotropes. A delay in maturation is evidenced by a higher sensitivity to secretagogs in both pituitary glands and hypothalamic explants. These events could explain the prolonged high FSH serum levels and delayed puberty onset seen in

  8. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice.

    Science.gov (United States)

    Beccano-Kelly, Dayne A; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J; Milnerwood, Austen J

    2014-01-01

    Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease.

  9. Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.

    Science.gov (United States)

    Nishiyama, A; Sato, M; Kimura, M; Katakura, A; Tazaki, M; Shibukawa, Y

    2016-11-01

    Various stimuli to the exposed surface of dentin induce changes in the hydrodynamic force inside the dentinal tubules resulting in dentinal pain. Recent evidences indicate that mechano-sensor channels, such as the transient receptor potential channels, in odontoblasts receive these hydrodynamic forces and trigger the release of ATP to the pulpal neurons, to generate dentinal pain. A recent study, however, has shown that odontoblasts also express glutamate receptors (GluRs). This implies that cells in the dental pulp tissue have the ability to release glutamate, which acts as a functional intercellular mediator to establish inter-odontoblast and odontoblast-trigeminal ganglion (TG) neuron signal communication. To investigate the intercellular signal communication, we applied mechanical stimulation to odontoblasts and measured the intracellular free Ca 2+ concentration ([Ca 2+ ] i ). During mechanical stimulation in the presence of extracellular Ca 2+ , we observed a transient [Ca 2+ ] i increase not only in single stimulated odontoblasts, but also in adjacent odontoblasts. We could not observe these responses in the absence of extracellular Ca 2+ . [Ca 2+ ] i increases in the neighboring odontoblasts during mechanical stimulation of single odontoblasts were inhibited by antagonists of metabotropic glutamate receptors (mGluRs) as well as glutamate-permeable anion channels. In the odontoblast-TG neuron coculture, we observed an increase in [Ca 2+ ] i in the stimulated odontoblasts and TG neurons, in response to direct mechanical stimulation of single odontoblasts. These [Ca 2+ ] i increases in the neighboring TG neurons were inhibited by antagonists for mGluRs. The [Ca 2+ ] i increases in the stimulated odontoblasts were also inhibited by mGluRs antagonists. We further confirmed that the odontoblasts express group I, II, and III mGluRs. However, we could not record any currents evoked from odontoblasts near the mechanically stimulated odontoblast, with or without

  10. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  11. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  13. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  14. High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc

    2013-12-05

    It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.

  15. Interleukin 1α inhibits prostaglandin E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    International Nuclear Information System (INIS)

    Rettori, V.; McCann, S.M.; Gimeno, M.F.; Karara, A.; Gonzalez, M.C.

    1991-01-01

    Interleukin 1α (IL-1α), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1α into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1α caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1α (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E 2 into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1α reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1α suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E 2 -mediated release of LHRH

  16. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...... of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must...

  17. Role of glutamate receptors and nitric oxide on the effects of glufosinate ammonium, an organophosphate pesticide, on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    Faro, Lilian R F; Ferreira Nunes, Brenda V; Alfonso, Miguel; Ferreira, Vania M; Durán, Rafael

    2013-09-15

    The purpose of the present work was to assess the possible role of glutamatergic receptors and nitric oxide (NO) production on effects of glufosinate ammonium (GLA), an organophosphate pesticide structurally related to glutamate, on in vivo striatal dopamine release in awake and freely moving rats. For this, we used antagonists of NMDA (MK-801 and AP5) or AMPA/kainate (CNQX) receptors, or nitric oxide synthase (NOS) inhibitors (l-NAME and 7-NI), to study the effects of GLA on release of dopamine from rat striatum. So, intrastriatal infusion of 10mM GLA significantly increased dopamine levels (1035±140%, compared with basal levels) and administration of GLA to MK-801 (250μM) or AP5 (650μM) pretreated animals, produced increases in dopamine overflow that were ∼40% and ∼90% smaller than those observed in animals not pretreated with MK-801 or AP5. Administration of GLA to CNQX (500μM) pretreated animals produced an effect that was not significantly different from the one produced in animals not pretreated with CNQX. On the other hand, administration of GLA to l-NAME (100μM) or 7-NI (100μM) pretreated animals, produced increases in dopamine overflow that were ∼80% and ∼75% smaller than those observed in animals not pretreated with these inhibitors. In summary, GLA appears to act, at least in part, through an overstimulation of NMDA (and not AMPA/kainate) receptors with possible NO production to induce in vivo dopamine release. Administration of NMDA receptor antagonists and NOS inhibitors partially blocks the release of dopamine from rat striatum. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma

    Science.gov (United States)

    Kishimoto, Rui; Oki, Kenji; Yoneda, Masayasu; Gomez-Sanchez, Celso E.; Ohno, Haruya; Kobuke, Kazuhiro; Itcho, Kiyotaka; Kohno, Nobuoki

    2016-01-01

    Abstract We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production. Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production. The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation. PMID:27196470

  19. Calcium and osmotic stimulation in renin release from isolated rat glomeruli

    DEFF Research Database (Denmark)

    Skøtt, O

    1986-01-01

    of the RR rate preceding the stimulus. Removal of calcium stimulated the RR by 10 times (n = 5, p less than 0.001) and a subsequent decrease in osmolality of 20 mOsm/kg stimulated the RR proportionally to that observed in the series containing 2 mM calcium. A decrease in osmolality was able to stimulate RR......The effects of changes in osmolality and calcium concentration on renin release (RR) from isolated superfused rat glomeruli were studied. The undisturbed RR followed a first order fall with a half-time of about 100 min (n = 45). Changes in the osmolality between 270 and 350 mOsm/kg resulted in dose......-dependent changes in the RR rates. Hypoosmotic treatment stimulated the RR transiently, whereas hyperosmotic treatment produced a sustained inhibition. The dose-response relationship was log-linear between 270 and 320 mOsm/kg. A decrease in osmolality of 20 mOsm/kg gave proportional increases in RR irrespectively...

  20. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  1. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.

    Science.gov (United States)

    Mita, Masatoshi

    2017-03-01

    l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Calcium-independent phosphatidylinositol response in gonadotropin-releasing-hormone-stimulated pituitary cells.

    OpenAIRE

    Naor, Z; Molcho, J; Zakut, H; Yavin, E

    1985-01-01

    This paper describes the effect of gonadotropin-releasing hormone (GnRH, gonadoliberin) on phospholipid metabolism in cultured rat pituitary cells. The cells were incubated with [32P]Pi to label endogenous phospholipids (10-60 min) and then stimulated with GnRH for up to 60 min. Cellular phospholipids were separated by two-dimensional t.l.c. and the radioactivity was determined. Phosphatidylinositol (PI), a minor constituent of cellular phospholipids (7.7%), was the major labelled phospholipi...

  3. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  4. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  5. Relationship between calcium entry and ACh release in K+ -stimulated rat brain synaptosomes

    International Nuclear Information System (INIS)

    Suszkiw, J.B.; O'Leary, M.E.; Toth, G.P.

    1986-01-01

    This paper examines the pattern of Ca ++ entry-dependent ACh release in relation to the kinetics of Ca ++ entry, and its inactivation in rat brain synaptosomes exposed to 50 mM K 0 + for short and prolonged durations. Intrasynaptosomal ACh was radiolabeled from tritium-choline in the presence of 20 um Paraoxon to inhibit the acetylcholinesterase activity. The release of tritium-ACh was studied in superfused synaptosomal beds formed on glass microfiber filters and by rapid filtration. The intermittent stimulation of superfused synaptosomal beds by 3-min pulses of 50 mM K + evoked decremental output of tritium-ACh which reached nearly undetectable levels after the fifth stimulus

  6. Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: Role of conformation.

    Science.gov (United States)

    Barbier Saint Hilaire, Pierre; Warnet, Anna; Gimbert, Yves; Hohenester, Ulli Martin; Giorgi, Gianluca; Olivier, Marie-Françoise; Fenaille, François; Colsch, Benoît; Junot, Christophe; Tabet, Jean-Claude

    2017-03-15

    The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS 3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO 2 as observed in the MS 3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH 3 +CO 2 ) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision

  7. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  8. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release

    International Nuclear Information System (INIS)

    Schwartz, Ann; Ort, Tatiana; Kajekar, Radhika; Hornby, Pamela J; Wade, Paul R

    2010-01-01

    The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs–Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml −1 ) for 45 min increased GLP-1 concentration (21.9 ± 2.6 pM versus KRB buffer alone 3.6 ± 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by >250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions

  9. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We...... are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT2A R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  10. Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy.

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wong

    Full Text Available Peroxisomal proliferator-activated receptor gamma (PPARγ is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA receptor-mediated temporal lobe epilepsy (TLE. We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10 μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10 μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.

  11. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  12. CRH-stimulated cortisol release and food intake in healthy, non-obese adults.

    Science.gov (United States)

    George, Sophie A; Khan, Samir; Briggs, Hedieh; Abelson, James L

    2010-05-01

    There is considerable anecdotal and some scientific evidence that stress triggers eating behavior, but underlying physiological mechanisms remain uncertain. The hypothalamic-pituitary-adrenal (HPA) axis is a key mediator of physiological stress responses and may play a role in the link between stress and food intake. Cortisol responses to laboratory stressors predict consumption but it is unclear whether such responses mark a vulnerability to stress-related eating or whether cortisol directly stimulates eating in humans. We infused healthy adults with corticotropin-releasing hormone (CRH) at a dose that is subjectively undetectable but elicits a robust endogenous cortisol response, and measured subsequent intake of snack foods, allowing analysis of HPA reactivity effects on food intake without the complex psychological effects of a stress paradigm. CRH elevated cortisol levels relative to placebo but did not impact subjective anxious distress. Subjects ate more following CRH than following placebo and peak cortisol response to CRH was strongly related to both caloric intake and total consumption. These data show that HPA axis reactivity to pharmacological stimulation predicts subsequent food intake and suggest that cortisol itself may directly stimulate food consumption in humans. Understanding the physiological mechanisms that underlie stress-related eating may prove useful in efforts to attack the public health crises created by obesity. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  14. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  15. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.

    Science.gov (United States)

    Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter

    2017-12-01

    Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.

  16. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Sjøgaard, G; Madsen, Klavs

    2000-01-01

    during the first 0.5-1 h the metabolic state recovered to resting levels, and a slow phase from 1-3 h characterized by a rather slow recovery of the mechanical properties. The recovery of SR Ca(2+) release rate was closely correlated to +dF/dt during the slow phase of recovery (r(2) = 0.51; P ... to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which......The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate...

  17. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation.

    Science.gov (United States)

    Uvnäs-Moberg, Kerstin; Handlin, Linda; Petersson, Maria

    2014-01-01

    Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g., in response to touch, stroking, warm temperature, etc. Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adults or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory) stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to "low intensity" stimulation of the skin will be highlighted.

  18. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation

    Directory of Open Access Journals (Sweden)

    Kerstin eUvnäs-Moberg

    2015-01-01

    Full Text Available Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g. in response to touch, stroking, warm temperature etc . Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adult or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to low intensity stimulation of the skin will be highlighted.

  19. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    International Nuclear Information System (INIS)

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-01-01

    The authors have previously demonstrated that 3 H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased 3 H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 μl drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine

  20. Stimulation of the metabotropic glutamate (mGlu) 2 receptor attenuates the MK-801-induced increase in the immobility time in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Karasawa, Jun-Ichi; Hikichi, Hirohiko

    2016-02-01

    Negative symptoms of schizophrenia are poorly managed using the currently available antipsychotics. Previous studies indicate that agonists of the metabotropic glutamate (mGlu) 2/3 receptors may provide a novel approach for the treatment of schizophrenia. However, the effects of mGlu2/3 receptor agonists or mGlu2 receptor positive allosteric modulators have not yet been clearly elucidated in animal models of the negative symptoms of schizophrenia. Recently, we reported that the forced swimming test in rats treated with subchronic MK-801, an NMDA receptor antagonist, may be regarded as a useful test to evaluate the activities of drugs against the negative symptoms of schizophrenia. We evaluated the effects of LY379268, an mGlu2/3 receptor agonist, and BINA, an mGlu2 receptor positive allosteric modulator, on the hyperlocomotion induced by acute administration of MK-801 (0.15mg/kg, sc) and on the increase in the immobility time in the forced swimming test induced by subchronic treatment with MK-801 (0.5mg/kg, sc, twice a day for 7 days) in rats. Both LY379268 (3mg/kg, sc) and BINA (100mg/kg, ip) attenuated the increase in the immobility time induced by subchronic treatment with MK-801 at the same doses at which they attenuated the MK-801-induced increase in locomotor activity, but had no effect on the immobility time in saline-treated rats. The present results suggest that stimulation of the mGlu2 receptor attenuates the increase in the immobility time in the forced swimming test elicited by subchronic administration of MK-801, and may be potentially useful for treatment of the negative symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Pituitary Apoplexy After Thyrotropin-releasing Hormone Stimulation Test in a Patient with Pituitary Macroadenoma

    Directory of Open Access Journals (Sweden)

    Huei-Fang Wang

    2007-09-01

    Full Text Available Pituitary apoplexy is a rare complication of pituitary tumors. We report a case of a 41-year-old female with acromegaly due to a pituitary macroadenoma, who developed pituitary apoplexy after a thyrotropin-releasing hormone (TRH 200 mg intravenous injection stimulation test. Neither emergency computed tomography (CT scans nor magnetic resonance imaging (MRI, performed 6 hours and 12 hours, respectively, after the active episode, disclosed the evidence of acute hemorrhage or infarction. Two days later, the pituitary mass, removed by transsphenoidal approach, showed ischemic necrosis and acute hemorrhage. The TRH test is generally safe for evaluating pituitary function, but pituitary apoplexy may occur after the procedure. CT and MRI may miss the diagnosis of pituitary apoplexy, especially if performed immediately after the acute episode.

  2. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior

    Science.gov (United States)

    Bredewold, Remco; Schiavo, Jennifer K.; van der Hart, Marieke; Verreij, Michelle; Veenema, Alexa H.

    2015-01-01

    Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline condition and during social play. This resulted in a higher glutamate/GABA concentration ratio in males versus females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 µl, 250 ng/0.5 µl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5 + CNQX (2 mM+0.4 mM/0.5 µl, 30 mM+3 mM/0.5 µl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile

  3. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  4. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Ries, W.L.; Seeds, M.C.; Key, L.L.

    1989-01-01

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  5. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  6. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  7. Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb.

    Science.gov (United States)

    Larrazolo-López, A; Kendrick, K M; Aburto-Arciniega, M; Arriaga-Avila, V; Morimoto, S; Frias, M; Guevara-Guzmán, R

    2008-03-27

    The ability of vaginocervical stimulation (VCS) to promote olfactory social recognition memory at different stages of the ovarian cycle was investigated in female rats. A juvenile social recognition paradigm was used and memory retention tested at 30 and 300 min after an adult was exposed to a juvenile during three 4-min trials. Results showed that an intact social recognition memory was present at 30 min in animals with or without VCS and at all stages of the estrus cycle. However, whereas no animals in any stage of the estrus cycle showed retention of the specific recognition memory at 300 min, those in the proestrus/estrus phase that received VCS 10 min before the trial started did. In vivo microdialysis studies showed that there was a significant release of oxytocin after VCS in the olfactory bulb during proestrus. There was also increased oxytocin immunoreactivity within the olfactory bulb after VCS in proestrus animals compared with diestrus ones. Furthermore, when animals received an infusion of an oxytocin antagonist directly into the olfactory bulb, or a systemic administration of alpha or beta noradrenaline-antagonists, they failed to show evidence for maintenance of a selective olfactory recognition memory at 300 min. Animals with vagus or pelvic nerve section also showed no memory retention when tested after 300 min. These results suggest that VCS releases oxytocin in the olfactory bulb to enhance the social recognition memory and that this may be due to modulatory actions on noradrenaline release. The vagus and pelvic nerves are responsible for carrying the information from the pelvic area to the CNS.

  8. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  9. Childhood lead toxicity and impaired release of thyrotropin-stimulating hormone

    International Nuclear Information System (INIS)

    Huseman, C.A.; Moriarty, C.M.; Angle, C.R.

    1987-01-01

    Decreased stature of children is epidemiologically associated with increased blood lead independent of multiple socioeconomic and nutritional variables. Since endocrine dysfunction occurs in adult lead workers, they studied two girls, 2 years of age, before and after calcium disodium edetate chelation for blood leads (PbB) of 19-72 μg/dl. The height of both children had crossed from the 50th to below the 10th percentile during the course of chronic lead toxicity. Basal free T 4 , T 4 , T 3 , cortisol, somatomedin C, and sex steroids were normal. A decrease in the growth hormone response and elevation of basal prolcatin and gonadotropins were noted in one. Both children demonstrated blunted thyrotropin-stimulating hormone (TSH) responses to thyrotropin-releasing hormone (TRH) in six of seven challenges. This prompted in vitro studies of cultured cells from rat pituitarities. After incubation of pituitary cells with 0.1-10 μM Pb 2+ for 2 hr, followed by the addition of TRH, there was a dose-dependent inhibition of TSH release Lead did not interfere with the assay of TSH. To investigate the interaction of lead and calcium, 45 Ca 2+ kinetic analyses were done on rat pituitary slices after 1 hr incubation with 1.0 μM lead. The impaired late efflux was consistent with a decrease in the size and exchangeability of the tightly bound pool of intracellular microsomal or mitochondrial calcium. The rat pituitary cell model provides a model for the decreased TSH release of lead poisoning, supports the biological plausibility of a neuroendocrine effect on growth, and suggests that interference with calcium-mediated intracellular responses is a basic mechanism of lead toxicity

  10. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  11. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.

    Science.gov (United States)

    Clara, Rosmarie; Langhans, Wolfgang; Mansouri, Abdelhak

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. In vitro effect of Δ9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2

    International Nuclear Information System (INIS)

    Rettori, V.; Aguila, M.C.; McCann, S.M.; Gimeno, M.F.; Franchi, A.M.

    1990-01-01

    Previous in vivo studies have shown that Δ 9 -tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were deigned to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or nonrepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E 2 (PGE 2 ) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE 2 suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE 2 synthesis and release. The authors speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release

  13. Hypothalamic regulation of thyroid-stimulating hormone and prolactin release : the role of thyrotrophin-releasing hormone

    NARCIS (Netherlands)

    G.A.C. van Haasteren (Goedele)

    1995-01-01

    textabstractThyrotrophin-releasing-hormone (TRH), a tripeptide, is produced by hypothalamic neurons and transported along their axons to the median eminence (ME). From there it is released at nerve terminals into hypophyseal portal blood. It is then transported to the anterior pituitary gland where

  14. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, Maarten

    2015-01-01

    In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the glutamate

  15. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.

    Science.gov (United States)

    Auinger, Alice Barbara; Riss, Dominik; Liepins, Rudolfs; Rader, Tobias; Keck, Tilman; Keintzel, Thomas; Kaider, Alexandra; Baumgartner, Wolf-Dieter; Gstoettner, Wolfgang; Arnoldner, Christoph

    2017-07-01

    It has been shown that patients with electric acoustic stimulation (EAS) perform better in noisy environments than patients with a cochlear implant (CI). One reason for this could be the preserved access to acoustic low-frequency cues including the fundamental frequency (F0). Therefore, our primary aim was to investigate whether users of EAS experience a release from masking with increasing F0 difference between target talker and masking talker. The study comprised 29 patients and consisted of three groups of subjects: EAS users, CI users and normal-hearing listeners (NH). All CI and EAS users were implanted with a MED-EL cochlear implant and had at least 12 months of experience with the implant. Speech perception was assessed with the Oldenburg sentence test (OlSa) using one sentence from the test corpus as speech masker. The F0 in this masking sentence was shifted upwards by 4, 8, or 12 semitones. For each of these masker conditions the speech reception threshold (SRT) was assessed by adaptively varying the masker level while presenting the target sentences at a fixed level. A statistically significant improvement in speech perception was found for increasing difference in F0 between target sentence and masker sentence in EAS users (p = 0.038) and in NH listeners (p = 0.003). In CI users (classic CI or EAS users with electrical stimulation only) speech perception was independent from differences in F0 between target and masker. A release from masking with increasing difference in F0 between target and masking speech was only observed in listeners and configurations in which the low-frequency region was presented acoustically. Thus, the speech information contained in the low frequencies seems to be crucial for allowing listeners to separate multiple sources. By combining acoustic and electric information, EAS users even manage tasks as complicated as segregating the audio streams from multiple talkers. Preserving the natural code, like fine-structure cues in

  16. Tissue factor pathway inhibitor (TFPI) release after heparin stimulation is increased in Type 1 diabetic patients with albuminuria

    NARCIS (Netherlands)

    Leurs, PB; van Oerle, R; Hamulyak, K; Wolffenbuttel, BHR

    Aims To study heparin-stimulated TFPI release in relation to complications in Type 1 diabetic patients. Subjects and methods Nineteen uncomplicated Type 1 diabetic patients (group I) were compared with 18 patients with retinopathy (group II), and nine patients with retinopathy and albuminuria (group

  17. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans.

    Science.gov (United States)

    Fuss, Johannes; Bindila, Laura; Wiedemann, Klaus; Auer, Matthias K; Briken, Peer; Biedermann, Sarah V

    2017-11-01

    endocannabinoid 2-AG is involved in the human sexual response cycle and we hypothesize that 2-AG release plays a role in the rewarding consequences of sexual arousal and orgasm. Fuss J, Bindila L, Wiedemann K, et al. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans. J Sex Med 2017;14:1372-1379. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  19. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    International Nuclear Information System (INIS)

    Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, J.; Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [ 11 C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  20. Osteoblast Differentiation Decreases Hypergravity-Stimulated Release of PGE(sub 2)

    Science.gov (United States)

    Searby, Nancy D.; Steele, Charles R.; Globus, Ruth K.

    2002-01-01

    We determined if progressive differentiation of osteoblasts influences their sensitivity to gravitational loading. Osteoblasts were cultured for 4 days (confluent monolayer), 6 days (prenodules), 9 days (nodules) and 19 days (mineralized nodules), then centrifuged at 10 times gravity (g) or 50-g for 3 hours using the NASA Ames 1-ft. Diameter Centrifuge. Stationary controls were placed in an adjacent incubator. Following centrifugation, conditioned media were collected and analyzed for PGE, by ELISA. Microtubules were fluorescently labeled and analyzed by confocal microscopy to determine microtubule network morphology and height. Centrifugation at 10-g reduced microtubule network height by 15% on d4 and 10% on d6, with variable changes in more mature cultures. No major changes in microtubule morphology were observed. PGE(sub 2) release by d4 cultures increased in a dose-dependent fashion (3-fold at 10-g and 6-fold at 50-g relative to controls). D6 cultures produced a 5-fold increase for both 10-g and 50-g. PGE(sub 2) increased only 1.5-fold by d9, and by d19, PGE(sub 2) was not delectable in either the control or hypergravity-stimulated cells. Thus, as osteoblasts differentiate in culture, responsiveness of the microtubule cytoskeleton and the PGE(sub 2) pathway to hypergravity declines.

  1. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  2. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  3. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    Science.gov (United States)

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may enhance allograft incorporation, and thus mitigate long-term clinical complications. © 2017 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1086-1095, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  5. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    . This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor...... released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...

  6. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  7. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion......The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain (14)C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor....... This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate...

  8. In vitro effect of. Delta. sup 9 -tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Rettori, V.; Aguila, M.C.; McCann, S.M. (Univ. of Texas Southwestern Medical Center at Dallas (United States)); Gimeno, M.F.; Franchi, A.M. (Centro de Estudios Farmacologicos y de Principios Naturales, Buenos Aires (Argentina))

    1990-12-01

    Previous in vivo studies have shown that {Delta}{sup 9}-tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were deigned to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or nonrepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E{sub 2} (PGE{sub 2}) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE{sub 2} suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE{sub 2} synthesis and release. The authors speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release.

  9. Evidence for requirement of tyrosine phosphorylation in endothelial P2Y- and P2U- purinoceptor stimulation of prostacyclin release.

    Science.gov (United States)

    Bowden, A.; Patel, V.; Brown, C.; Boarder, M. R.

    1995-01-01

    1. The release of prostacyclin (PGI2) from vascular endothelial cells is stimulated by ATP acting at G protein-coupled P2-purinoceptors. Here we investigate the hypothesis that tyrosine protein phosphorylations are involved in this response. 2. The use of Western blots with anti-phosphotyrosine antibodies showed that 30 microM 2MeSATP (selective for P2Y-purinoceptors), 300 microM UTP (selective for P2U-purinoceptors) and 300 microM ATP (effective at both these purinoceptors), each stimulate the tyrosine phosphorylation of proteins in bovine cultured aortic endothelial cells. Each of these agonists also stimulates 6-keto PGF1 alpha accumulation in the medium (an index of PGI2 release) in these cells in the same period. 3. The tyrosine kinase inhibitor, genistein, inhibits the 6-keto PGF1 alpha response with the same concentration-dependency (1-100 microM) as the tyrosine phosphorylation response. 4. Tyrphostin, a structurally and functionally distinct tyrosine kinase inhibitor, is also a potent inhibitor (0.1-10 microM) of the 6-keto PGF1 alpha response. 5. Neither tyrphostin nor genistein inhibit the phospholipase C response to P2-purinoceptor stimulation. Furthermore, these inhibitors do not affect the 6-keto PGF1 alpha response to ionomycin. 6. These results show that the regulation of vascular endothelial cells by ATP acting at both P2Y- and P2U-purinoceptors involves the stimulation of tyrosine phosphorylation, and suggest that this is a necessary event for the purinoceptor-mediated stimulation of PGI2 production. Images Figure 1 Figure 5 PMID:8590971

  10. Renin release from permeabilized juxtaglomerular cells is stimulated by chloride but not by low calcium

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1994-01-01

    of chloride channels followed by a drop in the intracellular chloride concentration. The stimulation caused by the high calcium concentration may be a toxic effect or may be due to stimulation of the fusion between granules and cell membrane in a way analogous to other secretory cells....

  11. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  12. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device which both stimulates and perfuses rat corpus striatum

    Science.gov (United States)

    Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.

    1993-01-01

    We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Membrane properties involved in calcium-stimulated microparticle release from the plasma membranes of S49 lymphoma cells.

    Science.gov (United States)

    Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D

    2014-01-01

    This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  14. Endothelin-1 stimulates the release of preloaded [3H]D-aspartate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M.

    1990-01-01

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded [ 3 H]D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca 2+ , but was unaffected by 1 mM Co 2+ or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system

  15. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. (NIMH Neuroscience Center, Washington, DC (USA))

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  16. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  17. UVB-Stimulated TNFα Release from Human Melanocyte and Melanoma Cells Is Mediated by p38 MAPK

    Directory of Open Access Journals (Sweden)

    Visalini Muthusamy

    2013-08-01

    Full Text Available Ultraviolet (UV radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase, JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes and MM96L (melanoma cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.

  18. Interaction of urokinase A chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Magnelli, L.; Pucci, M.; Del Rosso, M. (Florence Univ. (Italy))

    1990-03-01

    On the basis of a fibrinolytic assay with {sup 125}I-fibrin, zymography, and immunoprobing with anti-human urokinase antibody, the authors have observed that the in vitro established NCTC human keratinocyte cell line releases into the culture medium a 54,000-Da plasminogen activator which is indistinguishable from human urokinase. Only the early release following the washing of keratinocyte monolayers is accounted for by secretion of preformed enzyme, while late secretory events require the de novo synthesis of urokinase. The released enzyme can interact by autocriny with its own receptor present on keratinocytes. The addition to the keratinocyte culture medium of the urokinase A chain can stimulate a concentration-dependent urokinase oversecretion, which is not paralleled by oversecretion of plasminogen activator inhibitor-1. Since stimulation of urokinase production can be obtained by an A chain concentration which was previously shown to be efficient in inducing keratinocyte mobilization in an in vitro migration model system, they hypothesize that this mechanism may be important in vivo during the process of wound repair.

  19. Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea.

    Science.gov (United States)

    Jayasena, C N; Nijher, G M K; Abbara, A; Murphy, K G; Lim, A; Patel, D; Mehta, A; Todd, C; Donaldson, M; Trew, G H; Ghatei, M A; Bloom, S R; Dhillo, W S

    2010-12-01

    Kisspeptin is a novel therapeutic target for infertility. A single kisspeptin-54 (KP-54) injection acutely stimulates the release of reproductive hormones in women with hypothalamic amenorrhea (HA), a commonly occurring condition characterized by absence of menstruation; however, twice-daily administration of KP-54 results in tachyphylaxis. We determined the time course of desensitization to twice-daily KP-54 injections, compared the effects of twice-daily and twice-weekly administration regimens of KP-54, and studied the effects of long-term twice-weekly administration of KP-54 on the release of reproductive hormones in women with HA. When KP-54 was administered twice daily, responsiveness to luteinizing hormone (LH) diminished gradually, whereas responsiveness to follicle-stimulating hormone (FSH) was nearly abolished by day 2. Twice-weekly KP-54 administration resulted in only partial desensitization, in contrast to the complete tolerance achieved with twice-daily administration. Women with HA who were treated with twice-weekly KP-54 injections had significantly elevated levels of reproductive hormones after 8 weeks as compared with treatment with saline. No adverse effects were observed. This study provides novel pharmacological data on the effects of KP-54 on the release of reproductive hormones in women with HA.

  20. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M

    2013-01-01

    Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal...... resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent...... sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause...

  1. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

    Science.gov (United States)

    Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi

    2012-10-01

    Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  3. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    Science.gov (United States)

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  4. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants.

    Science.gov (United States)

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y

    2016-07-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs.

  5. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implantsa)

    Science.gov (United States)

    Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.

    2016-01-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs. PMID:27475132

  6. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  7. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  8. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    or without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] and DIDS were not additive. In the absence of chloride, basal renin release was suppressed and the stimulatory effect of DIDS was abolished. The DIDS-induced enhancement of renin release was not dependent on bicarbonate....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...

  9. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.

    2015-01-01

    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the

  10. Glutamate: Tastant and Neuromodulator in Taste Buds.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  11. Factors that predict a positive response on gonadotropin-releasing hormone stimulation test for diagnosing central precocious puberty in girls

    Directory of Open Access Journals (Sweden)

    Junghwan Suh

    2013-12-01

    Full Text Available PurposeThe rapid increase in the incidence of precocious puberty in Korea has clinical and social significance. Gonadotropin-releasing hormone (GnRH stimulation test is required to diagnose central precocious puberty (CPP, however this test is expensive and time-consuming. This study aimed to identify factors that can predict a positive response to the GnRH stimulation test.MethodsClinical and laboratory parameters, including basal serum luteinizing hormone (LH, follicle-stimulating hormone (FSH, and estradiol (E2, were measured in 540 girls with clinical signs of CPP.ResultsTwo hundred twenty-nine of 540 girls with suspected CPP had a peak serum LH level higher than 5 IU/L (the CPP group. The CPP group had advanced bone age (P<0.001, accelerated yearly growth rate (P<0.001, increased basal levels of LH (P=0.02, FSH (P<0.001, E2 (P=0.001, and insulin-like growth factor-I levels (P<0.001 compared to the non-CPP group. In contrast, body weight (P<0.001 and body mass index (P<0.001 were lower in the CPP group. Although basal LH was significantly elevated in the CPP group compared to the non-CPP group, there was considerable overlap between the 2 groups. Cutoff values of basal LH (0.22 IU/L detected CPP with 87.8% sensitivity and 20.9% specificity.ConclusionNo single parameter can predict a positive response on the GnRH stimulation test with both high sensitivity and specificity. Therefore, multiple factors should be considered in evaluation of sexual precocity when deciding the timing of the GnRH stimulation test.

  12. Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes.

    Science.gov (United States)

    Unichenko, Petr; Myakhar, Olga; Kirischuk, Sergei

    2012-04-01

    Fast synaptic transmission requires a rapid clearance of the released neurotransmitter from the extracellular space. Glial glutamate transporters (excitatory amino acid transporters, EAATs) strongly contribute to glutamate removal. In this work, we investigated the paired-pulse plasticity of synaptically activated, glutamate transporter-mediated currents (STCs) in cortical layer 2/3 astrocytes. STCs were elicited by local electrical stimulation in layer 4 in the presence of ionotropic glutamate (AMPA and NMDA), GABAA, and GABAB receptor antagonists. In experiments with low [Na(+)]i (5 mM) intrapipette solution, STCs elicited by paired-pulse stimulation demonstrated paired-pulse facilitation (PPF) at short (astrocytic [Na(+)]i, reduced the mean STC amplitude, decreased PPF at short ISIs, and slowed STC kinetics. All GABA-induced changes were blocked by NO-711 and SNAP-5114, GABA transporter (GATs) antagonists. In experiments with the low intrapipette solution, GAT blockade under control conditions decreased PPF at short ISIs both at room and at near physiological temperatures. Dialysis of single astrocyte with low [Na(+)]i solution increased the amplitude and reduced PPR of evoked field potentials recorded in the vicinity of the astrocyte. We conclude that (1) endogenous GABA via GATs may influence EAAT functioning and (2) astrocytic [Na(+)]i modulates the short-term plasticity of STCs and in turn the efficacy of glutamate removal. Copyright © 2012 Wiley Periodicals, Inc.

  13. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; Swanson, L W; Vale, W

    1986-01-01

    The mitogenic effect of the hypothalamic peptides growth hormone-releasing factor (GRF) and somatostatin on cultured growth hormone (GH)-producing cells (somatotrophs) was studied. Using autoradiographic detection of [3H]thymidine uptake and immunocytochemical identification of GH-producing cells...

  14. Leptin stimulates pituitary prolactin release through an extracellular signal-regulated kinase-dependent pathway

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Strom, Christina N; Bailey, Sean T

    2008-01-01

    pituitary model system. This advantageous system allows isolation of a nearly pure population of lactotropes in their natural, in situ aggregated state. The rostral pars distalis were dissected from tilapia pituitaries and exposed to varying concentrations of leptin (0, 1, 10, 100 nM) for 1 h. Release...

  15. Stimulation of the medial amygdala enhances medial preoptic dopamine release: implications for male rat sexual behavior.

    Science.gov (United States)

    Dominguez, J M; Hull, E M

    2001-11-02

    Increased dopamine (DA) in the medial preoptic area (MPOA) facilitates male sexual behavior. A major source of innervation to the MPOA is the medial amygdala (MeA). We now report that chemical stimulation of the MeA enhanced levels of extracellular MPOA DA in anesthetized male rats. These results suggest that DA activity in the MPOA can be regulated by input from the MeA to the MPOA.

  16. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  17. Release of prostaglandin E2 into gastric juice during stimulation of muscarinic- and gastrin receptors in dogs and in humans

    DEFF Research Database (Denmark)

    Madsen, Jørgen Rask; Bukhave, K; Hovendal, C P

    1981-01-01

    To investigate the causal relationship, if any, between gastric PG formation and gastric acid output, the release of PGE2 into gastric juice has been studied in eight beagle dogs with a gastric fistula, using sustained half-maximal stimulation by bethanechol and pentagastrin, and in eight duodenal...... ulcer patients, using the combined sham feeding/pentagastrin test. Immunoreactive PGE2 was determined by a method validated by gas chromatography-mass spectrometry and PGE2 values were normalized by expressing them as ng PGE2 released per meq H+ secreted. In the dogs "steady state" PGE2 output (0...... minutes significantly (p less than 0.01) higher (3.9-46 ng/meq H+) than in pentagastrin experiments (0.8-20 ng/meq H+). In humans the peak PGE2 output during sham feeding (3.4-41 ng/meq H+) was significantly (p less than 0.02) larger than following bolus stimulation (6/micrograms/kg) by pentagastrin (2...

  18. Using the interplay of magnetic guidance and controlled TGF-β release from protein-based nanocapsules to stimulate chondrogenesis.

    Science.gov (United States)

    Chiang, Chih-Sheng; Chen, Jian-Yi; Chiang, Min-Yu; Hou, Kai-Ting; Li, Wei-Ming; Chang, Shwu-Jen; Chen, San-Yuan

    2018-01-01

    Stimulating the proliferation and differentiation of chondrocytes for the regeneration of articular cartilage is a promising strategy, but it is currently ineffective. Although both physical stimulation and growth factors play important roles in cartilage repair, their interplay remains unclear and requires further investigation. In this study, we aimed to clarify their contribution using a magnetic drug carrier that not only can deliver growth factors but also provide an external stimulation to cells in the two-dimensional environment. We developed a nanocapsule (transforming growth factor-β1 [TGF-β1]-loaded magnetic amphiphilic gelatin nanocapsules [MAGNCs]; TGF-β1@MAGNCs) composed of hexanoic-anhydride-grafted gelatin and iron oxide nanoparticles to provide a combination treatment of TGF-β1 and magnetically induced physical stimuli. With the expression of Arg-Gly-Asp peptide in the gelatin, the TGF-β1@MAGNCs have an inherent affinity for chondrogenic ATDC5 cells. In the absence of TGF-β1, ATDC5 cells treated with a magnetic field show significantly upregulated Col2a1 expression. Moreover, TGF-β1 slowly released from biodegradable TGF-β1@ MAGNCs further improves the differentiation with increased expression of Col2a1 and Aggrecan. Our study shows the time-dependent interplay of physical stimuli and growth factors on chondrogenic regeneration, and demonstrates the promising use of TGF-β1@MAGNCs for articular cartilage repair.

  19. Gonadotropin-releasing hormone antagonist use in controlled ovarian stimulation and intrauterine insemination cycles in women with polycystic ovary syndrome.

    Science.gov (United States)

    Ertunc, Devrim; Tok, Ekrem C; Savas, Aysun; Ozturk, Ilay; Dilek, Saffet

    2010-03-01

    To observe the effects of ganirelix on controlled ovarian stimulation and intrauterine insemination (COS/IUI) cycles in women with polycystic ovary syndrome (PCOS). Prospective, randomized, controlled clinical study. An academic clinical research center. Women with PCOS and anovulatory infertility undergoing COS/IUI. Recombinant FSH therapy was started on day 3. In women assigned to the control group (n = 47), treatment was continued up to the day of hCG administration. In patients assigned to receive GnRH antagonist (n = 42), ganirelix was added when the leading follicle was > or =14 mm. Pregnancy rates, serum E(2), P, and LH levels, and follicle numbers at hCG day, prevalence of premature luteinization, and cost of stimulation. Serum E(2), P, and LH levels were significantly lower in the ganirelix group. Although premature luteinization and cycle cancellation was encountered less in the ganirelix group, the pregnancy rates per cycle were similar (15.4% vs. 10.7%). Patients would pay 6,153 dollars more for each pregnancy when using ganirelix. Gonadotropin-releasing hormone antagonist resulted in more monofollicular development, less premature luteinization, and less cycle cancellation in IUI cycles of patients with PCOS; however, the cost of stimulation increased without an improvement in pregnancy rates. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine.

    Science.gov (United States)

    Kondaveeti, Stalin; Cornejo, Daniel R; Petri, Denise Freitas Siqueira

    2016-02-01

    Hybrid beads composed of magnetite nanoparticles (MNP) and alginate (Alg) were synthesized and coded as Alg-MNP. They were incubated in dopamine (DOPA) solution (5 g/L), at pH 7.4 and 8 °C, during 12 h, promoting the DOPA loaded magnetic beads, coded as Alg-MNP/DOPA. The release of DOPA was further evaluated in the absence and the presence of external magnetic field (EMF) of 0.4 T. The products Alg-MNP and Alg-MNP/DOPA were characterized by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared vibrational spectroscopy (FTIR), UV spectrophotometry, thermogravimetric analyses (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses and superconducting quantum interference device (SQUID) magnetometer. The magnetic and chemical properties of Alg-MNP beads were not affected by DOPA loading. The incorporation of DOPA into the beads depended on the pH and on the negative charge density. At pH 7.4 38% of DOPA were loaded into Alg-MNP beads, whereas at pH 2 or using neat Alg beads (lower charge density than Alg-MNP) the loading efficiency decreased to one third or less. In the absence of EMF, 24% of the loaded DOPA was released from Alg-MNP at pH 7.4 over a period of 26 h. The released amount increased to 33% under the stimulus of EMF. A model was proposed to explain the loading efficiency of charged drugs, as DOPA, into hybrid beads and the role played by EMF on delivery systems, where drug and matrix are oppositely charged. The results suggest that the alginate combined with magnetite nanoparticles is a promising system for release of DOPA in the presence of EMF. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Potassium-stimulated release of radiolabelled taurine and glycine from the isolated rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.F.; Pycock, C.J.

    1982-09-01

    The release of preloaded (/sup 3/H)glycine and (/sup 3/H)taurine in response to a depolarising stimulus (12.5-50 mM KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of (/sup 3/H)glycine, the effect of 50 mM K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous efflux of (/sup 3/H)taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this late release of (/sup 3/H)taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 mM)-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p less than 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both (/sup 3/H)glycine and (/sup 3/H)taurine were demonstrated in the rat retina in vitro (Km values, 1.67 microM and 2.97 microM; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neurotransmitter roles of both amino acids in the rat retina.

  2. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome

    DEFF Research Database (Denmark)

    Martin, G R; Wallace, L E; Hartmann, B

    2005-01-01

    over time with adaptation to a 90% resection was examined by determining GLP-2 levels on days 7, 14, and 28, and correlating this with intestinal adaptation, as assessed by morphology and CCP rate. A 90% resection significantly increased basal and postprandial GLP-2 levels, with a net increase...... in nutrient-stimulated exposure over 90 min; GLP-2 exposure (integrated levels vs. time) increased 12.7-fold in resected animals (P significantly correlated with the magnitude of intestinal resection (r(2) = 0.71; P

  3. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  4. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    Science.gov (United States)

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  5. Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites.

    Science.gov (United States)

    Papadopulos, Andreas; Martin, Sally; Tomatis, Vanesa M; Gormal, Rachel S; Meunier, Frederic A

    2013-12-04

    Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.

  6. Histamine and TNF-α release by rat peritoneal mast cells stimulated with Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Im S.J.

    2011-02-01

    Full Text Available Mast cells have been reported to be predominant in the vaginal smears of patients infected with T. vaginalis. In this study, we investigated whether T. vaginalis could induce mast cells to migrate and to produce TNF-α and histamine. Rat peritoneal mast cells (RPMC, a primary mast cell, were used for the study. T. vaginalis induced an increase in chemotactic migration of the mast cells toward excretory and secretory product (ESP of T. vaginalis, and the mast cells activated with T. vaginalis showed an increased release of histamine and TNF-α. Therefore, mast cells may be involved in the inflammatory response caused by T. vaginalis.

  7. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  8. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    Science.gov (United States)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  9. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Vestergaard, Henrik; Jørgensen, Torben

    2015-01-01

    ,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. Results: Analyses of fasting and OGTT-derived quantitative traits did.......024; P=0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. Conclusions: Despite failure to replicate......Background: The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present...

  10. Effect of etorphine on the spontaneous and field stimulation-mediated release of norepinephrine and total tritium from perfused guinea pig hearts

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Isolated guinea pig hearts were prelabeled with 3 H-norepinephrine ( 3 H-NE) and perfused with modified Krebs-bicarbonate solution at 37 0 C. Spontaneous release of total 3 H and field stimulation-mediated (supramax. V., 1 Hz, 2 msec duration for a total of 60 pulses) overflow of NE and 3 H-NE were measured in the absence or presence of etorphine. Etorphine (0.1 - 100 μM) was added to the perfusion fluid 15 min. before the stimulation. To study the effect of etorphine on spontaneous release of total 3 H, etorphine was added cumulatively without stimulation. Etorphine (1.0 - 100 μM) caused a significant decrease in the stimulation-mediated overflow of NE and the inhibition was dose-related. The overflow of NE was 5.1 +/- 0.3 ng in the absence and 4.0 +/- 0.2 ng in the presence of etorphine (1.0 μM). Low concentrations of etorphine (0.1 - 1.0 μM) had no effect on the spontaneous release of total 3 H while 10 μM and 100 μM caused a 3 and 6-fold increase respectively. The results show that etorphine inhibited neuronal release of NE at a dose which had no effect on spontaneous release. It is suggested that opiate receptors might be involved in the prejunctional modulation of the release of NE in the guinea pig heart

  11. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ghazaleh Samoudi

    Full Text Available BACKGROUND: The vestibular system is connected to spinal, cerebellar and cerebral motor control structures and can be selectively activated with external electrodes. The resulting sensation of disturbed balance can be avoided by using stochastic stimulation patterns. Adding noise to the nervous system sometimes improves function. Small clinical trials suggest that stochastic vestibular stimulation (SVS may improve symptoms in Parkinson's disease. We have investigated this claim and possible mechanisms using the 6-hydroxydopamine (6-OHDA hemilesion model of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: Animals were tested in the accelerating rod test and the Montoya staircase test of skilled forelimb use. In 6-OHDA hemilesioned animals, SVS improved rod performance by 56±11 s. At group level L-DOPA treatment had no effect, but positive responders improved time on rod by 60±19 s. Skilled forelimb use was not altered by SVS. To investigate how SVS may influence basal ganglia network activity, intracerebral microdialysis was employed in four regions of interest during and after SVS. In presence of the γ-amino buturic acid (GABA transporter inhibitor NNC 711, SVS induced an increase in GABA to 150±15% of baseline in the substantia nigra (SN of unlesioned animals, but had no effect in the pedunculopontine nucleus (PPN, the striatum or the ventromedial thalamus (VM. Dopamine release remained stable in all areas, as did GABA and amine concentrations in the SN of unstimulated controls. Following SVS, a sustained increase in GABA concentrations was observed in the ipsilesional, but not in the contralesional SN of 6-OHDA hemilesioned rats. In contrast, L-DOPA treatment produced a similar increase of GABA in the ipsi- and contra-lesional SN. CONCLUSIONS/SIGNIFICANCE: SVS improves rod performance in a rat model of Parkinson's disease, possibly by increasing nigral GABA release in a dopamine independent way. We propose that SVS could be useful for

  12. Galanin does not affect the growth hormone-releasing hormone-stimulated growth hormone secretion in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Bussi, A R; Legati, F; Bossoni, S; Licini, M; Schettino, M; Zuccato, F; Wehrenberg, W B

    1992-12-01

    Patients with hyperthyroidism have reduced spontaneous and stimulated growth hormone (GH) secretion. The aim of our study was to evaluate the effects of galanin, a novel neuropeptide which stimulates GH secretion in man, on the GH response to GHRH in patients with hyperthyroidism. Eight untreated hyperthyroid patients with Graves' disease (6F, 2M, aged 25-50 years) and six healthy volunteers (3F, 3M, aged 27-76 years) underwent from -10 to 30 min in random order: (i) porcine galanin, iv, 500 micrograms in 100 ml saline; or (ii) saline, iv, 100 ml. A bolus of human GHRH(1-29)NH2, 100 micrograms, was injected iv at 0 min. Hyperthyroid patients showed blunted GH peaks after GHRH+saline (10.2 +/- 2.5 micrograms/l) compared to normal subjects (20.7 +/- 4.8 micrograms/l, p hyperthyroid subjects (12.5 +/- 3 micrograms/l) compared to normal subjects (43.8 +/- 6 micrograms/l, p hyperthyroidism suggests that hyperthyroxinemia may either increase the somatostatin release by the hypothalamus or directly affect the pituitary GH secretory capacity.

  13. Endogenous opioids inhibit oxytocin release during nicotine-stimulated secretion of vasopressin in man.

    Science.gov (United States)

    Seckl, J R; Johnson, M; Shakespear, C; Lightman, S L

    1988-05-01

    The effects of the opioid antagonist naloxone on the vasopressin (AVP) and oxytocin (OT) responses to nicotine were studied in male non-smokers (21-30 years old). Either saline (n = 6) or naloxone (4 mg bolus + 6 mg/h, n = 6) was infused i.v. during the study. After 60 min infusion the subjects smoked one high-nicotine content cigarette. Naloxone infusion for 60 min did not alter basal plasma AVP or OT levels. Smoking led to a significant rise in plasma vasopressin in both saline and naloxone-infused subjects (P less than 0.05). There was no significant difference in the plasma AVP response to smoking between the two groups. Saline-infused subjects did not show any change in plasma OT in response to smoking. Naloxone infusion was associated with a significant rise in OT from 1.3 +/- 0.1 pmol/l to 4.3 +/- 2.4 pmol/l 5 min after smoking (P less than 0.05). We conclude that there is endogenous opioid-mediated inhibition of OT which prevents its release when AVP is secreted in response to nicotine in man.

  14. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Saba Pierluigi

    2005-05-01

    Full Text Available Abstract Background Previous studies by our group suggest that extracellular dopamine (DA and noradrenaline (NA may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC. This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC, occipital cortex (Occ, and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT blocker desipramine (DMI, 100 μM, multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant

  15. Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    E. Y. Choi

    2016-11-01

    Full Text Available This research analyzed the effect of β-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS of Escherichia. The incubated layer was used for a nitric oxide (NO analysis. The DNA-binding activation of the small unit of nuclear factor-κB was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli LPS, the β-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS-derived NO. β-Glucan increased the expression of the heme oxygenase-1 (HO-1 in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP. This shows that the NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK and the p38 induced by the LPS were not influenced by the β-glucan, and the inhibitory κB-α (IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1 that was induced by the E. coli LPS. Overall, the β-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E .coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by β-glucan weakens the progress of the inflammatory disease, β-glucan can be used as an effective immunomodulator.

  16. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    International Nuclear Information System (INIS)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran

    2006-01-01

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A 2 (PLA 2 ) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH

  17. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    1997-01-01

    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the

  18. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  19. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats.

    Science.gov (United States)

    Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung

    2018-04-30

    Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.

  20. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation

  1. Lung hyperinflation stimulates the release of inflammatory mediators in spontaneously breathing subjects

    Directory of Open Access Journals (Sweden)

    L.M.S. Malbouisson

    2010-02-01

    Full Text Available Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m². LHM was performed applying continuous positive airway pressure (CPAP with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05 all measured cytokines (TNF-α: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1β: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL, which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6 and anti-inflammatory (IL-10 cytokines (r = 0.89, P = 0.004. LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.

  2. Role of group II metabotropic glutamate receptors 2/3 and group I metabotropic glutamate receptor 5 in developing rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2005-08-22

    In brainstem slices from developing rats, metabotropic glutamate receptors mGluR2/3 and mGluR5 play different inhibitory roles in synaptic transmission and plasticity of the medial vestibular nuclei. The mGluR2/3 block (LY341495) reduces the occurrence of long-term depression after vestibular afferent high frequency stimulation at P8-P10, and increases that of long-term potentiation, while the mGluR5 block prevents high frequency stimulation long-term depression. Later on, the receptor block does not influence high frequency stimulation effects. In addition, while mGluR2/3 agonist (APDC) always provokes a transient reduction of synaptic responses, that of mGluR5 (CHPG) induces long-term depression per se at P8-P10. These results show a key role of mGluR5 in inducing high frequency stimulation long-term depression in developing medial vestibular nuclei, while mGluR2/3 modulate synaptic transmission, probably through presynaptic control of glutamate release.

  3. Glutamate mediated astrocytic filtering of neuronal activity.

    Directory of Open Access Journals (Sweden)

    Gilad Wallach

    2014-12-01

    Full Text Available Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.

  4. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  5. Enhancement of cell-cell contact by a nonmitogenic lectin increases blastogenic response and IL-2 release by mitogen-stimulated mouse thymocytes.

    Science.gov (United States)

    Favero, J; Marti, J; Dornand, J; Bonnafous, J C; Mani, J C

    1986-03-01

    We have examined the influence of peanut agglutinin (PNA), a lectin which agglutinates but does not stimulate mouse thymocytes, on the responsiveness of these cells to concanavalin A (Con A) or galactose oxidase stimulation. Binding low amounts of PNA on unseparated mouse thymocytes pretreated with neuraminidase highly enhances the mitogenic response and the level of interleukin 2 release in the culture medium upon Con A stimulation. We have shown that PNA present on the cell surface acts as a crosslinking agent which favors intercellular binding between accessory cells (macrophages) and thymocytes, leading through this enhanced cooperation by cell-cell contact to an enhanced blastogenic response.

  6. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Science.gov (United States)

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine.

  7. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    Science.gov (United States)

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Effect of acute and chronic MK-801 administration on extracellular glutamate and ascorbic acid release in the prefrontal cortex of freely moving mice on line with open-field behavior.

    Science.gov (United States)

    Zuo, Dai-Ying; Zhang, Ya-Hong; Cao, Yue; Wu, Chun-Fu; Tanaka, Masatoshi; Wu, Ying-Liang

    2006-04-04

    The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.

  9. Delineation of glutamate pathways and secretory responses in pancreatic islets with ß-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurene; Carobbio, Stefania; Pournourmohammadi, Shirin

    2012-01-01

    isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α......-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response...... to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role...

  10. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    Science.gov (United States)

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  11. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Pfeilschifter Josef

    2008-09-01

    Full Text Available Abstract Background Production of interferon (IFN-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA. mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA, respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.

  12. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    Eilon, G.; Raisz, L.G.

    1978-01-01

    The release of lysosomal enzymes, collagenase, and previously incorporated 45 Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E 2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45 Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45 Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45 Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45 Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45 Ca release decreased. When the bones escaped from calcitonin inhibition, both 45 Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45 CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E 2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  13. Effects of Electroacupuncture Stimulation at “Zusanli” Acupoint on Hepatic NO Release and Blood Perfusion in Mice

    Directory of Open Access Journals (Sweden)

    Shu-you Wang

    2015-01-01

    Full Text Available The study is to observe the influence of electroacupuncture (EA stimulation at “Zusanli” (ST36 on the release of nitric oxide (NO and blood perfusion (BP in the liver and further explore whether the hepatic blood perfusion (HBP changes were regulated by EA ST36 induced NO in nitric oxide synthase inhibited mice. The HBP change of the mice was detected by laser speckle perfusion imaging (LSPI before and after being given interventions, and the NO in liver tissue was detected by nitric acid reductase in each group. The NO levels and HBP in the L-NAME group were significantly lower than those in the control group (P<0.01. The NO level and HBP increase in EA group were significantly higher than those in control group (P<0.05. The NO level in the L-NAME EA group was slightly higher than that in the L-NAME group. The HBP increase in the L-NAME EA group was not statistically significant. These results showed that EA could accelerate the synthesis of NO and thereby increase HBP via vasodilation in liver tissue.

  14. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.

    Science.gov (United States)

    Jerlhag, Elisabet; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2010-09-01

    Recently we demonstrated that genetic or pharmacological suppression of the central ghrelin signaling system, involving the growth hormone secretagogue receptor 1A (GHS-R1A), lead to a reduced reward profile from alcohol. As the target circuits for ghrelin in the brain include a mesolimbic reward pathway that is intimately associated with reward-seeking behaviour, we sought to determine whether the central ghrelin signaling system is required for reward from drugs of abuse other than alcohol, namely cocaine or amphetamine. We found that amphetamine-as well as cocaine-induced locomotor stimulation and accumbal dopamine release were reduced in mice treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A appears to be required not only for alcohol-induced reward, but also for reward induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling system constitutes a novel potential target for treatment of addictive behaviours such as drug dependence.

  15. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  16. Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids.

    Science.gov (United States)

    Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K

    2017-10-01

    Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition

  17. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  18. Mechanism of norepinephrine release elicited by renal nerve stimulation, veratridine and potassium chloride in the isolated rat kidney

    International Nuclear Information System (INIS)

    el-Din, M.M.; Malik, K.U.

    1987-01-01

    We have investigated the mechanism by which renal nerve stimulation (RNS), veratridine (Vt) and KCl promote release of norepinephrine in the isolated rat kidney perfused with Tyrode's solution and prelabeled with [ 3 H]norepinephrine by examining the overflow of tritium elicited by these stimuli during 1) extracellular Ca++ depletion, 2) alterations in extracellular Na+ concentration and 3) administration of tetrodotoxin, amiloride, LiCl and calcium channel blockers. RNS (1-4 Hz), Vt (15-90 nmol) and KCl (150-500 mumol) produced renal vasoconstriction and enhanced the tritium overflow in a frequency- and concentration-dependent manner, respectively. Omission of Ca++ (1.8 mM) from the perfusion fluid abolished the renal vasoconstriction and the increase in tritium overflow elicited by RNA and KCl and substantially reduced that caused by Vt. Lowering the Na+ concentration in the perfusion medium (from 150 to 25 mM) reduced the overflow of tritium and the renal vasoconstriction caused by RNS (2 Hz) or Vt (45 nmol); the increase in tritium overflow in response to these stimuli was positively correlated with extracellular Na+ (25-150 mM). In contrast, KCl-induced tritium overflow was negatively correlated with extracellular Na+ concentration. Tetrodotoxin (0.3 microM) abolished the effect of RNS and Vt, but not that of KCl, to increase overflow of tritium and to produce renal vasoconstriction. Administration of amiloride (180 microM) enhanced the overflow of tritium but attenuated the associated renal vasoconstriction produced by RNS, Vt and KCl. Replacement of NaCl (75 mM) with equimolar concentration of LiCl enhanced the overflow of tritium elicited by RNS, Vt and KCl; the associated renal vasoconstriction remained unaltered

  19. Introduction to the Glutamate-Glutamine Cycle.

    Science.gov (United States)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  20. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  1. In vitro labelled neurotransmitters release for the study of neuro toxins

    International Nuclear Information System (INIS)

    Camillo, Maria A.P.; Rogero, Jose R.; Troncone, Lanfranco R.P.

    1995-01-01

    There is an increasing concern in the replacement of in vivo by in vitro methods in Pharmacology. Looking for a method which involves the most of the physiological aspects related to neural functions, a super fusion system designed to evaluate in vitro neurotransmitter release from brain striatal tissue is here described. The method is based on the basal and stimulated release of pre-loaded tritium-labelled neurotransmitters. This procedure bears an active uptake/release function which is fairly changed by membrane polarisation state, ion channel activation and enzymatic activity, as well as other still unknown steps involved in neurotransmission. Calcium dependency of dopamine and acetylcholine release induced by high potassium depolarization or glutamate (Glu) stimulation was demonstrated employing calcium-free (+EGTA) super fusion or lanthanum/cadmium addition. Glutamate stimulation involved NMDA receptors since magnesium or MK801 blocks stimulated release. Uptake of DA and Ach was evidenced by using bupropione or hemicolinium-3. presynaptic inhibition of Ach release was evidenced by physostigmine-induced inhibitions of acetylcholinesterase. (author). 3 refs., 6 figs

  2. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  3. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    Science.gov (United States)

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-11-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.

  4. Culicoides antigen extract stimulates equine blood mononuclear (BMN) cell proliferation and the release of eosinophil adherence-inducing factor(s).

    Science.gov (United States)

    Mckelvie, J; Foster, A P; Hamblin, A S; Cunningham, F M

    2001-04-01

    Intradermal injection of a Culicoides antigen extract (CAgX) induces T lymphocyte and eosinophil accumulation in the skin of horses with sweet itch. Blood mononuclear (BMN) cells from normal ponies proliferate when stimulated by mitogen (phytohaemagglutinin, PHA) or antigen (tetanus toxoid, TT) and, as shown here, release soluble factor(s) that induce eosinophil adherence. CAgX also caused concentration dependent proliferation of BMN cells from sweet itch and normal ponies [stimulation index: 29 (13) and 17 (7) for BMN cells from sweet itch and normal ponies, respectively during the active phase of disease; 4 microg protein ml(-1)CAgX; 168 h]. A heat labile factor(s) which caused eosinophil adherence was also released [sweet itch ponies: 6.0 (1.6) per cent adherence versus 1.3 (0.4) per cent; normal ponies: 6.6 (0.5) per cent adherence versus 0.9 (0.1) per cent for supernatants from CAgX (4 microg protein ml(-1); 48 hours) stimulated versus unstimulated BMN cells, respectively]. These results suggest that soluble proteins released from T lymphocytes could affect eosinophil function in the lesional skin of sweet itch horses. Copyright 2001 Harcourt Publishers Ltd.

  5. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. (Brigham and Women' s Hospital, Boston, MA (USA))

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  6. A steady-state mechanism can account for the properties of inositol 2,4,5-trisphosphate-stimulated Ca2+ release from permeabilized L1210 cells.

    Science.gov (United States)

    Loomis-Husselbee, J W; Dawson, A P

    1993-01-01

    We have investigated the effects of sub-maximal Ins(2,4,5)P3 concentrations on the Ca2+ permeability of the residual undischarged Ca2+ stores in electroporated or digitonin-permeabilized L1210 cells by measuring Ca(2+)-efflux rate after addition of the ATPase inhibitor thapsigargin. Low concentrations of Ins(2,4,5)P3, causing rapid discharge of a small proportion of the releasable Ca2+, result in a substantial stimulation of Ca2+ efflux after thapsigargin addition. This indicates firstly that in the absence of thapsigargin there must have been a substantial, counterbalancing, increase in rate of Ca2+ pumping, and secondly that the increased Ca2+ permeability is more consistent with a steady state than with a quantal model of Ca2+ release. Similar increases in passive Ca2+ permeability are produced by addition of concentrations of ionomycin which produce equivalent changes in Ca2+ loading to those produced by Ins(2,4,5)P3, although the time course and initial rate of Ca2+ release are very much slower. In the presence of a Ca(2+)-buffering system, the time course of Ca2+ release by Ins(2,4,5)P3 becomes superimposable on that of ionomycin, indicating that the initial rapid phase of Ins(2,4,5)P3-stimulated Ca2+ is at least partially due to positive feedback from extravesicular Ca2+. PMID:8382056

  7. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1β.

    Science.gov (United States)

    Williams, Adam; Smith, Julia R; Allaway, David; Harris, Pat; Liddell, Susan; Mobasheri, Ali

    2013-01-01

    Arthritic diseases are characterized by the degradation of collagenous and noncollagenous extracellular matrix (ECM) components in articular cartilage. The increased expression and activity of matrix metalloproteinases (MMPs) is partly responsible for cartilage degradation. This study used proteomics to identify inflammatory proteins and catabolic enzymes released in a serum-free explant model of articular cartilage stimulated with the pro-inflammatory cytokine interleukin 1β (IL-1β). Western blotting was used to quantify the release of selected proteins in the presence or absence of the cyclooxygenase-2 specific nonsteroidal pro-inflammatory drug carprofen. Cartilage explant cultures were established by using metacarpophalangeal joints from horses euthanized for purposes other than research. Samples were treated as follows: no treatment (control), IL-1β (10 ng/ml), carprofen (100 μg/ml), and carprofen (100 μg/ml) + IL-1β (10 ng/ml). Explants were incubated (37°C, 5% CO2) over twelve day time courses. High-throughput nano liquid chromatography/mass spectrometry/mass spectrometry uncovered candidate proteins for quantitative western blot analysis. Proteoglycan loss was assessed by using the dimethylmethylene blue (DMMB) assay, which measures the release of sulfated glycosaminoglycans (GAGs). Mass spectrometry identified MMP-1, -3, -13, and the ECM constituents thrombospondin-1 (TSP-1) and fibronectin-1 (FN1). IL-1β stimulation increased the release of all three MMPs. IL-1β also stimulated the fragmentation of FN1 and increased chondrocyte cell death (as assessed by β-actin release). Addition of carprofen significantly decreased MMP release and the appearance of a 60 kDa fragment of FN1 without causing any detectable cytotoxicity to chondrocytes. DMMB assays suggested that carprofen initially inhibited IL-1β-induced GAG release, but this effect was transient. Overall, during the two time courses, GAG release was 58.67% ± 10.91% (SD) for IL-1

  8. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  9. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Directory of Open Access Journals (Sweden)

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  10. In vivo release of calcitonin gene-related peptide-like material from the cervicotrigeminal area in the rat. Effects of electrical and noxious stimulations of the muzzle.

    Science.gov (United States)

    Pohl, M; Collin, E; Bourgoin, S; Clot, A M; Hamon, M; Cesselin, F; Le Bars, D

    1992-10-01

    The continuous perfusion with an artificial cerebrospinal fluid of the cervicotrigeminal area of the spinal cord in halothane-anaesthetized rats allowed the collection of calcitonin gene-related peptide-like material with the same immunological and chromatographic characteristics as authentic rat alpha-calcitonin gene-related peptide. The spinal release of calcitonin gene-related peptide-like material could be significantly increased by the local application of 60 mM K+ (approximately +100%), high-intensity percutaneous electrical stimulation (approximately +200%) and noxious heat (by immersion in water at 52 degrees C; approximately +150%) applied to the muzzle. By contrast, noxious mechanical (pinches) and chemical (subcutaneous formalin injection) stimulations and deep cooling (by immersion in water at 0 degrees C) of the muzzle did not alter the spinal release of calcitonin gene-related peptide-like material. In addition, low-intensity electrical stimulation, recruiting only the A alpha/beta primary afferent fibres, significantly reduced (approximately -30%) the release of calcitonin gene-related peptide-like material from the cervicotrigeminal area. These data suggest that among the various types of natural noxious stimuli, noxious heat may selectively excite calcitonin gene-related peptide-containing A delta and C primary afferent fibres projecting within the dorsal horn of the spinal cord, and that activation of A alpha/beta fibres reduces spontaneous calcitonin gene-related peptide-like material release possibly through an inhibitory presynaptic control of calcitonin gene-related peptide-containing A delta/C fibres.

  11. Effect of food on early drug exposure from extended-release stimulants: results from the Concerta, Adderall XR Food Evaluation (CAFE) Study.

    Science.gov (United States)

    Auiler, J F; Liu, K; Lynch, J M; Gelotte, C K

    2002-01-01

    Stimulant therapy is the mainstay of treatment for children, adolescents and adults with attention-deficit/hyperactivity disorder (ADHD). Once-daily, extended-release oral formulations offer long acting control of symptoms by modifying drug delivery and absorption. In particular, consistency in early drug exposure is important for symptom control during school or work hours. Because these once-daily formulations are usually taken in the morning, the timing of the doses with breakfast is important. This study compared the effect of a high-fat breakfast on early drug exposure from a morning dose of two extended-release stimulant formulations: the osmotic-controlled OROS tablet of methylphenidate HCI (CONCERTA) and the capsule containing extended-release beads of mixed amphetamine salts (ADDERALL XR). The study had a single-dose, open-label, randomised, four-treatment, crossover design in which healthy subjects received either 36 mg CONCERTA or 20 mg ADDERALL XR in the morning after an overnight fast or a high-fat breakfast. Serial blood samples were collected over 28h to determine plasma concentrations of methylphenidate and amphetamine. The food effect on early drug exposure and the pharmacokinetic profiles up to 8 h after dosing of the two extended-release stimulants were directly compared using partial area (AUC(p4h), AUC(p6h) and AUC(p8h)) fed/fasted ratios. Amphetamine concentrations were markedly lower when the subjects had eaten breakfast, resulting in lower early drug exposures (p food, for patients with ADHD.

  12. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  13. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  14. (-)Deprenyl and (-)1-phenyl-2-propylaminopentane, [(-)PPAP], act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons.

    Science.gov (United States)

    Knoll, J; Miklya, I; Knoll, B; Markó, R; Kelemen, K

    1996-01-01

    The activity of the catecholaminergic neurons in the rat brain is enhanced significantly 30 min after the subcutaneous injection of very small doses of (-)deprenyl (threshold doses: 0.01 mg/kg for noradrenergic neurons and 0.025 mg/kg for dopaminergic neurons). As a catecholaminergic activity enhancer (CAE) substance (-)deprenyl is about ten times more potent than its parent compound, (-)methamphetamine. While the (+)methamphetamine is 3-5 times more potent than (-)methamphetammine in releasing catecholamines, the (-)methamphetamine is the more potent CAE substance. The mechanism of the CAE effect of (-)deprenyl and (-)PPAP, a deprenyl-derived substance devoid of MAO inhibitory potency, was studied in rats by measuring: a) the release of catecholamines from striatum, substantia nigra, tuberculum olfactorium and locus coeruleus; b) the stimulation induced release of 3H-noradrenaline from the isolated brain stem; and c) the antagonistic effect against tetrabenazine-induced depression of learning in the shuttle box. The CAE effect was found to be unrelated: a) to the inhibition of MAO activity; b) to the inhibition of presynaptic catecholamine receptors; c) to the inhibition of the uptake of catecholamines; and d) to the release of catecholamines. It was concluded that (-)deprenyl and (-)PPAP act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons of the brain. We show that both (-)deprenyl and (-)PPAP enhance the inward Ca2+ current in sino-auricular fibers of the frog heart. (-)PPAP was much more potent than either (+)PPAP or (-)deprenyl in this test.

  15. Human interleukin 1. beta. stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca sup 2+ handling

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1{beta} in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca{sup 2+} handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (<1 min) interleukin 1{beta} did not affect the production of inositoltrisphosphate. Addition of interleukin 1{beta} affected neither the cytoplasmic free Ca{sup 2+} concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a {sup 32}P-labelled substrate for this enzyme, was not altered by interleukin 1{beta}. Separation of {sup 32}P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1{beta} are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca{sup 2+} handling of the B-cells. (author).

  16. Human interleukin 1β stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca2+ handling

    International Nuclear Information System (INIS)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.

    1989-01-01

    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1β in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca 2+ handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations ( 2+ concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a 32 P-labelled substrate for this enzyme, was not altered by interleukin 1β. Separation of 32 P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1β are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca 2+ handling of the B-cells. (author)

  17. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    Science.gov (United States)

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  18. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Carlos V Melo

    Full Text Available BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7, indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during

  19. Different metabotropic glutamate receptors play opposite roles in synaptic plasticity of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2002-09-15

    In the medial vestibular nuclei (MVN) of rat brainstem slices, the role of group II and III metabotropic glutamate receptors (mGluRs) and of the subtypes of group I mGluRs: mGluR1, mGluR5, was investigated in basal synaptic transmission and in the induction and maintenance of long-term potentiation (LTP). We used selective antagonists and agonists for mGluRs and we analysed the field potentials evoked by vestibular afferent stimulation before and after high-frequency stimulation (HFS) to induce LTP. The group II and III mGluR antagonist, (R,S)-alpha-2-methyl-4sulphonophenylglycine (MSPG), induced LTP per se and caused a reduction of the paired-pulse facilitation (PPF) ratio indicating an enhancement of glutamate release. This suggests that group II and III mGluRs are activated under basal conditions to limit glutamate release. Both the group II and III mGluR selective antagonists, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoate (LY341495) and (R,S)-alpha-methylserine-O-phosphate (MSOP), induced LTP, and the selective agonists, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depressed the field potentials and prevented HFS-LTP, with a prevailing contribution of group II mGluRs over that of group III mGluRs. The mGluR1 antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented the full development and maintenance of HFS-LTP. By contrast, the mGluR5 antagonist, 2-methyl-6-phenylethynylpyridine (MPEP) induced LTP per se, which was impeded by CPCCOEt, and it had no effect on LTP once induced by HFS. The PPF analysis showed an enhancement of glutamate release during MPEP potentiation. The group I mGluR agonist, (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced LTP per se, which was blocked by CPCCOEt. By contrast the mGluR5 agonist, (R,S)-2-chloro-5-hydroxypheylglycine (CHPG) prevented LTP elicited by HFS and DHPG as well. In conclusion vestibular LTP is

  20. Resurgence of Minimal Stimulation In Vitro Fertilization with A Protocol Consisting of Gonadotropin Releasing Hormone-Agonist Trigger and Vitrified-Thawed Embryo Transfer

    Directory of Open Access Journals (Sweden)

    Zhang John

    2016-07-01

    Full Text Available Minimal stimulation in vitro fertilization (mini-IVF consists of a gentle controlled ovarian stimulation that aims to produce a maximum of five to six oocytes. There is a misbelief that mini-IVF severely compromises pregnancy and live birth rates. An appraisal of the literature pertaining to studies on mini-IVF protocols was performed. The advantages of minimal stimulation protocols are reported here with a focus on the use of clomiphene citrate (CC, gonadotropin releasing hormone (GnRH ago- nist trigger for oocyte maturation, and freeze-all embryo strategy. Literature review and the author’s own center data suggest that minimal ovarian stimulation protocols with GnRH agonist trigger and freeze-all embryo strategy along with single embryo transfer produce a reasonable clinical pregnancy and live birth rates in both good and poor responders. Additionally, mini-IVF offers numerous advantages such as: i. Reduction in cost and stress with fewer office visits, needle sticks, and ultrasounds, and ii. Reduction in the incidence of ovarian hyperstimulation syndrome (OHSS. Mini-IVF is re-emerging as a solution for some of the problems associated with conventional IVF, such as OHSS, cost, and patient discomfort.

  1. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  2. Monosodium Glutamate Toxicity

    African Journals Online (AJOL)

    Dr Olaleye

    The brain is reportedly sensitive to monosodium glutamate (MSG) toxicity via oxidative stress. Sida acuta leaf ethanolic .... wherein the right hemisphere, was preserved for histology and fixed in 10% ... Biochemical Assays: The left hemisphere of the brain samples was ...... development in male and female rats. Exp Physiol.

  3. Glucagon-like peptide-2, but not glucose-dependent insulinotropic polypeptide, stimulates glucagon release in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Knop, Filip K; Vilsbøll, Tina

    2010-01-01

    This study investigated the glucagon-releasing properties of the hormones glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) in 8 patients with type 1 diabetes mellitus (T1DM) without paracrine intraislet influence of insulin (C-peptide negative following a 5 g...... intravenous arginine stimulation; on study days only treated with basal insulin substitution). On 3 study days, 180-minute two-step glucose clamps were performed. Plasma glucose (PG) was clamped at fasting values, with a mean of 7.4+/-0.5 mM in the first 90 min (period 1) and raised 1.5 times the fasting...

  4. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Sylow, Lykke; Rose, Adam John

    2014-01-01

    signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca(2+) release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress......-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport...

  5. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics

    Directory of Open Access Journals (Sweden)

    R. Seda Tığlı Aydın

    2012-01-01

    Full Text Available Nanoparticles consisting of human therapeutic drugs are suggested as a promising strategy for targeted and localized drug delivery to tumor cells. In this study, 5-fluorouracil (5-FU encapsulated chitosan nanoparticles were prepared in order to investigate potentials of localized drug delivery for tumor environment due to pH sensitivity of chitosan nanoparticles. Optimization of chitosan and 5-FU encapsulated nanoparticles production revealed 148.8±1.1 nm and 243.1±17.9 nm particle size diameters with narrow size distributions, which are confirmed by scanning electron microscope (SEM images. The challenge was to investigate drug delivery of 5-FU encapsulated chitosan nanoparticles due to varied pH changes. To achieve this objective, pH sensitivity of prepared chitosan nanoparticle was evaluated and results showed a significant swelling response for pH 5 with particle diameter of ∼450 nm. In vitro release studies indicated a controlled and sustained release of 5-FU from chitosan nanoparticles with the release amounts of 29.1–60.8% due to varied pH environments after 408 h of the incubation period. pH sensitivity is confirmed by mathematical modeling of release kinetics since chitosan nanoparticles showed stimuli-induced release. Results suggested that 5-FU encapsulated chitosan nanoparticles can be launched as pH-responsive smart drug delivery agents for possible applications of cancer treatments.

  6. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Science.gov (United States)

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  7. Role of Gonadotropin-releasing Hormone Stimulation Test in Diagnosing Gonadotropin Deficiency in Both Males and Females with Delayed Puberty

    Directory of Open Access Journals (Sweden)

    Qi-Hong Sun

    2015-01-01

    Conclusions: Our data suggest that isolated use of the gonadorelin stimulation test is almost sufficient to discriminate between HH and CDP in males, but unnecessary in females. The most useful predictor is serum basal or peak LH to differentiate these two disorders in males, but serum basal LH or FSH in females.

  8. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    International Nuclear Information System (INIS)

    Cai, Yun; Ling, Li; Li, Xiaofang; Chen, Meng; Su, Likai

    2015-01-01

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe 3 O 4 nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N 2 adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe 3 O 4 core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s

  9. Light-stimulated cargo release from a core–shell structured nanocomposite for site-specific delivery

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yun; Ling, Li; Li, Xiaofang [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Chen, Meng [Department of Rheumatology, Affiliated Hospital of Hebei University, Baoding 071000 (China); Su, Likai, E-mail: zhangdong19992003@163.com [Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000 (China)

    2015-03-15

    This paper reported a core–shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe{sub 3}O{sub 4} nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b′]dipyridin-5(5aH)-ylidene)benzene-1, 4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N{sub 2} adsorption/desorption, thermogravimetric analysis, IR, UV–vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of “on” and “off” states, controllable release was observed with short release time of ~900 s (90% capacity). - Graphical abstract: A core–shell structured site-specific delivery system with a light switch triggered by yellow light was constructed. Controllable release was observed with short release time of ~900 s (90% capacity). - Highlights: • A core–shell structured site-specific delivery system was constructed. • It consisted of Fe{sub 3}O{sub 4} core and MCM-41 shell grafted with light switch. • This delivery system was triggered by low energy light. • Controllable release was observed with short release time of ~900 s.

  10. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  11. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Synaptic glutamate spillover increases NMDA receptor reliability at the cerebellar glomerulus

    OpenAIRE

    Mitchell, Cassie S.; Lee, Robert H.

    2011-01-01

    Glutamate spillover in the mossy fiber to granule cell cerebellar glomeruli has been hypothesized to increase neurotransmission reliability. In this study, we evaluate this hypothesis using an experimentally-based quantitative model of glutamate spillover on the N-methyl-d-aspartate receptors (NMDA-Rs) at the cerebellar glomerulus. The transient and steady-state responses of NMDA-Rs were examined over a physiological range of firing rates. Examined cases included direct glutamate release acti...

  13. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  14. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release

    DEFF Research Database (Denmark)

    Nielsen, Trine; Sparsø, T; Grarup, N

    2011-01-01

    By combining multiple genome-wide association (GWA) studies and comprehensive replication efforts, 12 novel type 2 diabetes associated loci have recently been discovered. Here we evaluate the effect of lead variants of these loci on estimates of insulin release and insulin resistance derived from...

  15. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  16. Subclinical hypothyroidism diagnosed by thyrotropin-releasing hormone stimulation test in infertile women with basal thyroid-stimulating hormone levels of 2.5 to 5.0 mIU/L.

    Science.gov (United States)

    Lee, You-Jeong; Kim, Chung-Hoon; Kwack, Jae-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2014-11-01

    To investigate the prevalence of subclinical hypothyroidism (SH) diagnosed by thyrotropin-releasing hormone (TRH) stimulating test in infertile women with basal thyroid-stimulating hormone (TSH) levels of 2.5 to 5.0 mIU/L. This study was performed in 39 infertile women with ovulatory disorders (group 1) and 27 infertile women with male infertility only (group 2, controls) who had basal serum TSH levels of 2.5 to 5.0 mIU/L and a TRH stimulating test. Serum TSH levels were measured before TRH injection (TSH0) and also measured at 20 minutes (TSH1) and 40 minutes (TSH2) following intravenous injection of 400 µg TRH. Exaggerated TSH response above 30 mIU/L following TRH injection was diagnosed as SH. Group 1 was composed of poor responders (subgroup A), patients with polycystic ovary syndrome (subgroup B) and patients with WHO group II anovulation except poor responder or polycystic ovary syndrome (subgroup C). The prevalence of SH was significantly higher in group 1 of 46.2% (18/39) compared with 7.4% (2/27) in group 2 (P=0.001). TSH0, TSH1, and TSH2 levels were significantly higher in group 1 than the corresponding values in group 2 (Pstimulation test had better be performed in infertile women with ovulatory disorders who have TSH levels between 2.5 and 5.0 mIU/L for early detection and appropriate treatment of SH.

  17. Atrial granular cells of the snail Achatina fulica release proteins into hemolymph after stimulation of the heart nerve.

    Science.gov (United States)

    Shabelnikov, Sergej V; Bystrova, Olga A; Ivanov, Vadim A; Margulis, Boris A; Martynova, Marina

    2009-10-01

    The atrium of the gastropod mollusc Achatina fulica receives rich innervation and contains numerous granular cells (GCs). We studied the atrial innervation and discovered that axon profiles typical in appearance of peptidergic neurons form close unspecialized membrane contacts with GCs. Then, we investigated, at both morphological and biochemical levels, the effect of electrical stimulation of the heart nerve on GCs of Achatina heart perfused in situ. The ultrastructural study demonstrated changes in granule morphology consistent with secretion. These events included alteration of granule content, intracellular granule fusion and formation of complex degranulation channels, within which the granule matrix solubilized. It was shown that electrical stimulation resulted in a significant increase of the total protein concentration in the perfusate. Furthermore, SDS-PAGE analysis of the perfusate revealed three new proteins with molecular masses of 16, 22, and 57 kDa. Affinity-purified polyclonal antibodies against the 16 kDa protein were obtained; the whole-mount immunofluorescence technique revealed the presence of this protein in the granules of atrial GCs. In GCs of the stimulated atrium, a progressive loss of their granular content was observed. The results suggest that the central nervous system can modulate the secretory activity of the atrial GCs through non-synaptic pathways.

  18. Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tina T.-C. Tseng

    2014-06-01

    Full Text Available Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx were prepared by adsorption on electrodeposited chitosan (Method 1 and by crosslinking with glutaraldehyde (Method 2 on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s and lower detection limit (2.5 ± 1.1 μM compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM; glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12 compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8. The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.

  19. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Bronac Flanagan

    2018-04-01

    Full Text Available The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  20. NR4A1 (Nur77 mediates thyrotropin-releasing hormone-induced stimulation of transcription of the thyrotropin β gene: analysis of TRH knockout mice.

    Directory of Open Access Journals (Sweden)

    Yasuyo Nakajima

    Full Text Available Thyrotropin-releasing hormone (TRH is a major stimulator of thyrotropin-stimulating hormone (TSH synthesis in the anterior pituitary, though precisely how TRH stimulates the TSHβ gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSHβ gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSHβ gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSHβ gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSHβ gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSHβ promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1 TRH is a highly specific regulator of the TSHβ gene, and 2 TRH mediated induction of the TSHβ gene, at least in part by sequential stimulation of the NR4A1-TSHβ genes through a PKC and

  1. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    Science.gov (United States)

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  2. Reactive Oxygen Stimulation of Interleukin-6 Release in the Human Trophoblast Cell Line HTR-8/SVneo by the Trichlorethylene Metabolite S-(1,2-Dichloro)-l-Cysteine.

    Science.gov (United States)

    Hassan, Iman; Kumar, Anjana M; Park, Hae-Ryung; Lash, Lawrence H; Loch-Caruso, Rita

    2016-09-01

    Trichloroethylene (TCE) is a common environmental pollutant associated with adverse reproductive outcomes in humans. TCE intoxication occurs primarily through its biotransformation to bioactive metabolites, including S-(1,2-dichlorovinyl)-l-cysteine (DCVC). TCE induces oxidative stress and inflammation in the liver and kidney. Although the placenta is capable of xenobiotic metabolism and oxidative stress and inflammation in placenta have been associated with adverse pregnancy outcomes, TCE toxicity in the placenta remains poorly understood. We determined the effects of DCVC by using the human extravillous trophoblast cell line HTR-8/SVneo. Exposure to 10 and 20 μM DCVC for 10 h increased reactive oxygen species (ROS) as measured by carboxydichlorofluorescein fluorescence. Moreover, 10 and 20 μM DCVC increased mRNA expression and release of interleukin-6 (IL-6) after 24-h exposure, and these responses were inhibited by the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid and by treatments with antioxidants (alpha-tocopherol and deferoxamine), suggesting that DCVC-stimulated IL-6 release in HTR-8/SVneo cells is dependent on beta-lyase metabolic activation and increased generation of ROS. HTR-8/SVneo cells exhibited decreased mitochondrial membrane potential at 5, 10, and 20 μM DCVC at 5, 10, and 24 h, showing that DCVC induces mitochondrial dysfunction in HTR-8/Svneo cells. The present study demonstrates that DCVC stimulated ROS generation in the human placental cell line HTR-8/SVneo and provides new evidence of mechanistic linkage between DCVC-stimulated ROS and increase in proinflammatory cytokine IL-6. Because abnormal activation of cytokines can disrupt trophoblast functions necessary for placental development and successful pregnancy, follow-up investigations relating these findings to physiologic outcomes are warranted. © 2016 by the Society for the Study of Reproduction, Inc.

  3. Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

    International Nuclear Information System (INIS)

    Neri, F.; Scala, A.; Grimato, S.; Santoro, M.; Spadaro, S.; Barreca, F.; Cimino, F.; Speciale, A.; Saija, A.; Grassi, G.; Fazio, E.

    2016-01-01

    The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.

  4. Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

    Energy Technology Data Exchange (ETDEWEB)

    Neri, F. [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy); Scala, A., E-mail: ascala@unime.it; Grimato, S. [Università di Messina, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Italy); Santoro, M.; Spadaro, S.; Barreca, F. [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy); Cimino, F.; Speciale, A.; Saija, A.; Grassi, G. [Università di Messina, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (Italy); Fazio, E., E-mail: enfazio@unime.it [Università di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (Italy)

    2016-06-15

    The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.

  5. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  6. Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells.

    Science.gov (United States)

    Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana

    2012-11-01

    Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    DEFF Research Database (Denmark)

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species...

  8. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function.

    Science.gov (United States)

    Nicholson, J R; Peter, J-C; Lecourt, A-C; Barde, Y-A; Hofbauer, K G

    2007-12-01

    In the present study, we aimed to investigate the neuromodulatory role played by hypothalamic brain-derived neurotrophic factor (BDNF) in the regulation of acute cardiovascular and feeding responses to melanocortin-4 receptor (MC4R) activation. In vitro, a selective MC4R agonist, MK1, stimulated BDNF release from isolated rat hypothalami and this effect was blocked by preincubation with the MC3/4R antagonist SHU-9119. In vivo, peripheral administration of MK1 decreased food intake in rats and this effect was blocked by pretreatment with an anti-BDNF antibody administered into the third ventricle. When anorexia was induced with the cannabinoid-1 receptor (CB1R) antagonist AM251, the anti-BDNF antibody did not prevent the reduction in food intake. Peripheral administration of MK1 also increased mean arterial pressure, heart rate and body temperature. These effects were prevented by pretreatment with the anti-BDNF antibody whereas the intracerebroventricular administration of BDNF caused changes similar to those of MK1. These findings demonstrate for the first time that activation of MC4R leads to an acute release of BDNF in the hypothalamus. This release is a prerequisite for MC4R-induced effects on appetite, body temperature and cardiovascular function. By contrast, CB1R antagonist-mediated anorexia is independent of the MC4R/BDNF pathway. Overall, these results show that BDNF is an important downstream mediator of the MC4R pathway.

  9. Oral glutamate intake reduces acute and chronic effects of ethanol in ...

    African Journals Online (AJOL)

    treatment, male Wistar rats were trained to consume ethanol-sucrose solution during a 2-h period daily, ... Oral treatment with 2.5 g/kg of glutamate reversed the acute motor effects of ethanol. ..... glutamate release in the prefrontal cortex-NAc.

  10. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  11. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation.

    Science.gov (United States)

    Shen, E-Chin; Chou, Tz-Chong; Gau, Ching-Hwa; Tu, Hsiao-Pei; Chen, Yen-Teen; Fu, Earl

    2006-10-01

    Thrombin is commonly used for activating the platelets and releasing the growth factors on the application of platelet-rich plasma (PRP). We have previously reported that chitosan can enhance rabbit platelet aggregation. In this study, the effects of chitosan on the subsequent growth factors release after human platelets activation were examined to evaluate the possibility of chitosan being used as a substitute for thrombin during PRP preparation. Human platelet activation was determined by aggregation, adhesion and alpha-granule membrane glycoprotein expression. Platelet aggregation was measured by the turbidimetric method, the adhesion was directly examined on chitosan-coated glass plates under light microscope and scanning electron microscope (SEM), and the alpha-granule membrane glycoprotein was detected by fluorescent isothiocyanate (FITC)-conjugated anti-CD61 antibody through flow cytometry. The subsequent epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets were assayed by ELISA after mixing with chitosan. The enhancing effects on the platelet adhesion and the aggregation from chitosan were observed. Under both microscopes, the adhesive platelets on the chitosan-coated plates were not only greater in number but also earlier in activation than those on the control plates. With flow cytometry, increased glycoprotein IIIa expression in platelets was detected after chitosan treatment. Greater concentrations of growth factors were measured from PRP after chitosan treatment than after the solvent treatment. Because of the observations of growth factors releasing from activated human platelets after chitosan stimulation, we suggest that chitosan may be an appropriate substitute for thrombin in PRP preparation.

  12. NAA and NAAG variation in neuronal activation during visual stimulation.

    Science.gov (United States)

    Castellano, G; Dias, C S B; Foerster, B; Li, L M; Covolan, R J M

    2012-11-01

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  13. NAA and NAAG variation in neuronal activation during visual stimulation

    International Nuclear Information System (INIS)

    Castellano, G.; Dias, C.S.B.; Foerster, B.; Li, L.M.; Covolan, R.J.M.

    2012-01-01

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate

  14. NAA and NAAG variation in neuronal activation during visual stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, G.; Dias, C.S.B. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Foerster, B. [Philips Medical Systems, São Paulo, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Li, L.M. [Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Covolan, R.J.M. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil)

    2012-08-17

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  15. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Qingqing [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Li, Wei [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058 (Germany); Yu, Shanshan; Ma, Liwei [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Jin, Dayong [Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007 (Australia); Advanced Cytometry Labs, ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109 (Australia); Boccaccini, Aldo R., E-mail: Aldo.Boccaccini@ww.uni-erlangen.de [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058 (Germany); Liu, Yong, E-mail: yongliu1980@hotmail.com [Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Advanced Cytometry Labs, ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109 (Australia)

    2015-11-01

    Novel chitosan–polyvinyl pyrrolidone/45S5 Bioglass® (CS-PVP/BG) scaffolds were prepared via foam replication and chemical cross-linking techniques. The pristine BG, CS-PVP coated BG and genipin cross-linked CS-PVP/BG (G-CS-PVP/BG) scaffolds were synthesized and characterized in terms of chemical composition, physical structure and morphology respectively. Resistance to enzymatic degradation of the scaffold is improved significantly with the use of genipin cross-linked CS-PVP. The bio-effects of scaffolds on MC3T3-E1 osteoblast-like cells were evaluated by studying cell viability, adhesion and proliferation. The CCK-8 assay shows that cell viability on the resulting G-CS-PVP/BG scaffold is improved obviously after cross-linking of genipin. Cell skeleton images exhibit that well-stretched F-actin bundles are obtained on the G-CS-PVP/BG scaffold. SEM results present significant improvement on the cell adhesion and proliferation for cells cultured on the G-CS-PVP/BG scaffold. The drug release performance on the as-synthesized scaffold was studied in a phosphate buffered saline (PBS) solution. Vancomycin is found to be released in burst fashion within 24 h from the pristine BG scaffold, however, the release period from the G-CS-PVP/BG scaffold is enhanced to 7 days, indicating improved drug release properties of the G-CS-PVP/BG scaffold. Our results suggest that the G-CS-PVP/BG scaffolds possess promising physicochemical properties, sustained drug release capability and good biocompatibility for MC3T3-E1 cells' proliferation and adhesion, suggesting their potential applications in areas such as MC3T3-E1 cell stimulation and bone tissue engineering. - Highlights: • Novel genipi–chitosan–polyvinyl pyrrolidone/45S5 Bioglass® scaffolds are prepared. • Resistance to enzymatic degradation of the scaffold is improved significantly. • The resulting scaffold shows enhanced MC3T3-E1 cell adhesion and proliferation. • Release of antibiotic vancomycin from the

  16. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release

    International Nuclear Information System (INIS)

    Yao, Qingqing; Li, Wei; Yu, Shanshan; Ma, Liwei; Jin, Dayong; Boccaccini, Aldo R.; Liu, Yong

    2015-01-01

    Novel chitosan–polyvinyl pyrrolidone/45S5 Bioglass® (CS-PVP/BG) scaffolds were prepared via foam replication and chemical cross-linking techniques. The pristine BG, CS-PVP coated BG and genipin cross-linked CS-PVP/BG (G-CS-PVP/BG) scaffolds were synthesized and characterized in terms of chemical composition, physical structure and morphology respectively. Resistance to enzymatic degradation of the scaffold is improved significantly with the use of genipin cross-linked CS-PVP. The bio-effects of scaffolds on MC3T3-E1 osteoblast-like cells were evaluated by studying cell viability, adhesion and proliferation. The CCK-8 assay shows that cell viability on the resulting G-CS-PVP/BG scaffold is improved obviously after cross-linking of genipin. Cell skeleton images exhibit that well-stretched F-actin bundles are obtained on the G-CS-PVP/BG scaffold. SEM results present significant improvement on the cell adhesion and proliferation for cells cultured on the G-CS-PVP/BG scaffold. The drug release performance on the as-synthesized scaffold was studied in a phosphate buffered saline (PBS) solution. Vancomycin is found to be released in burst fashion within 24 h from the pristine BG scaffold, however, the release period from the G-CS-PVP/BG scaffold is enhanced to 7 days, indicating improved drug release properties of the G-CS-PVP/BG scaffold. Our results suggest that the G-CS-PVP/BG scaffolds possess promising physicochemical properties, sustained drug release capability and good biocompatibility for MC3T3-E1 cells' proliferation and adhesion, suggesting their potential applications in areas such as MC3T3-E1 cell stimulation and bone tissue engineering. - Highlights: • Novel genipi–chitosan–polyvinyl pyrrolidone/45S5 Bioglass® scaffolds are prepared. • Resistance to enzymatic degradation of the scaffold is improved significantly. • The resulting scaffold shows enhanced MC3T3-E1 cell adhesion and proliferation. • Release of antibiotic vancomycin from the

  17. Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Stefania Zappettini

    Full Text Available BACKGROUND: Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. METHODOLOGY/FINDINGS: All agonists elicited GABA overflow. Choline (Ch-evoked GABA overflow was dependent to external Ca(2+, but unaltered in the presence of Cd(2+, tetrodotoxin (TTX, dihydro-β-erythroidine (DHβE and 1-(4,4-Diphenyl-3-butenyl-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA, α-bungarotoxin (α-BTX, dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca(2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380 elicited GABA overflow, which was Ca(2+ dependent, blocked by Cd(2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. CONCLUSIONS/SIGNIFICANCE: Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that

  18. Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-09-30

    Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.

  19. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Directory of Open Access Journals (Sweden)

    Thomas E. Jensen

    2014-10-01

    Full Text Available Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.

  20. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory.

    Science.gov (United States)

    Benn, Abigail; Barker, Gareth R I; Stuart, Sarah A; Roloff, Eva V L; Teschemacher, Anja G; Warburton, E Clea; Robinson, Emma S J

    2016-05-04

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. Copyright © 2016 Benn et al.

  1. Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light

    International Nuclear Information System (INIS)

    Koeck, A.S.; Schwarz, T.; Kirnbauer, R.; Urbanski, A.; Perry, P.; Ansel, J.C.; Luger, T.A.

    1990-01-01

    Tumor necrosis factor alpha (TNF-alpha), in addition to being cytotoxic for certain tumor cells, has turned out as a multifunctional cytokine that is involved in the regulation of immunity and inflammation. Since human keratinocytes have been demonstrated to be a potent source of various cytokines, it was investigated whether epidermal cells synthesize and release TNF-alpha. Supernatants derived from normal human keratinocytes (HNK) and human epidermoid carcinoma cell lines (KB, A431) were tested both in a TNF-alpha-specific ELISA and a bioassay. In supernatants of untreated epidermal cells, no or minimal TNF-alpha activity was found, while after stimulation with lipopolysaccharide (LPS) or ultraviolet (UV) light, significant amounts were detected. Western blot analysis using an antibody directed against human TNF-alpha revealed a molecular mass of 17 kD for keratinocyte-derived TNF-alpha. These biological and biochemical data were also confirmed by Northern blot analysis revealing mRNA specific for TNF-alpha in LPS- or ultraviolet B (UVB)-treated HNK and KB cells. In addition, increased TNF-alpha levels were detected in the serum obtained from human volunteers 12 and 24 h after a single total body UVB exposure, which caused a severe sunburn reaction. These findings indicate that keratinocytes upon stimulation are able to synthesize and release TNF-alpha, which may gain access to the circulation. Thus, TNF-alpha in concert with other epidermal cell-derived cytokines may mediate local and systemic inflammatory reactions during host defense against injurious events caused by microbial agents or UV irradiation

  2. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    Science.gov (United States)

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  4. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Koda, Shuichi; Lowell, Bradford B

    2013-10-01

    Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  6. C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells

    Science.gov (United States)

    Verani, Alessia; Scarlatti, Gabriella; Comar, Manola; Tresoldi, Eleonora; Polo, Simona; Giacca, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Vercelli, Donata

    1997-01-01

    Human immunodeficiency virus-1 (HIV-1) expression in monocyte-derived macrophages (MDM) infected in vitro is known to be inhibited by lipopolysaccharide (LPS). However, the mechanisms are incompletely understood. We show here that HIV-1 suppression is mediated by soluble factors released by MDM stimulated with physiologically significant concentrations of LPS. LPS-conditioned supernatants from MDM inhibited HIV-1 replication in both MDM and T cells. Depletion of C–C chemokines (RANTES, MIP-1α, and MIP-1β) neutralized the ability of LPS-conditioned supernatants to inhibit HIV-1 replication in MDM. A combination of recombinant C–C chemokines blocked HIV-1 infection as effectively as LPS. Here, we report an inhibitory effect of C–C chemokines on HIV replication in primary macrophages. Our results raise the possibility that monocytes may play a dual role in HIV infection: while representing a reservoir for the virus, they may contribute to the containment of the infection by releasing factors that suppress HIV replication not only in monocytes but also in T lymphocytes. PMID:9120386

  7. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  8. Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-γ and IL-2.

    Science.gov (United States)

    Velásquez, Sonia Y; García, Luis F; Opelz, Gerhard; Alvarez, Cristiam M; Süsal, Caner

    2013-07-27

    Membrane CD30 is an important costimulatory molecule for activated T lymphocytes, and serum level of soluble CD30 (sCD30) is considered a marker for predicting outcome in kidney transplantation. We investigated the kinetics of CD30 expression on CD4 and CD8 T-cell populations and the source of sCD30 during alloimmune responses in vitro. The effect of neutralizing antibodies against interferon (IFN)-γ and other cytokines on sCD30 release and the involvement of metalloproteinases ADAM10 and ADAM17/TACE that are responsible for sCD30 shedding were also assessed. Memory phenotypes and CD30 expression on allostimulated CD3 lymphocytes were evaluated in dialysis patients and matched controls. Allogeneic stimulation resulted in conversion of naive responder cells to central memory CD4 cells (PCD30 expression. Release of sCD30 was attributed mainly to central memory cells, and neutralization of IFN-γ (PsCD30 during allostimulation but did not alter the levels of ADAM10 and ADAM17/TACE. CD30 expression was modulated in dialysis patients in a similar way as in healthy controls. Allostimulation results in the up-regulation of the T-cell activation marker CD30 on CD4 as well as CD8 memory T cells and increased release of sCD30 from these cells in an IFN-γ- and IL-2-dependent manner. These results may explain clinical findings on the suitability of sCD30 and IFN-γ- and IL-2-producing T cells for immune monitoring of kidney transplant recipients before and after transplantation.

  9. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  10. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik

    2009-01-01

    Relatively little is known on pain-induced neurotransmitter release in the human cerebral cortex. We used proton magnetic resonance spectroscopy (1H-MRS) during tonic painful heat stimulation to test the hypothesis of increases in both glutamate and GABA, two neurotransmitters with a key role...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....... in pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...

  12. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  13. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  14. Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit.

    Science.gov (United States)

    Griesbacher, T.; Lembeck, F.

    1987-01-01

    1 The inhibition of the bradykinin-induced plasma extravasation by six bradykinin (Bk) antagonists was tested on rabbit skin. All of them showed inhibitory effects without an agonistic action in the does used. B4310 (Lys-Lys-3-Hyp-5,8-Thi-7-DPhe-Bk) was the most active antagonist and was therefore used in the subsequent experiments. 2 B4310 (5-500 nM) antagonized the bradykinin-induced reduction of the venous outflow from the rabbit isolated ear in dose-dependent manner without affecting the arterial vasoconstriction induced by angiotensin II. 3 The bradykinin-induced release of prostaglandin E2 (PGE2) from the perfused rabbit ear was reduced by 63% when B4310 (800 nM) was infused before, during and after the bradykinin injection. 4 Bradykinin was injected into the ear artery of anaesthetized rabbits and the reflex hypotensive response was used as indicator of the nociception. The response was antagonized by a local infusion of B4310 (50 and 500 nM). The antagonism was dose-dependent and reversible. The parallel shift of the dose-response curve to bradykinin suggests a competitive inhibition. However, B4310 did not antagonize acetylcholine-induced nociceptor stimulation. 5 B4310 inhibited bradykinin-induced stimulation of the trigeminal nerve which results in a substance P-mediated contraction of the iris sphincter muscle. A pA2 of 7.59 was calculated. B4310 did not inhibit capsaicin-induced contractions. 6 It is concluded that B4310 inhibits specifically five different actions of bradykinin which are related to its possible pathophysiological role. PMID:3479223

  15. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets.

    Science.gov (United States)

    Buchwald, Peter; Cechin, Sirlene R; Weaver, Jessica D; Stabler, Cherie L

    2015-03-28

    In type 1 diabetic patients, who have lost their ability to produce insulin, transplantation of pancreatic islet cells can normalize metabolic control in a manner that is not achievable with exogenous insulin. To be successful, this procedure has to address the problems caused by the immune and autoimmune responses to the graft. Islet encapsulation using various techniques and materials has been and is being extensively explored as a possible approach. Within this framework, it is of considerable interest to characterize the effect encapsulation has on the insulin response of pancreatic islets. To improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets in general and of micro-encapsulated islets in particular, we performed dynamic perifusion experiments with frequent sampling. We used unencapsulated and microencapsulated murine islets in parallel and fitted the results with a complex local concentration-based finite element method (FEM) computational model. The high-resolution dynamic perifusion experiments allowed good characterization of the first-phase and second-phase insulin secretion, and we observed a slightly delayed and blunted first-phase insulin response for microencapsulated islets when compared to free islets. Insulin secretion profiles of both free and encapsulated islets could be fitted well by a COMSOL Multiphysics model that couples hormone secretion and nutrient consumption kinetics with diffusive and convective transport. This model, which was further validated and calibrated here, can be used for arbitrary geometries and glucose stimulation sequences and is well suited for the quantitative characterization of the insulin response of cultured, perifused, transplanted, or encapsulated islets. The present high-resolution GSIR experiments allowed for direct characterization of the effect microencapsulation has on the time-profile of insulin secretion. The multiphysics model, further validated

  16. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: A potential mechanism for the anticonvulsive effects

    OpenAIRE

    Feng, Yangzheng; LeBlanc, Michael H.; Regunathan, Soundar

    2005-01-01

    Glutamate has been implicated in the initiation and spread of seizure activity. Agmatine, an endogenous neuromodulator, is an antagonist of NMDA receptors and has anticonvulsive effects. Whether agmatine regulate glutamate release, as measured by in vivo microdialysis, is not known. In this study, we used pentylenetetrazole (PTZ)-induced seizure model to determine the effect of agmatine on extracellular glutamate in rat brain. We also determined the time course and the amount of agmatine that...

  17. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  18. Overnight Levels of Luteinizing Hormone, Follicle-Stimulating Hormone and Growth Hormone before and during Gonadotropin-Releasing Hormone Analogue Treatment in Short Boys Born Small for Gestational Age

    NARCIS (Netherlands)

    van der Kaay, Danielle C. M.; de Jong, Frank H.; Rose, Susan R.; Odink, Roelof J. H.; Bakker-van Waarde, Willie M.; Sulkers, Eric J.; Hokken-Koelega, Anita C. S.

    2009-01-01

    Aims: To evaluate if 3 months of gonadotropin-releasing hormone analogue (GnRHa) treatment results in sufficient suppression of pubertal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) profile patterns in short pubertal small for gestational age (SGA) boys. To compare growth hormone

  19. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  20. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H

    2015-01-01

    -500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  1. [In vitro release of [5Met]- and [5Leu]-enkephalins from the rat brain crude synaptosomal (P2) fraction: Ca2+-dependency of K+-stimulation and effects of various drugs].

    Science.gov (United States)

    Koida, M; Takahashi, M; Takenaga, K

    1983-01-01

    The rat brain P2 fraction was suspended in Krebs Ringer bicarbonate buffer containing 20 microM bacitracin and incubated at 37 degrees C for 10 min under an atmosphere of 95% O2-5% CO2. Incubation was terminated by centrifugation at 4 degrees C and 10,000 X g for 10 min. The supernatant was designated as the S1 fraction, and from the pellet, the S2 to S4 fractions were collected by repeated suspension, incubation, and centrifugation. The radioimmunoassays of each S fraction revealed the spontaneous release of [5Met]- and [5Leu]-enkephalins at the ratio of 2 to 1. The peptide contents gradually decreased from S1 to S4, but the release tended to become constant in S3 and S4. Thus, the effects of some ions and drugs on the release were compared at the stage of obtaining the S3 fraction. The release of both peptides were significantly stimulated in 50 mM KCl buffer, and the stimulatory effect appears to be dependent on Ca2+ concentration. Veratrine and A23187 were also effective stimulants of the release. On the other hand, neither spontaneous nor K+-stimulated release of enkephalins was affected by morphine (1 microM), naloxone (1 microM), kyotorphin (1 or 10 microM), and Li+ (50 mM). Similar results were obtained with the release of 3H-noradrenaline taken up in vitro by the P2 fraction. The usability of the P2 fraction as an in vitro model for the study of stimulus-coupled release of enkephalins was discussed with some limitations found herein.

  2. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  3. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics

    Directory of Open Access Journals (Sweden)

    Cary Soares

    2017-10-01

    Full Text Available Summary: Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity. : Several forms of synaptic plasticity operating over distinct spatiotemporal scales have been described at hippocampal synapses. Whether these distinct plasticity mechanisms interact and influence one another remains incompletely understood. Here, Soares et al. show that homeostatic plasticity induced by network silencing influences short-term release dynamics and Hebbian plasticity rules at hippocampal synapses. Keywords: synapse, LTP, homeostatic plasticity, metaplasticity, iGluSNFR

  4. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  5. Effect of parental morphine addiction on extracellular glutamate concentration of dentate gyrus in rat offsprings

    Directory of Open Access Journals (Sweden)

    rahele Assaee

    2004-01-01

    Findings: In male offsprings of sham control1, sham control2, test1 and test2 basal and electrical stimulated of extracellular glutamate concentration of dentate gyrus were: 0.67±0.04, 1.11±0.1, and in female offsprings were 0.47±0.06, 0.88±0.05 (n=5. The basal and stimulated extra cellular glutamate concentration of dentate gyrus was decreased in both test1 and test2 offsprings. It was less in test1 than test2 offsprings. The glutamate concentration of dentate gyrus in female offsprings of test1 group was less than that of the male offsprings. conclusion: The results suggest that parental morphine addiction may cause learning deficiency through reduction of extracellular glutamate concentration in dentate gyrus so the side effects of parental morphine addiction in offsprings must be considered.

  6. Is adjunctive pharmacotherapy in attention-deficit/hyperactivity disorder cost-effective in Canada: a cost-effectiveness assessment of guanfacine extended-release as an adjunctive therapy to a long-acting stimulant for the treatment of ADHD.

    Science.gov (United States)

    Lachaine, Jean; Sikirica, Vanja; Mathurin, Karine

    2016-01-16

    Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder in children, with worldwide prevalence of ADHD varying from 5.9 to 7.1 %, depending on the reporter. In case of inadequate response to stimulants, combination therapy of stimulants and an adjunctive medication may improve the control of ADHD symptoms, reduce the dose-limiting adverse events, and help control comorbidities. To date, the only medication to be used for adjunctive therapy to psychostimulants is guanfacine extended release (GXR). The aim of this study was to assess the economic impact of GXR as an adjunct therapy with long-acting stimulants (GXR + stimulant) compared to long-acting stimulant monotherapy (stimulant alone) in the treatment of children and adolescents with ADHD in Canada. A Markov model was developed using health states defined based on the clinician-reported Clinical Global Impression-Severity (CGI-S) score (normal, mild, moderate, severe). Transition probabilities were calculated based on patient-level data from a published study. Long-acting stimulants available in Canada were considered in the base-case model: amphetamine mixed salts, methylphenidate HCl formulations, and lisdexamfetamine dimesylate. Analyses were conducted from a Canadian Ministry of Health (MoH; Ontario) and a societal perspective over a 1-year time horizon with weekly cycles. Over a 1-year time horizon, GXR + stimulant was associated with 0.655 quality-adjusted life year (QALY), compared to 0.627 QALY with stimulant alone, for a gain of 0.028 QALY. From a MoH perspective, GXR+ stimulant and stimulant alone were associated with total costs of $CA1,617 and $CA949, respectively (difference of $CA668), which resulted in an incremental cost-effectiveness ratio (ICER) of $CA23,720/QALY. From a societal perspective, GXR + stimulant and stimulant alone were associated with total costs of $CA3,915 and $CA3,582, respectively (difference of $CA334), which resulted in an ICER of $CA11

  7. Characterization of the venom from the spider, Araneus gemma: search for a glutamate antagonist

    International Nuclear Information System (INIS)

    Early, S.L.

    1985-01-01

    Venom from three spiders, Argiope aurantia, Neoscona arabesca, and Araneus gemma have been shown to inhibit the binding of L-[ 3 H]glutamate to both GBP and synaptic membranes. The venom from Araneus gemma was shown to be the most potent of the three venoms in inhibiting the binding of L-[ 3 H]glutamate to GBP. Therefore, Araneus gemma venom was selected for further characterization. Venom from Araneus gemma appeared to contain two factors which inhibit the binding of L-[ 3 H]glutamate to GBP and at least one factor that inhibits L-glutamate-stimulated 35 SCN flux. Factor I is thought to be L-glutamic acid, based on: (1) its similar mobility to glutamic acid in thin-layer chromatography and amino acid analysis, (2) the presence of fingerprint molecular ion peaks for glutamate in the mass spectrum for the methanol:water (17:1) extract and for the fraction from the HPLC-purification of the crude venom, and (3) its L-glutamate-like interaction with the sodium-dependent uptake system. Factor II appears to be a polypeptide, possibly 21 amino acids in length, and does not appear to contain any free amino groups or tryptophan. While the venom does not appear to contain any indoleamines, three catecholamines (epinephrine, epinine, dopamine) and one catecholamine metabolite (DOPAC) were detected

  8. Evidence for a role of glutamate as an efferent transmitter in taste buds

    Directory of Open Access Journals (Sweden)

    Anderson Catherine B

    2010-06-01

    Full Text Available Abstract Background Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. Results Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. Conclusions Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.

  9. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake.

    Science.gov (United States)

    Stanley, B G; Urstadt, K R; Charles, J R; Kee, T

    2011-07-25

    By the 1990s a convergence of evidence had accumulated to suggest that neurons within the lateral hypothalamus (LH) play important roles in the stimulation of feeding behavior. However, there was little direct evidence demonstrating that neurotransmitters in the LH could, like electrical stimulation, elicit feeding in satiated animals. The present paper is a brief review in honor of Bartley Hoebel's scientific contributions, emphasizing the evidence from my lab that the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma aminobutyric acid (GABA) in the LH mediate feeding stimulation and feeding inhibition respectively. Specifically, we summarize evidence that LH injection of glutamate, or agonists of its N-methyl-D-aspartate (NMDA) and non-NMDA receptors, elicits feeding in satiated rats, that NMDA receptor antagonists block the eating elicited by NMDA and, more importantly, that NMDA blockade suppresses natural feeding and can reduce body weight. Conversely, GABA(A) agonists injected into the LH suppress feeding and can also reduce body weight, while GABA(A) receptor antagonists actually elicit eating when injected into the LH of satiated rats. It is suggested that natural feeding may reflect the moment-to-moment balance in the activity of glutamate and GABA within the LH. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  11. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado

    2013-08-01

    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  12. Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured neurons.

    Science.gov (United States)

    Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2009-07-01

    Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.

  13. Curcumin-Protected PC12 Cells Against Glutamate-Induced Oxidative Toxicity

    Directory of Open Access Journals (Sweden)

    Chi-Huang Chang

    2014-01-01

    Full Text Available Glutamate is a major excitatory neurotransmitter present in the central nervous system. The glutamate/cystine antiporter system xc– connects the antioxidant defense with neurotransmission and behaviour. Overactivation of ionotropic glutamate receptors induces neuronal death, a pathway called excitotoxicity. Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases including cerebral ischemia, Alzheimer’s and Huntington’s disease. Curcuma has a wide spectrum of biological activities regarding neuroprotection and neurocognition. By reducing the oxidative damage, curcumin attenuates a spinal cord ischemia-reperfusion injury, seizures and hippocampal neuronal loss. The rat pheochromocytoma (PC12 cell line exhibits many characteristics useful for the study of the neuroprotection and neurocognition. This investigation was carried out to determine whether the neuroprotective effects of curcumin can be observed via the glutamate-PC12 cell model. Results indicate that glutamate (20 mM upregulated glutathione peroxidase 1, glutathione disulphide, Ca2+ influx, nitric oxide production, cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase release, reactive oxygen species, H2O2, and malondialdehyde; and downregulated glutathione, glutathione reductase, superoxide dismutase and catalase, resulting in enhanced cell apoptosis. Curcumin alleviates all these adverse effects. Conclusively, curcumin can effectively protect PC12 cells against the glutamate-induced oxidative toxicity. Its mode of action involves two pathways: the glutathione-dependent nitric oxide-reactive oxygen species pathway and the mitochondria-dependent nitric oxide-reactive oxygen species pathway.

  14. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    Science.gov (United States)

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  15. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis

    DEFF Research Database (Denmark)

    Carobbio, Stefania; Frigerio, Francesca; Rubi, Blanca

    2009-01-01

    Insulin exocytosis is regulated in pancreatic ss-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been...... tested yet in animal models. Here, we generated transgenic mice, named betaGlud1(-/-), with ss-cell-specific GDH deletion. Our results show that GDH plays an essential role in the full development of the insulin secretory response. In situ pancreatic perfusion revealed that glucose-stimulated insulin...... secretion was reduced by 37% in betaGlud1(-/-). Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in betaGlud1(-/-) islets fully restored...

  16. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  17. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation...

  19. Do Stimulants Reduce the Risk for Alcohol and Substance Use in Youth With ADHD? A Secondary Analysis of a Prospective, 24-Month Open-Label Study of Osmotic-Release Methylphenidate.

    Science.gov (United States)

    Hammerness, Paul; Petty, Carter; Faraone, Stephen V; Biederman, Joseph

    2017-01-01

    The purpose of this study was to examine the impact of stimulant treatment on risk for alcohol and illicit drug use in adolescents with ADHD. Analysis of data derived from a prospective open-label treatment study of adolescent ADHD ( n = 115, 76% male), and a historical, naturalistic sample of ADHD ( n = 44, 68% male) and non-ADHD youth ( n = 52, 73% male) of similar age and sex. Treatment consisted of extended-release methylphenidate in the clinical trial or naturalistic stimulant treatment. Self-report of alcohol and drug use was derived from a modified version of the Drug Use Screening Inventory. Rates of alcohol and drug use in the past year were significantly lower in the clinical trial compared with untreated and treated naturalistic ADHD comparators, and similar to rates in non-ADHD comparators. Well-monitored stimulant treatment may reduce the risk for alcohol and substance use in adolescent ADHD.

  20. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  1. Effects of forced swimming stress on thyroid function, pituitary thyroid-stimulating hormone and hypothalamus thyrotropin releasing hormone expression in adrenalectomy Wistar rats.

    Science.gov (United States)

    Sun, Qiuyan; Liu, Aihua; Ma, Yanan; Wang, Anyi; Guo, Xinhong; Teng, Weiping; Jiang, Yaqiu

    2016-11-01

    In order to study the impact that is imposed on the hypothalamic-pituitary-thyroid (HPT) axis of adrenalectomy male Wistar rats by stress caused by swimming, the blood level of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH), the expression of TSHβ mRNA at the pituitary and thyrotropin releasing hormone (TRH) expression at the paraventricular nucleus (PVN) were measured. A total of 50 male Wistar rats of 6-8 weeks of age and with an average weight of 190-210 grams were randomly divided into the following two groups: The surgical (without adrenal glands) and non-surgical (adrenalectomy) group. These two groups were then divided into the following five groups, according to the time delay of sacrifice following forced swim (10 min, 2 h, 12 h and 24 h) and control (not subjected to swimming) groups. A bilateral adrenalectomy animal model was established. Serum TSH in the blood was measurement by chemiluminescent immunoassay, and cerebrum tissue were excised for the measurement of TRH expression using an immunohistochemistry assay. In addition, pituitaries were excised for the extraction of total RNA. Finally, reverse transcription-quantitative polymerase chain reaction was performed for quantitation of TSHβ. Following swimming, the serum T3, T4 and TSH, the TSHβ mRNA expression levels in the pituitary and the TRH expression in the PVN of the surgical group were gradually increased. In the non-surgical group, no significant differences were observed in the serum T3, T4 and TSH levels compared with the control group. The TSHβ mRNA expression at the pituitary showed a similar result. Furthermore, the TRH expression at PVN was gradually increased and stress from swimming could increase the blood T4, T3 and TSH levels, TSHβ mRNA expression at the pituitary and TRH expression at the PVN in adrenalectomy Wistar rats. Moreover, the index in the surgical group changed significantly compared with the non-surgical group. In conclusion, the results

  2. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    Directory of Open Access Journals (Sweden)

    You-Hong Jin

    2012-01-01

    Full Text Available Transient receptor potential vanilloid1 (TRPV1 and glutamate receptors (GluRs are located in small diameter primary afferent neurons (nociceptors, and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses.

  3. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-01-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  4. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  5. Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Effects of neurotropic drugs

    Science.gov (United States)

    Grewaal, D. S.; Quastel, J. H.

    1973-01-01

    1. Studies of the synthesis and release of radioactive acetylcholine in rat brain-cortex slices incubated in Locke–bicarbonate–[U-14C]glucose media, containing paraoxon as cholinesterase inhibitor, revealed the following phenomena: (a) dependence of K+-or protoveratrine-stimulated acetylcholine synthesis and release on the presence of Na+ and Ca2+ in the incubation medium, (b) enhanced release of radioactive acetylcholine by substances that promote depolarization at the nerve cell membrane (e.g. high K+, ouabain, protoveratrine, sodium l-glutamate, high concentration of acetylcholine), (c) failure of acetylcholine synthesis to keep pace with acetylcholine release under certain conditions (e.g. the presence of ouabain or lack of Na+). 2. Stimulation by K+ of radioactive acetylcholine synthesis was directly proportional to the external concentration of Na+, but some synthesis and release of radioactive acetylcholine occurred in the absence of Na+ as well as in the absence of Ca2+. 3. The Na+ dependence of K+-stimulated acetylcholine synthesis was partly due to suppression of choline transport, as addition of small concentrations of choline partly neutralized the effect of Na+ lack, and partly due to the suppression of the activity of the Na+ pump. 4. Protoveratrine caused a greatly increased release of radioactive acetylcholine without stimulating total radioactive acetylcholine synthesis. Protoveratrine was ineffective in the absence of Ca2+ from the incubation medium. It completely blocked K+ stimulation of acetylcholine synthesis and release. 5. Tetrodotoxin abolished the effects of protoveratrine on acetylcholine release. It had blocking effects (partial or complete) on the action of high K+, sodium l-glutamate and lack of Ca2+ on acetylcholine synthesis and release. 6. Unlabelled exogenous acetylcholine did not diminish the content of labelled tissue acetylcholine, derived from labelled glucose, suggesting that no exchange with vesicular acetylcholine took

  6. Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons

    DEFF Research Database (Denmark)

    Ehrhart-Bornstein, M; Treiman, M; Hansen, Gert Helge

    1991-01-01

    Primary cultures of GABAergic cerebral cortex neurons and glutamatergic cerebellar granule cells were used to study the expression of synaptophysin, a synaptic vesicle marker protein, along with the ability of each cell type to release neurotransmitter upon stimulation. The synaptophysin expression...... by quantitative immunoblotting and light microscope immunocytochemistry, respectively. In both cell types, a close parallelism was found between the temporal pattern of development in synaptophysin expression and neurotransmitter release. This temporal pattern differed between the two types of neurons....... The cerebral cortex neurons showed a biphasic time course of increase in synaptophysin content, paralleled by a biphasic pattern of development in their ability to release [3H]GABA in response to depolarization by glutamate or elevated K+ concentrations. In contrast, a monophasic, approximately linear increase...

  7. NAA and NAAG variation in neuronal activation during visual stimulation

    Directory of Open Access Journals (Sweden)

    G. Castellano

    2012-11-01

    Full Text Available N-acetyl-aspartyl-glutamate (NAAG and its hydrolysis product N-acetyl-L-aspartate (NAA are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s, followed by a stimulation period (10 min and 40 s and another rest period (10 min and 40 s. MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  8. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  9. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  10. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex.

    Science.gov (United States)

    Aracri, Patrizia; Banfi, Daniele; Pasini, Maria Enrica; Amadeo, Alida; Becchetti, Andrea

    2015-05-01

    We studied the effect of hypocretin 1 (orexin A) in the frontal area 2 (Fr2) of the murine neocortex, implicated in the motivation-dependent goal-directed tasks. In layer V, hypocretin stimulated the spontaneous excitatory postsynaptic currents (EPSCs) on fast-spiking (FS) interneurons. The effect was accompanied by increased frequency of miniature EPSCs, indicating that hypocretin can target the glutamatergic terminals. Moreover, hypocretin stimulated the spontaneous inhibitory postsynaptic currents (IPSCs) on pyramidal neurons, with no effect on miniature IPSCs. This action was prevented by blocking 1) the ionotropic glutamatergic receptors; 2) the hypocretin receptor type 1 (HCRTR-1), with SB-334867. Finally, hypocretin increased the firing frequency in FS cells, and the effect was blocked when the ionotropic glutamate transmission was inhibited. Immunolocalization confirmed that HCRTR-1 is highly expressed in Fr2, particularly in layer V-VI. Conspicuous labeling was observed in pyramidal neuron somata and in VGLUT1+ glutamatergic terminals, but not in VGLUT2+ fibers (mainly thalamocortical afferents). The expression of HCRTR-1 in GABAergic structures was scarce. We conclude that 1) hypocretin regulates glutamate release in Fr2; 2) the effect presents a presynaptic component; 3) the peptide control of FS cells is indirect, and probably mediated by the regulation of glutamatergic input onto these cells. © The Author 2013. Published by Oxford University Press.

  11. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  12. Excretion and intestinal absorption of tritiated glutamic acid by carp, Cyprinus Carpio

    International Nuclear Information System (INIS)

    Watabe, Terushia; Kistner, G.

    1986-01-01

    Excretion and intestinal absorption of tritiated glutamic acid by carp was investigated. Approximately 80% of orally administered tritium was excreted at a half life value of 1.4 h and an observed slower excretion of 7 days for the remainder. Tritium incorporated in glutamic acid was efficiently retained at the site of absorption, i.e. intestine, liver, gill, kidney, blood and muscle. A dual marking experiment using tritiated glutamic acid and 14 C-market glutamic acid showed higher excretion of tritium by factors 2.0 to 4.9 than that of 14 C. Tritiated glutamic acid is considered to be mainly incorporated in the citric acid cycle soon after administration and the release of tritium in tritiated water through the cycle is assumed as causing the initial rapid excretion of tritium in carp. The intestinal absorption of glutamic acid was likely to depend on its concentration in the administered solution. The maximum level of absorption is estimated to be 0.1 m mol/0.5 h for one year old carp. The results obtained here would make it possible to estimate the tritium contamination of fish due to tritiated glutamic acid entering the food chain. (orig.)

  13. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  14. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  15. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats.

    Science.gov (United States)

    Lindenbach, David; Conti, Melissa M; Ostock, Corinne Y; George, Jessica A; Goldenberg, Adam A; Melikhov-Sosin, Mitchell; Nuss, Emily E; Bishop, Christopher

    2016-09-21

    itself. Although dyskinesia is associated with dynamic changes in primary motor cortex physiology, to date, there are no published studies investigating in vivo neurotransmitter release in M1 during dyskinesia. In parkinsonian rats, l-DOPA administration reduced M1 glutamate efflux and enhanced GABA efflux, coincident with the emergence of dyskinetic behaviors. Dyskinesia could be reduced by local M1 modulation of D1, AMPA, and GABAA receptors, providing preclinical support for the notion that exogenously blunting M1 signaling (pharmacologically or with cortical stimulation) is a therapeutic approach to the treatment of debilitating dyskinesias. Copyright © 2016 the authors 0270-6474/16/369873-15$15.00/0.

  16. Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian R; Holm, Rikke; Vilsen, Bente

    2016-01-01

    , in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether...... the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter......+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i...

  17. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-05-01

    Full Text Available Abstract Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC, in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice.

  18. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle

    2015-01-01

    differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...

  19. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    Science.gov (United States)

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  20. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    OpenAIRE

    Cheang, Kai I.; Sistrun, Sakita N.; Morel, Kelley S.; Nestler, John E.

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n = 16) and normal (n = 15) wo...

  1. Multivesicular release underlies short term synaptic potentiation independent of release probability change in the supraoptic nucleus.

    Directory of Open Access Journals (Sweden)

    Michelle E Quinlan

    Full Text Available Magnocellular neurons of the supraoptic nucleus receive glutamatergic excitatory inputs that regulate the firing activity and hormone release from these neurons. A strong, brief activation of these excitatory inputs induces a lingering barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs that lasts for tens of minutes. This is known to accompany an immediate increase in large amplitude mEPSCs. However, it remains unknown how long this amplitude increase can last and whether it is simply a byproduct of greater release probability. Using in vitro patch clamp recording on acute rat brain slices, we found that a brief, high frequency stimulation (HFS of afferents induced a potentiation of mEPSC amplitude lasting up to 20 min. This amplitude potentiation did not correlate with changes in mEPSC frequency, suggesting that it does not reflect changes in presynaptic release probability. Nonetheless, neither postsynaptic calcium chelator nor the NMDA receptor antagonist blocked the potentiation. Together with the known calcium dependency of HFS-induced potentiation of mEPSCs, our results imply that mEPSC amplitude increase requires presynaptic calcium. Further analysis showed multimodal distribution of mEPSC amplitude, suggesting that large mEPSCs were due to multivesicular glutamate release, even at late post-HFS when the frequency is no longer elevated. In conclusion, high frequency activation of excitatory synapses induces lasting multivesicular release in the SON, which is independent of changes in release probability. This represents a novel form of synaptic plasticity that may contribute to prolonged excitatory tone necessary for generation of burst firing of magnocellular neurons.

  2. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Wall, Christopher A; Murphy, Lauren L; Sampson, Shirlene M; Frye, Mark A; Port, John D

    2016-01-30

    Abnormalities in glutamate neurotransmission may have a role in the pathophysiology of adolescent depression. The present pilot study examined changes in cortical glutamine/glutamate ratios in depressed adolescents receiving high-frequency repetitive transcranial magnetic stimulation. Ten adolescents with treatment-refractory major depressive disorder received up to 30 sessions of 10-Hz repetitive transcranial magnetic stimulation at 120% motor threshold with 3000 pulses per session applied to the left dorsolateral prefrontal cortex. Baseline, posttreatment, and 6-month follow-up proton magnetic resonance spectroscopy scans of the anterior cingulate cortex and left dorsolateral prefrontal cortex were collected at 3T with 8-cm(3) voxels. Glutamate metabolites were quantified with 2 distinct proton magnetic resonance spectroscopy sequences in each brain region. After repetitive transcranial magnetic stimulation and at 6 months of follow-up, glutamine/glutamate ratios increased in the anterior cingulate cortex and left dorsolateral prefrontal cortex with both measurements. The increase in the glutamine/glutamate ratio reached statistical significance with the TE-optimized PRESS sequence in the anterior cingulate cortex. Glutamine/glutamate ratios increased in conjunction with depressive symptom improvement. This reached statistical significance with the TE-optimized PRESS sequence in the left dorsolateral prefrontal cortex. High-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex may modulate glutamate neurochemistry in depressed adolescents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Study of the Protective Effects of Quince (Cydonia Oblonga Leaf Extract on Fertility Alterations and Gonadal Dysfunction Induced by Monosodium Glutamate in Adult Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Kianifard Davoud

    2015-12-01

    Full Text Available Background and Aims: Starting from the cytotoxic effects of monosodium glutamate (MSG, the aim of this study was to evaluate the protective effects of quince leaf extract as natural antioxidant on the reproductive dysfunction induced by monosodium glutamate in rats. Material and methods: Monosodium glutamate was administrated with a dose of 30 and 60 mg/kg and quince leaf extract was administrated with a dose of 500 mg/kg. At the end of study, body and testicular weight measurement, hormonal and epididymal sperm analysis were performed. Results: Follicle stimulating hormone (FSH and testosterone levels were reduced after administration of monosodium glutamate. The levels of luteinizing hormone (LH exhibited no significant changes. Treatment with quince leaf extract led to improvement in follicle stimulating hormone and testosterone levels. Epididymal sperm population was reduced after administration of monosodium glutamate and treatment with quince leaf extract. The increased sperm motility rate induced by monosodium glutamate was reduced after treatment with quince leaf extract. Administration of monosodium glutamate led to more body weight gain in comparison to combined administration monosodium glutamate and quince leaf extract. Conclusions: The quince leaf extract can be effective in reduction of functional alterations of reproductive system induced by monosodium glutamate.

  4. Lack of effect of the dopamine D1 antagonist, NNC 01-0687, on unstimulated and stimulated release of anterior pituitary hormones in males

    DEFF Research Database (Denmark)

    Grodum, E; Andersen, M; Hangaard, J

    1998-01-01

    -blind placebo controlled cross-over study for three days with a wash-out period of 14 days. Hormonal responses (PRL, LH, FSH, GH, TSH, thyroid hormones and testosterone), unstimulated and LHRH/TRH stimulated, were studied on days 1 and 3. No significant difference (p > 0.05) between placebo and active periods...

  5. Abnormal glutamate release in aged BTBR mouse model of autism

    OpenAIRE

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses betw...

  6. The Thr92Ala 5′ Type 2 Deiodinase Gene Polymorphism Is Associated with a Delayed Triiodothyronine Secretion in Response to the Thyrotropin-Releasing Hormone–Stimulation Test: A Pharmacogenomic Study

    Science.gov (United States)

    Butler, Peter W.; Smith, Sheila M.; Linderman, Joyce D.; Brychta, Robert J.; Alberobello, Anna Teresa; Dubaz, Ornella M.; Luzon, Javier A.; Skarulis, Monica C.; Cochran, Craig S.; Wesley, Robert A.; Pucino, Frank

    2010-01-01

    Background The common Thr92Ala D2 polymorphism has been associated with changes in pituitary–thyroid axis homeostasis, but published results are conflicting. To investigate the effects of the Thr92Ala polymorphism on intrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion, we designed prospective pharmacogenomic intervention aimed to detect differences in T3 levels after thyrotropin (TSH)-releasing hormone (TRH)–mediated TSH stimulation of the thyroid gland. Methods Eighty-three healthy volunteers were screened and genotyped for the Thr92Ala polymorphism. Fifteen volunteers of each genotype (Thr/Thr, Thr/Ala, and Ala/Ala) underwent a 500 mcg intravenous TRH stimulation test with serial measurements of serum total T3 (TT3), free T4, and TSH over 180 minutes. Results No differences in baseline thyroid hormone levels were seen among the study groups. Compared to the Thr/Thr group, the Ala/Ala group showed a significantly lower TRH-stimulated increase in serum TT3 at 60 minutes (12.07 ± 2.67 vs. 21.07 ± 2.86 ng/dL, p = 0.029). Thr/Ala subjects showed an intermediate response. Compared to Thr/Thr subjects, the Ala/Ala group showed a blunted rate of rise in serum TT3 as measured by mean time to 50% maximum delta serum TT3 (88.42 ± 6.84 vs. 69.56 ± 6.06 minutes, p = 0.028). Subjects attained similar maximal (180 minutes) TRH-stimulated TT3 levels. TRH-stimulated TSH and free T4 levels were not significantly different among the three genotype groups. Conclusions The commonly occurring Thr92Ala D2 variant is associated with a decreased rate of acute TSH-stimulated T3 release from the thyroid consistent with a decrease in intrathyroidal deiodination. These data provide a proof of concept that the Thr92Ala polymorphism is associated with subtle changes in thyroid hormone homeostasis. PMID:21054208

  7. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  8. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  9. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  10. Increased Progesterone/Estradiol Ratio on the Day of hCG Administration Adversely Affects Success of In Vitro Fertilization–Embryo Transfer in Patients Stimulated with Gonadotropin-releasing Hormone Agonist and Recombinant Follicle-stimulating Hormone

    Directory of Open Access Journals (Sweden)

    Yu-Che Ou

    2008-06-01

    Conclusion: Premature luteinization, defined as late follicular P/E2 ratio of > 1 in long GnRHa cycles with rFSH stimulation, adversely affected ovarian responses and clinical outcomes. It seems unrelated to preovulatory luteinizing hormone (LH elevation and LH/hCG content of gonadotropins and could be associated with poor ovarian response and the presence of dysmature follicles. [Taiwan J Obstet Cynecol 2008;47(2:1 68-1 74

  11. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.H.; van Wamelen, D.J.; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the

  12. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Science.gov (United States)

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  13. The gonadotropin-releasing hormone antagonist protocol--the protocol of choice for the polycystic ovary syndrome patient undergoing controlled ovarian stimulation

    DEFF Research Database (Denmark)

    Kol, Shahar; Homburg, Roy; Alsbjerg, Birgit

    2012-01-01

    Polycystic ovary syndrome (PCOS) patients are prone to develop ovarian hyperstimulation syndrome (OHSS), a condition which can be minimized or completely eliminated by the use of a gonadotropin-releasing hormone agonist (GnRHa) trigger. In this commentary paper, we maintain that the gonadotropin-...... ongoing pregnancy rates in the subsequent frozen-thawed transfer cycles....

  14. Kainate-enhanced release of D-(3H)aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Potashner, S.J.; Gerard, D.

    1983-06-01

    A study was made of the actions of the excitant neurotoxin, kainic acid, on the uptake and the release of D-(2,3-3H)aspartate (D-ASP) in slices of guinea pig cerebral neocortex and striatum. The slices took up D-ASP, reaching concentrations of the amino acid in the tissue which were 14-23 times that in the medium. Subsequently, electrical stimulation of the slices evoked a Ca2+-dependent release of a portion of the D-ASP. Kainic acid (10(-5)-10(-3) M) produced a dose-dependent inhibition of D-ASP uptake. The electrically evoked release of D-ASP was increased 1.6-2.0 fold by 10(-5) and 10(-4)M kainic acid. The kainate-enlarged release was Ca2+-dependent. Dihydrokainic acid, an analogue of kainic acid with little excitatory or toxic action, did not increase D-ASP release but depressed D-ASP uptake. Attempts were made to block the action of kainic acid with baclofen and pentobarbital, compounds which depress the electrically evoked release of L-glutamate (L-GLU) and L-aspartate (L-ASP). Baclofen (4 X 10(-6)M), an antispastic drug, and pentobarbital (10(-4)M), an anesthetic agent, each inhibited the electrically evoked release of D-ASP and prevented the enhancement of the release above control levels usually produced by 10(-4)M kainic acid. It is proposed that 10(-5) and 10(-4)M kainic acid may enhance the synaptic release of L-GLU and L-ASP from neurons which use these amino acids as transmitters. This action is prevented by baclofen and pentobarbital. In view of the possibility that cell death in Huntington's disease could involve excessive depolarization of striatal and other cells by glutamate, baclofen might be effective in delaying the loss of neurons associated with this condition.

  15. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    Science.gov (United States)

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment.

    Science.gov (United States)

    Poulin, M J; Bel-Rhlid, R; Piché, Y; Chênevert, R

    1993-10-01

    Carbon dioxide has been previously identified as a critical volatile factor that stimulates hyphal growth ofGigaspora margarita, a vesiculararbuscular mycorrhizal fungus, and we determined the optimal concentration at 2.0%. The beneficial effect of CO2 on fungal development is also visible in the presence of stimulatory (quercetin, myricetin) or inhibitory (naringenin) flavonoids. Sterile root exudates from carrot seedlings stimulate the hyphal development ofG. margarita in the presence of optimal CO2 enrichment. Three flavonols (quercetin, kaempferol, rutin or quercetin 3-rutinoside) and two flavones (apigenin, luteolin) were identified in carrot root exudates by means of HPLC retention time. Flavonols like quercetin and kaempferol are known to have stimulatory effects on hyphal growth ofG. margarita.

  17. Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo

    Directory of Open Access Journals (Sweden)

    Dmitrij Ljaschenko

    2013-05-01

    Full Text Available Synaptic plasticity shapes the development of functional neural circuits and provides a basis for cellular models of learning and memory. Hebbian plasticity describes an activity-dependent change in synaptic strength that is input-specific and depends on correlated pre- and postsynaptic activity. Although it is recognized that synaptic activity and synapse development are intimately linked, our mechanistic understanding of the coupling is far from complete. Using Channelrhodopsin-2 to evoke activity in vivo, we investigated synaptic plasticity at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation increased postsynaptic sensitivity by promoting synapse-specific recruitment of GluR-IIA-type glutamate receptor subunits into postsynaptic receptor fields. Conversely, GluR-IIA was rapidly removed from synapses whose activity failed to evoke substantial postsynaptic depolarization. Uniting these results with developmental GluR-IIA dynamics provides a comprehensive physiological concept of how Hebbian plasticity guides synaptic maturation and sparse transmitter release controls the stabilization of the molecular composition of individual synapses.

  18. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area.

    Science.gov (United States)

    Díaz-Casares, A; López-González, M V; Peinado-Aragonés, C A; González-Barón, S; Dawid-Milner, M S

    2012-08-16

    To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (pHDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (pHDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (pHDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Supplementation with a recombinant human chorionic gonadotropin microdose leads to similar outcomes in ovarian stimulation with recombinant follicle-stimulating hormone using either a gonadotropin-releasing hormone agonist or antagonist for pituitary suppression.

    Science.gov (United States)

    Cavagna, Mario; Maldonado, Luiz Guilherme Louzada; de Souza Bonetti, Tatiana Carvalho; de Almeida Ferreira Braga, Daniela Paes; Iaconelli, Assumpto; Borges, Edson

    2010-06-01

    To compare the outcomes of protocols for ovarian stimulation with recombinant hCG microdose, with GnRH agonists and antagonists for pituitary suppression. Prospective nonrandomized clinical trial. A private assisted reproduction center. We studied 182 patients undergoing intracytoplasmic sperm injection (ICSI) cycles, allocated into two groups: GnRH agonist group, in which patients received a GnRH agonist (n = 73), and a GnRH antagonist group, in which patients were administered a GnRH antagonist for pituitary suppression (n = 109). Pituitary suppression with GnRH agonist or GnRH antagonist. Ovarian stimulation carried out with recombinant FSH and supplemented with recombinant hCG microdose. Total dose of recombinant FSH and recombinant hCG administered; E(2) concentrations and endometrial width on the day of hCG trigger; number of follicles aspirated, oocytes and mature oocytes retrieved; fertilization, pregnancy (PR), implantation, and miscarriage rates. The total dose of recombinant FSH and recombinant hCG administered were similar between groups, as were the E(2) concentrations and endometrial width. The number of follicles aspirated, oocytes, and metaphase II oocytes collected were also comparable. There were no statistically significant differences in fertilization, PR, implantation, and miscarriage rates in the GnRH agonist and GnRH antagonist groups. When using recombinant hCG microdose supplementation for controlled ovarian stimulation (COS), there are no differences in laboratory or clinical outcomes with the use of either GnRH antagonist or agonist for pituitary suppression. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Comparison of luteal estradiol patch and gonadotropin-releasing hormone antagonist suppression protocol before gonadotropin stimulation versus microdose gonadotropin-releasing hormone agonist protocol for patients with a history of poor in vitro fertilization outcomes.

    Science.gov (United States)

    Weitzman, Vanessa N; Engmann, Lawrence; DiLuigi, Andrea; Maier, Donald; Nulsen, John; Benadiva, Claudio

    2009-07-01

    To compare IVF outcomes in poor-responder patients undergoing stimulation after luteal phase E(2) patch/GnRH antagonist (LPG) protocol versus microdose GnRH agonist protocol. Retrospective analysis. University-based IVF center. Forty-five women undergoing ovarian stimulation for IVF using the LPG protocol were compared with 76 women stimulated with the microdose GnRH agonist protocol from May 2005 to April 2006. Cancellation rate, number of oocytes retrieved, and clinical pregnancy rates. The mean number of oocytes (9.1 +/- 4.1 vs. 8.9 +/- 4.3) and mature oocytes (6.7 +/- 3.5 vs. 6.8 +/- 3.1) retrieved were similar, as were the fertilization rates (70.0% +/- 24.2% vs. 69.9% +/- 21.5%) and the number of embryos transferred (2.5 +/- 1.1 vs. 2.7 +/- 1.3). The cancellation rate was not significantly different between the groups (13/45, 28.9% vs. 23/76, 30.3%). Likewise, there were no significant differences among the implantation rate (15.0% vs. 12.5%), clinical pregnancy rate (43.3% vs. 45.1%), and ongoing pregnancy rate per transfer (33.3% vs. 26.0%) between both groups. This study demonstrates that the use of an E(2) patch and a GnRH antagonist during the preceding luteal phase in patients with a history of failed cycles can provide similar IVF outcomes when compared with the microdose GnRH agonist protocol.

  1. Neuroprotective effects of α-iso-cubebenol on glutamate-induced neurotoxicity.

    Science.gov (United States)

    Park, Sun Young; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2015-09-01

    α-Iso-cubebenol is a natural compound isolated from Schisandra chinensis, and is reported to have beneficial bioactivity including anti-inflammatory and anti-tumor activities. Glutamate-induced oxidative neuronal damage has been implicated in a variety of neurodegenerative disorders. Here we investigated the mechanisms of α-iso-cubebenol protection of mouse hippocampus-derived neuronal cells (HT22 cells) from apoptotic cell death induced by the major excitatory neurotransmitter, glutamate. Pretreatment with α-iso-cubebenol markedly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase), in a dose-dependent manner. α-Iso-cubebenol significantly reduced glutamate-induced intracellular reactive oxygen species and calcium accumulation. Strikingly, α-iso-cubebenol inhibited glutamate-induced mitochondrial depolarization, which releases apoptosis-inducing factor from mitochondria. α-Iso-cubebenol also suppressed glutamate-induced phosphorylation of extracellular-signal-regulated kinases. Furthermore, α-iso-cubebenol induced CREB phosphorylation and Nrf-2 nuclear accumulation and increased the promoter activity of ARE and CREB in HT22 cells. α-Iso-cubebenol also upregulated the expression of phase-II detoxifying/antioxidant enzymes such as HO-1 and NQO1. Subsequent studies revealed that the inhibitory effects of α-iso-cubebenol on glutamate-induced apoptosis were abolished by small interfering RNA-mediated knockdown of CREB and Nrf-2. These findings suggest that α-iso-cubebenol prevents excitotoxin-induced oxidative damage to neurons by inhibiting apoptotic cell death, and might be a potential preventive or therapeutic agent for neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  3. Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.

    Science.gov (United States)

    Takeda, Atsushi; Fuke, Sayuri; Tsutsumi, Wataru; Oku, Naoto

    2007-12-01

    The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity. (c) 2007 Wiley-Liss, Inc.

  4. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    Science.gov (United States)

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  5. Effects of 17β-estradiol on the release of monocyte chemotactic protein-1 and MAPK activity in monocytes stimulated with peritoneal fluid from endometriosis patients.

    Science.gov (United States)

    Lee, Dong-Hyung; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Na, Young-Jin; Kwak, Jong-Young; Lee, Kyu-Sup

    2012-03-01

    Hormones and inflammation have been implicated in the pathological process of endometriosis; therefore, we investigated the combined effects of 17β-estradiol (E2) and peritoneal fluid obtained from patients with endometriosis (ePF) or a control peritoneal fluid (cPF) obtained from patients without endometriosis on the release of monocyte chemotactic protein-1 (MCP-1) by monocytes and the role of signaling pathways. Monocytes were cultured with ePF and cPF in the presence of E2; the MCP-1 levels in the supernatants were then measured by ELISA. In addition, mitogen activated protein kinase (MAPK) activation was measured by Western blotting of phosphorylated proteins. E2 down-regulated MCP-1 release by lipopolysaccharide- or cPF-treated monocytes, but failed to suppress its release by ePF-treated monocytes. The release of MCP-1 by ePF- and cPF-treated monocytes was efficiently abrogated by p38 mitogen activated protein kinase (MAPK) inhibitors; however, the MCP-1 release by cPF-treated monocytes, but not by ePF-treated monocytes, was blocked by a MAPK kinase inhibitor. In addition, ePF and cPF induced the phosphorylation of extracellular stress regulated kinase (ERK)1/2, p38 MAPK and c-Jun N-terminal kinase (JNK). E2 decreased the phosphorylation of p38 MAPK, but not ERK1/2 in ePF-treated monocytes; however, E2 decreased the phosphorylation of p38 MAPK, ERK1/2 and JNK in cPF-treated monocytes. The ability of E2 to modulate MCP-1 production is impaired in ePF-treated monocytes, which may be related to regulation of MAPK activity. These findings suggest that the failure of E2 to suppress ePF-treated production of MCP-1 may be involved in the pathogenesis of endometriosis. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  6. Protein kinase C isoforms in bovine aortic endothelial cells: role in regulation of P2Y- and P2U-purinoceptor-stimulated prostacyclin release.

    Science.gov (United States)

    Patel, V; Brown, C; Boarder, M R

    1996-05-01

    1. Enhanced synthesis of prostacyclin (PGI2) and inositol polyphosphates in bovine aortic endothelial cells in response to ATP and ADP is mediated by co-existing P2Y- and P2U-purinoceptors. Here we examine the regulation of these responses by isoforms of protein kinase C (PKC). 2. Immunoblots with antisera specific for 8 different PKC isoforms revealed the presence of alpha, epsilon and zeta, while no immunoreactivity was found for beta, gamma, delta, eta and theta isoforms. PKC-alpha was largely cytosolic in unstimulated cells and almost all translocated to the membrane (Triton X-100 soluble) after a 1 min treatment with the PKC activating phorbol myristate acetate (PMA); PKC-epsilon was always in a Triton X-100 insoluble membrane fraction, while PKC-zeta was found in both soluble and membrane bound (Triton X-100 soluble) forms in the unstimulated cells and was unaffected by PMA. 3. Treatment with PMA for 6 h led to a 90% downregulation of PKC-alpha, while the immunoreactivity to the epsilon and zeta isoforms remained largely unchanged. 4. After either 10 min or 6 h exposure to PMA the PGI2 response to activation of both receptors was enhanced, while the inositol 1,4,5-trisphosphate response to P2Y-purinoceptor activation was substantially attenuated and the P2U-purinoceptor response was unchanged. Thus the PGI2 response to PMA under conditions when 90% of the PKC-alpha was lost resembles that seen on acute stimulation of PKC by PMA, and the PGI2 response does not correlate with phospholipase C response. 5. Inhibition of PKC with the isoform non-selective inhibitors, Ro 31-8220 and Go 6850 abolished the PGI2 response to both P2U- and P2Y-purinoceptor stimulation. However, Go 6976, which preferentially inhibits Ca2+ sensitive isoforms (such as PKC-alpha) and not Ca2+ insensitive isoforms (such as PKC-epsilon), had no effect on the PGI2 response. 6. The results show that there is a requirement for PKC in the stimulation of PGI2 production by endothelial P2Y- and P2U

  7. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate.

    Directory of Open Access Journals (Sweden)

    Anatoli Y Kabakov

    Full Text Available Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS. Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM and high (300-1200 μM glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might

  8. Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans

    Science.gov (United States)

    Czakai, Kristin; Leonhardt, Ines; Dix, Andreas; Bonin, Michael; Linde, Joerg; Einsele, Hermann; Kurzai, Oliver; Loeffler, Jürgen

    2016-01-01

    Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Krüppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation. PMID:27346433

  9. Evidence that glutamate mediates axon-to-Schwann cell signaling in the squid.

    Science.gov (United States)

    Lieberman, E M; Abbott, N J; Hassan, S

    1989-01-01

    High-frequency stimulation (100 Hz) of isolated giant axons of the small squid Alloteuthis subulata and the large squid Loligo forbesi caused the periaxonal Schwann cell resting potential (Em = -40 mV) to hyperpolarize up to 11 mV in direct proportion to train duration and action potential amplitude. In both species, the Schwann cell also hyperpolarized up to 17 mV with the application of L-glutamate (10(-9) to 10(-6) M), in a dose-dependent manner. By contrast, in the presence of 10(-8) M d-tubocurarine (d-TC) to block the cholinergic component of the Schwann cell response, Schwann cells depolarized 8-9 mV during electrical stimulation of the axon or application of L-glutamate. In the presence of 10(-5) M 2-amino-4-phosphonobutyrate (2-APB), the hyperpolarization to glutamate and to axon stimulation was blocked, whereas the cholinergic (carbachol-induced) hyperpolarization was unaffected. In experiments with Alloteuthis, L-aspartate (10(-7) M) also caused a Schwann cell hyperpolarization, but this was not blocked by 2-APB. In tests with glutamate receptor agonists and antagonists, quisqualate (10(-5) M) produced a hyperpolarization blocked by 10(-4) M L-glutamic acid diethylester (GDEE), which also blocked the response to axonal stimulation. Kainic acid (10(-4) M) also caused a hyperpolarization, but n-methyl-D-aspartate (NMDA; 10(-4) M), ibotenate (10(-5) M), alpha-amino-3-hydroxy-5-methyl-isoxazole proprionate (AMPA; (10(-4) M), and isethionate (10(-5) M) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    International Nuclear Information System (INIS)

    Klin, Yael; Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram; Teichberg, Vivian I.

    2010-01-01

    and serves as an origin for glutamate metabolites that redistribute into skeletal muscle and gut. The findings of this study suggest now that pharmacological manipulations that reduce the liver glutamate release rate or cause a boosting of the skeletal muscle glutamate pumping rate are likely to cause brain neuroprotection.

  11. Distribution of radiolabeled L-glutamate and D-aspartate from blood into peripheral tissues in naive rats: Significance for brain neuroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Klin, Yael [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel); Zlotnik, Alexander; Boyko, Matthew; Ohayon, Sharon; Shapira, Yoram [The Division of Anesthesiology, Soroka Medical Center and Ben Gurion University of the Negev, Beer-Sheva (Israel); Teichberg, Vivian I., E-mail: Vivian.teichberg@weizmann.ac.il [Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-09-03

    , mainly in non-metabolized form. The liver plays a central role in glutamate metabolism and serves as an origin for glutamate metabolites that redistribute into skeletal muscle and gut. The findings of this study suggest now that pharmacological manipulations that reduce the liver glutamate release rate or cause a boosting of the skeletal muscle glutamate pumping rate are likely to cause brain neuroprotection.

  12. pKI values of prazosin and idazoxan for receptors stimulated by neuronally released transmitter in the epididymal portion of rat isolated vas deferens.

    OpenAIRE

    Mackay, D.; Kengatharan, M.

    1994-01-01

    1. A new method has been used to measure pKI values of prazosin and idazoxan against neuronally-released transmitter in the epididymal portion of the rat isolated vas deferens. The most reproducible results were obtained with a prolonged antagonist equilibration time (1 h). 2. Under these conditions the pKI of prazosin was practically unaffected by addition of alpha, beta-methylene-adenosine-5'-triphosphate (10 microM) to desensitize purinoceptors. Addition of desmethylimipramine (DMI) (0.3 m...

  13. pKI values of prazosin and idazoxan for receptors stimulated by neuronally released transmitter in the epididymal portion of rat isolated vas deferens.

    Science.gov (United States)

    Mackay, D; Kengatharan, M

    1994-01-01

    1. A new method has been used to measure pKI values of prazosin and idazoxan against neuronally-released transmitter in the epididymal portion of the rat isolated vas deferens. The most reproducible results were obtained with a prolonged antagonist equilibration time (1 h). 2. Under these conditions the pKI of prazosin was practically unaffected by addition of alpha, beta-methylene-adenosine-5'-triphosphate (10 microM) to desensitize purinoceptors. Addition of desmethylimipramine (DMI) (0.3 microM) produced a small, but statistically non-significant, reduction. 3. The same method has been used to measure the pKI of prazosin against exogenous noradrenaline. In the latter case addition of DMI (0.3 microM) and corticosterone (30 microM) together produced a statistically significant reduction in the apparent pKI of prazosin. 4. The new method for estimating pKI values shows that DMI itself acts either pseudo-irreversibly or non-competitively and may be reducing the apparent pKI of prazosin. 5. The pKI values obtained for prazosin and idazoxan against neuronally-released transmitter are in good agreement with those obtained by other workers for the actions of these drugs on alpha-adrenoceptors.

  14. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  15. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    Science.gov (United States)

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders. Published by Elsevier Inc.

  16. Glutamate and Brain Glutaminases in Drug Addiction.

    Science.gov (United States)

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2017-03-01

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  17. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  18. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  19. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  20. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Working Memory Modulates Glutamate Levels in the Dorsolateral Prefrontal Cortex during 1H fMRS

    Directory of Open Access Journals (Sweden)

    Eric A. Woodcock

    2018-03-01

    Full Text Available Glutamate is involved in excitatory neurotransmission and metabolic processes related to brain function. Previous studies using proton functional magnetic resonance spectroscopy (1H fMRS have demonstrated elevated cortical glutamate levels by 2–4% during visual and motor stimulation, relative to periods of no stimulation. Here, we extended this approach to working memory cognitive task performance, which has been consistently associated with dorsolateral prefrontal cortex (dlPFC activation. Sixteen healthy adult volunteers completed a continuous visual fixation “rest” task followed by a letter 2-back working memory task during 1H fMRS acquisition of the left dlPFC, which encompassed Brodmann areas 45 and 46 over a 4.5-cm3 volume. Using a 100% automated fitting procedure integrated with LCModel, raw spectra were eddy current-, phase-, and shift-corrected prior to quantification resulting in a 32s temporal resolution or 8 averages per spectra. Task compliance was high (95 ± 11% correct and the mean Cramer-Rao Lower Bound of glutamate was 6.9 ± 0.9%. Relative to continuous passive visual fixation, left dlPFC glutamate levels were significantly higher by 2.7% (0.32 mmol/kg wet weight during letter 2-back performance. Elevated dlPFC glutamate levels reflect increased metabolic activity and excitatory neurotransmission driven by working memory-related cognitive demands. These results provide the first in vivo demonstration of elevated dlPFC glutamate levels during working memory.

  2. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Kai I. Cheang

    2016-01-01

    Full Text Available Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG may contribute to insulin resistance in polycystic ovary syndrome (PCOS. Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n=16 and normal (n=15 women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUCDCI-IPG, AUCinsulin, and AUCDCI-IPG/AUCinsulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUCDCI-IPG/AUCinsulin at baseline and a significant relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0003, which was not present in controls. Weight loss was similar between PCOS (−4.08 kg and normal women (−4.29 kg, p=0.6281. Weight loss in PCOS women did not change the relationship between AUCDCI-IPG/AUCinsulin and Matsuda index (p=0.0100, and this relationship remained absent in control women. Conclusion. The association between AUCDCI-IPG/AUCinsulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  3. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome.

    Science.gov (United States)

    Cheang, Kai I; Sistrun, Sakita N; Morel, Kelley S; Nestler, John E

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS ( n = 16) and normal ( n = 15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUC DCI-IPG ), AUC insulin , and AUC DCI-IPG /AUC insulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUC DCI-IPG /AUC insulin at baseline and a significant relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0003), which was not present in controls. Weight loss was similar between PCOS (-4.08 kg) and normal women (-4.29 kg, p = 0.6281). Weight loss in PCOS women did not change the relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0100), and this relationship remained absent in control women. Conclusion. The association between AUC DCI-IPG /AUC insulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  4. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia....... Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures...... and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N...

  5. Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission

    Directory of Open Access Journals (Sweden)

    David J. Barker

    2017-11-01

    Full Text Available Summary: The lateral habenula (LHb is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO, little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. : Barker et al. show that distinct populations of lateral preoptic area glutamate and GABA neurons synapse together on single lateral habenula neurons and find that this “convergent neurotransmission” allows preoptic area neurons to exert bivalent control over single lateral habenula neurons and drive opposing motivational states. Keywords: preoptic, habenula, reward, aversion, synapse, glutamate, GABA, stress, calcium imaging, optogenetics, electron microscopy

  6. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    Science.gov (United States)

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  8. A Proof-of-Concept Clinical Trial of A Single Luteal Use of Long-Acting Gonadotropin-Releasing Hormone Antagonist Degarelix in Controlled Ovarian Stimulation for In Vitro Fertilization: Long Antagonist Protocol

    Directory of Open Access Journals (Sweden)

    Evangelos G. Papanikolaou

    2018-03-01

    Full Text Available IntroductionA drawback of gonadotropin-releasing hormone (GnRH antagonist protocols in in vitro fertilization (IVF is that they have limited flexibility in cycle programming. This proof of concept study explored the efficacy of a single-dose, long-acting GnRH antagonist IVF protocol. Trial registration number is NCT03240159, retrospectively registered on March 08, 2017.Materials and methodsThe efficacy of a single-dose long-acting antagonist, degarelix, was explored initially in healthy donors and subsequently in infertile patients. In the first part, five healthy oocyte donors underwent ovarian stimulation with this new protocol: in the late luteal phase, at day 24, a bolus injection of degarelix was administered subcutaneously to control the LH surge in the follicular phase. Ovarian stimulation with gonadotropins was initiated subsequently from day 7 to day 10. End points were first to inhibit the LH surge later in the follicular phase and, second, to retrieve mature oocytes for IVF. In the second part, five infertile women received the same bolus injection of degarelix administered during the luteal phase at day 24. Different gonadotropin starting days (day 2 through day 8 were tested in order to observe possible differences in ovarian stimulation. In these infertile patients, fresh embryo transfers were performed to assess the pregnancy efficacy of this protocol on pregnancy outcomes and to address any possible negative effects on endometrium receptivity.ResultsIn the first part of the study, all donors were effectively downregulated with a single luteal dose of 0.5 ml of degarelix for up to 22 days until the final oocyte maturation triggering day. Mature oocytes were retrieved after 36 h from all patients and all produced 2–7 blastocysts. In the second part, all five infertile patients achieved sufficient LH downregulation and completed ovarian stimulation without any LH surge. All patients (except one with freeze all strategy had

  9. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Landry, M.E.; Max, S.R.

    1990-01-01

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U- 14 C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  10. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  11. Stimulation of the young poor responder: comparison of the luteal estradiol/gonadotropin-releasing hormone antagonist priming protocol versus oral contraceptive microdose leuprolide.

    Science.gov (United States)

    Shastri, Shefali M; Barbieri, Elizabeth; Kligman, Isaac; Schoyer, Katherine D; Davis, Owen K; Rosenwaks, Zev

    2011-02-01

    To evaluate in vitro fertilization (IVF) cycle outcomes in young poor responders treated with a luteal estradiol/gonadotropin-releasing hormone antagonist (E(2)/ANT) protocol versus an oral contraceptive pill microdose leuprolide protocol (OCP-MDL). Retrospective cohort. Academic practice. Poor responders: 186 women, aged <35 years undergoing IVF with either E(2)/ANT or OCP-MDL protocols. None. Clinical pregnancies, oocytes retrieved, cancellation rate. Patients in the E(2)/ANT group had a greater gonadotropin requirement (71.9 ± 22.2 vs. 57.6 ± 25.7) and lower E(2) level (1,178.6 ± 668 vs. 1,627 ± 889), yet achieved similar numbers of oocytes retrieved and fertilized, and a greater number of embryos transferred (2.3 ± 0.9 vs. 2.0 ± 1.1) with a better mean grade (2.14 ± .06 vs. 2.7 ± 1.8) compared with the OCP/MDL group. The E2/ANT group exhibited a trend toward improved implantation rates (30.5% vs. 21.1%) and ongoing pregnancy rates per started cycle: 44 out of 117 (37%) versus 17 out of 69 (25%). Poor responders aged <35 years may be treated with the aggressive E(2)/ANT protocol to improve cycle outcomes. Both protocols remain viable options for this group. Adequately powered, randomized clinical comparison appears justified. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Concomitant inhibition of pulsatile luteinizing hormone (LH) and stimulation of prolactin release by prostacyclin (PGI2) in ovariectomized (OVX) conscious rats

    International Nuclear Information System (INIS)

    Ottlecz, A.; McCann, S.M.

    1988-01-01

    Prostacyclin (PGI 2 ) or its stable metabolite, 6-keto-PGF/sub 1 alpha/ in 2.5 μl 0.05 M phosphate buffer, was injected into the third ventricle (3 V) of ovariectomized (OVX), freely moving rats. Control animals received 2.5 μl of buffer. In the initial experiments a control blood sample was taken and then the PGI 2 was injected and frequent samples taken thereafter. With this protocol injection of 2 μg of PGI 2 produced a significant decrease in mean plasma LH only at 60 min after its injection, while the higher dose decreased plasma LH concentration at 30 and 60 min. In subsequent experiments, blood was removed from indwelling external jugular vein cannulae every 5-6 min during 2 hours and plasma LH and PRL levels were determined by radioimmunoassay. LH pulses were monitored and several parameters of LH pulsation were calculated during the hour before and after injection of phosphate buffer, PGI 2 or 6-keto-PGF/sub 1a/. Intraventricular injection of phosphate buffer failed to modify the characteristic pulsatile release of LH and did not alter plasma PRL levels. The amplitude of LH pulses was significantly reduced by PGI 2 and the inhibitory effect was dose-related. Even a dose of 1 μg produced a significant reduction in pulse height and the response was graded with maximal reduction occurring with the 5 μg dose which essentially abolished the LH pulses

  13. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  14. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice.

    Directory of Open Access Journals (Sweden)

    Emil Egecioglu

    Full Text Available The gastrointestinal peptide glucagon-like peptide 1 (GLP-1 is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4, on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans.

  15. Functional Comparison of the Two Bacillus anthracis Glutamate Racemases▿

    OpenAIRE

    Dodd, Dylan; Reese, Joseph G.; Louer, Craig R.; Ballard, Jimmy D.; Spies, M. Ashley; Blanke, Steven R.

    2007-01-01

    Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and rac...

  16. Atorvastatin and Fluoxetine Prevent Oxidative Stress and Mitochondrial Dysfunction Evoked by Glutamate Toxicity in Hippocampal Slices.

    Science.gov (United States)

    Ludka, Fabiana K; Dal-Cim, Tharine; Binder, Luisa Bandeira; Constantino, Leandra Celso; Massari, Caio; Tasca, Carla I

    2017-07-01

    Atorvastatin has been shown to exert a neuroprotective action by counteracting glutamatergic toxicity. Recently, we have shown atorvastatin also exerts an antidepressant-like effect that depends on both glutamatergic and serotonergic systems modulation. Excitotoxicity is involved in several brain disorders including depression; thus, it is suggested that antidepressants may target glutamatergic system as a final common pathway. In this study, a comparison of the mechanisms involved in the putative neuroprotective effect of a repetitive atorvastatin or fluoxetine treatment against glutamate toxicity in hippocampal slices was performed. Adult Swiss mice were treated with atorvastatin (10 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.), once a day during seven consecutive days. On the eighth day, animals were killed and hippocampal slices were obtained and subjected to an in vitro protocol of glutamate toxicity. An acute treatment of atorvastatin or fluoxetine was not neuroprotective; however, the repeated atorvastatin or fluoxetine treatment prevented the decrease in cellular viability induced by glutamate in hippocampal slices. The loss of cellular viability induced by glutamate was accompanied by increased D-aspartate release, increased reactive oxygen species (ROS) and nitric oxide (NO) production, and impaired mitochondrial membrane potential. Atorvastatin or fluoxetine repeated treatment also presented an antidepressant-like effect in the tail suspension test. Atorvastatin or fluoxetine treatment was effective in protecting mice hippocampal slices from glutamate toxicity by preventing the oxidative stress and mitochondrial dysfunction.

  17. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  18. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release.

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H

    2016-07-01

    Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Murayama, T.; Ui, M.

    1985-01-01

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45 Ca 2+ uptake into the cell monolayer, and (f) increased 86 Rb + uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca 2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca 2+ -mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca 2+ gating

  20. Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Nina B Illarionova

    Full Text Available Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+ co-transporters. This transport is driven by the transmembrane Na(+ gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+ co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+ co-transporters via the 1st intracellular loop.

  1. A novel reagentless glutamate microband biosensor for real-time cell toxicity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Pemberton, R.M. [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom); Fielden, P.R. [Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB (United Kingdom); Hart, J.P., E-mail: john.hart@uwe.ac.uk [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom)

    2016-08-24

    A reagentless glutamate biosensor was applied to the determination of glutamate released from liver hepatocellular carcinoma cells (HepG2) in response to toxic challenge from various concentrations of paracetamol. A screen printed carbon electrode (SPCE) containing the electrocatalyst Meldola's Blue (MB-SPCE) served as the electron mediator for the oxidation of NADH. A mixture of the enzyme glutamate dehydrogenase (GLDH), cofactor nicotinamide adenine dinucleotide (NAD{sup +}) and the biopolymer chitosan (CHIT) were drop-coated onto the surface of the transducer (MB-SPCE) in a simple one step fabrication process. The reagentless biosensor was used with amperometry in stirred solution at an applied potential of +0.1 V (vs. Ag/AgCl). All experiments were carried out at the following conditions: pH 7, temperature 37 °C, atmosphere 5% CO{sub 2}. The linear range of the device was found to be 25–125 μM in phosphate buffer (75 mM, containing 0.05 M NaCl) and 25–150 μM in cell culture medium. The limits of detection (LOD) were found to be 1.2 μM and 4.2 μM based on three times signal to noise, using PBS and culture medium respectively. The sensitivity was calculated to be 106 nA μM{sup −1} cm{sup −2} and 210 nA μM{sup −1} cm{sup −2} in PBS and cell medium respectively. The response time was ∼60 s in an agitated solution. HepG2 cells were exposed to various concentrations of paracetamol (1 mM, 5 mM and 10 mM) in order to investigate the drug-induced release of glutamate into the culture medium in real time. Two toxicity studies were investigated using different methods of exposure and analysis. The first method consisted of a single measurement of the glutamate concentration, using the method of standard addition, after 24 h incubation. The concentrations of glutamate were found to be 52 μM, 93 μM and 177 μM, released on exposure to 1 mM, 5 mM and 10 mM paracetamol respectively. The second method involved the

  2. A novel reagentless glutamate microband biosensor for real-time cell toxicity monitoring

    International Nuclear Information System (INIS)

    Hughes, G.; Pemberton, R.M.; Fielden, P.R.; Hart, J.P.

    2016-01-01

    A reagentless glutamate biosensor was applied to the determination of glutamate released from liver hepatocellular carcinoma cells (HepG2) in response to toxic challenge from various concentrations of paracetamol. A screen printed carbon electrode (SPCE) containing the electrocatalyst Meldola's Blue (MB-SPCE) served as the electron mediator for the oxidation of NADH. A mixture of the enzyme glutamate dehydrogenase (GLDH), cofactor nicotinamide adenine dinucleotide (NAD"+) and the biopolymer chitosan (CHIT) were drop-coated onto the surface of the transducer (MB-SPCE) in a simple one step fabrication process. The reagentless biosensor was used with amperometry in stirred solution at an applied potential of +0.1 V (vs. Ag/AgCl). All experiments were carried out at the following conditions: pH 7, temperature 37 °C, atmosphere 5% CO_2. The linear range of the device was found to be 25–125 μM in phosphate buffer (75 mM, containing 0.05 M NaCl) and 25–150 μM in cell culture medium. The limits of detection (LOD) were found to be 1.2 μM and 4.2 μM based on three times signal to noise, using PBS and culture medium respectively. The sensitivity was calculated to be 106 nA μM"−"1 cm"−"2 and 210 nA μM"−"1 cm"−"2 in PBS and cell medium respectively. The response time was ∼60 s in an agitated solution. HepG2 cells were exposed to various concentrations of paracetamol (1 mM, 5 mM and 10 mM) in order to investigate the drug-induced release of glutamate into the culture medium in real time. Two toxicity studies were investigated using different methods of exposure and analysis. The first method consisted of a single measurement of the glutamate concentration, using the method of standard addition, after 24 h incubation. The concentrations of glutamate were found to be 52 μM, 93 μM and 177 μM, released on exposure to 1 mM, 5 mM and 10 mM paracetamol respectively. The second method involved the continuous monitoring of glutamate

  3. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  4. Development of paradigm for the study of amino acid neurotransmitter release in human autopsy brain samples

    International Nuclear Information System (INIS)

    Kuo, K.-W.; Dodd, P.R.

    2001-01-01

    Full text: This study attempted to establish a release protocol to characterize both the vesicular and cytoplasmic components of amino acid transmitter release in human synaptosomes. Experiments with rat synaptosomes showed that, with depolarizing concentrations of K + ions, vesicular release could be successfully differentiated from cytoplasmic release for preloaded L-[ 3 H ]glutamate and [ 14 C ]GABA. However, human tissue studies did not give clear-cut results. Experiments were carried out to optimize the release paradigm as well as to improve the vesicular uptake of labeled transmitters. A 'pulse- chase' protocol, with an unlabelled D-aspartate chase, was performed in human tissue samples in order to enhance the L-[ 3 H ] glutamate release signal derived from exocytosis by removing the cytoplasmic pool of L-[ 3 H ] glutamate first. However, the results showed that total release was not enhanced effectively in comparison with the non-pulse-chase protocol. In brief, the pulse-chase protocol did not build up the vesicular pool of L-[ 3 H ]glutamate, though the cytoplasmic L- [ 3 H ] glutamate pool was effectively depressed by D-aspartate. Further studies applied 4- aminopyridine (4-AP) to trigger release