WorldWideScience

Sample records for stimulated raman scattering

  1. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  2. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  3. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  4. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  5. Gain reduction measurements in transient stimulated Raman scattering

    NARCIS (Netherlands)

    Heeman, R.J.; Godfried, H.P

    1995-01-01

    Threshold energy measurements of transient rotational stimulated Raman scattering are compared to Raman conversion calculations from semiclassical theories using a simple concept of a gain reduction factor which expresses the reduction of the gain from its steady-state value due to transient

  6. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  7. Stimulated Raman scattering: old physics, new applications.

    Science.gov (United States)

    Yakovlev, Vladislav V; Petrov, Georgi I; Zhang, Hao F; Noojin, Gary D; Denton, Michael L; Thomas, Robert J; Scully, Marlan O

    2009-10-01

    Stimulated Raman scattering as a promising way of expanding the tunability of ultrafast lasers and as an exciting new biomedical imaging modality capable of selective excitation and chemically-specific diagnostics of molecular species.

  8. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  9. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Resonant stimulation of Raman scattering from single-crystal thiophene/phenylene co-oligomers

    International Nuclear Information System (INIS)

    Yanagi, Hisao; Marutani, Yusuke; Matsuoka, Naoki; Hiramatsu, Toru; Ishizumi, Atsushi; Sasaki, Fumio; Hotta, Shu

    2013-01-01

    Amplified Raman scattering was observed from single crystals of thiophene/phenylene co-oligomers (TPCOs). Under ns-pulsed excitation, the TPCO crystals exhibited amplified spontaneous emission (ASE) at resonant absorption wavelengths. With increasing excitation wavelength to the 0-0 absorption edge, the stimulated resonant Raman peaks appeared both in the 0-1 and 0-2 ASE band regions. When the excitation wavelength coincided with the 0-1 ASE band energy, the Raman peaks selectively appeared in the 0-2 ASE band. Such unusual enhancement of the 0-2 Raman scattering was ascribed to resonant stimulation via vibronic coupling with electronic transitions in the uniaxially oriented TPCO molecules

  11. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  12. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  13. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering

    Science.gov (United States)

    Zhao, Yao; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming

    2017-09-01

    The nonlinear coupling between stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) of intense laser in underdense plasma is studied theoretically and numerically. Based upon the fluid model, their coupling equations are derived, and a threshold condition of plasma density perturbations due to SBS for the inhibition of SRS is given. Particle-in-cell simulations show that this condition can be achieved easily by SBS in the so-called fluid regime with kLλDDebye length [Kline et al., Phys. Plasmas 13, 055906 (2006)]. SBS can reduce the saturation level of SRS and the temperature of electrons in both homogeneous and inhomogeneous plasma. Numerical simulations also show that this reduced SRS saturation is retained even if the fluid regime condition mentioned above is violated at a later time due to plasma heating.

  14. Faraday effect on stimulated Raman scattering in the linear region

    Science.gov (United States)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  15. Stimulated Raman scattering and hot-electron production

    International Nuclear Information System (INIS)

    Drake, R.P.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.; Campbell, E.M.; Wang, C.L.; Phillion, D.W.; Williams, E.A.; Kruer, W.L.

    1985-01-01

    High-intensity laser light can excite parametric instabilities that scatter or absorb it. One instability that can arise when laser light penetrates a plasma is sub-quarter-critical stimulated Raman (SQSR) scattering. It occurs below the quarter-critical density of the incident light and involves the decay of the incident light wave into a scattered light wave and electron plasma wave. The scattered-light wavelength ranges from 1 to 2 times that of the incident light, depending on the plasma density and temperature. This article reports studies of SQSR scattering and hot-electron production in plasmas produced by irradiating thick gold targets with up to 4 kJ of 0.53-μm light in 1-ns (FWHM) pulses. These studies have important implications for laser fusion. Hot electrons attributed to the SQSR instability can increase the difficulty of achieving high-gain implosions by penetrating and preheating the fusion fuel

  16. Three-beam double stimulated Raman scatterings: Cascading configuration

    Science.gov (United States)

    Rao, B. Jayachander; Cho, Minhaeng

    2018-03-01

    Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we

  17. Theoretical treatments of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Uehara, Youichi; Sasaki, Wataru

    1981-01-01

    Stimulated Raman scattering (SRS) is a phenomenon, in which the coherent light (Stokes emission) with a shifted wavelength specific to a kind of material mixes in scattered monochromatic light, when the intense monochromatic light (laser light) is scattered by projecting it to the above material. According to the theoretical researches together with the experiments on SRS, it is qualitatively understood to be the phenomenon, in which laser energy is transferred to Stokes emission by the interaction through the optical non-linearity of a material between incident laser beam and the Stokes emission generated by spontaneous emission. The authors have been interested in the application of SRS to plasma diagnostics, and have studied it theoretically for the purpose of investigating its feasibility. Here, the theories reported so far are introduced arranging them. First, the derivation of SRS fundamental equations is explained, though it is limited to the SRS theory for ultrashort pulse laser (TSRS), and Raman media were assumed to be gas or liquid phase. Next, the solution of the equations and the basic properties of TSRS are described. Then, the extension of the TSRS to the cases when the several assumptions, which were set in the solution of the equations, were removed is explained. The extension includes the cases for phase fluctuation, dispersion, existence of anti-Stokes emission, and the presence of laser beam attenuation. Finally, the SRS by the broad band laser is introduced. (Wakatsuki, Y.)

  18. Photon distribution function for stocks wave for stimulated Raman scattering

    International Nuclear Information System (INIS)

    Man'ko, O.V.; Tcherniega, N.V.

    1997-04-01

    New time-dependent integrals of motion are found for stimulated Raman scattering. Explicit formula for the photon-number probability distribution as a function of the laser-field intensity and the medium parameters is obtained in terms of Hermite polynomials of two variables. (author). 29 refs

  19. Rigorous results in quantum theory of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Rupasov, V.I.

    1993-01-01

    The modern theory of stimulated Raman scattering (SRS) of light in resonant media is based on the investigations of appropriate integrable models of the classical field theory by means of the inverse problem method. But, strictly speaking, Raman scattering is a pure spontaneous process and, hence, it is necessary to take into account a quantum nature of the phenomenon. Moreover, there are some questions and problems, for example, the problem of scattered photons statistics, which can be studied only within the framework of the quantum field theory. We have developed an exact quantum theory of SRS for the case of point-like geometry of resonant media (two-level atoms or harmonic oscillators) of the radius r much-lt λ 0 , where λ 0 is the typical wavelength of the light, but all our results are also valid for the case of short extended medium of the length L much-lt l p (l p is the typical size of pulses) when the spatially homogeneous approximation is valid

  20. A quarter century of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1987-01-01

    To round out a quarter century of SRS the timing of this writing (1986) requires a look ahead of only one year into the future. The proceedings of the 10th International Conference on Raman Spectroscopy present a picture of current activity. Further progress will be made in time-resolved spectroscopy with subpicosecond resolution, in the study of hyper-Raman and other higher order effects with CARS, in extension of resonant Raman excitation in the UV region of spectrum, and in the development of Raman laser sources. During past few years extensive theoretical investigations have been made for four-wave light mixing in the case of one or more very strong light beams. The perturbation approach for those fields ceases to be valid. If only one light field is strong, the usual approach is to make a transformation to a rotating coordinate system so that the strong Hamiltonian for this light field becomes time-independent. Very recently these techniques have been extended to the case of two or more strong fields. CARS-type experiments with strong beams are likely to receive more attention. Extrapolation of the current activities instills confidence in the vitality of stimulated Raman scattering for the foreseeable future

  1. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  2. Enhancement of the stimulated Raman scattering of benzene, acetonitrile and pyridine

    International Nuclear Information System (INIS)

    Munoz, L; Contreras, W A; Cabanzo, R; Aya-RamIrez, O; Mejia-Ospino, E

    2011-01-01

    In this work we used the second harmonic of Nd:YAG laser to observe stimulated Raman scattering (SRS). SRS was observed on benzene, acetonitrile and pyridine using a single shot laser. The SRS radiation is very intense due their laser characteristics, and it is possible to observe several harmonics of different vibrational modes to each molecule studied here.

  3. Reassessment of the theory of stimulated Raman scattering

    Science.gov (United States)

    Fralick, G. C.; Deck, R. T.

    1985-01-01

    A modification of the standard theory of stimulated Raman scattering (SRS) first proposed by Sparks (1974, 1975) is analyzed and shown to incorporate a possibly important physical effect; however, its original formulation is incorrect. The analysis is based on an exact numerical integration of the coupled equations of the modified theory, the results of which are compared with both the conventional theory of SRS and with one set of experimental data. A reformulation of the modified theory is suggested that leads to a gain which is in somewhat better agreement with the data than is the conventional theory.

  4. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  5. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco; Kumar, Vikas; Scopigno, Tullio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2017-01-01

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  6. In-line balanced detection stimulated Raman scattering microscopy

    KAUST Repository

    Crisafi, Francesco

    2017-08-31

    We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.

  7. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  8. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  9. Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers

    Science.gov (United States)

    Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey

    1995-02-01

    We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.

  10. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    Science.gov (United States)

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  11. Mitigation of stimulated Raman scattering in hohlraum plasmas

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Rose, H A; Goldman, S R; Froula, D H; Ross, J S; Stevenson, R M; Lushnikov, P M

    2008-01-01

    One aspect of recent research to control Stimulated Raman Scattering (SRS) in hohlraum plasmas is the investigation of risk mitigation strategies for indirect drive inertial confinement fusion. Experimental tests of these strategies, based on prior theoretical and experimental knowledge of SRS, are performed in hohlraum experiments. In the last year, two strategies have been investigated. The first is the use of high Z dopants to reduce SRS backscatter. Forward stimulated Brillouin scattering (FSBS) could lead to beam spray reducing SRS. Since FSBS depends on the electron temperature and thermal effects depend strongly on Z 2 , a small amount of a high Z dopant, 1-2%, can have a large effect. Experiments have been conducted at the Omega laser to test this theory by varying the amount of Xe dopant in neo-pentane gas filled hohlraums. The experimental measurements do show a decrease in SRS backscatter as Xe dopant is added. However, there are still uncertainties regarding the responsible mechanism since increases inverse-Bremsstrahlung absorption of the SRS light may play a role. The second strategy investigated is using high kλ D plasmas to reduce SRS backscatter. Experiments conducted at the Omega laser facility in hohlraum plasmas determined the critical onset intensity for a range of kλ D . A scaling of the critical onset intensity as a function of kλ D has been determined

  12. First observations of stimulated emission and of stimulated Raman scattering in acentric cubic Nd3+:Bi12SiO20 crystals

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Bagayev, S N; Garsia, Sole J; Jaque, D; Eichler, H J; Findeisen, J; Fernandez, J; Balda, R; Agullo, Rueda F

    1999-01-01

    Laser action (in the 4 F 3/2 - 4 I 11/2 channel) and stimulated Raman scattering were excited for the first time in an Nd 3+ :Bi 12 SiO 20 single crystal at room temperature. All the observed stimulated emission and multiple Stokes and anti-Stokes lines were identified. (letters to the editor)

  13. Implementation of stimulated Raman scattering microscopy for single cell analysis

    Science.gov (United States)

    D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi

    2017-05-01

    In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.

  14. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  15. Stimulated Raman scattering in the presence of filamentation in underdense plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.; Coutts, G.A.

    1986-01-01

    A model of stimulated Raman scattering from underdense plasmas in which the laser intensity profile and plasma density have been corrupted by the filamentation instability is described. The model accounts in a unified way for inhomogeneity in the density, for Landau damping, and for local enhancements in lightwave intensities. In shallow filaments the concentration of the light gives rise to modest increases in growth. On the other hand, for deeper filaments the inhomogeneity and Landau damping dominate to suppress the instability. In addition, backscatter is enhanced relative to sidescatter

  16. Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability

  17. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    Science.gov (United States)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  18. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  19. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  20. Ps laser pulse induced stimulated Raman scattering of ammonium nitrate dissolved in water

    Science.gov (United States)

    Kumar, V. Rakesh; Kiran, P. Prem

    2018-04-01

    An intense picosecond laser pulse focused into a liquid medium generates a shock wave in the focal region. This shock wave while propagating into the medium varies the pressure and temperature of the liquid locally leading to the appearance of novel phases which are manifested by the appearance of Raman peaks. We present the phase changes of ammonium nitrate (AN) dissolved in water by studying the forward and backward stimulated Raman Scattering (FSRS and BSRS) signals due to propagation of 30 ps laser pulse induced shockwaves. The dominant peak corresponding to the NO3- symmetric stretching mode is observed with a Raman shift of 1045 cm-1 which represents phase IV of AN with an orthogonal crystalline structure. Apart from this peak, the dominant mode of liquid phase of water with a Raman shift of 3400 cm-1 and an ice VII peak at a Raman shift of 3050 cm-1 confirming the pressure of 10 GPa is observed. The effect of the concentration and input energy on the appearance of the phases will be presented.

  1. Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang S.; Kuzmin, Andrey; Prasad, Paras N. [The Institute for Lasers, Photonics and Biophotonics, State University of New York, Buffalo, NY (United States)

    2016-12-15

    The threshold, temporal behavior, and conversion efficiency of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SBS) in three liquids (benzene, hexane, and dimethyl sulfoxide) and two crystals (calcite and barium nitrate) have been investigated under three largely different spectral linewidth conditions. Pumped with 532-nm and nanosecond duration laser pulses of ≤ 0.01 cm{sup -1} linewidth, only SBS can be generated in all tested liquids with a high nonlinear reflectivity. However when the pump spectral linewidth is ∝0.07 cm{sup -1} or ∝0.8 cm{sup -1}, both SBS and SRS can be observed in benzene while only SRS can be generated in dimethyl sulfoxide; in all these cases SRS is the dominant contribution to the stimulated scattering but the efficiency values are drastically decreased due to the self-termination behavior of SRS in liquids, which arises from the thermal self-defocusing of both pump beam and SRS beam owing to Stokes-shift related opto-heating effect. In contrast, for SRS process in the two crystals, the thermal self-defocusing influence is negligible benefitting from their much greater thermal conductivity, and a higher conversion efficiency of SRS generation can be retained under all three pump conditions. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Non-Gaussian statistics of extreme events in stimulated Raman scattering: The role of coherent memory and source noise

    Science.gov (United States)

    Monfared, Yashar E.; Ponomarenko, Sergey A.

    2017-10-01

    We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.

  3. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1988-02-01

    The non-linear evolution of stimulated Raman scattering by coupling of the SRS-driven Langmuir waves to ion acoustic waves is studied numerically, in a homogeneous density laser-irradiated plasma. The coupled wave amplitude behaviour is represented either by envelope equations or by complete wave-like equations. The various physical phenomena which are involved are described. This preliminary work has been presented at the 17th Anomalous Absorption Conference, held in last May, in Lake Tahoe City (USA) [fr

  4. Enhanced stimulated Raman scattering by femtosecond ultraviolet plasma grating in water

    Science.gov (United States)

    Liu, Fengjiang; Yuan, Shuai; He, Boqu; Nan, Junyi; Khan, Abdul Qayyum; Ding, Liang'en; Zeng, Heping

    2018-02-01

    Efficient forward stimulated Raman scattering (SRS) was observed along 400-nm femtosecond (fs) laser filaments in water. SRS conversion dominated over self-phase modulation induced continuum generation as the input pulse energy was above 4 μJ (˜30 Pcr), implying that plasma in the aqueous filamentation channel played an important role in compensating for the group velocity walk-off between the pump and Stokes pulses. By overlapping two synchronous fs 400-nm filaments to form plasma grating in water, significant enhancement of SRS conversion was observed. Such a SRS enhancement originated from the ultrahigh plasma density in the intersection region of the preformed plasma grating.

  5. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  6. Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids

    International Nuclear Information System (INIS)

    Spanner, Michael; Brumer, Paul

    2006-01-01

    Recent adaptive feedback control experiments demonstrated control of transient (i.e. nonimpulsive) Stokes emission from two closely spaced Raman-active modes in liquid methanol [e.g., B. J. Pearson et al., Phys. Rev. A 63, 063412 (2001)]. Optimally shaped pulses were found that selectively excited one of the two Stokes lines alone, optimized emission from both modes together, or completely suppressed all Stokes emission. Here, two general control mechanisms capable of affecting the ratio of intensities of the Stokes lines are identified. The first is operational when the duration of the pump pulse (t p ) is on the order of the collisional dephasing time (t d ). The ratio of the peak heights of the two Stokes lines can then be controlled by simply varying the duration and/or intensity of the pump pulse. The second operates when 1/t p is on the order of the energy separation of the two Raman modes, and hence when the two Raman modes are coupled due to overlapping nonlinear polarizations that drive the stimulated Raman scattering. In this regime, asymmetry in the spectral amplitudes within the pump pulse can control the asymmetry in the peak heights of the Stokes emission. Both these mechanisms have the same clear physical interpretation: shaping the pump pulse controls the nonlinear optical response of the medium, which in turn controls the stimulated Stokes emission, itself a χ (3) nonlinear effect. In neither mechanism does the ratio of peak heights in the Stokes spectrum reflect directly the ratio of excited-state populations associated with the two Raman modes, as was assumed in the experiments, nor does the control involve coherent quantum interference effects

  7. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  8. Nonlinear saturation of stimulated Raman scattering in a collisional homogeneous plasma

    International Nuclear Information System (INIS)

    McKinstrie, C.J.

    1985-11-01

    Using multiple scale analysis, the nonlinear saturation of the stimulated Raman scattering instability is examined in a collisional homogeneous plasma. The first problem considered is the temporal problem in an infinite plasma, with a ubiquitous driver and arbitrary damping for each wave. The second problem considered is the absolute Raman instability in a finite plasma. The incident wave amplitude exceeds the absolute instability threshold by the fractional amount Δ. In the marginally unstable regime, the complete time dependence and spatial variation of each wave amplitude is obtained. An expression for the reflected light intensity is determined analytically, and is proportional to Δ. The conditions under which the steady-state results can be extended to the moderately unstable regime are discussed. The reflected light intensity is compared to values predicted for the convective instability, for the same incident intensity. In ''short'' plasmas, i.e., ones which extend over only a few linear convective gain lengths, the reflected intensity is found to be much higher when the absolute instability is excited

  9. Inverse Raman scattering in silicon: A free-carrier enhanced effect

    International Nuclear Information System (INIS)

    Solli, D. R.; Koonath, P.; Jalali, B.

    2009-01-01

    Stimulated Raman scattering has been harnessed to produce the first silicon lasers and amplifiers. The Raman effect can also produce intensity-dependent nonlinear loss through a corollary process, inverse Raman scattering (IRS). This process has never been observed in a semiconductor. We demonstrate IRS in silicon--a process that is substantially modified by optically generated free carriers--achieving attenuation levels >15 dB with a pump intensity of 4 GW/cm 2 . Surprisingly, free-carrier absorption, the detrimental effect that generally suppresses nonlinear effects in silicon, actually facilitates IRS by delaying the onset of contamination from coherent anti-Stokes Raman scattering. Silicon-based IRS could be a valuable tool for chip-scale signal processing.

  10. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Science.gov (United States)

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  11. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  12. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  13. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  14. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  15. High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis

    Science.gov (United States)

    Suzuki, Y.; Wakisaka, Y.; Iwata, O.; Nakashima, A.; Ito, T.; Hirose, M.; Domon, R.; Sugawara, M.; Tsumura, N.; Watarai, H.; Shimobaba, T.; Suzuki, K.; Goda, K.; Ozeki, Y.

    2017-02-01

    Microalgae have been receiving great attention for their ability to produce biomaterials that are applicable for food supplements, drugs, biodegradable plastics, and biofuels. Among such microalgae, Euglena gracilis has become a popular species by virtue of its capability of accumulating useful metabolites including paramylon and lipids. In order to maximize the production of desired metabolites, it is essential to find ideal culturing conditions and to develop efficient methods for genetic transformation. To achieve this, understanding and controlling cell-to-cell variations in response to external stress is essential, with chemically specific analysis of microalgal cells including E. gracilis. However, conventional analytical tools such as fluorescence microscopy and spontaneous Raman scattering are not suitable for evaluation of diverse populations of motile microalgae, being restricted either by the requirement for fluorescent labels or a limited imaging speed, respectively. Here we demonstrate video-rate label-free metabolite imaging of live E. gracilis using stimulated Raman scattering (SRS) - an optical spectroscopic method for probing the vibrational signatures of molecules with orders of magnitude higher sensitivity than spontaneous Raman scattering. Our SRS's highspeed image acquisition (27 metabolite images per second) allows for population analysis of live E. gracilis cells cultured under nitrogen-deficiency - a technique for promoting the accumulation of paramylon and lipids within the cell body. Thus, our SRS system's fast imaging capability enables quantification and analysis of previously unresolvable cell-to-cell variations in the metabolite accumulation of large motile E. gracilis cell populations.

  16. Measurements of stimulated-Raman-scattering-induced tilt in spectral-amplitude-coding optical code-division multiple-access systems

    Science.gov (United States)

    Al-Qazwini, Zaineb A. T.; Abdullah, Mohamad K.; Mokhtar, Makhfudzah B.

    2009-01-01

    We measure the stimulated Raman scattering (SRS)-induced tilt in spectral-amplitude-coding optical code-division multiple-access (SAC-OCDMA) systems as a function of system main parameters (transmission distance, power per chip, and number of users) via computer simulations. The results show that SRS-induced tilt significantly increases as transmission distance, power per chip, or number of users grows.

  17. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  18. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  19. Spatiotemporal Evolution of Stimulated Raman Scattering in the Absolute and Convective Regimes

    International Nuclear Information System (INIS)

    Feng Wu; Li Xibo; Zheng Chunyang

    2013-01-01

    A three-wave interaction (3WI) code is developed to study the stimulated Raman scattering (SRS) in both absolute and convective regimes. In the simulations, the time and spatial evolutions of a plasma wave are described by temporal growth rate and spatial factor, respectively. The spatial factors in different phases and different instability regimes are investigated. It is found that the spatial factor is caused by the finite velocity of the pump wave in the first phase and by damping in the last phase. With inclusion of the spatial factor, the temporal growth rate decreases and the threshold for SRS for a finite frequency mismatch increases. Meanwhile, the effects of wave frequency mismatch on the temporal growth rate are also discussed. (basic plasma phenomena)

  20. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Vengris, Mikas

    2016-05-01

    Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.

  1. Raman scattering in a nearly resonant density ripple

    International Nuclear Information System (INIS)

    Barr, H.C.; Chen, F.F.

    1987-01-01

    Stimulated Raman scattering of light waves by an underdense plasma is affected by the presence of a density ripple caused by a simultaneously occurring stimulated Brillouin instability. The problem is treated kinetically for the particularly interesting case where the ripple has nearly the same wavelength as the plasma wave. The ripple is found to reduce the growth rate of the usual Raman instability but allows other decay modes to occur. Numerical results for the frequencies, growth rates, and k spectra of these modes are obtained. A physical explanation is given for a baffling result of the calculation. The physical picture is also of interest to particle acceleration by plasma waves

  2. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    Science.gov (United States)

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  3. Experimental study on stimulated scattering of ZnO nanospheres dispersed in water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jiulin, E-mail: hyq1304@126.com; Wu, Haopeng [Nanchang Hangkong University, Jiangxi Engineering Laboratory for Optoelectronics Testing Technology (China); Yan, Feng; Yang, Junjie [Nanchang Hangkong University, School of Measuring and Optical Engineering (China); He, Xingdao, E-mail: xingdaohe@126.com [Nanchang Hangkong University, Jiangxi Engineering Laboratory for Optoelectronics Testing Technology (China)

    2016-01-15

    The backward stimulated scattering (BSS) from ZnO nanospheres dispersed in water has been investigated experimentally by employing a Nd:YAG pulse laser with ∼532 nm wavelength and ∼8 ns pulse width as the pump laser source. The present results show that the BSS effect is uniquely and unequivocally different compared to other known stimulated scattering, such as stimulated Rayleigh scattering, stimulated Brillouin scattering, and stimulated Raman scattering, and it displays the characteristics of no frequency shift and threshold dependence on initial spontaneous Mie scattering seed source. These can be understood by means of the Mie scattering theory and a laser-induced stationary Bragg grating model.

  4. Stimulated Raman gain scattering in thin planar dielectric waveguides

    NARCIS (Netherlands)

    Kanger, Johannes S.; Otto, Cornelis; Greve, Jan

    1995-01-01

    The stimulated Raman gain effect in planar dielectric waveguides is analyzed for the study of thin layers. Calculations show high gain factors and predict the possibility of detecting monolayers. Compared with those for methods based on ref lection, the gain can be 4 orders of magnitude higher for a

  5. Wavelength scaling of the two-plasmon decay and stimulated Raman-scattering instabilities. Annual progress report, September 10, 1981-September 9, 1982

    International Nuclear Information System (INIS)

    Chen, F.F.; Joshi, C.; Ebrahim, N.A.

    1983-03-01

    This report contains description of the joint work done by the UCLA-Yale Users' Group at NLUF, LLE Rochester on the two plasmon decay and stimulated Raman scattering instabilities at 0.35 μm laser wavelength. A brief summary of the theoretical work on how SBS influences SRS is also given

  6. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    Science.gov (United States)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  7. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  8. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  9. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  10. Stimulated Raman scattering and ion dynamics: the role of Langmuir wave non-linearities

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.

    1987-01-01

    The saturation of the Stimulated Raman Scattering (SRS) is studied by means of wave-coupling numerical simulations. A new code (CHEOPS) has been designed in order to model these couplings, in real 1-D space, with aperiodic boundary conditions. Each wave can be represented either by a complete amplitude or by an envelope amplitude only. The choice of the wave set to be coupled allows to investigate separately some mechanisms relevant in long time SRS evolution. The various mechanisms which may inhibit SRS growth are reviewed and the SRS saturation scenarios are exhibited in an homogeneous density plasma slab. The ion dependent mechanisms appear to be the most efficient ones to saturate SRS. Their importance is strongly bound to the electron temperature and to the ion fluctuation level at time when SRS has already grown many e-foldings

  11. Raman scattering in air: four-dimensional analysis

    International Nuclear Information System (INIS)

    Lin, Y.; Kessler, T.J.; Lawrence, G.N.

    1994-01-01

    Inertial confinement fusion requires propagation of high-intensity, pulse-shaped IR and UV laser beams through long air paths. Such beams are subject to energy losses and decreased beam quality as a result by stimulated rotational Raman scattering (SRRS). In this paper we describe how quantum fluctuations, stimulated Raman amplification, diffraction propagation, and optical aberrations interact during the propagation of short, high-power laser pulses using a four-dimensional (4-D) model of the optical beams and the medium. The 4-D model has been incorporated into a general optical-propagation computer program that allows the entire optical system to be modeled and that is implemented on high-end personal computers, workstations, and supercomputers. The numerical model is used to illustrate important phenomena in the evolution of the optical beams. In addition, the OMEGA Upgrade laser system is used as a design case to illustrate the various considerations for inertial confinement fusion laser design

  12. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  13. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai

    1994-01-01

    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  14. Quantum theory of stimulated Raman scattering in an inhomogeneously broadened three-level gaseous system

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1990-01-01

    A quantum-statistical treatment of stimulated Raman scattering in a gaseous system is presented using a density-matrix formalism. The molecular (atomic) system is described by three energy levels. Both the atomic system and the radiation fields are quantized. The effects of atomic motion and detuning are incorporated in the analysis. Higher order nonlinearities and loss terms are included to render the problem more realistic. The equations of motion describing the photon statistics of pump and Stokes fields are obtained. The equation without detailed balance is solved in the steady state by a slowly varying function technique in the case of two variables. The steady state characteristics of the Stokes field are studied. The coherence properties and occurrence of antibunching phenomena are studied for different initial distributions. (author). 4 figs., 22 refs

  15. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  16. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications

    International Nuclear Information System (INIS)

    Djaker, Nadia; Lenne, Pierre-Francois; Marguet, Didier; Colonna, Anne; Hadjur, Christophe; Rigneault, Herve

    2007-01-01

    Recent advances in laser physics have permitted the development of a new kind of microscopy based on stimulated Raman scattering. This new technique known as Coherent anti-Stokes Raman scattering (CARS) microscopy allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capabilities. We review recent advances in CARS microscopy, with applications to chemical and biological systems. We also present an application of CARS microscopy with high optical resolution and spectral selectivity, in resolving structures in surface ex vivo stratum corneum by looking at the CH 2 stretching vibrational band. A strong CARS signal is backscattered from an intense forward generated CARS signal in thick samples. This makes noninvasive imaging of deep structures possible, without labeling or chemical treatments

  17. Generation of fast electrons in the external corona of laser plasma by the Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Mašek, Martin; Rohlena, Karel

    2008-01-01

    Roč. 163, 4-6 (2008), 551-558 ISSN 1042-0150 R&D Projects: GA ČR GA202/05/2475 Institutional research plan: CEZ:AV0Z10100523 Keywords : Vlasov equation * stimulated Raman scattering * Raman cascade Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.415, year: 2008

  18. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  19. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  20. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

    Science.gov (United States)

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.

  1. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

    Science.gov (United States)

    Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2013-01-01

    Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586

  2. Raman scattering in the atmospheres of the major planets

    International Nuclear Information System (INIS)

    Cochran, W.D.; Trafton, L.M.

    1978-01-01

    A method is developed for calculating the rate at which photons are Raman scattered as a function of frequency and depth in an inhomogeneous anisotropically scattering atmosphere. This method is used to determine the effects of Raman scattering by H 2 in the atmospheres of the major planets. Raman scattering causes an insufficient decrease in the blue and ultraviolet to explain the albedos of all of the planets; an additional source of extinction is necessary in this spectral region. Approximately 0.5-2.0% of the blue continuum photons have undergone Raman scattering in the shallow atmospheres of Jupiter and Saturn, while in the deep atmospheres of Uranus and Neptune Raman scattering accounts for abount 10-15% of the blue continuum intensity. The filling in of the cores of solar lines and the production of Raman-shifted ghosts of the Fraunhofer spectrum will be detectable effects in all of the major planets. Raman scattering has a significant influence on the formation and profiles of the strong red and near-infrared CH 4 bands on Uranus and Neptune. The residual intensity in the cores of these bands may be fully explained as a result of Raman scattering by H 2 . This scattering of photons into the cores of saturated absorption bands will cause an underestimate of the abundance of the absorber unless the effects of Raman scattering by H 2 in an inhomogeneous atmosphere are properly included in the analysis

  3. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  4. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  5. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  6. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    Science.gov (United States)

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Electron enhanced Raman scattering and its applications in solution chemistry

    International Nuclear Information System (INIS)

    Yui, Hiroharu

    2007-01-01

    The present review describes a new enhancement technique for Raman scattering in aqueous solutions. Raman scattering spectroscopy has an inherent ability to distinguish between molecules with great similarity and provides useful information on local physical and chemical environments at their functional groups' level. Since the Raman scattering signals from water molecules are quite weak, Raman spectroscopy has great advantage for detection or discrimination of a trace amount of analytes in aqueous environments. However, Raman scattering cross-sections are inherently small and it generally requires high power excitation and long acquisition times to obtain high-quality Raman spectra. These conditions create disadvantages for the analyses for living cells and real-time monitoring for environmental analyses. Here, I describe a new Raman enhancement technique, namely electron enhanced Raman scattering (EERS)', where artificially generated electrons additionally affect the polarizability of target molecular systems and enhance their inherent Raman cross-section. Principles of the EERS and its applications to aqueous solution are presented. (author)

  8. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  9. Molecular selectivity of graphene-enhanced Raman scattering.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Song, Yi; Fang, Wenjing; Zhang, Jin; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-05-13

    Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphene's Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further

  10. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  11. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  12. Surface-enhanced Raman scattering from silver electrodes

    International Nuclear Information System (INIS)

    Trott, G.R.

    1982-01-01

    The chemical and physical origins of the anomalously large enhancement of the Raman scattering cross section for molecules adsorbed on silver electrodes in an electrochemical cell were investigated. The effect of the chemical reactions which occur during the anodization/activation procedure were studied using the Ag-CN system. It was shown that the function of the anodization process is to roughen the electrode surface and create an activated site for bonding to the cyanide. A new nonelectrochemical technique for activating the silver surface, along with a study of the enhanced cyanide Raman scattering in different background electrolytes, showed that the Raman active entity on the surface must be a silver-cyanide complex. In order to study the physical mechanism of the enhancement, the angular dependence of the scattered radiation was measured from pyridine adsorbed on an evaporated silver electrode. Both polycrystalline and single crystalline silver films were used. The angular dependence of the scattered radiation from these films showed that the metal surface was controlling the directional properties of the scattered radiation, and not the polarizability tensor of the adsorbate. Based on these experimental results, it was concluded that for weakly roughened silver electrodes the source of the anomalous enhancement is due to a resonant Raman scattering process

  13. Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold

    Energy Technology Data Exchange (ETDEWEB)

    Tornheim, Adam; Maroni, Victor A.; He, Meinan; Gosztola, David J.; Zhang, Zhengcheng

    2017-01-01

    Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One of the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.

  14. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  15. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    Science.gov (United States)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  16. Effects of Raman scattering in quantum state-preserving frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Castaneda, Mario A. Usuga

    2014-01-01

    We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure.......We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure....

  17. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    Science.gov (United States)

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  18. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  19. RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Oklopčić, Antonija [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, California 91125 (United States); Hirata, Christopher M. [Center for Cosmology and Astroparticle Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210 (United States); Heng, Kevin, E-mail: oklopcic@astro.caltech.edu [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-11-20

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H{sub 2} or N{sub 2}, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.

  20. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  1. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    Science.gov (United States)

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  2. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  3. Ultraviolet Raman scattering from persistent chemical warfare agents

    Science.gov (United States)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  4. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    International Nuclear Information System (INIS)

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  5. Aspects of Raman scattering and other effects on laser propagation through the atmosphere. Summary of work for the period, May 5, 1986-June 13, 1986

    International Nuclear Information System (INIS)

    Ipser, J.R.

    1986-08-01

    The propagation of laser beams through the atmosphere is discussed. Processes which are pertinent are Raman scattering, self-focusing of beams, and two-photon absorption. Comments on the subroutine PRAMAN are given in the appendix. This subroutine calculates the effect of stimulated Raman scattering in the atmosphere

  6. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy

    Science.gov (United States)

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C.; Min, Wei

    2013-01-01

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo. PMID:23798434

  7. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  8. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  9. Measured stimulated Raman gain in methane

    International Nuclear Information System (INIS)

    Lopert, R.B.

    1983-01-01

    This report is about the stimulated Raman effect in methane due to the nu 1 vibration. For various gas pressures between 150 torr and 30 atm, the Raman lineshape function was both experimentally measured and synthesized using a computer model. The stimulated Raman gain was measured by sending a pump laser beam provided by an argon-ion laser and a weak probe beam provided by a tunable dye laser through a cell of methane gas. The stimulated Raman effect caused some of the energy from the pump beam to be transferred to the probe beam. The intensity of the pump beam was low so the gain of the probe beam was on the order of parts per million. A two detector arrangement and a differential amplifier system that had a feedback loop to balance the detectors was constructed to measure the small gains. A detailed description of this detection system that was able to measure gains as small as 0.2 parts per million is provided

  10. Propagation of an intense laser pulse in an under-dense plasma: channeling and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Friou, A.

    2012-01-01

    This thesis is divided in two parts: i) the laser channeling in hundreds of microns long under-dense plasmas (0.1 nc ≤ n ≤ nc, nc being the critical density) of a laser pulse of intensity 10 18-20 W/cm 2 and duration 1-10 ps; ii) the saturation mechanisms of stimulated Raman back-scattering of a laser pulse of intensity 10 14 to 10 16 W/cm 2 and duration of about 1 ps. A parametric study was performed to study the channeling of a very intense laser pulse, using a 2D PIC (Particle In Cell) code. Various kinds of channels were obtained depending on the laser and plasma parameters, thereby reproducing and enlarging previous studies. Moreover, the channeling velocity was measured and scaling laws were established for homogeneous plasmas. They are then applied to inhomogeneous plasmas, similar to those encountered in inertial confinement fusion (ICF). It is then possible to estimate the energy necessary to channel to the critical density, an important step for the fast ignition scheme of ICF. Raman saturation was studied using numerical simulations, in order to determine if it is due to dephasing or to the growth of sidebands, using different approaches. The first is to study Raman simulations (electromagnetic) performed with kinetic PIC and Vlasov codes. The second, is to study the evolution of a plasma initialized with a distribution function after the adiabatic theory, using a Vlasov code (electrostatic). In this case, we observe the growth of a sideband, with dominant wave number and growth rate in good agreement with kinetic simulations. The saturation of the plasma wave can be caused by both saturation mechanisms. [fr

  11. Forbidden Raman scattering processes. I. General considerations and E1--M1 scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1979-01-01

    The generalized theory of forbidden Raman scattering processes is developed in terms of the multipole expansion of the electromagnetic interaction Hamiltonian. Using the general expressions, the theory of electric dipole--magnetic dipole (E1--M1) Raman scattering is derived in detail. The 1 S 0 → 3 P 1 E1--M1 Raman scattering cross section in atomic magnesium is calculated for two applicable laser wavelengths using published f-value data. Since resonantly enhanced cross sections larger than 10 -29 cm 2 /sr are predicted it should be possible to experimentally observe this scattering phenomenon. In addition, by measuring the frequency dependence of the cross section near resonance, it may be possible to directly determine the relative magnitudes of the Axp and AxA contributions to the scattering cross section. Finally, possible applications of the effect in atomic and molecular physics are discussed

  12. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    Science.gov (United States)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  13. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy.

    Science.gov (United States)

    Fu, Dan; Yu, Yong; Folick, Andrew; Currie, Erin; Farese, Robert V; Tsai, Tsung-Huang; Xie, Xiaoliang Sunney; Wang, Meng C

    2014-06-18

    Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.

  14. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser.

    Science.gov (United States)

    Weaver, James; Lehmberg, Robert; Obenschain, Stephen; Kehne, David; Wolford, Matthew

    2017-11-01

    Stimulated rotational Raman scattering (SRRS) in the ultraviolet region (λ=248  nm) has been observed at the Nike laser over extended propagation paths in air during high power operation. Although this phenomenon is not significant for standard operating configurations at Nike, broadening of the laser spectrum and far-field focal profiles has been observed once the intensity-path length product exceeds a threshold of approximately 1  TW/cm. This paper presents experimental results and a new theoretical evaluation of these effects. The observations suggest that significantly broader spectra can be achieved with modest degradation of the final focal distribution. These results point to a possible path for enhanced laser-target coupling with the reduction of laser-plasma instabilities due to broad laser bandwidth produced by the SRRS.

  15. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  16. Improved efficiency of stimulated Raman adiabatic passage in photoassociation of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Mackie, Matt; Suominen, Kalle-Antti; Haerkoenen, Kari; Collin, Anssi; Javanainen, Juha

    2004-01-01

    We theoretically examine Raman photoassociation of a Bose-Einstein condensate, revisiting stimulated Raman adiabatic passage (STIRAP). Due to collisional mean-field shifts, efficient molecular conversion requires strong coupling and low density, either of which can bring about rogue photodissociation to noncondensate modes. We demonstrate explicitly that rogue transitions are negligible for low excited-state fractions and photodissociation that is slower than the STIRAP time scale. Moreover, we derive a reduced-parameter model of collisions, and thereby find that a gain in the molecular conversion efficiency can be obtained by adjusting the atom-atom scattering length with off-resonant magnetoassociation. This gain saturates when the atom-atom scattering length is tuned to a specific fraction of either the molecule-molecule or atom-molecule scattering length. We conclude that a fully optimized STIRAP scheme may offer the best chance for achieving coherent conversion from an atomic to a molecular condensate with photoassociation

  17. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  18. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  19. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  20. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    Science.gov (United States)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  1. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  2. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering

    International Nuclear Information System (INIS)

    Wang, Zefeng; Yu, Fei; Wadsworth, William J; Knight, Jonathan C

    2014-01-01

    We report here efficient 1.9 μm emission by pure stimulated vibrational Raman scattering in a hydrogen-filled anti-resonant hollow-core fiber pumped with a 1064 nm microchip laser. A maximum quantum conversion efficiency ∼48% was achieved by using a 6.5 m length of fiber filled with 23 bar hydrogen, with a maximum peak output power >2 kW. By properly designing the transmission bands of the fiber, selecting alternative pump sources and active gases, the emission wavelength could be extended into the mid-infrared. This provides a potential route for generating efficient, compact, broadly tunable, high power, and narrow linewidth mid-infrared fiber gas lasers with broad application in defense, environmental, and medical monitoring. (letter)

  3. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  4. Two-magnon Raman scattering in LiMnPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Filho, C.J. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Gomes, P.F. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Universidade Federal de Goiás, 75801-615, Jataí, Goiás (Brazil); García-Flores, A.F.; Barberis, G.E. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Granado, E., E-mail: egranado@ifi.unicamp.br [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil)

    2015-03-01

    Two-magnon Raman scattering is observed in the orthophosphate LiMnPO{sub 4}, carrying quantitative information on the magnetic interactions between local Mn{sup 2+} moments. A simulated annealing fitting procedure of the Raman signal to theoretical curves derived from a magnetic Hamiltonian was carried out, taking exchange and anisotropy constants as free fitting parameters. Previously reported inelastic neutron scattering (INS) data [J. Li et al., Phys. Rev. B 79, 144410 (2009)] were also used in the fit. It is shown that the combined application of INS and Raman scattering data in the fit reduces the ambiguity of the determined set of exchange parameters with respect to fitting procedures using INS or Raman data independently. The temperature dependence of the Raman signal does not show a collapse of the two-magnon excitations at the long-range magnetic ordering temperature, T{sub N}=34K, supporting significant short-range spin correlations above T{sub N}. - Highlights: • A two-magnon Raman scattering signal was observed in the orthophosphate LiMnPO{sub 4}. • Calculations under the Fleury–Loudon were carried out to simulate the observed signal. • A combined fit using Raman and neutron data yields a robust set of magnetic parameters. • The nearest-neighbor interaction is largely dominant over the remaining terms. • This work is a step forward in combining techniques to obtain exchange constants.

  5. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  6. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability

    Science.gov (United States)

    Yang, Baolai; Zhang, Hanwei; Shi, Chen; Tao, Rumao; Su, Rongtao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2018-01-01

    We report a high power monolithic ytterbium-doped fiber laser oscillator with an output power of 3.05 kW, which is achieved by simultaneous optimizations of the stimulated Raman scattering (SRS) and transverse mode instability (TMI). The optimizations of the SRS are designed and utilized in the construction of the fiber laser oscillator, while the TMI threshold is optimized with the study of the dependence of TMI threshold on the pump distribution. In the fiber laser oscillator, the TMI threshold is enhanced by ˜30% when the counter-pump scheme is employed instead of the co-pump scheme. By applying bidirectional-pump scheme and appropriately distributing the pump power, the TMI threshold is further enhanced and the monolithic fiber laser oscillator achieves an output power of 3.05 kW with near diffraction limited beam quality.

  7. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  8. Resonant x-ray Raman scattering from atoms and molecules

    International Nuclear Information System (INIS)

    Cowan, P.L.

    1992-01-01

    Inelastic x-ray scattering and elastic x-ray scattering are fundamentally related processes. When the x-ray photon energy is near the ionization threshold for an inner shell, the inelastic channel is dominated by resonant x-ray Raman scattering. Studies of this emission not only illuminate the resonant scattering process in general, they also point to new opportunities for spectral studies of electronic structure using x-rays. Atoms in the form of a free gas provide an ideal target for testing the current theoretical understanding of resonant x-ray Raman scattering. In addition, x-ray scattering from molecular gases demonstrates the effect of bonding symmetry on the polarization and angular distribution of the scattered x-rays. Comparisons of experimental data with theory demonstrate both the successes and limitations of simple, single-electron interpretations of the scattering process

  9. Raman scattering of monolayer graphene: the temperature and oxygen doping effects

    International Nuclear Information System (INIS)

    Zhou Haiqing; Qiu Caiyu; Yu Fang; Yang Huaichao; Chen Minjiang; Hu Lijun; Guo Yanjun; Sun Lianfeng

    2011-01-01

    Raman spectra of monolayer graphene at various temperatures (303-473 K) are measured. In Raman scattering with wave numbers ranging from 1200 to 3400 cm -1 , the four main Raman peaks (G, 2D, T + D and 2D') show temperature-dependent behaviour, but have different frequency shifts with increase in temperature. We propose that the peak frequency shift is related mainly to the elongation of C-C bond due to thermal expansion or anharmonic coupling of phonon modes, and oxygen-induced strong hole doping on the graphene surface. The doping effect can be confirmed from the frequency shifts, full-width at half-maximum as well as the area and intensity ratios of G and 2D peaks in temperature-dependent Raman scattering of graphene, room-temperature Raman spectra of pristine graphene and graphene cooled down after Raman measurement at 473 K in air. Therefore, the oxygen doping effect and temperature effect coexist in temperature-dependent Raman scattering of monolayer graphene.

  10. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...

  11. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    Williams, G.M.

    1988-01-01

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce 3+ (4f 1 ) in single crystals of LuPO 4 and Er 3+ (4f 11 ) in single crystals of ErPO 4 . 134 refs., 92 figs., 33 tabs

  12. On stimulated scattering of laser light in inertial fusion energy targets

    International Nuclear Information System (INIS)

    Nikolic, Lj; Skoric, M.M.; Ishiguro, S.; Sato, T.

    2002-11-01

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron-plasma, we have found, apart from the standard SRS, a strong backscattering near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability, is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron acoustic wave (ω p ). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in our simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments. (author)

  13. Stimulated Raman scattering in soft glass fluoride fibers

    DEFF Research Database (Denmark)

    Petersen, Christian; Dupont, Sune; Agger, Christian

    2011-01-01

    We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1.......We have measured the absolute Raman gain spectrum in short fluoride soft glass fibers with a pump wavelength of 1650nm. We found a peak gain of gR ¼ 4:0 2 × 10−14mW−1....

  14. Pulse compression by Raman induced cavity dumping

    International Nuclear Information System (INIS)

    De Rougemont, F.; Xian, D.K.; Frey, R.; Pradere, F.

    1985-01-01

    High efficiency pulse compression using Raman induced cavity dumping has been studied theoretically and experimentally. Through stimulated Raman scattering the electromagnetic energy at a primary frequency is down-converted and extracted from a storage cavity containing the Raman medium. Energy storage may be achieved either at the laser frequency by using a laser medium inside the storage cavity, or performed at a new frequency obtained through an intracavity nonlinear process. The storage cavity may be dumped passively through stimulated Raman scattering either in an oscillator or in an amplifier. All these cases have been studied by using a ruby laser as the pump source and compressed hydrogen as the Raman scatter. Results differ slightly accordingly to the technique used, but pulse shortenings higher than 10 and quantum efficiencies higher than 80% were obtained. This method could also be used with large power lasers of any wavelength from the ultraviolet to the farinfrared spectral region

  15. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    Science.gov (United States)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  16. Retrieval method of aerosol extinction coefficient profile based on backscattering, side-scattering and Raman-scattering lidar

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Tao, Zongming; Wang, Shenhao; Ma, Xiaomin; Zhou, Pucheng; Yao, Ling; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. It is difficult to get higher signal to noise ratio (SNR) of backscattering lidar from the ground to the tropopause especially in near range. Higher SNR problem can be solved by combining side-scattering and backscattering lidar. Using Raman-scattering lidar, aerosol extinction to backscatter ratio (lidar ratio) can be got. Based on side-scattering, backscattering and Raman-scattering lidar system, aerosol extinction coefficient is retrieved precisely from the earth's surface to the tropopause. Case studies show this method is reasonable and feasible.

  17. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  18. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  19. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2.

    Science.gov (United States)

    Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin

    2017-10-24

    The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

  20. Transverse stress induced LP 02-LP 21 modal interference of stimulated Raman scattered light in a few-mode optical fiber

    Science.gov (United States)

    Sharma, A.; Posey, R.

    1996-02-01

    Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.

  1. Polarized Raman scattering of single ZnO nanorod

    International Nuclear Information System (INIS)

    Yu, J. L.; Lai, Y. F.; Wang, Y. Z.; Cheng, S. Y.; Chen, Y. H.

    2014-01-01

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A 1 (TO), E 1 (TO), and E 2 high in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A 1 (TO) and E 1 (TO) phonon modes normalized to that of the E 2 high phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer

  2. Inverse Raman effect: applications and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  3. Inverse Raman effect: applications and detection techniques

    International Nuclear Information System (INIS)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented

  4. Abnormal anti-Stokes Raman emission as a coherent anti-Stokes Raman scattering-like process in disordered media

    International Nuclear Information System (INIS)

    Baltog, Ioan; Baibarac, Mihaela; Smaranda, Ion; Lefrant, Serge

    2011-01-01

    In this paper, we demonstrate that, by continuous single beam excitation, one can generate an abnormal anti-Stokes Raman emission (AASRE) whose properties are similar to a coherent anti-Stokes Raman scattering (CARS). The effect has been observed in materials which possess intrinsically nonlinear properties (LiNbO 3 and CdS), which have the electric susceptibility of third order different from zero, χ (3) ≠ 0, as well as in materials that become nonlinear under resonant optical excitation. In the latter case, we used poly-3,4-ethylendioxythiophene (PEDOT) in its undoped state deposited electrochemically on Au support. Raman studies corroborated with images of optical microscopy demonstrate that the production of AASRE is conditioned by the existence of a particular morphology of the sample able to ensure efficient transport of the light inside the sample through a multiple light scattering mechanism. In this context, it was found that LiNbO 3 and CdS in powder form as well as the PEDOT films layered on a rough Au substrate are suitable morphological forms. We explain AASRE as resulting from a wave-mixing mechanism of the incident laser light ω l with a Stokes-shifted Raman light ω S produced by a spontaneous Raman light scattering process, both strongly scattered inside the sample. As a CARS process, AASRE is conditioned by the achievement of phase-matching requirements, which makes the difference between the wave vectors of mixing light close to zero, Δk =/2k l - k S - k CARS /∼ 0. In condensed media, the small dispersion of the refractive index makes Δk ∼ 0 so that the formation of a favourable phase-matching geometry may be accomplished even at a crossing angle θ of travelling scattered light ω l and ω S . For tightly focused beams, the requirement of phase matching relaxes; it is no longer sensitive to the Raman shift, so that a wide intense anti-Stokes Raman spectrum is observed at an angle larger than the Stokes Raman spectrum.

  5. Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A G; Sveshnikova, L L; Duda, T A [Institute of Semiconductor Physics, Lavrentjev av.13, 630090, Novosibirsk (Russian Federation); Surovtsev, N V; Adichtchev, S V [Institute of Automation and Electrometry, Koptyug av.1, 630090, Novosibirsk (Russian Federation); Azhniuk, Yu M [Institute of Electron Physics, Universytetska Str. 21, 88017, Uzhhorod (Ukraine); Himcinschi, C [Institut fuer Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596, Freiberg (Germany); Kehr, M; Zahn, D R T, E-mail: milekhin@thermo.isp.nsc.r [Semiconductor Physics, Chemnitz University of Technology, Chemnitz (Germany)

    2010-09-01

    The enhancement of Raman scattering by optical phonon modes in quantum dots was achieved in resonant and surface-enhanced Raman scattering experiments by approaching the laser energy to the energy of either the interband transitions or the localized surface plasmons in silver nanoclusters deposited onto the nanostructures. Resonant Raman scattering by TO, LO, and SO phonons as well as their overtones was observed for PbS, ZnS, and ZnO quantum dots while enhancement for LO and SO modes in CdS quantum dots with a factor of about 700 was measured in surface enhanced Raman scattering experiments. Multiple phonon Raman scattering observed up to 5th and 7th order for CdS and ZnO, respectively, confirms the high crystalline quality of the grown QDs.

  6. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    International Nuclear Information System (INIS)

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-01-01

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 μm was observed at angles of incidence on a calcite crystal of 4.8° and 18.2°, under SRS pumping at a wavelength of 0.532 μm. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  7. RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION

    Directory of Open Access Journals (Sweden)

    T.S.Mysakovych

    2004-01-01

    Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.

  8. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  9. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  10. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  11. Quantum Zeno effect in Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Thun, K.; Peřina, Jan; Křepelka, Jaromír

    2002-01-01

    Roč. 299, - (2002), s. 19-30 ISSN 0375-9601 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : quantum measurement * Raman scattering * Zeno effect Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.483, year: 2002

  12. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  13. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  14. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  15. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  16. THE DISCOVERY OF RAMAN SCATTERING IN H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Nicholls, David C.; Sutherland, Ralph S.; Kewley, Lisa J.; Groves, Brent A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-06-10

    We report here on the discovery of faint extended wings of H α observed out to an apparent velocity of ∼7600 km s{sup −1} in the Orion Nebula (M42) and in five H ii regions in the Large and the Small Magellanic Clouds. We show that these wings are caused by Raman scattering of both the O i and Si ii resonance lines and stellar continuum UV photons with H i followed by radiative decay to the H i n = 2 level. The broad wings also seen in H β and in H γ result from Raman scattering of the UV continuum in the H i n = 4 and n = 5 levels, respectively. The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O i and Si ii. In the case of Si ii, this is explained by radiative pumping of the same 1023.7 Å resonance line involved in the Raman scattering by the Ly β radiation field. The subsequent radiative cascade produces enhanced Si ii λλ 5978.9, 6347.1, and 6371.4 Å permitted transitions. Finally, we show that in O i, radiative pumping of the 1025.76 Å resonance line by the Lyman series radiation field is also the cause of the enhancement in the permitted lines of this species lying near H α in wavelength, but here the process is a little more complex. We argue that all these processes are active in the zone of the H ii region near the ionization front.

  17. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  18. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  19. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  20. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  1. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  2. Raman scattering of light off a superconductor

    International Nuclear Information System (INIS)

    Cuden, C.B.

    1976-01-01

    Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11

  3. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    Science.gov (United States)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  4. Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire

    International Nuclear Information System (INIS)

    Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M

    2016-01-01

    The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)

  5. Review on Raman scattering in semiconductor nanowires: I. theory

    Science.gov (United States)

    Cantarero, Andrés

    2013-01-01

    Raman scattering is a nondestructive technique that is able to supply information on the crystal and electronic structures, strain, temperature, phonon-phonon, and electron-phonon interaction. In the particular case of semiconductor nanowires, Raman scattering provides additional information related to surfaces. Although correct, a theoretical approach to analyze the surface optical modes loses critical information when retardation is neglected. A comparison of the retarded and unretarded approaches clarifies the role of the electric and magnetic polarization in the Raman selection rules. Since most III-V compounds growing in the zincblende phase change their crystal structure to wurtzite when growing as nanowires, the polariton description will be particularized for these two important crystal phases. Confined phonons exist in cylindrical nanowires and couple with longitudinal and transverse modes due to the presence of the nanowire's surface. This coupling vanishes in the case of rotational symmetry. The boundary conditions of the electromagnetic fields on small-size nanowires (antenna effect) have a dramatic effect on the polarization properties of a Raman spectrum.

  6. Raman scattering and associated fast electron production. Final technical report, April 16, 1984-April 15, 1985

    International Nuclear Information System (INIS)

    Brooks, R.D.; Pietrzyk, Z.A.

    1985-08-01

    High energy electrons in plasmas have been attributed to various causes including trapping by electron plasma waves created by stimulated Raman scattering. A theory, consistent with experimental results, based on the acceleration of trapped electrons by such electron plasma waves as they propagate in the presence of a density gradient away from the region where they are created is presented. Single particle simulations show accelerating voltages as high as 20 GV/m

  7. Photon induced resonant Raman scattering in CdS

    International Nuclear Information System (INIS)

    Muzart, J.; Lluesma, E.G.; Arguello, C.A.; Leite, R.C.C.

    1975-01-01

    A novel aspect of resonant Raman scattering is observed in CdS by means of the ratio of Stokes to anti-Stokes intensities. With increasing temperature, as the forbidden band energy approaches a value that is twice the incident photon energy, (from a Nd-Yag-laser) a large enhancement of the above ratio is observed for both the LO and the 2LO phonon Raman intensities. The results indicate a resonance with the scattered photon. Resonance is only observed for high incident photon intensities. A possible explanation for the above observations is that flooding of the crystal with photons of energy hν induces states of energy hν displaced from the electronic bands by mixing of electronic and photon states

  8. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances

  9. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  10. Raman scattering of type-I clathrate compounds

    International Nuclear Information System (INIS)

    Takasu, Y.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Avila, M.A.; Takabatake, T.

    2006-01-01

    Lattice dynamical properties of the type-I clathrate compounds of A 8 Ga 16 Ge 30 (A=Eu, Sr, Ba) have been investigated by Raman scattering. We are successful in the assignment of the observed Raman active phonons to proper symmetry and are able to separate the guest atom origin modes from framework origin modes for the first time experimentally. From the measurements of temperature dependence of the guest origin peaks, we also demonstrate the difference of the behavior of the guest atom at high temperature and low temperature

  11. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  12. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  13. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.

    Science.gov (United States)

    Praveen, Bavishna B; Steuwe, Christian; Mazilu, Michael; Dholakia, Kishan; Mahajan, Sumeet

    2013-05-21

    Spectra in surface-enhanced Raman scattering (SERS) are always accompanied by a continuum emission called the 'background' which complicates analysis and is especially problematic for quantification and automation. Here, we implement a wavelength modulation technique to eliminate the background in SERS and its resonant version, surface-enhanced resonance Raman scattering (SERRS). This is demonstrated on various nanostructured substrates used for SER(R)S. An enhancement in the signal to noise ratio for the Raman bands of the probe molecules is also observed. This technique helps to improve the analytical ability of SERS by alleviating the problem due to the accompanying background and thus making observations substrate independent.

  14. Nonlinear behavior of stimulated scatter in large underdense plasmas

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1979-01-01

    Several nonlinear effects which limit Brillouin and Raman scatter of intense light in large underdense plasmas are examined. After briefly considering ion trapping and harmonic generation, we focus on the self-consistent ion heating which occurs as an integral part of the Brillouin scattering process. In the long-term nonlinear state, the ion wave amplitude is determined by damping on the heated ion tail which self-consistently forms. A simple model of the scatter is presented and compared with particle simulations. A similar model is also applied to Raman scatter and compared with simulations. Our calculations emphasize that modest tails on the electron distribution function can significantly limit instabilities involving electron plasma waves

  15. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  16. Fingerprints of quantum spin ice in Raman scattering

    Science.gov (United States)

    Perkins, Natalia

    Quantum spin liquids (QSLs) emerging in frustrated magnetic systems have been a fascinating and challenging subject in modern condensed matter physics for over four decades. In these systems the conventional ordering is suppressed and, instead, unusual behaviors strongly dependent on the topology of the system are observed. The difficulty in the experimental observation of QSLs comes from the fact that unlike the states with broken symmetry, the topological order characteristic of cannot be captured by a local order parameter and thus cannot be detected by local measurements. Identifying QSLs therefore requires reconsideration of experimental probes to find ones sensitive to features characteristic of topological order. The fractionalization of excitations associated with this order can offer signatures that can be probed by conventional methods such as inelastic neutron scattering, Raman or Resonant X-ray scattering experiments. In my talk I will discuss the possibility to use Raman scattering to probe the excitations of Quantum Spin Ice, a model which has long been believed to host a U(1) spin liquid ground state. NSF DMR-1511768.

  17. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  18. Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice

    International Nuclear Information System (INIS)

    Perkins, Natalia; Brenig, Wolfram

    2009-01-01

    We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.

  19. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  20. Diode Laser Raman Scattering Prototype Gas-Phase Environmental Monitoring

    National Research Council Canada - National Science Library

    Benner, Robert

    1999-01-01

    We proposed developing a diode-laser-based, full spectrum Raman scattering instrument incorporating a multipass, external cavity enhancement cell for full spectrum, gas phase analysis of environmental pollutants...

  1. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  2. Raman scattering by hot and thermal polaritons in crystal quartz

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F.; Colocci, M.; Neri, M.; Querzoli, R.

    1984-11-01

    Nonlinear mixing of IR and visible radiation, i.e. coherent Raman scattering by polaritons driven by a CO/sub 2/ laser, has been used to obtain the dispersion curve and its width in q-space of the polariton associated to the E-phonon at 1065 cm/sup -1/ in crystal quartz. It is shown in this paper that a direct method to determine independently, with high precision, the refractive index and absorbance of a crystal can be obtained in this way. The results are compared with accurate data obtained from Raman scattering by polaritions in thermal equilibrium and very good agreement is found between the two measurements. It is finally shown that nonlinear-mixing techniques turn out to be completely consistent with the simple picture of scattering of light by hot polaritons.

  3. Time-dependent micro-Raman scattering studies of polyvinyl ...

    Indian Academy of Sciences (India)

    2014-02-15

    Feb 15, 2014 ... Micro-Raman scattering; surface plasmons; silver nanoparticles; polyvinyl alcohol. PACS Nos 74.25.nd; ... as well as their characterization. Added .... 3.2 Surface plasmon absorption of thin films of PVA + AgNO3. The surface ...

  4. Electron Raman scattering in quantum well wires

    International Nuclear Information System (INIS)

    Zhao Xiangfu; Liu Cuihong

    2007-01-01

    Electron Raman scattering (ERS) is investigated in a semiconductor quantum well wire (QWW) of cylindrical geometry for T=0K and neglecting phonon-assisted transitions. The differential cross-section (DCS) involved in this process is calculated as a function of a scattering frequency and the cylindrical radius. Electron states are confined within a QWW. Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are interpreted for various cylindrical radii. ERS discussed here can provide direct information about the electron band structure of the system

  5. Raman scattering of quasimodes in ZnO

    International Nuclear Information System (INIS)

    Alarcon-Llado, E; Cusco, R; Artus, L; Jimenez, J; Wang, B; Callahan, M

    2008-01-01

    The angular dependence of the optical phonons of high-quality bulk ZnO has been systematically studied by means of Raman scattering. We report the observation of quasi-TO and quasi-LO modes for propagation directions covering the whole a-c mixing plane using a beveled ZnO single crystal sample. Scattering experiments performed in two different configuration geometries indicate that birefringence effects are not relevant for the phonon analysis in this material. The observed angular dependence of the quasimode frequencies is in good agreement with Loudon's model.

  6. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  7. Laser-induced stimulated Raman scattering in the forward direction of a droplet - Comparison of Mie theory with geometrical optics

    Science.gov (United States)

    Srivastava, Vandana; Jarzembski, Maurice A.

    1991-01-01

    This paper uses Mie theory to treat electromagnetic scattering and to evaluate field enhancement in the forward direction of a small droplet irradiated by a high-energy beam and compares the results of calculations with the field-enhancement evaluation obtained via geometrical optics treatment. Results of this comparison suggest that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support laser-induced Raman scattering. The results are supported by experimental observations of the interaction of a 120-micron-diam water droplet with a high-energy Nd:YAG laser beam.

  8. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  9. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...

  10. Electron Raman scattering in semiconductor quantum wire in an external magnetic field

    International Nuclear Information System (INIS)

    Betancourt-Riera, Ri; Nieto Jalil, J M; Riera, R; Betancourt-Riera, Re; Rosas, R

    2008-01-01

    The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement is calculated. We assume a single parabolic conduction band. The emission spectra for different scattering configurations and the selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The electron Raman scattering studied here can be used to provide direct information about the electron band and subband structure of these confinement systems. The magnetic field distribution is considered constant with value B 0 inside the wire and zero outside

  11. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy

    Science.gov (United States)

    Zhang, Luyuan; Min, Wei

    2017-10-01

    Study of metabolic changes during epithelial-mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism.

  12. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  13. Study of hot carrier relaxation in quantum wells by subpicosecond Raman scattering

    International Nuclear Information System (INIS)

    Kim, Dai-sik; Yu, P.Y.

    1990-03-01

    Relaxation of hot carriers excited by subpicosecond laser pulses has been studied by Raman scattering in GaAs/AlAs multiple quantum wells with well widths varying between 100 and 1000 Angstrom. The hot phonon population observed by Raman scattering is found to decrease with the well width despite the fact that the hot electron temperature remains constant. The results are explained in terms of confinement of both electrons and optical phonons in quantum wells

  14. Development of single shot 1D-Raman scattering measurements for flames

    Science.gov (United States)

    Biase, Amelia; Uddi, Mruthunjaya

    2017-11-01

    The majority of energy consumption in the US comes from burning fossil fuels which increases the concentration of carbon dioxide in the atmosphere. The increasing concentration of carbon dioxide in the atmosphere has negative impacts on the environment. One solution to this problem is to study the oxy-combustion process. A pure oxygen stream is used instead of air for combustion. Products contain only carbon dioxide and water. It is easy to separate water from carbon dioxide by condensation and the carbon dioxide can be captured easily. Lower gas volume allows for easier removal of pollutants from the flue gas. The design of a system that studies the oxy-combustion process using advanced laser diagnostic techniques and Raman scattering measurements is presented. The experiments focus on spontaneous Raman scattering. This is one of the few techniques that can provide quantitative measurements of the concentration and temperature of different chemical species in a turbulent flow. The experimental design and process of validating the design to ensure the data is accurate is described. The Raman data collected form an experimental data base that is used for the validation of spontaneous Raman scattering in high pressure environments for the oxy-combustion process. NSF EEC 1659710.

  15. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2014-11-15

    Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  16. Temperature dependence of Raman scattering by optical phonons in ZnTe

    International Nuclear Information System (INIS)

    Simmonds, P.E.; Martin, A.D.

    1987-01-01

    Measurements of the temperature dependence of Raman scattering by optical phonons between temperatures 5 K and 293 K in the II-VI semiconductor ZnTe are reported. Typical Raman spectra for ZnTe at different temperatures are shown and values of the measured LO and TO phonon Raman shifts and linewidths are given for T = 5, 77, and 293 K. The measured linewidth of the LO Raman line as a function of temperature is plotted and compared with model predictions based on various three- and four-phonon processes

  17. Electron Raman scattering in a cylindrical quantum dot

    International Nuclear Information System (INIS)

    Zhong Qinghu; Yi Xuehua

    2012-01-01

    Electron Raman scattering (ERS) is investigated in a CdS cylindrical quantum dot (QD). The differential cross section is calculated as a function of the scattering frequency and the size of the QD. Single parabolic conduction and valence bands are assumed, and singularities in the spectrum are found and interpreted. The selection rules for the processes are also studied. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)

  18. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wong, Ka Chun; Syed, Ahad A.; Chen, Zong; Wang, Xianbin

    2012-01-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures

  19. Dynamic optical bistability in resonantly enhanced Raman generation

    International Nuclear Information System (INIS)

    Novikova, I.; Phillips, D.F.; Zibrov, A.S.; Andre, A.; Walsworth, R.L.

    2004-01-01

    We report observations of novel dynamic behavior in resonantly enhanced stimulated Raman scattering in Rb vapor. In particular, we demonstrate a dynamic hysteresis of the Raman scattered optical field in response to changes of the drive laser field intensity and/or frequency. This effect may be described as a dynamic form of optical bistability resulting from the formation and decay of atomic coherence. We have applied this phenomenon to the realization of an all-optical switch

  20. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    Science.gov (United States)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  1. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  2. Fine structure of the stimulated Raman spectrum in compressed hydrogen. The relaxation-oscillation mode of backscattered Stokes emission

    International Nuclear Information System (INIS)

    Bespalov, V.G.; Efimov, Yu.N.; Staselko, D.I.

    1992-01-01

    This paper studies the emission spectra of backscattered stimulated Raman scattering (SRS) in compressed hydrogen in the relaxation-oscillation mode and the compression SRS mode for the minimum width of the spontaneous scattering spectrum (in the region of the Dicke dip). It is shown that the generation of a train of Stokes-emission subpulses results in the appearance of fine structure in the backscattered SRS spectrum. The influence of the temporal structure of reflected Stokes pulses on this spectrum and on the appearance of fine structure in it is analyzed. The conditions for generating spectrally limited (without phase modulation), extremely coherent Stokes pulses are explained. 18 refs., 3 figs

  3. Rotational Raman scattering using molecular nitrogen gas for calibration of Thomson-scattering apparatus

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro

    1987-01-01

    Anti-Stokes rotational Raman lines in molecular nitrogen gas were used for the calibration of Thomson-scattering apparatus. It was found that molecular nitrogen gas is suitable for a vessel having strong stray light. The polarization ratio was 0.16 using linear-polarized laser light. (author)

  4. Effect of pressure on the second-order Raman scattering intensities of zincblende semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Trallero-Giner, C.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2010-01-15

    A microscopic description of the two-phonon scattering intensities in direct-gap zincblende-type semiconductors as a function of hydrostatic pressure and for non-resonant excitation is presented. The calculations were performed according to the electron-two-phonon deformation potential interaction for the {gamma}{sub 1} and {gamma}{sub 15} components of the Raman tensor. It is shown that the effect of pressure on the Raman scattering cross-section exhibits a complex behavior according to the contribution of the acoustical or optical phonons to the overtones and combinations. Second-order scattering intensities via acoustical modes could decrease or increase with increasing hydrostatic pressure, while for combinations or overtones of optical phonons a decreasing intensity is obtained. Calculations of the effect of pressure on second-order Raman intensities are compared to experimental results for ZnTe. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. In situ identification of paper chromatogram spots by surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tran, C D

    1984-01-01

    The use of silver hydrosols to enhance the Raman scattering of paper chromatogram spots has been used successfully. This enhancement technique, which is dependent on the interaction between the substrate, silver particles, and paper fibers, has been applied to detection and identification of ng amounts of crystal violet, malachite green, and basic fuchsin with an argon laser of only 4 mW. This technique enhances the resonance of the Raman scattering so that the Raman cross sections of the spots are approximately 9 to 10 orders of magnitude higher than those observed for non-enhanced systems. The limit of detection of the techniques is defined as the amount of dye spot that yields a signal to noise ratio of 2 when excited with the 4MeV.

  6. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet

    International Nuclear Information System (INIS)

    Basu, S.; Singh, A.

    1996-01-01

    A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society

  7. On the stimulated Raman sidescattering in inhomogeneous plasmas: revisit of linear theory and three-dimensional particle-in-cell simulations

    Science.gov (United States)

    Xiao, C. Z.; Zhuo, H. B.; Yin, Y.; Liu, Z. J.; Zheng, C. Y.; Zhao, Y.; He, X. T.

    2018-02-01

    Stimulated Raman sidescattering (SRSS) in inhomogeneous plasma is comprehensively revisited on both theoretical and numerical aspects due to the increasing concern of its detriments to inertial confinement fusion. Firstly, two linear mechanisms of finite beam width and collisional effects that could suppress SRSS are investigated theoretically. Thresholds for the eigenmode and wave packet in a finite-width beam are derived as a supplement to the theory proposed by Mostrom and Kaufman (1979 Phys. Rev. Lett. 42 644). Collisional absorption of SRSS is efficient at high-density plasma and high-Z material, otherwise, it allows emission of sidescattering. Secondly, we have performed the first three-dimensional particle-in-cell simulations in the context of SRSS to investigate its linear and nonlinear effects. Simulation results are qualitatively agreed with the linear theory. SRSS with the maximum growth gain is excited at various densities, grows to an amplitude that is comparable with the pump laser, and evolutes to lower densities with a large angle of emergence. Competitions between SRSS and other parametric instabilities such as stimulated Raman backscattering, two-plasmon decay, and stimulated Brillouin scattering are discussed. These interaction processes are determined by gains, occurrence sites, scattering geometries of each instability, and will affect subsequent evolutions. Nonlinear effects of self-focusing and azimuthal magnetic field generation are observed to be accompanied with SRSS. In addition, it is found that SRSS is insensitive to ion motion, collision (low-Z material), and electron temperature.

  8. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  9. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016

  10. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree of repro......We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...

  11. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  12. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  13. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  14. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  15. A study of photoluminescence and micro-Raman scattering in C-implanted GaN

    International Nuclear Information System (INIS)

    Zhang Limin; Zhang Xiaodong; Liu Zhengmin

    2010-01-01

    GaN samples (no yellow luminescence) in their as-grown states were implanted with 10 13 -10 17 C ions/cm 2 and studied by photoluminescence spectra and micro-Raman scattering spectra. The photoluminescence study showed that yellow luminescence were produced in the C-implanted GaN after 950 degree C annealing, and the peaks of the near band edge emissions showed blue-shifts after C implantation. The Raman measurements indicated that the stresses in GaN films did not change after C implantation. The samples implanted with 10 15 cm -2 carbon ions had the Raman peak at 300 cm -1 , which is associated to the disorder-activated Raman scattering. However, further increasing the implantation dose resulted decreased intensity of the 300 cm -1 peak, due to the ion beam current increase with the implantation dose. (authors)

  16. Significant Contributions of the Albrecht's A Term to Nonresonant Raman Scattering Processes.

    Science.gov (United States)

    Gong, Zu-Yong; Tian, Guangjun; Duan, Sai; Luo, Yi

    2015-11-10

    The Raman intensity can be well described by the famous Albrecht's Raman theory that consists of A and B terms. It is well-known that the contribution from Albrecht's A term can be neglected without any loss of accuracy for far-off resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules in general off-resonant Raman scattering. Perturbed first-principles calculations for water molecule show that strong constructive interference between the A and B terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for ∼40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state-to-state mapping between Albrecht's theory and perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations rationalized from water molecule with the bending mode show that the perturbation method is a good approximation only when the absolute energy difference between the first excited state and the incident light is more than five times greater than the vibrational energy in the ground state.

  17. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  18. Raman scattering characterization of space solar cell structures

    Science.gov (United States)

    Mintairov, Alexander M.; Khvostikov, V. P.; Paleeva, E. V.; Sorokina, S. V.

    1995-01-01

    A contactless method for the determination of the free-carrier density and the composition distribution across the thickness of 3-5 multi-layer solar cell structures, using the Raman scattering method, is developed. The method includes a step analysis of Raman spectra from optical phonons and phonon-plasmon modes of different layers. The method provides simultaneous measurements of the element composition and the thickness of the structure's layers together with the free-carrier density. The results of measurements of the free-carrier density composition distributions of the liquid phase epitaxy grown AlGaAs/GaAs and GaSb solar cell structures are presented and discussed.

  19. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Vakiv, M.; Shpotyuk, O.

    2007-01-01

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge 15.8 As 21 S 63.2 glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition

  20. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T.; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)], E-mail: shpotyuk@novas.lviv.ua

    2007-04-15

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge{sub 15.8}As{sub 21}S{sub 63.2} glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition.

  1. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    International Nuclear Information System (INIS)

    Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)

  2. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  3. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers

    International Nuclear Information System (INIS)

    Yano, Taka-aki; Yoshida, Keisuke; Hayashi, Tomohiro; Hara, Masahiko; Hayamizu, Yuhei; Ohuchi, Fumio

    2015-01-01

    We report spatially resolved vibrational analysis of mechanically exfoliated single-crystalline α-MoO 3 nanolayers. Raman scattering from α-MoO 3 was enhanced predominantly at the outside edges of the nanolayers. The enhanced Raman scattering at the edges was attributed primarily to the enhanced resonant Raman effect caused by a high density of oxygen vacancies localized at the edges. The localized vacancy sites corresponded to a non-stoichiometric phase of MoO 3 , which would provide reactive sites with high catalytic activity. (paper)

  4. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy.

    Science.gov (United States)

    Parekh, Sapun H; Lee, Young Jong; Aamer, Khaled A; Cicerone, Marcus T

    2010-10-20

    Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm⁻¹, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H.; Berciaud, S.; Kalbáč, Martin; Saito, R.; Heinz, T. F.; Dresselhaus, M. S.; Kong, J.

    2011-01-01

    Roč. 107, č. 15 (2011), s. 157401 ISSN 0031-9007 R&D Projects: GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * electronic Raman scattering * metallic carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.370, year: 2011

  6. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  7. The use of Raman scattering for studying the defects created by implantation in semiconductors

    International Nuclear Information System (INIS)

    Morhange, J.F.; Beserman, R.; Bourgoin, J.

    1974-01-01

    The evolution of Raman scattering with the dose of implanted ions and annealing temperature in silicon and diamond was studied. The variation in the concentration of the defects introduced by implantation, with the dose and annealing temperature were deduced. These results were compared with results obtained using electron paramagnetic resonance. The comparison shows that Raman scattering is a good technique to study the behavior of the defects in ion implanted semiconductors [fr

  8. The use of lasers as sources for Raman spectrometry, resonance Raman spectrometry, and light scattering

    International Nuclear Information System (INIS)

    Capitini, R.; Ceccaldi, M.; Leicknam, J.P.; Plus, R.

    1975-01-01

    The activity of the laboratory is principally centred on the determination of molecular structures and the study of molecular interactions in solution by infrared and Raman spectrometry. With the development of work on relatively large molecules, particularly biological molecules, it became necessary to complete information on the molecular weight and on the intra and intermolecular geometry and interactions of these bodies. In order to obtain these informations Rayleigh scattering and resonance Raman spectrometry were used. The advantages of using vibrational spectrometry, particularly Raman, in conjunction with the diffusion of light for these structural and molecular interaction studies is emphasized. It is shown that these two techniques could not have developed as they have done in the last few years without the use of lasers as light source [fr

  9. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments

    Science.gov (United States)

    Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui

    2017-12-01

    We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.

  10. Raman scattering from epitaxial HfN layers grown on MgO(001)

    International Nuclear Information System (INIS)

    Stoehr, M.; Seo, H.-S.; Petrov, I.; Greene, J.E.

    2006-01-01

    Stoichiometric single-crystal HfN layers grown on MgO(001) are analyzed by Raman spectroscopy. Second-order Raman scattering predominates, but first-order modes in the acoustic and optical ranges are also visible. The latter indicates that the O h symmetry of NaCl-structure HfN is broken. The large mass difference between Hf and N leads to a correspondingly large separation, 250 cm -1 , between the first-order acoustic and optical bands. Within this gap, four Raman lines are clearly observed. The first three are the second-order transverse acoustic mode (240 cm -1 ), the sum of the first-order transverse and longitudinal acoustic modes (280 cm -1 ), and the second-order longitudinal acoustic mode (325 cm -1 ). The fourth line at 380 cm -1 is identified as the difference between the first-order optical and acoustic modes. The observed first-order Raman scattering, as well as the width of the gap between the first-order acoustic and optical modes, is in good agreement with previously calculated HfN phonon density of states

  11. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  12. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  13. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  14. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Melníková Komínková, Zuzana; Verhagen, Timotheus; Vejpravová, Jana; Kalbáč, Martin

    2017-01-01

    Roč. 254, č. 11 (2017), č. článku 1700177. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : fluorination * graphene * graphene-enhanced Raman * Raman spectroscopy * scattering Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.674, year: 2016

  15. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy

    Directory of Open Access Journals (Sweden)

    Marjo J. den Broeder

    2017-04-01

    Full Text Available Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio. We used label-free Stimulated Raman Scattering (SRS microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf and compared standard feed conditions (StF to a high fat diet (HFD or high glucose diet (HGD. We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM or Tris(1,3-dichloroisopropylphosphate (TDCiPP, 0.5 µM from 0–6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.

  16. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy

    Science.gov (United States)

    den Broeder, Marjo J.; Moester, Miriam J. B.; Kamstra, Jorke H.; Cenijn, Peter H.; Davidoiu, Valentina; Kamminga, Leonie M.; Ariese, Freek; de Boer, Johannes F.; Legler, Juliette

    2017-01-01

    Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio). We used label-free Stimulated Raman Scattering (SRS) microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf) and compared standard feed conditions (StF) to a high fat diet (HFD) or high glucose diet (HGD). We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM) or Tris(1,3-dichloroisopropyl)phosphate (TDCiPP, 0.5 µM) from 0–6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo. PMID:28441764

  17. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  18. Profile disparity of Raman-scattered O VI in symbiotic stars

    International Nuclear Information System (INIS)

    Lee, Hee-Won

    2016-01-01

    Symbiotic stars are wide binary systems consisting of a hot compact star (usually a white dwarf) and a mass losing giant. Symbiotic activities are believed to occur through gravitational capture of a fraction of the slow stellar wind from the giant. Raman scattered features of O VI resonance doublet 1032 and 1038 appearing at around 6825 Å and 7082 Å are a unique spectroscopic diagnostic tool to probe the mass transfer process in symbiotic stars. The Raman O VI features often exhibit multiple peak structures and in many cases the blue peak of 7082 features is relatively more suppressed than that of 6825 features. We propose that the disparity of the two profiles is attributed to the local variation of optical depths of O VI, implying that the accretion flow is convergent in the red emission region and divergent in the blue emission region. It is argued in this presentation that Raman scattering by atomic hydrogen is a natural mirror to provide an edge-on view of the accretion disk and a lateral view of the bipolar outflow in symbiotic stars. We discuss the spectropolarimetric implications of this interpretation. (paper)

  19. Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy.

    Science.gov (United States)

    Klossek, A; Thierbach, S; Rancan, F; Vogt, A; Blume-Peytavi, U; Rühl, E

    2017-07-01

    Advanced Raman techniques, such as stimulated Raman spectroscopy (SRS), have become a valuable tool for investigations of distributions of substances in biological samples. However, these techniques lack spectral information and are therefore highly affected by cross-sensitivities, which are due to blended Raman bands. One typical example is the symmetric CH 2 stretching vibration of lipids, which is blended with the more intense Raman band of proteins. We report in this work an approach to reduce such cross-sensitivities by a factor of 8 in human skin samples. This is accomplished by careful spectral deconvolutions revealing the neat spectra of skin lipids. Extensive Raman studies combining the complementary advantages of fast mapping and scanning, i.e. SRS, as well as spectral information provided by spontaneous Raman spectroscopy, were performed on the same skin regions. In addition, an approach for correcting artifacts is reported, which are due to transmission and reflection geometries in Raman microscopy as well as scattering of radiation from rough and highly structured skin samples. As a result, these developments offer improved results obtained from label-free spectromicroscopy provided by Raman techniques. These yield substance specific information from spectral regimes in which blended bands dominate. This improvement is illustrated by studies on the asymmetric CH 2 stretching vibration of lipids, which was previously difficult to identify due to the strong background signal from proteins. The advantage of the correction procedures is demonstrated by higher spatial resolution permitting to perform more detailed investigations on lipids and their composition in skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Directory of Open Access Journals (Sweden)

    Frédéric P. A. Vogt

    2017-06-01

    Full Text Available Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF on Unit Telescope 4 (UT4 of the Very Large Telescope (VLT, we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R≅3000 of the uplink laser beams over the wavelength range of 4750 Å–9350 Å. We report the first detection of laser-induced Raman scattering by N_{2}, O_{2}, CO_{2}, H_{2}O, and (tentatively CH_{4} molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT. At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam

  1. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  2. Enhanced Raman scattering assisted by ultrahigh order modes of the double metal cladding waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian; Huang, Liming; Jin, Yonglong; Fang, Jinghuai, E-mail: cyin.phys@gmail.com, E-mail: fjhuai@ntu.edu.cn [Physics Department, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226007 (China); Yin, Cheng, E-mail: cyin.phys@gmail.com, E-mail: fjhuai@ntu.edu.cn [Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022 (China); Huang, Meizhen [Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800, DongChuan Road, Shanghai 200240 (China)

    2014-10-20

    Distinguished from the usual strategy to enhance the Raman scattering such as creating hot spots in the surface-enhanced Raman scattering, this paper takes a quite different approach based on the double metal cladding waveguide. The target analyte is located in the guiding layer of sub-millimeter scale, where several ultrahigh order modes with high intensity are simultaneously excited via a focused laser beam. The experimental setup is simple, and both simulation and experimental results confirm the enhancement mechanism of these oscillating modes. Other appealing features include the large detection area and the ability to excite guided modes via both polarizations. This scheme can be applied to large molecules detection and readily integrated with other Raman enhancement techniques.

  3. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  4. Coherent Raman Scattering Microscopy in Biology and Medicine

    Science.gov (United States)

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2016-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285

  5. Resonant A1 phonon and four-magnon Raman scattering in hexagonal HoMnO3 thin film

    International Nuclear Information System (INIS)

    Chen Xiangbai; Thi Minh Hien, Nguyen; Yang, In-Sang; Lee, D; Jang, S-Y; Noh, T W

    2010-01-01

    We present the results of resonant Raman scattering of the A 1 phonon at 680 cm -1 and of the four-magnon at 760 cm -1 in hexagonal HoMnO 3 thin film. We find that the A 1 phonon at 680 cm -1 shows a strong resonance effect near the on-site Mn d-d transition at ∼1.7 eV. Our Raman results show that the four-magnon scattering can be selectively excited with red lasers of 647 nm (1.92 eV) and 671 nm (1.85 eV), but are not detectable with green lasers of 532 nm (2.33 eV), indicating that the four-magnon scattering in hexagonal HoMnO 3 has an extremely strong resonance effect also near the on-site Mn d-d transition at ∼1.7 eV. Furthermore, through the analyses of our study of the resonant four-magnon Raman scattering and earlier studies of the resonant two-magnon Raman scattering, we propose a simple general model for all resonant magnon scattering. Our simple general model predicts a simple method for the investigation of the spin-flipping/spin-wave in magnetic materials, which would have significant impacts on the applications of spintronic devices.

  6. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  7. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  8. [Fluorescent and Raman scattering by molecules embedded in small particles]: Annual report, 1983

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1983-01-01

    An overview is given of the model formulated for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions), cylindrical, and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incoherently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescence under excitation by evanescent waves

  9. Coherent Anti-Stokes and Coherent Stokes in Raman Scattering by Superconducting Nanowire Single-Photon Detector for Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Annepu Venkata Naga Vamsi

    2016-01-01

    Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.

  10. The disorder-induced Raman scattering in Au/MoS{sub 2} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gołasa, K., E-mail: Katarzyna.Golasa@fuw.edu.pl; Grzeszczyk, M.; Binder, J.; Bożek, R.; Wysmołek, A.; Babiński, A. [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa (Poland)

    2015-07-15

    The Raman scattering has been studied in heterostructures composed of a thin MoS{sub 2} flake and a 1-1.5 nm layer of thermally evaporated gold (Au). There have been Au nanoislands detected in the heterostructure. It has been found that their surface density and the average size depend on the MoS{sub 2} thickness. The Raman scattering spectrum in the heterostructure with a few monolayer MoS{sub 2} only weakly depends on the excitation (resonant vs. non-resonant) mode. The overall Raman spectrum corresponds to the total density of phonon states, which is characteristic for disordered systems. The disorder in the MoS{sub 2} layer is related to the mechanical strain induced in the MoS{sub 2} layer by the Au nanoislands. The strain results in the localization of phonon modes, which leads to the relaxation of the momentum conservation rule in the scattering process. The relaxation allows phonons from the whole MoS{sub 2} Brillouin zone to interact with electronic excitations. Our results show that the Au nanoislands resulted from thermal evaporation of a thin metal layer introduce substantial disorder into the crystalline structure of the thin MoS{sub 2} layers.

  11. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  12. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  13. Raman-scattering results from Y1-xCaxSr2Cu2GaO7

    International Nuclear Information System (INIS)

    Salamon, D.; Liu, R.; Klein, M.V.; Groenke, D.A.; Poeppelmeier, K.R.; Dabrowski, B.; Han, P.D.; Payne, D.A.

    1993-01-01

    We present a Raman-scattering study of Y 1-x Ca x Sr 2 Cu 2 GaO 7 for both the x=0 parent compound and doped compositions with x=0.25 and x=0.40. Extrapolation from YBa 2 Cu 3 O 7-d and other cuprates allows us to assign many of the Raman-active phonon modes in the x=0 material, as well as identify a two-magnon scattering peak, a second-order phonon scattering peak, and a Raman continuum out to 4000 cm -1 . Despite compositional inhomogeneities, the doped superconducting samples show some of the same low-energy phonon features as the x=0 material. There is, however, a doping-dependent shift in the positions of features in the 500--700 cm -1 range, possibly due to Ca locating on Sr sites instead of Y sites. The relative intensities of the phonon peaks in the doped material are also changed from the insulator (x=0), suggesting that a resonant Raman phenomenon is occurring. The temperature-dependent spectra show what appears to be a superconducting dip in the background intensity, but the low superconducting fractions in these samples make this difficult to verify. The doped material also has a Raman continuum out to 4000 cm -1 just as in the x=0 samples, but with the two-magnon and second-order phonon scattering peaks significantly reduced in intensity. This may be a result of changes in the long-range ordering, or another manifestation of the same resonance phenomena occurring at lower energies. Single-crystal samples of the doped material Y 1-x Ca x Sr 2 Cu 2 GaO 7 are necessary for a more conclusive Raman study

  14. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  15. Elastic and Raman scattering of photons from the giant dipole resonance

    International Nuclear Information System (INIS)

    Bar-Noy, T.

    1978-12-01

    In the present work we investigated nuclear Raman and elastic scattering of photons from the Giant Dipole Resonance (GDR) of medium and heavy nuclei. The photons beams were obtained from thermal neutron capture on V, Fe, Ni, Cu and Cr discs, utilizing the IRR-2 reactor. Nine targets, 159 Tb, 165 Ho, 175 Lu, 181 Ta, 197 Au, 209 Bi, 232 Th, 237 Np, and 238 U, representing all spherical and deformed nuclei in the region of medium and heavy nuclei, were used. As preliminary works, we discovered and investigated the 11.4 MeV γ-line, measured the attenuation coefficients at 9 and 11.4 MeV, performed a numerical calculation of Delbrueck amplitudes and modified the Simple Rotator Model (SRM). The absolute scattering cross-sections were measured for each scatterer at 4-8 different energies, and angular distributions in the range 90 deg to 140 deg were carried out at 9 MeV and 11.4 MeV. The experimental results were compared with theoretical predictions of the modified SRM and the Dynamic Collective Model (DCM). The results proved that the modified SRM describes appropriately the scattering from the GDR, including elastic and Raman absolute cross-sections and their angular distributions. (author)

  16. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    Science.gov (United States)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  17. Characterization of gas-aerosol interaction kinetics using morphology dependent stimulated Raman scattering

    International Nuclear Information System (INIS)

    Aker, P.M.

    1993-01-01

    This study is aimed at characterizing the influence of aerosol surface structure on the kinetics of gas-aerosol interactions. Changes in gas phase chemical reaction rates as a function of exposure to a specific aerosol are measured with aerosols having different surface properties due to the composition and/or temperature of the material making up the aerosol. The kinetic data generated can be used directly in atmospheric modeling calculations. The surface structure of the aerosol is using morphology-dependent enhancement of simulated Raman scattering (MDSRS). Detailed dynamics of gas-aerosol interactions can be obtained by correlating the change in the reaction rate with change in surface structure and by monitoring the change in aerosol surface structure during, the course of the reaction. This dynamics information can be used to generate kinetic data for systems which are similar in nature to those studied, but are not amenable to laboratory investigation. We show here that increased MDSRS sensitivity is achieved by using an excitation laser source that has a narrow linewidth and we have been able to detect sulfate anion concentrations much lower than previously reported. We have shown that the linewidth of the MDSRS mode excited in a droplet is limited by the laser linewidth. This is a positive result for it eases our ability to quantify the MDSRS gain equation. This result also suggests that MDSRS signal size should be independent of droplet size, and preliminary experiments confirm this hypothesis

  18. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  19. Electronic Raman scattering in Bi2Sr2CaCu2O8=δ

    International Nuclear Information System (INIS)

    Quilty, J.W.; Trodahl, H.J.; Pooke, D.

    1996-01-01

    Full text: High-T c superconductors exhibit a definite Electronic Raman Scattering (ERS) continuum, which most materials do not. Typically, the continuum is relatively flat in the normal state, while below T c the ERS spectrum shows reduced scattering at the lowest Raman shifts and a peak close to the superconducting gap energy. The behaviour below T c is due to the breaking of Cooper pairs and reflects the superconducting density of states, hence revealing the superconducting gap. Through an appropriate choice of incident and scattered polarisation vectors, the electronic Raman continuum of high-T c superconductors may also be used to reveal information on the symmetry of the superconducting gap. Previous studies of the electronic continuum show that a broad peak associated with the superconducting gap forms in the continuum below T c in these materials, when compared to the normal-state. We report temperature and polarisation dependent ERS measurements on differently-doped Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals, within a temperature range of 300 K to 10 K

  20. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  1. Origin of the frequency shift of Raman scattering in chalcogenide glasses

    DEFF Research Database (Denmark)

    Han, X.C.; Tao, H.Z.; Gong, L.J.

    2014-01-01

    of the shift is associated with the topological connectivity of global network and/or the local environment of structural units, (e.g., tetrahedral GeSe4). Here we show the compositional evolution of the main Raman scattering frequency in Ge(SxSe1−x)2 glasses, and then clarify its structural origin. We keep...... units such as GeS4 tetrahedra. The ab-initio calculations of normal Raman mode combined with group theory analysis provide insight into the structural evolution of chalcogenide glasses with varying composition....

  2. Observation of scattered light between omega/2 and 3/2 omega in short wavelength laser produced plasmas

    International Nuclear Information System (INIS)

    Goldman, L.M.; Seka, W.; Tanaka, K.; Simon, A.; Short, R.

    1984-01-01

    Extensive measurements have been carried out on scattered radiation in the spectral region between omega/2 and 3/2 omega from plasmas produced by 351 nm lasers. The relative intensities of the continuum radiation relative to the line features at omega/2 and 3/2 omega will be shown. A new spectral feature has been observed between 3/2 omega and omega which may be interpreted as an upscattered component produced by ordinary Raman scattering. The overall experimental evidence for ordinary Raman scattering vs stimulated Raman scattering will be discussed

  3. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  4. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  5. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering.

    Science.gov (United States)

    Malarski, Anna; Schürer, Benedikt; Schmitz, Ingo; Zigan, Lars; Flügel, Alexandre; Leipertz, Alfred

    2009-04-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

  6. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering

    International Nuclear Information System (INIS)

    Malarski, Anna; Schuerer, Benedikt; Schmitz, Ingo; Zigan, Lars; Fluegel, Alexandre; Leipertz, Alfred

    2009-01-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements

  7. One phonon resonant Raman scattering in free-standing quantum wires

    International Nuclear Information System (INIS)

    Zhao, Xiang-Fu; Liu, Cui-Hong

    2007-01-01

    The scattering intensity (SI) of a free-standing cylindrical semiconductor quantum wire for an electron resonant Raman scattering (ERRS) process associated with bulk longitudinal optical (LO) phonon modes and surface optical (SO) phonon modes is calculated separately for T=0 K. The Frohlich interaction is considered to illustrate the theory for GaAs and CdS systems. Electron states are confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Numerical results and a discussion are also presented for various radii of the cylindrical

  8. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  9. Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.

    2009-01-01

    A suite of three-dimensional (3D) VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of 'at scale' 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.

  10. Elastic and Raman scattering of 8.5-11.4 MeV photons from 159Tb, 165Ho, and 237Np

    International Nuclear Information System (INIS)

    Bar-Noy, T.; Moreh, R.

    1977-01-01

    Differential cross sections for elastic and inelastic Raman scattering from the deformed heavy nuclei 159 Tb, 165 Ho and 237 Np were measured at five energies between 8.5 and 11.4 MeV. Angular distributions at four angles between 90 0 and 140 0 for both elastic and inelastic scattering at 9.0 and 11.4 MeV were also measured. The monoenergetic photons were obtained from thermal neutron capture in Ni and Cr. All the angular distributions and the elastic and Raman scattering at the higher energies are in good overall agreement with theoretical predictions. The theory is based on a modified simple rotator model of the giant resonance in which the effect of Delbrueck scattering was included. A trend of both the elastic and Raman scattering at lower energies to be stronger than expected are suggested by the data. However, the ratio between the Raman and elastic scattering seem to be in good agreement with theory throughout the whole energy range. This shows that there is no need to introduce a direct nonresonant component to the imaginary part of the elastic scattering amplitude to explain the experimental data. (Auth.)

  11. Raman scattering in a two-dimensional Fermi liquid with spin-orbit coupling

    Science.gov (United States)

    Maiti, Saurabh; Maslov, Dmitrii L.

    2017-04-01

    We present a microscopic theory of Raman scattering in a two-dimensional Fermi liquid (FL) with Rashba and Dresselhaus types of spin-orbit coupling and subject to an in-plane magnetic field (B ⃗). In the long-wavelength limit, the Raman spectrum probes the collective modes of such a FL: the chiral spin waves. The characteristic features of these modes are a linear-in-q term in the dispersion and the dependence of the mode frequency on the directions of both q ⃗ and B ⃗. All of these features have been observed in recent Raman experiments on Cd1 -xMnxTe quantum wells.

  12. Raman scattering study of filled skutterudite compounds

    International Nuclear Information System (INIS)

    Ogita, N; Kojima, R; Hasegawa, T; Takasu, Y; Udagawa, M; Kondo, T; Takeda, N; Ikeno, T; Ishikawa, K; Sugawara, H; Kikuchi, D; Sato, H; Sekine, C; Shirotani, I

    2007-01-01

    Raman scattering of skutterudite compounds RT 4 X 12 (R=La, Ce, Pr, Nd, Sm and Yb, T=Fe, Ru and Os, X=P and Sb) have been measured. All first-order Raman active phonons are observed and are assigned as the pnicogen vibrations. At the low energy region, the second-order phonons, due to the vibration of the rare earth ions with a flat phonon dispersion, are observed in the spectra of RRu 4 P 12 (R=La and Sm) and ROs 4 Sb 12 (R=La, Ce, Pr, Nd, and Sm). The appearance of the second-order phonons in the spectra is caused by an anharmonic vibrations of rare earth ions in large cage space and a large density of state due to the flat phonon dispersion. However, in spite of the similar cage space, the 2nd-order phonons are hardly observed for RFe 4 Sb 12 and RRu 4 Sb 12 . Thus, these results suggest that the dynamics of the rare earth ion is closely related to not only the cage size but also the electronic state due to the transition metals. Raman spectra of PrRu 4 P 12 show the drastic spectral change due to the metal-insulator transition. The phonon spectra and crystal field excitations due to the structural change have been assigned above and below the transition temperature

  13. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-10-15

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects. (orig.)

  14. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes.

    Science.gov (United States)

    Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang

    2013-12-01

    This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering.

    Science.gov (United States)

    Beams, Ryan; Cancado, Luiz Gustavo; Krylyuk, Sergiy; Kalish, Irina; Kalanyan, Berc; Singh, Arunima K; Choudhary, Kamal; Bruma, Alina; Vora, Patrick M; Tavazza, Francesca; Davydov, Albert V; Stranick, Stephan J

    2016-10-05

    We study the crystal symmetry of few-layer 1T' MoTe 2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe 2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe 2 and clears up a discrepancy in the literature. The Raman results were also compared with density-functional theory simulations and are in excellent agreement in the layer-depenent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization-dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

  16. Breast cancer study in rats by using Raman scattering

    International Nuclear Information System (INIS)

    Martinez E, J. C.; Cordova F, T.; Roca Ch, J. M.; Hernandez R, A.

    2015-10-01

    Full text: The use of Raman scattering to differentiate the biochemistry and hence distinguish between normal and abnormal samples of breast cancer with induced stress was investigated. Twelve different rat serum samples (5 control samples and 7 breast cancer samples) were measured. 25 spectra per sample were acquired in a region of 50 X 50 microns. Three hundred spectra were recorded and the spectral diagnostic models were constructed by using multivariate statistical analysis on the spectral matrix to carry out the discrimination between the control samples and cancers samples with induced stress. The spectral recording was performed with Raman microscopy system Thermo Scientific XRD in the range from 200 to 2000 cm -1 with a laser source of 780 nm, 24 m W of power and 50 s and exposure time were used for each spectrum. It is shown that the serum samples from rats with breast cancer and the control group can be discriminate when the multivariate analysis methods are applied to their Raman data set. The ratios were significant and correspond to proteins and phospholipids. The preliminary results suggest that the Raman spectroscopy could be an alternative technique to study the breast cancer in humans in a near future. (Author)

  17. Breast cancer study in rats by using Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Martinez E, J. C. [IPN, Unidad Profesional Interdisciplinaria de Ingenieria, Campus Guanajuato, Av. Mineral de Valenciana 200, Col. Fracc. Industrial Puerto Interior, 36275 Silao, Guanajuato (Mexico); Cordova F, T.; Roca Ch, J. M.; Hernandez R, A., E-mail: jcmartineze@ipn.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Departamento de Ingenieria Fisica, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The use of Raman scattering to differentiate the biochemistry and hence distinguish between normal and abnormal samples of breast cancer with induced stress was investigated. Twelve different rat serum samples (5 control samples and 7 breast cancer samples) were measured. 25 spectra per sample were acquired in a region of 50 X 50 microns. Three hundred spectra were recorded and the spectral diagnostic models were constructed by using multivariate statistical analysis on the spectral matrix to carry out the discrimination between the control samples and cancers samples with induced stress. The spectral recording was performed with Raman microscopy system Thermo Scientific XRD in the range from 200 to 2000 cm{sup -1} with a laser source of 780 nm, 24 m W of power and 50 s and exposure time were used for each spectrum. It is shown that the serum samples from rats with breast cancer and the control group can be discriminate when the multivariate analysis methods are applied to their Raman data set. The ratios were significant and correspond to proteins and phospholipids. The preliminary results suggest that the Raman spectroscopy could be an alternative technique to study the breast cancer in humans in a near future. (Author)

  18. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  19. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  20. Raman scattering in three-cation diluted magnetic semiconductor Cd1-x-yMnxMgyTe

    International Nuclear Information System (INIS)

    Agekyan, V.F.; Gridneva, L.K.; Karpov, S.V.; Serov, A.Yu.

    1995-01-01

    Investigations of Raman scattering (RS) in quaternary compounds were conducted to determine and interpret LO and TO frequencies, characterizing CdTe, MnTe, MgTe components in mixed crystal. Raman spectrum in the range of low frequencies is interpreted as interaction of quasi local vibrations with acoustic continuum

  1. Development of fiber lasers and devices for coherent Raman scattering microscopy

    Science.gov (United States)

    Lamb, Erin Stranford

    As ultrafast laser technology has found expanding application in machining, spectroscopy, microscopy, surgery, and numerous other areas, the desire for inexpensive and robust laser sources has grown. Until recently, nonlinear effects in fiber systems due to the tight confinement of the light in the core have limited their performance. However, with advances in managing nonlinearity through pulse propagation physics and the use of large core fibers, the performance of fiber lasers can compete with that of their solid-state counterparts. As specific applications, such as coherent Raman scattering microscopy, emerge that stand to benefit from fiber technology, new performance challenges in areas such as laser noise are anticipated. This thesis studies nonlinear pulse propagation in fiber lasers and fiber parametric devices. Applications of dissipative solitons and self-similar pulse propagation to low-repetition rate oscillators that have the potential to simplify short-pulse amplification schemes will be examined. The rest of this thesis focuses on topics relevant to fiber laser development for coherent Raman scattering microscopy sources. Coherent pulse division and recombination inside the laser cavity will be introduced as an energy-scaling mechanism and demonstrated for a fiber soliton laser. The relative intensity noise properties of mode-locked fiber lasers, with a particular emphasis on normal dispersion lasers, will be explored in simulation and experiment. A fiber optical parametric oscillator will be studied in detail for low noise frequency conversion of picosecond pulses, and its utility for coherent Raman imaging will be demonstrated. Spectral compression of femtosecond pulses is used to generate picosecond pulses to pump this device, and this technique provides a route to future noise reduction in the system. Furthermore, this device forms a multimodal source capable of providing the picosecond pulses for coherent Raman scattering microscopy and the

  2. Experimental investigation of two-dimensional critical surface structure, stimulated Raman scattering, and two-plasmon decay instability. Annual report, January 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Wong, A.Y.; Eggleston, D.L.; Tanikawa, T.; Qian, S.J.

    1982-11-01

    Experimental observations of the space and time evolution of resonantly enhanced electrostatic electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal location with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical, analytical, and qualitative hybrid models for a driven, two-dimensional, inhomogeneous plasma are presented. Preliminary work is presented in the following additional areas: weak magnetic field effects on critical surface physics, optical measurements of fast electron production, two-dimensional effects in microwave-plasma interactions, Langmuir wave trapping, stimulated Raman scattering and two-plasmon decay instability

  3. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  4. Boosting the Amount of Molecular Information Through Polarized Resolved Resonance Raman Scattering

    DEFF Research Database (Denmark)

    Hassing, Søren

    2017-01-01

    and near-infrared absorption spectroscopy, i.e. only the spectral distribution is analysed. The goal of the present chapter is to demonstrate that the amount of molecular information (also for solutions and powders) can be increased considerably by analysing also the polarization of the Raman and resonance...... Ramanscattered light. The goal is achieved through: (1) a discussion of the basic properties of Raman scattering with special focus on polarization and polarization dispersion. The discussion includes the rotational invariants of Raman tensors, the non-commuting generator approach to molecular symmetry as a tool...... for construction of state and Raman tensors for single molecules and dimers and higher aggregates and thereby predict the polarization; (2) a discussion of two illustrative case studies: Case study 1: Aggregation of haemoglobin in red blood cells (RBC); and Case study 2: In vitro polarization resolved RRS study...

  5. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  6. Resonant Raman scattering in ion-beam-synthesized Mg2Si in a silicon matrix

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.; Atanassov, A.; Abrashev, M.; Goranova, E.

    2005-01-01

    Resonant Raman scattering by ion beam synthesized in silicon matrix Mg 2 Si phase is studied. The samples are prepared with the implantation of 24 Mg + ions with dose 4x10 17 cm -2 and with two different energies 40 and 60 keV into (100)Si substrates. The far infrared spectra are used as criteria for the formation of the Mg 2 Si phase. The Raman spectra are excited with different lines of Ar + laser, with energies of the lines lying in the interval from 2.40 to 2.75 eV. The resonant scattering can be investigated using these laser lines, as far as according to the Mg 2 Si band structure, there are direct gaps with energies in the same region. The energy dependences of the scattered intensities in the case of the scattering by the allowed F 2g and the forbidden LO-type modes are experimentally obtained and theoretically interpreted. On the base of the investigation energies of the interband transitions in the Mg 2 Si are determined. It is found also that the resonant Raman scattering appears to be a powerful tool for characterization of a material with inclusions in it. In the particular case it is concluded that the Mg 2 Si phase is present in the form of a surface layer in the sample, prepared with implantation energy 40 keV and as low-dimensional precipitates, embedded in the silicon matrix, in the sample, prepared with the higher implantation energy

  7. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  8. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  9. Ripplon laser through stimulated emission mediated by water waves

    Science.gov (United States)

    Kaminski, Samuel; Martin, Leopoldo L.; Maayani, Shai; Carmon, Tal

    2016-12-01

    Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary and optical modes, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling of water waves.

  10. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    Science.gov (United States)

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH

    International Nuclear Information System (INIS)

    Liang Yujie; Wang Wenzhong; Zeng Baoqing; Zhang Guling; Huang Jing; Li Jin; Li Te; Song Yangyang; Zhang Xiuyu

    2011-01-01

    Research highlights: → Hexagonal Bi 2 Te 3 thin nanoplates were synthesized by a simple solvothermal method. → Optical properties of the nanoplates were investigated by micro-Raman spectroscopy. → Infrared (IR) active mode (A 1u ) is greatly activated in Raman scattering spectrum. → Infrared (IR) active mode (A 1u ) shows up in Raman spectrum of hexagonal nanoplates. → Raman spectrum clearly shows crystal symmetry breaking of hexagonal nanoplates. - Abstract: Hexagonal Bi 2 Te 3 nanoplates were synthesized by a simple solvothermal process in the absence of NaOH. The composition, morphology and size of the as-prepared products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman scattering optical properties of the as-prepared Bi 2 Te 3 nanoplates were investigated by micro-Raman spectroscopy. The Raman spectrum shows that infrared (IR) active mode (A 1u ), which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shown up clearly in Raman scattering spectrum. We attribute the appearance of infrared active (A 1u ) in Raman spectrum to crystal symmetry breaking of Bi 2 Te 3 hexagonal nanoplates. The as-grown Bi 2 Te 3 hexagonal nanoplates, exhibiting novel Raman optical properties compared with bulk crystals, may find potential applications in thermoelectric devices.

  12. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    Science.gov (United States)

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  13. Two Magnon Raman Scattering as Indicator for Superconducting to Antiferromagnetic Phase Transition Upon Hydrogenation of YBCO

    International Nuclear Information System (INIS)

    Biton, Y.; Shuker, R.

    1999-01-01

    Raman spectra of Hydrogenated YBa 2 Cu 3 O 7-x + H y , where y = 0.45 and 0.19 is the number of Hydrogen atoms per units cell. The spectra exhibit important changes in the electronic scattering. Upon progressive doping with Hydrogen two magnon scattering features emerge. This coincides with the transition of YBa 2 Cu 3 O 7x +H y from superconducting to antiferromagnetic phase. Exchange energy values were obtained from two magnon Raman scattering of the y = 0.45 material. It has been found that for y= 0.19 the sample has not lost its superconductivity, and indeed two-magnon scattering has not been observed. However, the situation changed substantially when the doping of the Hydrogen atoms was 0.45. The two-magnon scattering has been observed at different temperatures down to 20K. The two-magnon energy density exhibits two peak values around 2100cm -1 and 3000cm -1

  14. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses

  15. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  16. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  17. How Does the Shape of the Stellar Spectrum Affect the Raman Scattering Features in the Albedo of Exoplanets?

    Energy Technology Data Exchange (ETDEWEB)

    Oklopčić, Antonija [California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Hirata, Christopher M. [Center for Cosmology and Astroparticle Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Heng, Kevin, E-mail: oklopcic@astro.caltech.edu [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2017-09-10

    The diagnostic potential of the spectral signatures of Raman scattering, imprinted in planetary albedo spectra at short optical wavelengths, has been demonstrated in research on planets in the solar system, and has recently been proposed as a probe of exoplanet atmospheres, complementary to albedo studies at longer wavelengths. Spectral features caused by Raman scattering offer insight into the properties of planetary atmospheres, such as the atmospheric depth, composition, and temperature, as well as the possibility of detecting and spectroscopically identifying spectrally inactive species, such as H{sub 2} and N{sub 2}, in the visible wavelength range. Raman albedo features, however, depend on both the properties of the atmosphere and the shape of the incident stellar spectrum. Identical planetary atmospheres can produce very different albedo spectra depending on the spectral properties of the host star. Here we present a set of geometric albedo spectra calculated for atmospheres with H{sub 2}/He, N{sub 2}, and CO{sub 2} composition, irradiated by different stellar types ranging from late A to late K stars. Prominent albedo features caused by Raman scattering appear at different wavelengths for different types of host stars. We investigate how absorption due to the alkali elements sodium and potassium may affect the intensity of Raman features, and we discuss the preferred strategies for detecting Raman features in future observations.

  18. Enhanced noise and Raman scattering in plasma

    International Nuclear Information System (INIS)

    Simon, A.; Short, R.W.

    1987-04-01

    Observations of Raman scattering from laser-produced plasma have shown a number of puzzling features. These can be explained by assuming the presence of a bump-on-tail electron distribution created by pulses of fast electrons arising from instabilities at the critical (n/sub c/) or the quarter-critical (n/sub c//4) surface. Experiments using thin foils, in which the target density drops below n/sub c/ and even n/sub c//4 early in the laser pulse, have continued to show the same agreement as is seen for thick targets between the observed Raman spectrum and the predictions of this theory. This raises the issue of the time scale on which such directed pulses of fast electrons can continue to exist in the plasma after their source at n/sub c/ or n/sub c//4 disappears. We show that the classical degradation process is quite slow (of the order of 100 ps or more). Collective processes would appear to broaden and flatten the beam on a faster time scale. However, inclusion of finite spatial size strongly reduces the effect. Furthermore, we will show that broadening of the beam has little effect on the predicted spectrum

  19. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  20. Planar Spontaneous Raman-Scattering Spectroscopy for Reacting Jet-Flow Diagnostics Using Lyot-Ehman Tunable Filter

    Science.gov (United States)

    Sharaborin, D. K.; Markovich, D. M.; Dulin, V. M.

    2018-01-01

    The spatial-density distribution in burning a premixed methane-air swirling turbulent jet has been studied by measuring the intensity of the Stokes branch of spontaneous Raman scattering for vibrational-rotational transitions in nitrogen. An optical system comprising a Nd:YAG laser and the liquid-crystalline Lyot-Ehman tunable filter has been created and tested by measuring the temperature and density fields in a cone-shaped laminar flame. It has been established that the difference of data obtained using the Stokes component of Raman scattering in nitrogen and its ratio to the anti-Stokes component does not exceed 5% in a temperature range from 300 to 1800 K.

  1. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  2. Analysis of albumin Raman scattering in visible and near-infrared ranges

    Science.gov (United States)

    Lykina, Anastasia A.; Artemyev, Dmitry N.

    2018-04-01

    In this work the analysis of the shape and intensity of albumin Raman signals in visible and near-IR ranges was carried out. The experimental setup using lasers from the visible region first of all excites the fluorescence of the albumin solution, the main contribution to which is produced by sodium chloride, which is a component of the tested sample. At the same time, lasers from the near-infrared range excited the Raman signal of albumin most effectively. It was found that the highest ratio of Raman scattering to autofluorescence intensities in the detected signal was obtained using a laser with a wavelength of 1064 nm. To determine the albumin solution concentration by type of spectrum, a regression approach with the projection to latent structures method was applied. The lowest predicted error of albumin concentration of 2-3 g/l was obtained by using the near-infrared range lasers.

  3. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  4. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  5. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory

    International Nuclear Information System (INIS)

    Hermet, P; Veithen, M; Ghosez, Ph

    2009-01-01

    Nonlinear optical susceptibilities and Raman scattering spectra of the ferroelectric phases of BaTiO 3 and PbTiO 3 are computed using a first-principles approach based on density functional theory and taking advantage of a recent implementation based on the nonlinear response formalism and the 2n+1 theorem. These two prototypical ferroelectric compounds were chosen to demonstrate the accuracy of the Raman calculation based both on their complexity and their technological importance. The computation of the Raman scattering intensities has been performed not only for the transverse optical modes, but also for the longitudinal optical ones. The agreement between the measured and computed Raman spectra of these prototypical ferroelectrics is remarkable for both the frequency position and the intensity of Raman lines. This agreement presently demonstrates the state-of-the-art in the computation of Raman responses on one of the most complex systems, ferroelectrics, and constitutes a step forward in the reliable prediction of their electro-optical responses.

  6. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    Science.gov (United States)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  7. Variation of Raman spectra of CdSe/ZnS quantum dots at the bioconjugation

    Energy Technology Data Exchange (ETDEWEB)

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM - Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico)

    2010-04-15

    This paper presents the results of comparative analysis of Raman scattering spectra of CdSe/ZnS QDs covered by polymer with and without bio-conjugation to the mouse anti PSA (Prostate-Specific Antigen) antibodies (mab). Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 565 nm (2.19 eV) at 300 K. Raman scattering spectra measured at room temperature demonstrate two groups of peaks: (i) related to the Si substrate at 230-460, 522, 610, 670, 940-1040 cm{sup -1} and (2) to polymer on the QD surface in the spectral range 1268-3310 cm{sup -1}. It is revealed that the QD bio-conjugation to the anti PSA mab is accompanied by the variation dramatically in the intensity of Raman lines of both types. The explanation of Raman peak stimulation in bio-conjugated QDs has been proposed on the base of surface enhanced Raman scattering (SERS) effect (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  9. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    Science.gov (United States)

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  10. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  11. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime

    Science.gov (United States)

    Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.

    2018-06-01

    Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.

  12. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  13. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.

    Science.gov (United States)

    Dawson, P; Frey, D; Kalathingal, V; Mehfuz, R; Mitra, J

    2017-12-04

    Quantitative understanding of the electromagnetic component in enhanced Raman spectroscopy is often difficult to achieve on account of the complex substrate structures utilised. We therefore turn to two structurally simple systems amenable to detailed modelling. The first is tip-enhanced Raman scattering under electron scanning tunnelling microscopy control (STM-TERS) where, appealing to understanding developed in the context of photon emission from STM, it is argued that the localised surface plasmon modes driving the Raman enhancement exist in the visible and near-infrared regime only by virtue of significant modification to the optical properties of the tip and sample metals (gold here). This is due to the strong dc field-induced (∼10 9 V m -1 ) non-linear corrections to the dielectric function of gold via the third order susceptibility term in the polarisation. Also, sub-5 nm spatial resolution is shown in the modelling. Secondly, we suggest a novel deployment of hybrid plasmonic waveguide modes in surface enhanced Raman scattering (HPWG-SERS). This delivers strong confinement of electromagnetic energy in a ∼10 nm oxide 'gap' between a high-index dielectric material of nanoscale width (a GaAs nanorod and a 100 nm Si slab are considered here) and a metal, yielding a monotonic variation in the Raman enhancement factor as a function of wavelength with no long-wavelength cut-off, both features that contrast with STM-TERS.

  14. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  15. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan; Rafalovskyi, Iegor; Gregora, Ivan; Borodavka, Fedir; Savinov, Maxim; Drahokoupil, Jan; Tyunina, Marina; Kocourek, Tomáš; Jelínek, Miroslav; Bing, Y.; Ye, Z. -G.; Hlinka, Jiří

    2015-01-01

    Roč. 5, č. 2 (2015), "1550013-1"-"1550013-6" ISSN 2010-135X R&D Projects: GA ČR GA15-04121S; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : PSN * relaxors * ferroelectrics * complex perovskites * Raman scattering Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Theory of Raman scattering by surface polaritons in a four media system

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1988-08-01

    The method of linear response theory is used to determine the response functions for surface polaritons in a four media system (or bounded bilayer). The dispersion relation is found when the pole of the derived response function vanishes. The expressions for the scattered intensity for both back and forward scattering are derived. The scattered intensity depends on a polarization which is the result of the coupling of the incident light to the vibrational coordinates and electric fields associated with electric-dipole-active lattice vibrations in the bilayer. Expressions for the Raman cross-section by surface polaritons in the four media system are derived for both back and forward scattering. Numerical results are presented by using parameters for a sapphire substrate-(GaP-GaAs) bilayer-vacuum system. (author). 28 refs, 5 figs

  17. Supercontinuum generation for coherent anti- Stokes Raman scattering microscopy with photonic crystal fibers

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Isomäki, Antti; Hansen, Kim P.

    2011-01-01

    Photonic crystal fiber (PCF) designs with two zero-dispersion wavelengths (ZDWs) are experimentally investigated in order to suggest a novel PCF for coherent anti-Stokes Raman scattering (CARS) microscopy. From our investigation, we select the optimum PCF design and demonstrate a tailored spectru...

  18. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  19. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  20. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas

    International Nuclear Information System (INIS)

    Fromm, David P.; Sundaramurthy, Arvind; Kinkhabwala, Anika; Schuck, P. James; Kino, Gordon S.; Moerner, W.E.

    2006-01-01

    Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10 7 , much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules

  1. Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A.G. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Himcinschi, C. [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany); Zenkevich, E.I. [Belarussian National Technical University, Minsk (Belarus); Zahn, D.R.T. [Chemnitz University of Technology, Semiconductor Physics, Chemnitz (Germany)

    2012-05-15

    Resonant Raman scattering by optical phonon modes as well as their overtones was investigated in ZnS and ZnO quantum dots grown by the Langmuir-Blodgett technique. The in situ formation of ZnS/ZnO core/shell quantum dots was monitored by Raman spectroscopy during laser illumination. (orig.)

  2. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  3. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Czech Academy of Sciences Publication Activity Database

    Pinkhasova, P.; Chen, H.; Kaňka, Jiří; Mergo, P.; Du, H.

    2015-01-01

    Roč. 106, č. 7 (2015), 0711061-0711064 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fibers * Raman scattering * Crystal whiskers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.142, year: 2015

  4. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  5. Raman scattering signatures of the unusual vibronic interaction of molecules in liquid helium-3

    Energy Technology Data Exchange (ETDEWEB)

    Tehver, I., E-mail: imbi.tehver@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Benedek, G. [Donostia International Physics Center (DIPC) and University of the Basque Country (EHU), Paseo de Lardizabal 4, 20018 Donostia/San Sebastian (Spain); Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2015-10-16

    Highlights: • Theory of resonance Raman scattering (RRS) of molecules in {sup 3}He liquid is proposed. • Fermi excitations give essential contribution to RRS. • RRS spectra of glyoxal molecule in {sup 3}He droplets are calculated. - Abstract: Light scattering in quantum liquid helium-3 may involve a unique mechanism – the creation and annihilation of atom excitations across the Fermi level. The density of states of particle–hole excitations in the low-energy limit is strongly enhanced as compared to that of collective excitations of phonons in helium-3. This makes possible to directly observe Fermi excitations in the resonant Raman scattering (RRS) by {sup 3}He droplets doped by impurity molecules. The RRS spectra essentially depend on the excitation frequency. In case of excitation in the anti-Stokes side of absorption the first order RRS is directly determined by the particle–hole excitations in the vicinity of the impurity molecule and the contribution of phonons mainly given by the localized spherical vibration. The calculations are made for a {sup 3}He droplet doped by a glyoxal molecule.

  6. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.

    Science.gov (United States)

    Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert

    2018-02-01

    This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state

    NARCIS (Netherlands)

    Kloz, Miroslav; Weissenborn, J.; Polivka, T.; Frank, H.A.; Kennis, J.T.M.

    2016-01-01

    A new method for recording femtosecond stimulated Raman spectra was developed that dramatically improves and automatizes baseline problems. Instead of using a narrowband Raman source, the experiment is performed using shaping of a broadband source. This allows locking the signal into carefully

  8. Raman scattering in orthorhombic CuInS2 nanocrystals

    International Nuclear Information System (INIS)

    Dzhagan, V.M.; Valakh, M.Ya.; Litvinchuk, A.P.; Kruszynska, M.; Kolny-Olesiak, J.; Himcinschi, C.; Zahn, D.R.T.

    2014-01-01

    We report the results of non-resonant and resonant Raman scattering in orthorhombic nanocrystalline CuInS 2 semiconductor, supported by density functional first principle lattice dynamics calculations. A larger number of dominant phonon modes in comparison with standard tetragonal CuInS 2 phases is shown to be associated with peculiarities of cation sublattice ordering and is the ''fingerprint'' of the corresponding structural polymorph. Good overall agreement is found between theoretical and experimental phonon mode frequencies. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Raman spectroscopic studies of isotopic diatomic molecules and a technique for measuring stable isotope ratios using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    A method for measuring stable isotope ratios using Raman scattering has been developed. This method consists of simultaneously counting photons scattered out of a high-intensity laser beam by different isotopically-substituted molecules. A number of studies of isotopic diatomic molecules have been made. The Q-branches of the Raman spectra of the isotopic molecules 14 N 15 N and 16 O 18 O were observed at natural abundance in nitrogen and oxygen samples. Comparison of the ratios of the intensities of the Q-branches of the major nitrogen and oxygen isotopic molecules with mass spectrometric determinations of the isotopic compositions yielded scattering cross sections of 14 N 15 N relative to 14 N 14 N and 16 O 18 O relative to 16 O 16 O. These cross section ratios differ from unity, a difference which can be explained by considering nuclear mass effects on the Franck-Condon factors of the molecular transitions. The measured intensities of the 14 N 15 N and 16 O 18 O Q-branches provided the baseline data needed to make the previously-mentioned extrapolation. High-resolution (approximately 0.15 cm -1 ) spectra of the Q-branches of 14 N 14 N and 16 O 16 O yielded a direct determination of α/sub e/ (the difference between the rotational constant in the ground and first excited vibrational states) for these molecules. The measured values are in excellent agreement with those obtained by other means. Complete Raman spectra (pure rotation, rotation-vibration, and high-resolution Q-branch) were obtained on a sample of pure 18 O 18 O. Analysis of this data yielded the molecular parameters: the equilibrium internuclear separation r/sub e/, the moment of inertia I/sub e/, and the energy parameters α/sub e/, B/sub e/, and ΔG/sub 1 / 2 /. These are in good agreement with data obtained by microwave spectroscopy

  10. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  11. Raman scattering studies of YBa2Cu3O7-x thin films grown by chemical vapor deposition and metal-organic deposition

    International Nuclear Information System (INIS)

    Lee, E.; Yoon, S.; Um, Y.M.; Jo, W.; Seo, C.W.; Cheong, H.; Kim, B.J.; Lee, H.G.; Hong, G.W.

    2007-01-01

    We present results of Raman scattering studies of superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown by chemical vapor deposition and metal-organic deposition methods. It is shown by X-ray diffraction that all the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Raman scattering measurements were used to investigate optical phonon modes, oxygen contents, structural properties, and second-phases of the YBCO coated conductors. Raman spectra of YBCO films with lower-transport qualities exhibit additional phonon modes at ∼300 cm -1 , ∼600 cm -1 , and ∼630 cm -1 , which are related to second-phases such as Ba 2 Cu 3 O 5.9 and BaCuO 2 . Our results strongly suggest that Raman scattering be useful for optimizing YBCO film growth conditions

  12. Applications of anomalous diffraction systems, generation of attosecond electron and photon pulses and Raman amplification by stimulated emission of radiation

    Science.gov (United States)

    Vartak, Sameer Dinkar

    1998-10-01

    efficient delivery of this power to the screen. We describe a method based on optical rectification to create an electron acceleration process which can act simultaneously on a femtosecond photo-electron pulse as well as cancel space-charge effects. This method can be used to produce attosecond electron and photon pulses. Narrow linewidth high intensity tunable light pulses are very useful for applications such as spectroscopic studies and remote sensing. Tunable lasers and stimulated Raman scattering (SRS) process are commonly used for this purpose. SRS process has high threshold because of small spontaneous Raman scattering cross-sections. We combined amplified spontaneous emission (ASE) from dye molecules with SRS process in solvent molecules in which dye molecules are dissolved. ASE seeds SRS process and SRS peak is further amplified by stimulated emission gain. We got amplifications ~100 over SRS from pure solvent. This peak can be tuned over gain bandwidth of dye molecules.

  13. Quasiparticles in Raman scattering of an electromagnetic wave by an atomic condensate

    International Nuclear Information System (INIS)

    Il’ichev, L. V.

    2011-01-01

    Raman scattering of an intense electromagnetic wave by a free atomic Bose condensate is considered. In a system of atoms and photons, a subsystem is separated whose dynamics can be naturally described in terms of quasiparticles: quasi-atoms and quasi-photons. The dispersion laws of quasiparticles are interrupted by the instability interval. The introduction of quasiparticles within this interval is impossible, while dispersion laws that are continued formally acquire imaginary components. The dynamic scattering model is generalized by including dissipative annihilation processes of scattered photons and uncondensed atoms. A stationary solution of the corresponding quantum control equation is found, allowing the calculation of momentum distributions of real particles and quasiparticles. The outlook for the experimental detection of quasiparticles is discussed.

  14. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  15. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  16. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  17. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  18. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  19. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  20. Soliton-effect generation of Raman pulses in optical fibers with slowly decreasing dispersion

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    We suggested that single-mode fibers with slowly decreasing dispersion (FSDD) should be used for the generation of tunable ultrashort RAman pulses. A mathematical model is obtained for the description of ultrafast stimulated Raman scattering in optical fibers with slowly decreasing dispersion. Numerical simulations show that, under identical pump conditions, Raman pulse generated from this kind of fiber is shorter with a higher peak power than that generated from conventional fibers. This means that the Raman threshold of fibers with slowly decreasing dispersion may be lower than that of conventional fibers. Given pump conditions, we found that the highest peak power and narrowest width of the Raman pulse correspond to an optimal decrement velocity of the fiber dispersion

  1. Raman sidescatter instability in a nonuniform plasma

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1977-01-01

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an underdense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. Results are obtained by evaluating the ''Green's function'' response in time and space for the scattered electromagnetic waves assuming they are initiated by a ''delta-function'' source. We consider the case where the temporal growth dominates the plasma wave convection. Then the scattered electromagnetic waves are governed by a single second-order Helmholtz differential equation, in the position variable along the density gradient, with a complex potential having two simple zeros (turning points) and one simple pole

  2. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  3. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  4. Raman scattering mediated by neighboring molecules

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  5. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  6. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness

    International Nuclear Information System (INIS)

    Linn, Nicholas C; Sun, C-H; Arya, Ajay; Jiang Peng; Jiang Bin

    2009-01-01

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10 8 ). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  7. Raman scattering study of phonons in Bi-based superconductor thin films

    International Nuclear Information System (INIS)

    Mejia-Garcia, C.; Diaz-Valdes, E.; Contreras-Puente, G.; Lopez-Lopez, J.L.; Jergel, M.; Morales, A.

    2004-01-01

    Raman spectra were obtained from samples of Bi-Pb-Sr-Ca-Cu-O (BPSCCO) thin films after varying several growth parameters, such as covering material, annealing time (t R ), annealing temperature (T R ), and nominal lead content (x). Thin films with the nominal composition Bi 1.4 Pb x Sr 2 Ca 2 Cu 3 O δ were grown on MgO substrates by a spray pyrolysis technique, followed by a solid state reaction. The results of Raman scattering measurements at room temperature show a series of vibrational optical modes within the range 300-900 cm -1 . The assignment of these modes was made by involving mainly the 2212 and 2223 phases and was confirmed by both X-ray diffraction and resistance in dependence of the temperature (R-T) measurements as well

  8. Raman scattering investigation of the water-bridge phenomenon: Some preliminary results

    Directory of Open Access Journals (Sweden)

    Francesco Aliotta

    2010-09-01

    Full Text Available A floating water-bridge is formed if a high-voltage direct current is applied between two beakers filled of chemically pure water. Raman spectra of the OH-stretching region have been obtained at ambient condition of temperature and pressure. These preliminary results seem to indicate that the hydrogen-bond structure is only slightly modified by the presence of the electric field applied to form the floating water-bridge in agreement with recent neutron scattering investigation. In fact, the polarized Raman spectrum of the pure water and of the water-bridge is almost superimposable. We are planning to carry out further spectroscopic analysis, at different thermodynamic conditions, for better understanding the role played by the hydrogen-bond in driving the formation of the floating water-bridge.

  9. RAMAN SCATTERING BY ACOUSTIC PHONONS AND STRUCTURAL PROPERTIES OF FIBONACCI, THUE-MORSE AND RANDOM SUPERLATTICES

    OpenAIRE

    Merlin , R.; Bajema , K.; Nagle , J.; Ploog , K.

    1987-01-01

    We report structural studies of incommensurate and random GaAs-AlAs superlattices using Raman scattering by acoustic phonons. Properties of the structure factor of Fibonacci and Thue-Morse superlattices are discussed in some detail.

  10. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Jemangin, M H; Harun, S W

    2013-01-01

    A novel S-band multimode Brillouin–Raman random fiber laser based on distributed feedback of Rayleigh scattered light is demonstrated. It relies on a short length, 7.7 km long angle-cleaved dispersion compensating fiber in a mirror-less open cavity. Two 1425 nm laser diodes at a modest operating power amplify a Brillouin pump (BP) signal, which in turn generates a multi-wavelength laser output through the stimulated Brillouin scattering. Eleven Brillouin Stokes lines, spanning from 1515.15 to 1516.00 nm, were obtained at a Raman pump power of 361.66 mW. Out of these, five odd Brillouin Stokes lines were generated with a flat peak power of about 0 dBm. (letter)

  11. Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2012-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is a promising multiple-pulse ultrafast spectroscopic tool whose simplest form utilizes an actinic pump, a Raman pump and a continuum probe. Here, we report that the transient absorption generated by the actinic pulse modulates the overall magnitude

  12. Wave-length-modulated femtosecond stimulated raman spectroscopy-approach towards automatic data processing

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2011-01-01

    A new wavelength modulator based on a custom-made chopper blade and a slit placed in the Fourier plane of a pulse shaper was used to detect explicitly the first derivative of the time-resolved femtosecond stimulated Raman spectroscopy (FSRS) signals. This approach resulted in an unprecedented

  13. Violation of the Cauchy-Schwarz inequality in collective Raman scattering

    International Nuclear Information System (INIS)

    Shumovskij, A.S.; Tran Quang

    1988-01-01

    The violation of Cauchy-Schwarz (C-S) inequality for correlations between spectrum components of the Reyleigh line and between components of the Stokes line in the collective Raman scattering is discussed. It is shown that the violation of the C-S inequailty occurs only in the Rayleigh line, moreover, for the sidebands of the Rayleigh line the violation of the C-S inequality takes place for a large number of atoms, which means that this quantum effect has the macroscopic nature. 20 refs.; 3 figs

  14. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  15. Electron Raman scattering in a HgS/CdS spherical quantum dot quantum well

    International Nuclear Information System (INIS)

    Zhong Qinghu; Lai Liping

    2013-01-01

    Electron Raman scattering (ERS) is investigated in a spherical HgS/CdS quantum dot quantum well (QDQW). The differential cross section (DCS) is calculated as a function of the scattering frequency and the sizes of QDQW. Single parabolic conduction and valence bands are assumed. The selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)

  16. Study of the low-frequency Raman scattering in NaNbO{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, E [Laboratoire Materiaux Optiques, Photonique et Systemes, FRE CNRS 2304, Universite de Metz et Supelec, 2 Rue E Belin, 57070 Metz Cedex (France); Fontana, M D [Laboratoire Materiaux Optiques, Photonique et Systemes, FRE CNRS 2304, Universite de Metz et Supelec, 2 Rue E Belin, 57070 Metz Cedex (France); Ayadi, M [Laboratoire de Physique des Materiaux et d' Electronique, Faculte des Sciences I, Ain Chock, Universite Hassan II, Casablanca (Morocco)

    2003-03-12

    The Raman scattering spectrum of the sodium niobate crystal, in both P and R phases, has been investigated from room temperature up to 440{sup d}eg C. The dependence of the low-frequency (LF) spectrum clearly reveals, for the first time, over a wide temperature range, the presence of a strong quasi-elastic scattering below a LF zone centre phonon. The phase transition mechanism is discussed, considering an order-disorder process induced by the relaxation of the Nb ions.

  17. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    Science.gov (United States)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  18. Experimental studies with a stimulated Raman backscatter probe beam in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Jiang, Z.M.; Meng, S.X.; Xu, Z.Z.

    1986-01-01

    This paper reports on the optical diagnostic experiments accomplished with a stimulated Raman backscatter probe beam set up recently in the sixbeam Nd:glass laser facility for laser fusion research at the Shanghai Insitute of Optics and Fine Mechanics

  19. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  20. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    International Nuclear Information System (INIS)

    Fasolato, C.; Domenici, F.; De Angelis, L.; Luongo, F.; Postorino, P.; Sennato, S.; Mura, F.; Costantini, F.; Bordi, F.

    2014-01-01

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10 9 is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm 2 as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  1. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  2. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  3. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  4. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  5. Nonlinear cyclotron absorption and stimulated scattering

    International Nuclear Information System (INIS)

    Chung, T.H.

    1986-01-01

    In electron cyclotron resonance heating (ECRH), wave sources heating a plasma linearly with respect to intensity; but as the intensity of ECRH gets larger, there might appear nonlinear effects that would result in cutoff of net absorption. This thesis uses quantum mechanical theory to derive a threshold microwave intensity for nonlinear absorption. The quantum mechanical theory estimates that the threshold microwave intensity for nonlinear absorption is about 10 5 watts/cm 2 for a microwave heating experiment (T/sub e/ = 100 ev, λ = 3,783 cm, B = 2.5 kG). This value seems large considering the present power capabilities of microwave sources (10 2 ∼ 10 3 watts/cm 2 ), but for a low temperature plasma, this threshold will go down. There is another nonlinear phenomenon called stimulated cyclotron scattering that enhances photon scattering by electrons gyrating in a magnetic field. This is expected to prevent incoming photons from arriving at the central region of the fusion plasma, where absorption mainly takes place. Theory based on a photon transport model predicts that the threshold intensity for the stimulated cyclotron scattering is about 10 4 watts/cm 2 for the plasma parameters mentioned above. This value seems large also, but a longer wavelength of microwaves and a larger magnitude magnetic field, which will be the case in reactor type facilities, will lower the threshold intensity to levels comparable with the currently developed microwave sources

  6. A surface enhanced Raman scattering spectroscopic study of UO{sub 2}{sup 2+} at trace concentration

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, Carola [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Carstensen, Lale [Technische Univ. Dresden (Germany); Firkala, T. [Helmholtz Institute Freiberg for Resource Technology, Freiberg (Germany); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Techniques for rapid screening of uranium in environmental samples are needed. This study entails the development of Surface-Enhanced Raman scattering (SERS) spectroscopy for analyzing uranium(VI) in aqueous media with improved sensitivity.

  7. Raman scattering in orthorhombic CuInS{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dzhagan, V.M.; Valakh, M.Ya. [Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv (Ukraine); Litvinchuk, A.P. [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX (United States); Kruszynska, M.; Kolny-Olesiak, J. [Energy and Semiconductor Research Laboratory, Department of Physics, Carl von Ossietzky University of Oldenburg (Germany); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg (Germany); Zahn, D.R.T. [Semiconductor Physics, Chemnitz University of Technology (Germany)

    2014-01-15

    We report the results of non-resonant and resonant Raman scattering in orthorhombic nanocrystalline CuInS{sub 2} semiconductor, supported by density functional first principle lattice dynamics calculations. A larger number of dominant phonon modes in comparison with standard tetragonal CuInS{sub 2} phases is shown to be associated with peculiarities of cation sublattice ordering and is the ''fingerprint'' of the corresponding structural polymorph. Good overall agreement is found between theoretical and experimental phonon mode frequencies. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Raman sidescatter instability in a nonuniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mostrom, M.A.

    1977-07-15

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an underdense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. Results are obtained by evaluating the ''Green's function'' response in time and space for the scattered electromagnetic waves assuming they are initiated by a ''delta-function'' source. We consider the case where the temporal growth dominates the plasma wave convection. Then the scattered electromagnetic waves are governed by a single second-order Helmholtz differential equation, in the position variable along the density gradient, with a complex potential having two simple zeros (turning points) and one simple pole.

  9. Soft mode in cubic PbTiO.sub.3./sub. by hyper-Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Hehlen, B.; Kania, A.; Gregora, Ivan

    2013-01-01

    Roč. 87, č. 6 (2013), "064101-1"-"064101-4" ISSN 1098-0121 R&D Projects: GA MŠk ME08109 Institutional support: RVO:68378271 Keywords : soft mode * PbTiO 3 * hyper-Raman scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  10. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  11. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  12. Ultraviolet-resonance femtosecond stimulated Raman study of the initial events in photoreceptor chromophore

    Directory of Open Access Journals (Sweden)

    Tahara T.

    2013-03-01

    Full Text Available Newly-developed ultraviolet-resonance femtosecond stimulated-Raman spectroscopy was utilized to study the initial structural evolution of photoactive yellow protein chromophore in solution. The obtained spectra changed drastically within 1 ps, demonstrating rapid in-plane deformations of the chromophore.

  13. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  14. Raman scattering measurements on a floating water bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ponterio, R C; Aliotta, F; Vasi, C; Fontanella, M E; Saija, F [CNR-Istituto per i Processi Chimico-Fisici, V.le F. D' Alcontres 37, 98158, Messina (Italy); Pochylski, M [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan (Poland)

    2010-05-05

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  15. Raman scattering measurements on a floating water bridge

    International Nuclear Information System (INIS)

    Ponterio, R C; Aliotta, F; Vasi, C; Fontanella, M E; Saija, F; Pochylski, M

    2010-01-01

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  16. Raman scattering measurements on a floating water bridge

    Science.gov (United States)

    Ponterio, R. C.; Pochylski, M.; Aliotta, F.; Vasi, C.; Fontanella, M. E.; Saija, F.

    2010-05-01

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  17. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-03-01

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  18. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yang Yong; Huang Zhengren; Jiang Dongliang; Tanemura, Masaki; Yamaguchi, Kohei; Li Zhiyuan; Huang Yingping; Kawamura, Go; Nogami, Masayuki

    2010-01-01

    A simple Ar + -ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10 8 , which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure. This work demonstrates a new technique for producing controllable and reproducible SERS substrates potentially applicable for chemical and biological assays.

  19. Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping

    Science.gov (United States)

    Cros, A.; Garro, N.; Cantarero, A.; Coraux, J.; Renevier, H.; Daudin, B.

    2007-10-01

    The strain state of GaN/AlN quantum dots grown on 6H-SiC has been investigated as a function of AlN capping thickness by three different techniques. On the one hand, resonant Raman scattering allowed the detection of the A1(LO) quasiconfined mode. It was found that its frequency increases with AlN deposition, while its linewidth did not evolve significantly. Available experiments of multiwavelength anomalous diffraction and diffraction anomalous fine structure on the same samples provided the determination of the wurtzite lattice parameters a and c of the quantum dots. A very good agreement is found between resonant Raman scattering and x-ray measurements, especially concerning the in-plane strain state. The results demonstrate the adequacy of Raman scattering, in combination with the deformation potential and biaxial approximations, to determine quantitatively values of strain in GaN quantum dot layers.

  20. Raman scattering as a tool for the evaluation of strain in GaN/AlN quantum dots: The effect of capping

    International Nuclear Information System (INIS)

    Cros, A.; Cantarero, A.; Garro, N.; Coraux, J.; Daudin, B.; Renevier, H.

    2007-01-01

    The strain state of GaN/AlN quantum dots grown on 6H-SiC has been investigated as a function of AlN capping thickness by three different techniques. On the one hand, resonant Raman scattering allowed the detection of the A 1 (LO) quasiconfined mode. It was found that its frequency increases with AlN deposition, while its linewidth did not evolve significantly. Available experiments of multiwavelength anomalous diffraction and diffraction anomalous fine structure on the same samples provided the determination of the wurtzite lattice parameters a and c of the quantum dots. A very good agreement is found between resonant Raman scattering and x-ray measurements, especially concerning the in-plane strain state. The results demonstrate the adequacy of Raman scattering, in combination with the deformation potential and biaxial approximations, to determine quantitatively values of strain in GaN quantum dot layers

  1. Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    International Nuclear Information System (INIS)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-01-01

    Ln 3 SbO 7 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222 1 space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La 3 SbO 7 ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln 3 SbO 7 ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222 1 is the correct one based on SHG and Raman data

  2. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  3. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  4. Detection of mast cell secretion by using surface enhanced Raman scattering

    Science.gov (United States)

    Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang

    2016-10-01

    Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.

  5. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  6. Anisotropic Raman scattering and mobility in monolayer 1T_d-ReS_2 controlled by strain engineering

    International Nuclear Information System (INIS)

    Zhou, Z.H.; Wei, B.C.; He, C.Y.; Min, Y.M.; Chen, C.H.; Liu, L.Z.; Wu, X.L.

    2017-01-01

    Highlights: • Symmetry breaking is achieved by strain that modulates the band structure and carrier population. • Mobility cunt-on rate can be enhanced by structural transformation. • The angle-dependent Raman spectrum of A_g-like, E_g-like and C_p models are used to discriminate and analysis structural anisotropy. • Strain engineering is a useful method to design the anisotropic Raman scattering and mobility. - Abstract: Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T (1T_d) ReS_2 with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of A_g-like, E_g-like and C_p models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS_2 so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device.

  7. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    Science.gov (United States)

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  8. Time-dependent theory of Raman scattering for systems with several excited electronic states: Application to a H+3 model system

    International Nuclear Information System (INIS)

    Heather, R.; Metiu, H.

    1989-01-01

    The time-dependent formulation of Raman scattering theory is used to study how nonadiabatic interactions affect the Raman spectrum of a model H + 3 system, which has two excited electronic states. We start with a formula derived by Heller which gives the Raman scattering cross section as the Fourier transform (over time) of a time-dependent overlap integral. The latter is calculated with a method proposed by Fleck, Morris, and Feit, and extended to curve crossing by Alvarellos and Metiu. In performing these calculations we are especially interested in displaying effects typical of systems having more than one upper state. If the incident laser populates two electronic states there are several ways (i.e., excite to state one and emit from state two, excite to state one, and emit from state one, etc.) by which the Raman process can reach a given final state, and this leads to quantum interference. This interference is manifested in the Raman cross section as approximate selection rules controlling which final states can be reached through the Raman process. These selection rules depend on the relative orientation of the transition dipoles that radiatively couple the ground electronic state with the excited electronic states. The magnitude of the nonadiabatic contribution to the Raman emission, e.g., the contribution from absorbing to state one and emitting from state two, can be determined from the polarization dependence of the Raman emission if the transition dipoles have neither parallel nor antiparallel relative orientation

  9. Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2014-10-01

    A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.

  10. Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2015-01-01

    Full Text Available The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with the theoretical calculation result, taking lattice mismatch and thermal mismatch into account together. This good agreement indicates that the UV near-resonant Raman scattering can be a direct and effective method to characterize the stress state in thin AlGaN barrier layer of AlGaN/GaN HEMT heterostructures.

  11. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  12. A consideration of Raman scattering in the estimation of the background in low energy TXRF

    International Nuclear Information System (INIS)

    Doi, M.; Shoji, T.; Yamada, T.; Wilson, R.

    2000-01-01

    Accurate estimation of the background in a TXRF spectrum is necessary for trace analysis. The tailing of large peaks in the spectrum is the main source of the background. Sum and escape peaks are also part of the background caused from an SSD detector. Estimation and subtraction of these peaks from the spectrum have been successful with sophisticated software. Raman scattering is another possible phenomenon that will give rise to a background peak in the spectrum. This paper explores this Raman phenomenon. We used the W-Mα line for the low energy TXRF experiments. The W-Mα is effective for exciting aluminum, magnesium and sodium atoms. The energy of the W-Mα line, 1.78 keV, is above and near the absorption edges of these elements and yet below the absorption edge of silicon, 1.84 keV. To obtain a monochromatic W-Mα line, we used a monochromator consisting of a total reflection mirror of silicon and a crystal of RAP(001). The reflectivity of this monochromator is smaller than that of a monochromator consisting of synthesized multilayers but the energy resolution is superior. We measured the spectra from a blank silicon wafer and a silicon wafer covered with a titanium layer. A peak caused by the elastic scattering of the incident W-Mα line is the main peak that appeared at 1.78 keV in each spectrum. There is another peak at 1.65 keV in the spectrum from the blank wafer. The ratio of the intensity of this peak to that of the main peak increases with the glancing angle. The peak at 1.65 keV does not appear in the spectrum taken from a silicon wafer covered with a titanium layer. There are no characteristic x-rays which have this same energy. Also, Compton scattering cannot account for a peak at that energy. We calculated energies of diffracted x-rays by the silicon crystal assuming that x-rays having a continuous spectrum are included in the incident x-rays. However, there are no diffracted x-rays which have an energy in this range. The binding energy of

  13. Development of a tunable femtosecond stimulated raman apparatus and its application to beta-carotene.

    Science.gov (United States)

    Shim, Sangdeok; Mathies, Richard A

    2008-04-17

    We have developed a tunable femtosecond stimulated Raman spectroscopy (FSRS) apparatus and used it to perform time-resolved resonance Raman experiments with Raman excitation, the resonant S1 state modes are enhanced by a factor of approximately 200 compared with 800 nm FSRS experiments. The improved signal-to-noise ratios facilitate the measurement of definitive time constants for beta-carotene dynamics including the 180 fs appearance of the S1 vibrational features due to direct internal conversion from S2 and their characteristic 9 ps decay to S0. By tuning the FSRS system to 590 nm Raman excitation, we are able to selectively enhance vibrational features of the hot ground state S hot 0 and monitor its approximately 5 ps cooling dynamics. This tunable FSRS system is valuable because it facilitates the direct observation of structural changes of selected resonantly enhanced states and intermediates during photochemical and photobiological reactions.

  14. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  15. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  16. Identification of resonant x-ray Raman scattering using SR- and conventional TXRF

    International Nuclear Information System (INIS)

    Zhu, Q.; Burrow, B.; Baur, K.; Brennan, S.; Pianetta, P.

    2000-01-01

    Analyzing and control the surface contamination are important steps in the processing of integrated circuits. The need for using non-destructive analysis techniques either as laboratory or in-line inspection tools has increased dramatically in the past. Total reflection x-ray fluorescence (TXRF) spectroscopy is one of the best choices to fill such needs. Earlier works have established the phenomenon of resonant x-ray Raman scattering with excitation energy very close to the Si-K absorption edge (1.74 keV). In this work, similar phenomena are identified in W-silicide and GaAs substrate with the excitation of W-Lβ 9.67 keV) line, a choice of x-ray source for almost all the conventional TXRF systems nowadays. The observation of the resonant Raman peak is clearly the result of close proximity of W-L and As-K absorption edges to the excitation energy. Synchrotron TXRF measurements are performed by tuning the excitation energy. The resonant Raman peak shifts accordingly with the excitation energy, along with the drastic change of its intensity below and above the absorption edge of W-L or As-K in the respective samples. The current analysis provides new perspective for analyzing W- and As-containing samples, which suggests Raman background correction in conventional TXRF with W-Lβ excitation. (author)

  17. Thermally stimulated scattering in plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    this experiment local heat conduction is of little importance and the dynamic evolution for the electron temperature is dominated by heating and energy exchange with the ion component. These features are incorporated in the analysis. The resulting set of equations gives a growth rate and characteristic scale size......A theory for stimulated scattering of a laser beam is formulated where the dominant nonlinearity is the ohmic heating of the plasma. The analysis is carried out with particular reference to experimental investigations of CO2 laser heating of linear discharge plasma. In the conditions characterizing...

  18. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak

    2013-01-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering su...

  19. Mechanism of Pseudogap Detected by Electronic Raman Scattering: Phase Fluctuation or Hidden Order?

    International Nuclear Information System (INIS)

    Hong-Yan, Lu; Yuan, Wan; Xiang-Mei, He; Qiang-Hua, Wang

    2009-01-01

    We study the electronic Raman scattering in the cuprates to distinguish the two possible scenarios of the pseudo-gap normal state. In one scenario, the pseudogap is assumed to be caused by phase fluctuations of the preformed Cooper pairs. We find that pair-breaking peaks appear in both the B 1g and B 2g Raman channels, and they are smeared and tend to shift to the same energy with the increasing strength of phase fluctuations. Thus both channels reflect the same pairing energy scale, irrespectively of the doping level. In another scenario, the pseudogap is assumed to be caused by a hidden order that competes with the superconducting order. As an example, we assume that the hidden order is the d-density-wave (DDW) order. We find analytically and numerically that in the DDW normal state there is no Raman peak in the B 2g channel in a tight-binding model up to the second nearest-neighbor hopping, while the Raman peak in the B 1g channel reflects the energy gap caused by the DDW order. This behavior is in agreement with experiments in the pseudogap normal state. To gain further insights, we also calculate the Raman spectra in the DDW+SC state. We study the doping and temperature dependence of the peak energy in both channels and find a two-gap behavior, which is in agreement with recent Raman experiments. Therefore, our results shed light on the hidden order scenario for the pseudogap

  20. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  1. Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering

    OpenAIRE

    Yanli Liu; Xifeng Yang; Dunjun Chen; Hai Lu; Rong Zhang; Youdou Zheng

    2015-01-01

    The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV) near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO) phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with th...

  2. Raman Amplification with a Flying Focus

    Science.gov (United States)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  3. Surface-Enhanced Raman Scattering Activity of Ag/graphene/polymer Nanocomposite Films Synthesized by Laser Ablation

    Czech Academy of Sciences Publication Activity Database

    Siljanovska Petreska, G.; Blazevska-Gilev, J.; Fajgar, Radek; Tomovska, R.

    2014-01-01

    Roč. 564, AUG 1 (2014), s. 115-120 ISSN 0040-6090 Grant - others:NATO SfP(US) 984399 Institutional support: RVO:67985858 Keywords : laser ablation * surface-enhanced raman scattering * nanocomposite s * graphene * rhodamine 6G Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.759, year: 2014

  4. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  5. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  6. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  7. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    International Nuclear Information System (INIS)

    Ly, Nguyen Hoang; Joo, Sang-Woo; Cho, Kwang Hwi

    2015-01-01

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn 2+ , Mn 2+ , Fe 2+ , Na + , K + , Ca 2+ , Mg 2+ , NH 4+ , and Co 2+ . This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3 + in aqueous solutions above 1 mM.

  8. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    Directory of Open Access Journals (Sweden)

    H. Y. Fu

    2015-08-01

    Full Text Available Observations of secondary radiation, stimulated electromagnetic emission (SEE, produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF radio waves are considered. The High Frequency Active Auroral Research Program (HAARP facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS and stimulated ion Bernstein scatter (SIBS in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  9. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  10. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.J. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering; Chen, X.L.; Tu, Q.Y.; Yang, Z.; Xu, Y.P.; Hu, B.Q. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Li, H.J. [Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering

    2001-05-01

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials. (orig.)

  11. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  12. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  13. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  14. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  15. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  16. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film

    Science.gov (United States)

    Cho, Hsun-Wei; Liao, Kuo-Lun; Yang, Jih-Sheng; Wu, Jih-Jen

    2018-05-01

    Photoelectrochemical (PEC) performances of the anatase TiO2 films hydrothermally grown on the seeded fluorine-doped tin oxide (FTO) substrates are examined in this work. Structural characterizations of the TiO2 films were conducted using Raman scattering spectroscopy. Although there is no obvious rutile peak appearing, an asymmetrical peak centered at ∼399 cm-1 was observed in the Raman spectra of the TiO2 films deposited either on the low-temperature-formed seed layers or with low concentrations of Ti precursor. The asymmetrical Raman shift can be deconvoluted into the B1g mode of anatase and Eg mode of rutile TiO2 peaks centered at ∼399 cm-1 and ∼447 cm-1, respectively. Therefore, a minute quantity of rutile phase was inspected in the anatase film using Raman scattering spectroscopy. With the same light harvesting ability, we found that the PEC performance of the anatase TiO2 film was significantly enhanced as the minute quantity of rutile phase existing in the film. It is ascribed to the formation of the anatase/rutile heterojunction which is beneficial to the charge separation in the photoanode.

  17. Stimulated resonant scattering at stressed fused silica surface

    International Nuclear Information System (INIS)

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  18. Q-branch Raman scattering and modern kinetic thoery

    Energy Technology Data Exchange (ETDEWEB)

    Monchick, L. [The Johns Hopkins Univ., Laurel, MD (United States)

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  19. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  20. Electron Raman scattering in semiconductor quantum wire in external magnetic field: Froehlich interaction

    International Nuclear Information System (INIS)

    Betancourt-Riera, Ri.; Nieto Jalil, J.M.; Betancourt-Riera, Re.; Riera, R.

    2009-01-01

    The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement regarding phonon-assisted transitions, is calculated. We assume single parabolic conduction band and present a description of the phonon modes of cylindrical structures embedded in another material using the Froehlich phonon interaction. To illustrate the theory we use a GaAs/Al 0.35 Ga 0.75 As system. The emission spectra are discussed for different scattering configurations and the selection rules for the processes are also studied. The magnetic field distribution is considered constant with value B 0 inside of the wire, and zero outside.

  1. Imaging with extrinsic Raman labels

    NARCIS (Netherlands)

    Sijtsema, N M; Duindam, J J; Puppels, G J; Otto, C; Greve, J

    1996-01-01

    In two separate examples we demonstrate the use of extrinsic Raman scattering probes for imaging of biological samples. First, the distribution of cholesterol in a rat eye Lens is determined with the use of the Raman scattered light from filipin, a molecule which binds specifically to cholesterol.

  2. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  3. Hyper-Raman scattering: new prospects for the description of the local structure of complex perovskites

    Czech Academy of Sciences Publication Activity Database

    Al-Zein, A.; Hlinka, Jiří; Rouquette, J.; Kania, A.; Hehlen, B.

    2011-01-01

    Roč. 109, č. 12 (2011), 124114/1-124114/5 ISSN 0021-8979 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : hyper -Raman scattering * PMN * relaxor * ferroelectric phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  4. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  5. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  6. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  7. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  8. Vibrational dynamics of amorphous metals by inelastic neutron and raman scattering

    International Nuclear Information System (INIS)

    Lustig, N.E.

    1986-01-01

    Time-of-flight inelastic neutron scattering and Raman measurements were performed on amorphous (a-) metals. The neutron-weighted vibrational density of states, G(E), obtained for a-Fe 78 P 22 , a-Ni 82 B 18 and a-Ni 67 B 33 transition metal metalloid alloys (TM-m), indicated two major vibrational bands: a low frequency acoustic-like band and a high frequency optic-like band, derived from TM-TM and TM-m interactions, respectively. Similar neutron measurements were performed on the corresponding polycrystalline (c-) alloys, c-Fe 3 P and c-Ni 2 B. A comparison of the amorphous and crystalline densities of states indicates the elimination of sharp features and the addition of vibrational states at low and high frequencies upon amorphization. The experimental G(E) results for a-Fe 78 P 22 are in good agreement with the theoretically predicted spectrum. A comparison between the a-Ni 67 B 33 and the phenomenologically broadened c-Ni 2 B spectrum indicates a change in the short-range order. This finding is consistent with structural measurements on this alloy. Raman measurements were carried out using interference enhanced Raman spectroscopy (IERS) on thin film Ni-B alloys. The measured spectra provide information about the weighted phonon density of states, and is in good agreement with the neutron results

  9. Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.

    Science.gov (United States)

    Sen, Mrinal; Das, Mukul K

    2013-12-01

    In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.

  10. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (CW diode lasers.

    Science.gov (United States)

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns.

  11. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  12. In situ identification of high-performance thin-layer chromatography spots by fourier transform surface-enhanced Raman scattering

    Science.gov (United States)

    Koglin, Eckhardt; Kramer, Hella; Sawatski, Juergen; Lehner, Carolin; Hellman, Janice L.

    1994-01-01

    FT-SERS has been used to identify samples supported on high-performance thin-layer chromatography plates. The TLC plates were sprayed with colloidal silver solutions which resulted in enhancement of the FT-Raman scattering of these biologically and environmentally important compounds.

  13. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    Science.gov (United States)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  14. Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process

    International Nuclear Information System (INIS)

    Lo, Shih-Shou; Huang, Dison; Tu, Chun Hsiang; Hou, Chia-Hung; Chen, Chii-Chang

    2009-01-01

    This study synthesizes Al-doped ZnO (AZO) nanoparticles using a chemical colloid process. Raman scattering analysis shows that Al doping increases the lattice defects and induces Raman vibration modes of 651 cm -1 . The Raman shift of the active mode E 2 (high) of AZO nanoparticles shows the presence and increase in the stress in nanoparticles when the Al dopant concentration increases. Room-temperature photoluminescence (RT-PL) spectra of synthesized AZO nanoparticles exhibit strong UV emissions near the band edges. The RT-PL peak shifts to a higher photon energy region as the Al concentration increases, indicating a broadening of the band gap.

  15. Raman laser amplification in preformed and ionizing plasmas

    International Nuclear Information System (INIS)

    Clark, D S; Fisch, N J

    2004-01-01

    The recently proposed backward Raman laser amplification scheme utilizes the stimulated Raman backscattering in plasma of a long pumping laser pulse to amplify a short, frequency downshifted seed pulse. The output intensity for this scheme is limited by the development of forward Raman scattering (FRS) or modulational instabilities of the highly amplified seed. Theoretically, focused output intensities as high as 1025 W/cm 2 and pulse lengths of less than 100 fs could be accessible by this technique for 1 (micro)m lasers--an improvement of 10 4 -10 5 in focused intensity over current techniques. Simulations with the particle-in-cell (PIC) code Zohar are presented which investigate the effects of FRS and modulational instabilities and of Langmuir wave breaking on the output intensity for Raman amplification. Using the intense seed pulse to photoionize the plasma simultaneous with its amplification (and hence avoid plasmas-based instabilities of the pump) is also investigated by PIC simulations. It is shown that both approaches can access focused intensities in the 1025 W/cm 2 range

  16. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  17. Transformation of photoluminescence and Raman scattering spectra of Si-rich Al{sub 2}O{sub 3} films at thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vergara Hernandez, E. [UPIITA-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Jedrzejewski, J.; Balberg, I. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel)

    2014-11-15

    The effect of thermal annealing on optical properties of Al{sub 2}O{sub 3} films with the different Si contents was investigated using the photoluminescence and Raman scattering methods. Si-rich Al{sub 2}O{sub 3} films were prepared by RF magnetron co-sputtering of Si and Al{sub 2}O{sub 3} targets on long quartz glass substrates. Photoluminescence (PL) spectra of as grown Si-rich Al{sub 2}O{sub 3} films are characterized by four PL bands with the peak positions at 2.90, 2.70, 2.30 and 1.45 eV. The small intensity Raman peaks related to the scattering in the amorphous Si phase has been detected in as grown films as well. Thermal annealing at 1150 °C for 90 min stimulates the formation of Si nanocrystals (NCs) in the film area with the Si content exceeded 50%. The Raman peak related to the scattering on optic phonons in Si NCs has been detected for this area. After thermal annealing the PL intensity of all mentioned PL bands decreases in the film area with smaller Si content (≤50%) and increases in the film area with higher Si content (≥50%). Simultaneously the new PL band with the peak position at 1.65 eV appears in the film area with higher Si content (≥50%). The new PL band (1.65 eV) is attributed to the exciton recombination inside of small size Si NCs (2.5–2.7 nm). In bigger size Si NCs (3.5–5.0 nm) the PL band at 1.65 eV has been not detected due to the impact, apparently, of elastic strain appeared at the Si/Al{sub 2}O{sub 3} interface. Temperature dependences of PL spectra for the Si-rich Al{sub 2}O{sub 3} films have been studied in the range of 10–300 K with the aim to reveal the mechanism of recombination transitions for the mentioned above PL bands 2.90, 2.70, 2.30 and 1.45 eV in as grown films. The thermal activation of PL intensity and permanent PL peak positions in the temperature range 10–300 K permit to assign these PL bands to defect related emission in Al{sub 2}O{sub 3} matrix.

  18. Surface-enhanced Raman scattering in art and archaeology

    Science.gov (United States)

    Leona, Marco

    2005-11-01

    The identification of natural dyes found in archaeological objects and in works of art as textile dyes and lake pigments is a demanding analytical task. To address the problems raised by the very low dye content of dyed fibers and lake pigments, and by the requirement to remove only microscopic samples, surface enhanced Raman scattering techniques were investigated for application to museum objects. SERS gives excellent results with the majority of natural dyes, including: alizarin, purpurin, laccaic acid, carminic acid, kermesic acid, shikonin, juglone, lawsone, brazilin and brazilein, haematoxylin and haematein, fisetin, quercitrin, quercetin, rutin, and morin. In this study, limits of detection were determined for representative dyes and different SERS supports such as citrate reduced Ag colloid and silver nanoisland films. SERS was successfully used to identify natural madder in a microscopic fragment from a severely degraded 11th Century Byzantine textile recently excavated in Amorium, Turkey.

  19. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    Science.gov (United States)

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  20. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery.

    Science.gov (United States)

    Hirose, K; Aoki, T; Furukawa, T; Fukushima, S; Niioka, H; Deguchi, S; Hashimoto, M

    2018-02-01

    Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.

  1. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  2. Microscope Raman scattering and X-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides

    International Nuclear Information System (INIS)

    Zhang, De-Long; Siu, G.G.; Pun, E.Y.B.

    2005-01-01

    The crystalline phase within guiding layers of near-stoichiometric strip and planar Ti:LiNbO 3 wave-guides, prepared by the method of simultaneous work of vapour transport equilibration (VTE) treatment and indiffusion of Ti film, was studied by combined confocal microscope Raman scattering and X-ray powder diffraction. The results show that the strip and planar waveguide layers still retain the LiNbO 3 phase and no other non-LiNbO 3 phases can be identified within the guiding layer. Li/Nb ratios inside and outside the strip and planar waveguide layers were determined from the microscope Raman scattering results and compared to those obtained from the measured optical absorption edge. It is shown that the Li/Nb ratios are homogeneous within the waveguide layer and are close inside and outside the waveguide layer. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  4. Self-focusing and Raman scattering of laser pulses in tenuous plasmas

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Mora, P.

    1993-01-01

    The propagation and self-focusing of short, intense laser pulses in a tenuous plasma is studied both analytically and numerically. Specifically, pulses of length of the order of a few plasma wavelengths and of intensity, which is large enough for relativistic self-focusing to occur, are considered. Such pulses are of interest in various laser plasma acceleration schemes. It is found that these pulses are likely to be strongly affected by Raman instabilities. Two different regimes of instability, corresponding to large and small scattering angles, are found to be important. Small-angle scattering is perhaps the most severe since it couples strongly with relativistic self-focusing, leading the pulses to acquire significant axial and transverse structure in a time of the order of the self-focusing time. Thus it will be difficult to propagate smooth self-focused pulses through tenuous plasmas for distances longer than the Rayleigh length, except for pulse duration of the order of the plasma period

  5. Anisotropic Raman scattering and mobility in monolayer 1T{sub d}-ReS{sub 2} controlled by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.H.; Wei, B.C.; He, C.Y.; Min, Y.M.; Chen, C.H.; Liu, L.Z., E-mail: lzliu@nju.edu.cn; Wu, X.L., E-mail: hkxlwu@nju.edu.cn

    2017-05-15

    Highlights: • Symmetry breaking is achieved by strain that modulates the band structure and carrier population. • Mobility cunt-on rate can be enhanced by structural transformation. • The angle-dependent Raman spectrum of A{sub g}-like, E{sub g}-like and C{sub p} models are used to discriminate and analysis structural anisotropy. • Strain engineering is a useful method to design the anisotropic Raman scattering and mobility. - Abstract: Regulation of electronic structure and mobility cut-on rate in two-dimensional transition metal dichalcogenides (TMDs) has attracted much attention because of its potential in electronic device design. The anisotropic Raman scattering and mobility cut-on rate of monolayer unique distorted-1T (1T{sub d}) ReS{sub 2} with external strain are determined theoretically based on the density function theory. The angle-dependent Raman spectrum of A{sub g}-like, E{sub g}-like and C{sub p} models are used to discriminate and analysis structural anisotropy; the strain is exploited to adjust the structural symmetry and electronic structure of ReS{sub 2} so as to enhance mobility cut-on rate to almost 6 times of the original value. Our results suggest the use of the strain engineering in high-quality semiconductor switch device.

  6. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  8. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  9. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate

    International Nuclear Information System (INIS)

    Wang Na; Yang Haifeng; Zhu Xuan; Zhang Rui; Wang Yao; Huang Guanfeng; Zhang Zongrang

    2009-01-01

    We report a novel method of synthesizing a kind of silver nanoparticles aided by the inositol hexakisphosphoric micelle as a soft template and stabilizer. By controlling the reaction time, UV-vis and TEM observations of the size growth of the nanoparticles are performed. Careful examinations of surface enhanced Raman scattering (SERS) spectra of 2-mercaptopyridine (2-Mpy) on the as-produced silver nanoparticles exhibit very stable and reproducible Raman signals within about 4 months.

  10. Stimulated Raman scattering by an intense relativistic electron beam in a long rippled magnetic field

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Schlesinger, S.P.

    1977-01-01

    For the first time, the parametric coupling of the negative-energy cyclotron and space-charge modes to a fast coaxial waveguide structure is observed. The coaxial waveguide smooth center conductor is internally loaded to maintain a 5% ripple of 1.4-, 1.6-, or 2.0-cm periods on the background axial magnetic field throughout the interaction region of 70 cm. The parametric coupling may be considered a stimulated scattering process with the rippled magnetic field of zero frequency in the lab frame appearing as an electromagnetic pump wave in the beam frame, with 30-MW/cm 2 power density imparting to the electrons a quiver velocity V/sub os/ approx. = 0.1c. As predicted by theory, the frequency of the microwave radiation generated by the negative-energy cyclotron mode decreases with increasing magnetic field while remaining constant for the negative-energy space-charge mode. Power levels from 1 to 5 MW have been measured at mm and cm wavelengths. Radiation at frequencies of 2γ 2 V/L, where V and L are the beam velocity and ripple period, respectively, has been observed at high magnetic fields with an exponential-growth rate consistent with parametric coupling theory. This mechanism could be employed as a tunable generator of millimeter and submillimeter wavelength radiation

  11. Stimulated Raman scattering by an intense relativistic electron beam in a long rippled magnetic field

    International Nuclear Information System (INIS)

    Efthimion, P.C.

    1977-01-01

    For the first time, the parametric coupling of the negative energy cyclotron and space-charge modes to a fast coaxial waveguide structure is observed. The coaxial waveguide smooth center conductor is internally loaded to maintain a 5% ripple of 1.4, 1.6, or 2.0 cm periods on the background axial magnetic field throughout the interaction region of 70 cm. The parametric coupling may be considered a stimulated scattering process with the rippled magnetic field of zero frequency in the laboratory frame appearing as an electromagnetic pump wave in the beam frame, with 30 MW/cm 2 power density imparting to the electrons a quiver velocity V/sub os/ = 0.1 c. As predicted by theory, the frequency of the microwave radiation generated by the negative energy cyclotron mode decreases with increasing magnetic field while remaining constant for the negative energy space-charge mode. Power levels from 1 to 5 MW have been measured at mm and cm wavelengths. Radiation at frequencies 2γ 2 V/L, where V and L are the beam velocity and ripple period respectively, has been observed at high magnetic fields with an exponential growth rate consistent with parametric coupling theory. This mechanism could be employed as a tunable generator of submillimeter and infrared wavelength radiation

  12. Quantifying Local Thickness and Composition in Thin Films of Organic Photovoltaic Blends by Raman Scattering

    KAUST Repository

    Rodríguez-Martínez, Xabier

    2017-07-06

    We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility to make quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

  13. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  14. Remote detection of chem/bio hazards via coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    2017-09-12

    hour per response, including the time for reviewing lnstnJctions, searching existing data sources, gathering and maintaining the data needed, and... time remote detection of hazardous microparticles in atmosphere and to evaluate the range of distances for typical species and the parameters of laser...detectable photons from a prototype molecule at a distance. 1S. SUBJECT TERMS Stimulated Raman scattering, Remote detection, biochemical agents, explosives

  15. Evidence for anisotropic excitonlike enhancement of the Raman scattering from La2CuO4

    International Nuclear Information System (INIS)

    Weber, W.H.; Peters, C.R.; Wanklyn, B.M.; Chen, C.; Watts, B.E.

    1988-01-01

    Polarized Raman studies on oriented single crystals of La 2 CuO 4 yield α/sub z//sub z/ spectra with narrow lines at 429 and 228 cm/sup -1/ that are identified as the two A 1 /sub g/ modes expected for the tetragonal K 2 NiF 4 structure; α/sub x//sub z/ spectra with one line at 228 cm/sup -1/ that has E/sub g/ symmetry; and α/sub x//sub x/ spectra with numerous peaks that are due to normally forbidden phonon excitations. The α/sub x//sub x/ spectra also show strong second-order features, suggesting a highly anisotropic, excitonlike enhancement of the Raman scattering

  16. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    hydroxyapatite ; 1073cm-1, carbonate from carbonate apatite; 1442cm-1, cholesterol and cholesterol esters. 17 Table 1. Tentative assignment and Raman peak...allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and... hydroxyapatite are located within the vessel wall. Similarly, Fig. 5 maps the Raman intensity of the peak at 1073cm-1, which is indicative of

  17. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...

  18. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    International Nuclear Information System (INIS)

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  19. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.

    Science.gov (United States)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic 'hot-spots' in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

  20. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  1. Electron transfer dynamics of triphenylamine dyes bound to TiO2 nanoparticles from femtosecond stimulated Raman spectroscopy

    KAUST Repository

    Hoffman, David P.; Lee, Olivia P.; Millstone, Jill E.; Chen, Mark S.; Su, Timothy A.; Creelman, Mark; Frechet, Jean; Mathies, Richard A.

    2013-01-01

    Interfacial electron transfer between sensitizers and semiconducting nanoparticles is a crucial yet poorly understood process. To address this problem, we have used transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS

  2. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  3. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    Science.gov (United States)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  4. Perpendicular State of an Electronically Excited Stilbene: Observation by Femtosecond-Stimulated Raman Spectroscopy.

    Science.gov (United States)

    Quick, Martin; Dobryakov, Alexander L; Ioffe, Ilya N; Granovsky, Alex A; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2016-10-20

    In the photoisomerization path of stilbene, a perpendicular state P on the S 1 potential energy surface is expected just before internal conversion through a conical intersection S 1 /S 0 . For decades the observation of P was thwarted by a short lifetime τ P in combination with slow population flow over a barrier. But these limitations can be overcome by ethylenic substitution. Following optical excitation of trans-1,1'-dicyanostilbene, P is populated significantly (τ P = 27 ps in n-hexane) and monitored by an exited-state absorption band at 370 nm. Here we report stimulated Raman lines of P. The strongest, at 1558 cm -1 , is attributed to stretching vibrations of the phenyl rings. Transient electronic states, resonance conditions, and corresponding Raman signals are discussed.

  5. Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Weijie Hua

    2016-03-01

    Full Text Available Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns. We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.

  6. Temperature dependence of Raman scattering in β-(AlGa2O3 thin films

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2016-01-01

    Full Text Available We report a detailed investigation on temperature-dependent Raman scattering of β-(AlGa2O3 thin films with different Al content (0-0.72 under the temperature range of 77-300 K. The temperature-dependent Raman shifts and linewidths of the phonon modes were obtained by employing Lorentz fitting. The linewidths broadening of phonon modes with the temperature can be well explained by a model involving the effects of thermal expansion, lattice-mismatch-induced strain, and decay of optical phonon into two and three phonons. It is clearly demonstrated dependence of the linewidths and decay process on the Al content in β-(AlGa2O3 thin films, which can provide an experimental basis for realization of (AlGa2O3-based optoelectronic device applications.

  7. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    Science.gov (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  8. A high-resolution two-pulse coherent anti-Stokes Raman scattering spectrum using a spectral amplitude modulation

    International Nuclear Information System (INIS)

    Lu, Chenhui; Zhang, Shian; Wu, Meizhen; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-01-01

    Femtosecond coherent anti-Stokes Raman scattering (CARS) spectra suffer from low spectral resolution because of the broadband laser spectrum. In this paper, we propose a feasible scheme to achieve a high-resolution two-pulse CARS spectrum by shaping both the pump and probe pulses using rectangular amplitude modulation. We show that a narrowband hole in the CARS spectrum can be created by the amplitude-shaped laser pulse, the position of which is correlated with the Raman resonant frequency of the molecule. Thus, by observing holes in the CARS spectrum, we are able to obtain a high-resolution CARS spectrum and the energy-level diagram of the molecule. (paper)

  9. Magnetic Fe{sub 3}O{sub 4}-Au core-shell nanostructures for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.A.; Adams, S.A.; Zhang, J.Z. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Lopez-Luke, T. [Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Cento de Investigaciones en Optica, A.P. 1-948 Leon, Gto. 37150 (Mexico); Torres-Castro, A. [Universidad Autonoma de Nuevo Leon, A.P. 126-F, Monterrey, NL, 66450 (Mexico)

    2012-11-15

    The synthesis, structural and optical characterization, and application of superparamagnetic and water-dispersed Fe{sub 3}O{sub 4}-Au core-shell nanoparticles for surface enhanced Raman scattering (SERS) is reported. The structure of the nanoparticles was determined by scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). STEM images of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles reveal an average diameter of 120 nm and a high degree of surface roughness. The nanoparticles, which display superparamagnetic properties due to the core Fe{sub 3}O{sub 4} material, exhibit a visible surface plasmon resonance (SPR) peaked at 580 nm due to the outer gold shell. The nanoparticles are used as a substrate for surface enhanced Raman scattering (SERS) with rhodamine 6G (R6G) as a Raman reporter molecule. The SERS enhancement factor is estimated to be on the order of 10{sup 6}, which is {proportional_to} 2 times larger than that of conventional gold nanoparticles (AuNPs) under similar conditions. Significantly, magnetically-induced aggregation of the Fe{sub 3}O{sub 4}-Au core-shell nanoparticles substantially enhanced SERS activity compared to non-magnetically-aggregated Fe{sub 3}O{sub 4}-Au nanoparticles. This is attributed to both increased scattering from the aggregates as well as ''hot spots'' due to more junction sites in the magnetically-induced aggregates. The magnetic properties of the Fe{sub 3}O{sub 4} core, coupled with the optical properties of the Au shell, make the Fe{sub 3}O{sub 4}-Au nanoparticles unique for various potential applications including biological sensing and therapy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  11. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  12. Resonant X-ray Raman scattering for Al, Si and their oxides

    International Nuclear Information System (INIS)

    Szlachetko, J.; Berset, M.; Dousse, J.-Cl.; Fennane, K.; Szlachetko, M.; Barrett, R.; Hoszowska, J.; Kubala-Kukus, A.; Pajek, M.

    2005-01-01

    High-resolution measurements of the resonant X-ray Raman scattering (RRS) of Al and Si and their oxides were performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, using a von Hamos Bragg-type curved crystal spectrometer. To probe the influence of chemical effects on the RRS X-ray spectra, Al 2 O 3 and SiO 2 samples were also investigated. The X-ray RRS spectra were measured at different photon beam energies tuned below the K-absorption edge. The measured spectra are compared to results of RRS calculations based on the second-order perturbation theory within the Kramers-Heisenberg approach

  13. On the assessment of hydroxyapatite fluoridation by means of Raman scattering

    International Nuclear Information System (INIS)

    Campillo, M.; Valiente, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goni, A. R.

    2010-01-01

    Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.

  14. On the assessment of hydroxyapatite fluoridation by means of Raman scattering

    Science.gov (United States)

    Campillo, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goñi, A. R.; Valiente, M.

    2010-06-01

    Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.

  15. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  16. Measurement of the stimulated thermal Rayleigh scattering instability

    International Nuclear Information System (INIS)

    Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.

    1989-04-01

    Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory

  17. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  18. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  19. Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}.

    Science.gov (United States)

    Gretarsson, H; Sung, N H; Höppner, M; Kim, B J; Keimer, B; Le Tacon, M

    2016-04-01

    We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

  20. Surface-enhanced Raman scattering of 4-aminobenzenethiol sandwiched between silver nanoparticles and gold micro-powders

    International Nuclear Information System (INIS)

    Choi, Jeong Yong; Lee, Hyang Bong; Kim, Kwan; Shin Kuan Soo

    2015-01-01

    The surface-enhanced Raman scattering (SERS) activity of micrometer-sized gold (μAu) powders is far weaker than that of micrometer-sized silver (μAg) powders. The Raman peaks of organics assembled on μAu powders can, however, be enhanced dramatically by depositing Ag nanoparticles thereon to form the so-called sandwich structures. This is demonstrated in this work by using 4-aminobenzenthiol (4-ABT) as the prototype organic. Besides, the b_2-type bands of 4-ABT are found to be enhanced more than the a1-type band, and this is presumed to be a result of the favorable Ag-to-Au charge transfer configuration of the sandwich structure (Ag/4-ABT/μAu), associated with the chemical enhancement mechanism in SERS

  1. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.M. [Univ. of California, Los Angeles (United States)

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  2. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  3. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  4. Combined piezoresponse force microscopyand Raman scattering investigation of domainboundaries in BiFeO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Borodavka, Fedir; Pokorný, Jan; Hlinka, Jiří

    2016-01-01

    Roč. 89, 7-8 (2016), 746-751 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : phase transition * BiFeO 3 * Raman scattering * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016

  5. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    Maximov, A.V.; Ourdev, I.G.; Rozmus, W.; Capjack, C.E.; Mounaix, Ph.; Huller, S.; Pesme, D.; Tikhonchuk, V.T.; Divol, L.

    2000-01-01

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  6. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  7. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  8. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  9. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  10. Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Czarnetzki, Uwe

    2010-01-01

    Electric field measurements at near-atmospheric pressure environments based on electric-field induced Raman scattering are applied to repetitively pulsed nanosecond discharges. The results have revealed that the peak electric field near the centre of the gap is almost independent of the applied voltage. Minimum sustainable voltage measurements suggests that, at each discharge pulse, charged particles that remain from the previous pulse serve as discharge seeds and play an important role for generation of uniform glow-like discharges.

  11. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    Science.gov (United States)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  12. MicroRaman scattering from polycrystalline CuInS{sub 2} films: structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Garcia, J.; Marcos-Ruzafa, J.; Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R. [Barcelona Univ. (Spain). Dept. de Fisica Aplicada i Electronica; Scheer, R. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    2000-02-21

    CuInS{sub 2} thin films co-evaporated with gradual chemical composition have been characterised by microRaman scattering measurements. For the Cu rich region, the mode A{sub 1} at about 290 cm{sup -1} corresponding to the chalcopyrite phase is dominant. For the Cu poor region, this mode is accompanied by a strong contribution at about 306 cm{sup -1}. Besides, the mode A{sub 1} is broadened and shifted towards higher frequencies, which suggests an inferior structural quality of the Cu poor region. Decreasing the temperature of deposition leads to a dramatic decrease of structural quality in both In and Cu rich regions. The correlation between the appearance of the 306 cm{sup -1} mode and the spectral features of the mode A{sub 1} suggest the higher frequency mode is not related to the excess In in the layer but to structural effects as lattice disorder. Combined in-depth Auger electron spectroscopy and Raman scattering measurements have also shown the presence of a more complex structure for the Cu poor region of the layers, which presents a significant CuIn{sub 5}S{sub 8} secondary phase contribution in the spectra from the central region of the layers. The correlation of this contribution with the spectral features of the CuInS{sub 2} modes suggests a direct relationship between the presence of this In rich secondary phase and disorder at the CuInS{sub 2} lattice. (orig.)

  13. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  14. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  15. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    International Nuclear Information System (INIS)

    Smetanin, S N; Ivleva, L I; Jelínek, M Jr; Kubeček, V; Jelínková, H; Shurygin, A S

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO 4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO 4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device. (letter)

  16. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  17. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  18. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  19. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  20. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.