WorldWideScience

Sample records for steroid receptor expression

  1. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  2. Sex steroid receptor expression in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Mehrad, Mitra; Trejo Bittar, Humberto E; Yousem, Samuel A

    2017-08-01

    Usual interstitial pneumonia (UIP) is characterized by progressive scarring of the lungs and is associated with high morbidity and mortality despite therapeutic interventions. Sex steroid receptors have been demonstrated to play an important role in chronic lung conditions; however, their significance is unknown in patients with UIP. We retrospectively reviewed 40 idiopathic UIP cases for the expression of hormonal receptors. Forty cases including 10 normal lung, 10 cryptogenic organizing pneumonia, 10 idiopathic organizing diffuse alveolar damage, 7 hypersensitivity pneumonitis, and 3 nonspecific interstitial pneumonitis served as controls. Immunohistochemistry for estrogen receptor α, progesterone receptor (PR), and androgen receptor was performed in all groups. Expression of these receptors was assessed in 4 anatomic/pathologic compartments: alveolar and bronchiolar epithelium, arteries/veins, fibroblastic foci/airspace organization, and old scar. All UIPs (100%) stained positive for PR in myofibroblasts in the scarred areas, whereas among the control cases, only 1 nonspecific interstitial pneumonitis case stained focally positive and the rest were negative. PR was positive in myocytes of the large-sized arteries within the fibrotic areas in 31 cases (77.5%). PR was negative within the alveolar and bronchial epithelium, airspace organization, and center of fibroblastic foci; however, weak PR positivity was noted in the peripheral fibroblasts of the fibroblastic foci where they merged with dense fibrous connective tissue scar. All UIP and control cases were negative for androgen receptor and estrogen receptor α. This is the first study to show the expression of PR within the established fibrotic areas of UIP, indicating that progesterone may have profibrotic effects in UIP patients. Hormonal therapy by targeting PR could be of potential benefit in patients with UIP/IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  4. Steroid receptor expression in the fish inner earvaries with sex, social status, and reproductive state

    Directory of Open Access Journals (Sweden)

    Fernald Russell D

    2010-04-01

    Full Text Available Abstract Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR and aromatase in the main hearing organ of the inner ear (saccule in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral

  5. PET Imaging of Steroid Receptor Expression in Breast and Prostate Cancer

    NARCIS (Netherlands)

    Hospers, G. A. P.; Helmond, F. A.; Dierckx, R. A.; de Vries, Emma; de Vries, Erik

    2008-01-01

    The vast majority of breast and prostate cancers express specific receptors for steroid hormones, which play a pivotal role in tumor progression. Because of the efficacy of endocrine therapy combined with its relatively mild side-effects, this intervention has nowadays become the treatment of choice

  6. Expression of steroid receptors in ameloblasts during amelogenesis in rat incisors

    Directory of Open Access Journals (Sweden)

    Sophia Houari

    2016-11-01

    Full Text Available Endocrine disrupting chemicals (EDCs play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA, one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH. In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30, of ketosteroid receptors (ERs, AR, PGR, GR, MR, of the retinoid receptor RXRα and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR, whereas the others were 13 to 612 fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step towards understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  7. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors.

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  8. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  9. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  10. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  11. Sustained expression of steroid receptor coactivator SRC-2/TIF-2 is associated with better prognosis in malignant pleural mesothelioma.

    LENUS (Irish Health Repository)

    Jennings, Cormac J

    2012-02-01

    INTRODUCTION: Estrogen receptor beta (ERbeta) overexpression by malignant pleural mesothelioma (MPM) tumor cells correlates with enhanced patient survival. ER-regulated transcription is mediated by the p160 family of steroid receptor coactivators (SRCs), and SRC isoform overexpression is associated with worse prognosis in many steroid-related malignancies. The aim of this study was to establish whether SRC isoform expression varied between individual MPM tumors with positive or negative prognostic significance. METHODS: Immunohistochemical analysis of tumor biopsies from 89 subjects with confirmed histological diagnosis of MPM and biopsies from 3 normal control subjects was performed to detect the expression of SRC-1, SRC-2 (TIF-2), SRC-3 (AIB-1), and ERbeta. Allred scores for expression of ERbeta and each of the SRCs were determined, and Kaplan-Meier survival curves were calculated to correlate biomarker expression, gender, and histology type with postdiagnosis survival. RESULTS: ERbeta and all the SRCs were expressed at high levels in normal pleural mesothelium, and expression of each biomarker was reduced or lost in a subset of the MPM subjects; however, postdiagnosis survival only significantly correlated with TIF-2 expression. Low or intermediate expression of TIF-2 correlated with reduced median postdiagnosis survival (9 months) compared with those subjects whose tumors highly expressed TIF-2 (20 months) (p = 0.036, log-rank test). CONCLUSIONS: Maintained high expression of TIF-2 in tumor cells is a positive prognostic indicator for postdiagnosis survival in patients with confirmed MPM. This is the first clinical study to correlate high TIF-2 expression with improved patient prognosis in any malignancy.

  12. Sex steroid receptors and apoptosis-related proteins are differentially expressed in polycystic ovaries of adult dogs.

    Science.gov (United States)

    Chuffa, Luiz Gustavo de Almeida; Lupi Júnior, Luiz Antonio; da Maia Lima, Alfredo Feio

    2016-02-01

    In Polycystic Ovaries (PCOs), the dynamics of sex hormone receptors and follicle-related apoptotic signaling remain unknown. In this study, we investigated the expression of androgen receptors (AR), estrogen receptors (ERα and ERβ), and apoptosis-related molecules (BAX, active caspase-3, Bcl-2 and Survivin) on different follicular stages of PCOs in adult dogs. Clinical evidences of high estradiol and testosterone levels, persistent estrus and vaginal discharge were observed. Inhibin B immunolabeling was increased in primary and 2 to 5-mm follicles, and a marked epithelial hyperplasia was common in the ovarian surface. Ovarian epithelia and primary follicles showed low expression of AR, ERα, and ERβ, whereas a moderate immunoexpression of AR was found in theca cells of secondary follicles and cysts. In PCOs, growing follicles displayed ERα expression, and secondary follicles exhibited higher ERβ expression. In addition, while few ERα-positive cells were found in the cysts, ERβ was moderately expressed in growing follicles and cysts. BAX was upregulated in the ovarian epithelium, primary follicles, and in the wall of follicular cysts. Active caspase-3 was significantly downregulated in the epithelium, primary follicles, and follicular cysts, whereas growing follicles had a strong immunoexpression in the granulosa cells. Bcl-2 and survivin were increased in the epithelium and primary follicles, and only survivin was upregulated in secondary and growing follicles. While Bcl-2 had a diffuse immunexpression in the follicular cysts, survivin was overexpressed by these cells. We concluded that sex steroid receptors and apoptotic proteins are differentially expressed in the follicles of adult dogs with PCOs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Versican Proteolysis by ADAMTS Proteases and Its Influence on Sex Steroid Receptor Expression in Uterine Leiomyoma.

    Science.gov (United States)

    Gueye, Ndeye-Aicha; Mead, Timothy J; Koch, Christopher D; Biscotti, Charles V; Falcone, Tommaso; Apte, Suneel S

    2017-05-01

    Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. This study was performed in an academic laboratory. Study subjects were women with symptomatic or asymptomatic leiomyoma. We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth. Copyright © 2017 by the Endocrine Society

  14. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    Science.gov (United States)

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-08-01

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  15. Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer

    International Nuclear Information System (INIS)

    Moi, Line L Haugan; Flågeng, Marianne Hauglid; Gjerde, Jennifer; Madsen, Andre; Røst, Therese Halvorsen; Gudbrandsen, Oddrun Anita; Lien, Ernst A; Mellgren, Gunnar

    2012-01-01

    Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P < 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P < 0.001). The expression of SRCs and HER-2 and -3 is stimulated

  16. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    International Nuclear Information System (INIS)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E.

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4'-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit 3 H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations

  17. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  18. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    Science.gov (United States)

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.

  19. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  20. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  1. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  2. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    Science.gov (United States)

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  3. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    Science.gov (United States)

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  4. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  5. Sex steroid receptor expression in the oviduct and uterus of sheep with estrus synchronized with progestagen or prostaglandin analogues.

    Science.gov (United States)

    García-Palencia, P; Sánchez, M A; Nieto, A; Vilar, M P; González, M; Veiga-Lopez, A; González-Bulnes, A; Flores, J M

    2007-01-01

    The objective of this study was to investigate differences in the expression of estrogen receptor-alpha (ERalpha), progesterone receptor (PR) and the proliferative indexes (Ki-67), in the uterus and oviduct of sheep with estrus synchronized either by prostaglandin analogues (Group PA, n=27) or by treatment with progestagens (Group P, n=29) on days 4 and 7 (day 0=estrus), when the embryos were collected. Immunohistochemical methods were used to quantify ERalpha, PR and Ki-67 in six superficial and deep compartments in the uterus and oviduct. The expression of ERalpha was significantly (Pprogesterone treated ewes than in the PA Group in the superficial gland (Psheep with synchronization of estrus with progestagens showed a reduction of ERalpha and PR protein expression in most of oviductal and uterine cells.

  6. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors

    Directory of Open Access Journals (Sweden)

    Marcel J. M. Schaaf

    2017-07-01

    Full Text Available Steroid hormones regulate a wide range of processes in our body, and their effects are mediated by steroid receptors. In addition to their physiological role, these receptors mediate the effects of endocrine disrupting chemicals (EDCs and are widely used targets for dugs involved in the treatment of numerous diseases, ranging from cancer to inflammatory disorders. Over the last fifteen years, the zebrafish has increasingly been used as an animal model in steroid receptor research. Orthologues of all human steroid receptor genes appear to be present in zebrafish. All zebrafish steroid receptors have been characterized in detail, and their expression patterns have been analyzed. Functional studies have been performed using morpholino knockdown of receptor expression and zebrafish lines carrying mutations in one of their steroid receptor genes. To investigate the activity of the receptors in vivo, specific zebrafish reporter lines have been developed, and transcriptomic studies have been carried out to identify biomarkers for steroid receptor action. In this review, an overview of research on steroid receptors in zebrafish is presented, and it is concluded that further exploitation of the possibilities of the zebrafish model system will contribute significantly to the advancement of steroid receptor research in the next decade.

  7. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis.

    OpenAIRE

    Mukhin, A G; Papadopoulos, V; Costa, E; Krueger, K E

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine bin...

  8. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  9. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  10. Neuroactive Steroids: Receptor Interactions and Responses

    Directory of Open Access Journals (Sweden)

    Kald Beshir Tuem

    2017-08-01

    Full Text Available Neuroactive steroids (NASs are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs. NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA, N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.

  11. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  12. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression

    Directory of Open Access Journals (Sweden)

    Cushla R. McCarthny

    2018-01-01

    Full Text Available Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF. This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/− on hippocampal NMDA-R expression. Wild-type and BDNF+/− mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT treatment. Dorsal (DHP and ventral hippocampus (VHP were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/− mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.

  13. 3D model of amphioxus steroid receptor complexed with estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael E., E-mail: mbaker@ucsd.edu [Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States); Chang, David J. [Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States)

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  14. Glycoprotein CD44 expression in normal, hyperplasic and neoplastic endometrium. An immunohistochemical study including correlations with p53, steroid receptor status and proliferative indices (PCNA, MIB1).

    Science.gov (United States)

    Zagorianakou, N; Ioachim, E; Mitselou, A; Kitsou, E; Zagorianakou, P; Stefanaki, S; Makrydimas, G; Agnantis, N J

    2003-01-01

    We have studied by immunohistochemistry the presence and localization of CD44, estrogen and progesterone receptors, p53 and proliferative associated indices (MIB1, PCNA) in archival endometrial tissue, in order to determine their diagnostic and prognostic value as well as the possible correlations between them. We examined 186 samples of endometrial tissue (100 endometrial carcinomas of endometrioid type, 40 cases of hyperplasia and 46 of normal endometrium). Patient records were examined for FIGO stage, grade, and depth of myometrial invasion, histology, and lympho-vascular space invasion. Strong membranous immunostaining (> 10% of neoplastic cells) was observed in 45% of the carcinomas. A statistically significant correlation was found in the expression of protein in stromal cells, when compared with epithelial cells (p failed to show any statistical correlation with tumor grade or with vessel invasion. The expression of the protein was lower in FIGO Stage II compared with Stage I (p = 0.03). A positive relation of CD44 expression with progesterone receptor status (p = 0.02) was detected. CD44 expression was also positively associated with the proliferation associated with the proliferative index MIB1 (p = 0.001). CD44 is closely related to the secretory phase of the normal menstrual cycle and its expression is decreased in hyperplasia (simple or complex with or without atypia) and in cancer cases. These observations suggest that decreased CD44 expression might be functionally involved in the multiple mechanisms of the development and progression of endometrial lesions.

  15. Status of sex steroid hormone receptors in large bowel cancer

    NARCIS (Netherlands)

    Meggouh, F.; Lointier, P.; Pezet, D.; Saez, S.

    1991-01-01

    To determine the potential role of sex steroid hormones in the development of colorectal tumors in humans, specific androgen (AR), estrogen (ER), and progesterone (PGR) receptors were investigated in normal mucosa (NM) and in tumor (T) paired biopsy specimens from 94 patients. Androgen receptors

  16. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  17. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain

    Science.gov (United States)

    Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.

    2011-01-01

    Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111

  18. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors

    Czech Academy of Sciences Publication Activity Database

    Jurášek, M.; Džubák, P.; Sedlák, David; Dvořáková, H.; Hajduch, M.; Bartůněk, Petr; Drasar, P.

    2013-01-01

    Roč. 78, č. 3 (2013), s. 356-361 ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077; GA ČR(CZ) GAP503/11/0616; GA ČR(CZ) GAP304/10/1951 Institutional support: RVO:68378050 Keywords : click chemistry * steroid ribbons * cytotoxic activity * steroid receptor reporter assay * 2,6-bis((1H-1,2,3-triazol-1-yl)methyl)pyridine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.716, year: 2013

  19. Effect of electro-acupuncture on ovarian expression of α (1- and β (2-adrenoceptors, and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries

    Directory of Open Access Journals (Sweden)

    Holmäng Agneta

    2005-06-01

    Full Text Available Abstract Background Estradiol valerate (EV-induced polycystic ovaries (PCO in rats is associated with an increase in ovarian sympathetic outflow. Low-frequency (2 Hz electro-acupuncture (EA has been shown to modulate sympathetic markers as well as ovarian blood flow as a reflex response via the ovarian sympathetic nerves, in rats with EV-induced PCO. Methods In the present study, we further tested the hypothesis that repeated 2 Hz EA treatments modulate ovarian sympathetic outflow in rats with PCO, induced by a single i.m. injection of EV, by investigating the mRNA expression, the amount and distribution of proteins of α1a-, α1b-, α1d-, and β2-adrenoceptors (ARs, as well as the low-affinity neurotrophin receptor (p75NTR. Results It was found that EV injection results in significantly higher mRNA expression of ovarian α1b- and α1d-AR in PCO rats compared to control rats. The p75NTR and β2-ARs mRNA expression were unchanged in the PCO ovary. Low-frequency EA resulted in a significantly lower expression of β2-ARs mRNA expression in PCO rats. The p75NTR mRNA was unaffected in both PCO and control rats. PCO ovaries displayed significantly higher amount of protein of α1a-, α1b- and α1d-ARs, and of p75NTR, compared to control rats, that were all counteracted by repeated low-frequency EA treatments, except for α1b-AR. Conclusion The present study shows that EA normalizes most of the EV-induced changes in ovarian ARs. Furthermore, EA was able to prevent the EV-induced up regulation of p75NTR, probably by normalizing the sympathetic ovarian response to NGF action. Our data indicate a possible role of EA in the regulation of ovarian responsiveness to sympathetic inputs and depict a possible complementary therapeutic approach to overcoming sympathetic-related anovulation in women with PCOS.

  20. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  1. Expression of sex steroid hormone-related genes in the embryo of the leopard gecko.

    Science.gov (United States)

    Endo, Daisuke; Kanaho, Yoh-Ichiro; Park, Min Kyun

    2008-01-01

    Sex steroid hormones are known to play a central role in vertebrate sex determination and differentiation. However, the tissues in which they are produced or received during development, especially around the period of sex determination of the gonads, have rarely been investigated. In this study, we identified the cDNA sequence, including the full-length of the coding region of cholesterol side-chain cleavage enzyme (P450scc), from the leopard gecko; a lizard with temperature-dependent sex determination. Embryonic expression analysis of two steroidogenic enzymes, P450scc and P450 aromatase (P450arom), and four sex steroid hormone receptors, androgen receptor, estrogen receptor alpha and beta, and progesterone receptor, was subsequently conducted. mRNA expression of both steroidogenic enzymes was observed in the brain and gonads prior to the temperature-sensitive period of sex determination. The mRNAs of the four sex steroid hormone receptors were also detected in the brain and gonads at all stages examined. These results suggest the existence of a gonad-independent sex steroid hormone signaling system in the developing leopard gecko brain.

  2. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  3. Ablation of Steroid Receptor Coactivator-3 resembles the human CACT metabolic myopathy

    OpenAIRE

    York, Brian; Reineke, Erin L.; Sagen, Jørn V.; Nikolai, Bryan C.; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R.; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M.; Yu, Hui; Wong, Lee-Jun C.; Tsimelzon, Anna; Hilsenbeck, Susan

    2012-01-01

    Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypog...

  4. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  5. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure.

    Science.gov (United States)

    Fragkaki, A G; Angelis, Y S; Koupparis, M; Tsantili-Kakoulidou, A; Kokotos, G; Georgakopoulos, C

    2009-02-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.

  6. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators

    Science.gov (United States)

    Padmanabhan, Vasantha; Sarma, Hiren N.; Savabieasfahani, Mozhgan; Steckler, Teresa L.; Veiga-Lopez, Almudena

    2014-01-01

    The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an estrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive / metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine / ovarian defects, insulin resistance, and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to estradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30-90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/ml BPA, culminated in low birth-weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine

  7. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Science.gov (United States)

    Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H

    2015-01-01

    Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  8. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Directory of Open Access Journals (Sweden)

    Frank Y Ma

    Full Text Available Steroidal mineralocorticoid receptor antagonists (MRAs are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis.Accelerated anti-glomerular basement membrane (GBM glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid from day 0 until being killed on day 15 of disease. Mice were examined for renal injury.Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ and profibrotic molecules (collagen I, fibronectin. In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction.The non-steroidal MRA (BR-4628 provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  9. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  10. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  11. Steroid receptor profiling of vinclozolin and its primary metabolites

    International Nuclear Information System (INIS)

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick

    2006-01-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERα and ERβ). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERβ. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process

  12. Steroid receptor profiling of vinclozolin and its primary metabolites.

    Science.gov (United States)

    Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  13. Steroid hormone regulation of EMP2 expression and localization in the endometrium

    Directory of Open Access Journals (Sweden)

    Williams Carmen J

    2008-04-01

    Full Text Available Abstract Background The tetraspan protein epithelial membrane protein-2 (EMP2, which mediates surface display of diverse proteins, is required for endometrial competence in blastocyst implantation, and is uniquely correlated with poor survival from endometrial adenocarcinoma tumors. Because EMP2 is differentially expressed in the various stages of the murine and human estrous cycle, we tested the hypothesis that the steroid hormones progesterone and estrogen influence EMP2 expression and localization. Methods Frozen human proliferative and secretory endometrium were collected and analyzed for EMP2 expression using SDS-PAGE/Western blot analysis. The response of EMP2 to progesterone and estradiol was determined using a combination of real-time PCR, SDS-PAGE/Western blot analysis, and confocal immunofluorescence in the human endometrial carcinoma cell line RL95-2. To confirm the in vitro results, ovariectomized mice were treated with progesterone or estradiol, and EMP2 expression was analyzed using immunohistochemistry. Results Within normal human endometrium, EMP2 expression is upregulated in the secretory phase relative to the proliferative phase. To understand the role of steroid hormones on EMP2 expression, we utilized RL95-2 cells, which express both estrogen and progesterone receptors. In RL95-2 cells, both estradiol and progesterone induced EMP2 mRNA expression, but only progesterone induced EMP2 protein expression. To compare steroid hormone regulation of EMP2 between humans and mice, we analyzed EMP2 expression in ovarectomized mice. Similar to results observed in humans, progesterone upregulated endometrial EMP2 expression and induced EMP2 translocation to the plasma membrane. Estradiol did not promote translocation to the cell surface, but moderately induced EMP2 expression in cytoplasmic compartments in vivo. Conclusion These findings suggest that targeting of EMP2 to specific locations under the influence of these steroid hormones may

  14. Effect of presurgical radiotherapy on the steroid receptor concentrations in primary breast carcinoma

    International Nuclear Information System (INIS)

    Janssens, J. Ph.; Bonte, J.; Drochmans, A.; Mulier, J.; Rutten, J.; Wittevrongel, C.; Loecker, W. de

    1981-01-01

    With age, oestradiol receptor concentrations increased in primary breast carcinoma while age did not seem to affect the progesterone receptor levels. Above the age of 70, all tumours examined proved to be hormone-dependent. Analysis by light microscope did not allow correlation of the receptor-positive tumours to any specific or predominant cellular structure. Presurgical radiotherapy of 20 gray significantly reduced the oestradiol and to an even greater extent the progesterone receptor concentrations in the tumours. Prebioptic irradiation with 8 gray accentuated the inhibition of steroid receptor proteins. This reduction in receptor concentration after radiotherapy should be taken into account when interpreting steroid receptor values. (author)

  15. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  16. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  17. Reverting doxorubicin resistance in colon cancer by targeting a key signaling protein, steroid receptor coactivator.

    Science.gov (United States)

    Xiong, Sang; Xiao, Gong-Wei

    2018-04-01

    Although there have been notable improvements in treatments against cancer, further research is required. In colon cancer, nearly all patients eventually experience drug resistance and stop responding to the approved drugs, making treatment difficult. Steroid receptor coactivator (SRC) is an oncogenic nuclear receptor coactivator that serves an important role in drug resistance. The present study generated a doxorubicin-resistant colon cancer cell line, in which the upregulation/activation of SRC was responsible for drug resistance, which in turn activated AKT. Overexpression of receptor tyrosine kinase-like epidermal growth factor receptor and insulin-like growth factor 1 receptor also induced SRC expression. It was observed that doxorubicin resistance in colon cancer also induced epithelial to mesenchymal transition, a decrease in expression of epithelial marker E-cadherin and an increase in the expression of mesenchymal markers, including N-cadherin and vimentin. Additionally, the present study indicated that SRC acts as a common signaling node, and inhibiting SRC in combination with doxorubicin treatment in doxorubicin-resistant cells aids in reversing the resistance. Thus, the present study suggests that activation of SRC is responsible for doxorubicin resistance in colon cancer. However, further research is required to understand the complete mechanism of how drug resistance occurs and how it may be tackled to treat patients.

  18. Steroids

    Science.gov (United States)

    ... return of symptoms and sometimes joint pain. SIDE EFFECTS Steroids can cause a wide range of unwanted effects. ... please talk with your doctor. MANAGING COMMON SIDE EFFECTS WEIGHT GAIN AND INCREASED BLOOD SUGAR LEVELS Steroids increase the appetite and often cause weight gain. ...

  19. Age related changes in steroid receptors on cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Barile, F.A.; Bienkowski, R.S.

    1986-01-01

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with ( 3 H)-dexamethasone (( 3 H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol ( 3 H)Dex/10 6 cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms

  20. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.

  1. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  2. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  3. Cyclodextrin dimers as receptor molecules for steroid sensors

    NARCIS (Netherlands)

    de Jong, M.R.; Engbersen, Johannes F.J.; Huskens, Jurriaan; Reinhoudt, David

    2000-01-01

    The dansyl-modified dimer 9 complexes strongly with the steroidal bile salts. Relative to native -cyclodextrin, the binding of cholate (1 a) and deoxycholate (1 b) salts is especially enhanced. These steroids bind exclusively in a 1:1 fashion. For other bile salts (1 c-1 e) both 1:1 and 1:2

  4. Steroids

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Steroids KidsHealth ... athletes, and why not? It's fun to think about being the very best in your favorite sport, not to mention earning a big salary. But ...

  5. Steroids

    Science.gov (United States)

    ... of aggression and hostility Increased risk of heart disease, liver damage Addiction Read More about Steroids Be Informed. Search for information about a drug View Popular Searches: POT , HEROIN , METH Previous Pause Next Marijuana Featured Articles What You Should Know About Marijuana ...

  6. Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber.

    Science.gov (United States)

    Swift-Gallant, Ashlyn; Mo, Kaiguo; Peragine, Deane E; Monks, D Ashley; Holmes, Melissa M

    2015-01-01

    Naked mole-rats are eusocial mammals, living in large colonies with a single breeding female and 1-3 breeding males. Breeders are socially dominant, and only the breeders exhibit traditional sex differences in circulating gonadal steroid hormones and reproductive behaviors. Non-reproductive subordinates also fail to show sex differences in overall body size, external genital morphology, and non-reproductive behaviors. However, subordinates can transition to breeding status if removed from their colony and housed with an opposite-sex conspecific, suggesting the presence of latent sex differences. Here, we assessed the expression of steroid hormone receptor and aromatase messenger RNA (mRNA) in the brains of males and females as they transitioned in social and reproductive status. We compared in-colony subordinates to opposite-sex subordinate pairs that were removed from their colony for either 1 day, 1 week, 1 month, or until they became breeders (i.e., produced a litter). Diencephalic tissue was collected and mRNA of androgen receptor (Ar), estrogen receptor alpha (Esr1), progesterone receptor (Pgr), and aromatase (Cyp19a1) was measured using qPCR. Testosterone, 17β-estradiol, and progesterone from serum were also measured. As early as 1 week post-removal, males exhibited increased diencephalic Ar mRNA and circulating testosterone, whereas females had increased Cyp19a1 mRNA in the diencephalon. At 1 month post-removal, females exhibited increased 17β-estradiol and progesterone. The largest changes in steroid hormone receptors were observed in breeders. Breeding females had a threefold increase in Cyp19a1 and fivefold increases in Esr1 and Pgr, whereas breeding males had reduced Pgr and increased Ar. These data demonstrate that sex differences in circulating gonadal steroids and hypothalamic gene expression emerge weeks to months after subordinate animals are removed from reproductive suppression in their home colony.

  7. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS.

    Science.gov (United States)

    Waterhouse, Rikki N; Chang, Raymond C; Atuehene, Nana; Collier, Thomas Lee

    2007-07-01

    Sigma-1 receptors are widely expressed in the mammalian brain and also in organs of the immune, endocrine and reproductive systems. Based on behavioral and pharmacological assessments, sigma-1 receptors are important in memory and cognitive processes, and are thought to be involved in specific psychiatric illnesses, including schizophrenia, depression, and drug addiction. It is thought that specific neuroactive steroids are endogenous ligands for these sites. In addition, several sigma-1 receptor binding steroids including progesterone, dihydroepiandrosterone (DHEA), and testosterone are being examined clinically for specific therapeutic purposes; however, their mechanisms of action have not been clearly defined. We previously described the high affinity sigma-1 receptor selective PET tracer [(18)F]FPS. This study examines the effect of neuroactive steroids on [(18)F]FPS binding in vitro and in vivo. Inhibition constants were determined in vitro for progesterone, testosterone, DHEA, estradiol, and estriol binding to the [(18)F]FPS labeled receptor. The affinity order (K(i) values) for these steroids ranged from 36 nM for progesterone to >10,000 nM for estrodiol and estriol. Biodistribution studies revealed that i.v. coadministration of progesterone (10 mg/kg), testosterone (20 mg/kg), or DHEA (20 mg/kg) significantly decreased [(18)F]FPS uptake (%ID/g) by up to 50% in nearly all of eight brain regions examined. [(18)F]FPS uptake in several peripheral organs that express sigma-1 receptors (heart, spleen, muscle, lung) was also reduced (54-85%). These studies clearly demonstrate that exogenously administered steroids can occupy sigma-1 receptors in vivo, and that [(18)F]FPS may provide an effective tool for monitoring sigma-1 receptor occupancy of specific therapeutic steroids during clinical trials.

  8. Two panels of steroid receptor luciferase reporter cell lines for compound profiling

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Paguio, A.; Bartůněk, Petr

    2011-01-01

    Roč. 14, č. 2 (2011), s. 248-266 ISSN 1386-2073 R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear hormone receptor * steroid receptor * cell-based luciferase reporter assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2011

  9. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    Science.gov (United States)

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.

  10. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    International Nuclear Information System (INIS)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-01-01

    Purified rat liver glucocorticoid receptor was covalently charged with [ 3 H]glucocorticoid by photoaffinity labeling (UV irradiation of [ 3 H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [ 3 H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [ 3 H]triamcinolone acetonide and Cys-656 after affinity labeling with [ 3 H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A

  11. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth.

    Science.gov (United States)

    Taranger, Geir Lasse; Muncaster, Simon; Norberg, Birgitta; Thorsen, Anders; Andersson, Eva

    2015-09-15

    The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Yunlei Li

    2016-12-01

    Full Text Available Pediatric acute lymphoblastic leukemia (ALL is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment.We performed whole genome sequencing on paired pre-treatment (diagnostic and post-treatment (remission samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146 of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX. Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild

  13. Flow cytometric measurement of DNA level and steroid hormone receptor assay in breast cancer

    International Nuclear Information System (INIS)

    Zubrikhina, G.N.; Kuz'mina, Eh.V.; Bassalyk, L.S.; Murav'eva, N.I.

    1989-01-01

    DNA level measured by flow cytometry and estrogen and progesteron receptors assayed in tissue samples obtained from 85 malignant and 16 benign lesions of the breast. All the benign tumors revealed 2c DNA content and most of them were receptor-negative, while 74.1% of breast carcinomas displayed aneuploidy. Three patients (3.5%) had two lines of aneuploid cells. Many aneuploid tumors were receptor-negative. Preoperative radiation treatmet (14-20 Gy) did not significantly influence the level of steroid hormone receptors in tumors. Estrogen receptor level was higher in menopausal patients than in premenopausal ones

  14. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain.

    Science.gov (United States)

    Kerver, H N; Wade, J

    2015-03-01

    Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone. © 2014 British Society for Neuroendocrinology.

  15. Variations in steroid hormone receptor content throughout age and menopausal periods, and menstrual cycle in breast cancer patients

    International Nuclear Information System (INIS)

    Nikolic-Vukosavljevic, D.; Vasiljevic, N.; Brankovic-Magic, M.; Polic, D.

    1996-01-01

    Variations in steroid hormone receptor contents throughout age and menopausal periods define three breast carcinoma groups: younger pre-menopausal carcinomas (aged up to 45), middle-aged carcinomas (aged up to 45), middle-aged carcinomas (pre-, peri-, and postmenopausal aged 45-59) and older postmenopausal carcinomas (aged over 59). Age-related steroid hormone receptor contents within pre-menopausal and postmenopausal carcinoma groups are characterized by the important increase of both receptor contents, while menopausal-related steroid hormone receptor contents within middle-aged carcinoma group (aged 45-59) are characterized by the important decrease of progesterone receptor content and estrogen receptor functionality. No variations in steroid hormone receptor contents throughout menstrual cycle within the follicular and the luteal phases were obtained. The important cycle within the follicular and the luteal phases were obtained. The important decrease of estrogen receptor content in the mid-cycle phase versus the peri-menstrual phase was found. Variations in steroid hormone receptor contents throughout age and menopausal periods, as well as throughout menstrual cycle could nod be associated with variations in the blood steroid hormone concentrations. However, important association between steroid hormone receptor contents and the blood steroid hormone concentrations was found within the luteal phase carcinoma group and within older postmenopausal carcinoma group. It is interesting that within carcinoma group with the highest concentration of progesterone, progesterone receptor content increases with an increase of the ration of estradiol and progesterone blood concentrations, while within carcinoma group with the lowest steroid hormone concentration and the highest content of estrogen receptor content, estrogen receptor content decreases with an increase of either the blood estradiol concentration or the ratio of the blood estradiol and progesterone blood

  16. Steroid-binding receptors in fungi: implication for systemic mycoses

    Directory of Open Access Journals (Sweden)

    Mostafa chadeganipour

    2015-03-01

    Full Text Available It has been shown that some of the mycotic infections especially systemic mycoses show increased male susceptibility and some steroids have been known to influence the immune response. Researchers found that some fungi including yeasts use "message molecules" including hormones to elicit certain responses, especially in the sexual cycle, but until recently no evidence was available to link specific hormonal evidence to this pronounced sex ratio. More evidence needed to demonstrate that a steroid (s might in some manner influence the pathogenicity of the fungus in vivo. Therefore, the aim of this review paper is to shed some light on this subject along with effort to make mycologists more aware of this research as a stimulus for the explore of new ideas and design further research in this area of medical mycology.

  17. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    Science.gov (United States)

    Stubbs, Andrew P.; Vroegindeweij, Eric M.; Smits, Willem K.; van Marion, Ronald; Dinjens, Winand N. M.; Horstmann, Martin; Kuiper, Roland P.; Zaman, Guido J. R.; van der Spek, Peter J.; Pieters, Rob; Meijerink, Jules P. P.

    2016-01-01

    Background Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we

  18. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  19. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  20. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  1. Ablation of steroid receptor coactivator-3 resembles the human CACT metabolic myopathy.

    Science.gov (United States)

    York, Brian; Reineke, Erin L; Sagen, Jørn V; Nikolai, Bryan C; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M; Yu, Hui; Wong, Lee-Jun C; Tsimelzon, Anna; Hilsenbeck, Susan; Stevens, Robert D; Wenner, Brett R; Ilkayeva, Olga; Xu, Jianming; Newgard, Christopher B; O'Malley, Bert W

    2012-05-02

    Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Immunohistochemical localization of steroid receptor coactivators in chondrosarcoma: an in vivo tissue microarray study.

    Science.gov (United States)

    Li, Wei; Fu, Jingshu; Bian, Chen; Zhang, Jiqiang; Xie, Zhao

    2014-12-01

    Chondrosarcoma is the second most common type of primary bone malignancy following up osteosarcoma, characterized by resistance to conventional chemotherapeutic agents and radiation regimens. The p160 family members steroid receptor coactivator-1 and -3 (SRC-1 and SRC-3) have been implied in the regulation of cancer growth, migration, invasion, metastasis and chemotherapeutic resistance; but we still lack detailed information about the levels of SRCs in chondrosarcoma. In this study, expression of SRC-1 and SRC-3 in chondrosarcoma was examined by immunohistochemistry with tissue microarrays; the four score system (0, 1, 2 and 3) was used to evaluate the staining. The results showed that there were no gender-, site- or age-differences regarding the expression of SRC-1 or SRC-3 (p>0.05); organ (bone or cartilage) -differences were only detected for SRC-1 but not SRC-3 (pchondrosarcoma, may be novel targets for the prognosis and/or treatment of chondrosarcoma, would have opened a new avenue and established foundation for studying chondrosarcoma. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization.

    Directory of Open Access Journals (Sweden)

    Ramakrishna Kommagani

    2013-10-01

    Full Text Available Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC decidualization are well recognized, the individual gene(s and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2 is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3, a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.

  4. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    Science.gov (United States)

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  6. Pharmacology of anabolic steroids.

    Science.gov (United States)

    Kicman, A T

    2008-06-01

    Athletes and bodybuilders have recognized for several decades that the use of anabolic steroids can promote muscle growth and strength but it is only relatively recently that these agents are being revisited for clinical purposes. Anabolic steroids are being considered for the treatment of cachexia associated with chronic disease states, and to address loss of muscle mass in the elderly, but nevertheless their efficacy still needs to be demonstrated in terms of improved physical function and quality of life. In sport, these agents are performance enhancers, this being particularly apparent in women, although there is a high risk of virilization despite the favourable myotrophic-androgenic dissociation that many xenobiotic steroids confer. Modulation of androgen receptor expression appears to be key to partial dissociation, with consideration of both intracellular steroid metabolism and the topology of the bound androgen receptor interacting with co-activators. An anticatabolic effect, by interfering with glucocorticoid receptor expression, remains an attractive hypothesis. Behavioural changes by non-genomic and genomic pathways probably help motivate training. Anabolic steroids continue to be the most common adverse finding in sport and, although apparently rare, designer steroids have been synthesized in an attempt to circumvent the dope test. Doping with anabolic steroids can result in damage to health, as recorded meticulously in the former German Democratic Republic. Even so, it is important not to exaggerate the medical risks associated with their administration for sporting or bodybuilding purposes but to emphasize to users that an attitude of personal invulnerability to their adverse effects is certainly misguided.

  7. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Mamta Kalra; Jary Mayes; Senait Assefa; Anil K Kaul; Rashmi Kaul

    2008-01-01

    The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC. 2008 The WJG Press. All rights reserved.

  8. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  9. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    Science.gov (United States)

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  10. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    Science.gov (United States)

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  12. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    OpenAIRE

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process...

  13. Tritium-labelled steroids, their preparation and application for the determination and location of steroid tissular hormone receptors

    International Nuclear Information System (INIS)

    Jouquey, Alain; Raynaud, J.P.

    1977-01-01

    A product is prepared by the action of tritiated methanol on 11β-hydroxy-estra-4,9-dien-3,17-dione, the action of an aromatisation agent on the (11β)-11-methoxy- 3 H 3 -estra-4,9-dien-3,17-dione formed and the action of an ethynylation agent on the resulting (11β)-3-hydroxy-11-methoxy- 3 H 3 -estra-1,3,5(10)-trien-17-one giving (11β, 17α)-11-methoxy- 3 H 3 -19-norpregna-1,3,5(10)-trien-20-yne-3,17 diol, the free hydroxyl function or functions of this product may be etherified or esterified as the case may be. The tritiated methanol acts in the presence of perchloric acid. The aromatisation agent is palladium hydroxide and the operation is carried out in methanol. The ethynylation agent is acetylene and the reaction takes place in the presence of sodium t-amylate in toluene. This product allows the study and determination of the estrogen specific receptor present in the tissue cells of target organs for the action of estrogens: uterus, vagina, hypophysis, hypothalamus and tumours, of the breast and prostate for example, in both animals and man. Not being fixed by the plasma proteins binding such hormones as testosterone and estradiol in women the product is an ideal indicator of the tissular estrogen receptor with which it forms a complex of strong affinity and great stability, especially since it interacts with the tissular receptors of no other steroid hormone groups (glucocorticoids, androgen or progestogen mineralocorticosteroids) [fr

  14. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition.

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R

    2015-07-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.

  15. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  16. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids.

    Directory of Open Access Journals (Sweden)

    Freddyson J Martínez-Rivera

    Full Text Available The abuse of anabolic androgenic steroids (AAS has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH. In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM. These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.

  17. Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands.

    Directory of Open Access Journals (Sweden)

    Laura Starvaggi Cucuzza

    Full Text Available Regucalcin (RGN is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.

  18. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Directory of Open Access Journals (Sweden)

    Cléciton Braga Tavares

    Full Text Available Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  19. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Science.gov (United States)

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  20. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  1. Steroid receptor status in breast cancer: the roles of radioreceptor assay and immunohistochemistry

    International Nuclear Information System (INIS)

    Myint Aye Mu; Ch'ong

    1997-01-01

    A total of 24 cases of female breast cancer were reviewed, typed and graded based on the WHO classification. The steroid receptors (oestrogen and progesterone receptors) status was assessed using radio-receptor assay (RRA) and immunohistochemical (IH) method. The data showed that there were 21 cases of infiltrating ductal carcinoma of the breast and 3 cases of medullary carcinoma. The age of the patients ranged from 36 to 71 years and 4 patients were post-menopausal. The oestrogen receptor (ER) and progesteronc receptor (PR) status were analyzed by radio-receptor assay using 'H-oestradiol and 3 H-ORG respectively, and also by IH using immunoperoxidase detection assay (DAKO LSAB 2 Kit. Peroxidase K 677). Primary antibodies used were also procured from Dako Corp. and these were mouse anti-human ER and rabbit anti-human PR antibodies. On RRA analysis, 22 (95.7%) cases showed ER positivity (i.e. >20 fmol/mg of cytosol protien), and the ER content ranged from 16.64 to 297.8 fmovmg of cytosol protein. All cases showed PR positivity, and PR content ranged from 20.56 to 364 fmoumg of cytosol protein. A significant positive correlation was found between the ER content and PR content of tumour tissues (r = 0.7132, p<0.003). No significant association was found between ER content and menopausal status or histological grade IH showed that 10 of 24 cases (41.67%) showed ER positivity of which 8 were also PR positive. PR status was negative in all ER negative tissues. A decreasing trend in ER positivity was observed with worsening in histological grade (67% positivity in Grade 1, 50% positivity in Grade 11, and 33% positivity in Grade 111). ER and PR positivity occurred more frequently in pre-menopausal women. The results of this study showed that the result derived from IH method were found to have association with grade of tumour and confirmed findings by other workers. These findings revealed that although the quantitative data from radio-receptor assay for estimation of

  2. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  4. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    International Nuclear Information System (INIS)

    Cathey, T.M.; Chung, Kyung W.

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy

  5. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Cathey, T.M.; Chung, Kyung W. (Univ. of Oklahoma, Oklahoma City (USA))

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  6. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  7. Effects of estradiol and progestogens on human breast cells: Regulation of sex steroid receptors

    Directory of Open Access Journals (Sweden)

    Fang-Ping Chen

    2013-09-01

    Conclusions: The combination of E2 and various progestogens resulted in diverging effects on ERs and PRs expressions, which induced different effects on MCF-7 cell growth. Compared with P4, aberrant hormone and biological activity of synthetic progestin, by way of altered receptor expression, may be an important factor in affecting breast cell growth.

  8. Steroidal regulation of Ihh and Gli1 expression in the rat uterus.

    Science.gov (United States)

    Kubota, Kaiyu; Yamauchi, Nobuhiko; Yamagami, Kazuki; Nishimura, Sho; Gobaru, Takafumi; Yamanaka, Ken-ichi; Wood, Chris; Soh, Tomoki; Takahashi, Masashi; Hattori, Masa-aki

    2010-05-01

    Ovarian steroid hormones, progesterone (P4), and estradiol (E2) strictly regulate the endometrial tissue remodeling required for successful embryo implantation. Indian hedgehog (Ihh) is up-regulated by P4 and critically mediates uterine receptivity in the mouse. However, the regulation of Ihh expression during the implantation period still remains unclear. The present study was conducted to elucidate the mechanism of the steroidal regulation in the expression of Ihh and Gli1, the mediator of the Ihh pathway. Ihh mRNA was expressed in the rat uterus on 3.5-5.5 days post-coitus (dpc), while Gli1 expression transiently increased at 3.5 dpc but decreased significantly on 5.5 dpc (P Ihh was induced by the implantation-induced E2 treatment in the primed rat uterus. In contrast, expression of Gli1 was significantly decreased by E2 treatment (P = 0.016). In the case of ICI182.780 (ICI) treatment, Ihh expression was eliminated by ICI, whilst Gli1 expression increased. These results suggest that Ihh expression is maintained at a high level until the initiation of implantation, while the expression of Gli1 is decreased just prior to the initiation of implantation depending on the E2 action. This observation aids in the understanding of the Ihh signaling pathway mediating uterine remodeling for implantation.

  9. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation.

    Science.gov (United States)

    Mostaghel, Elahe A

    2014-01-01

    While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.

  10. Evaluation of estrogen receptor alpha and beta and progesterone receptor expression and correlation with clinicopathologic factors and proliferative marker Ki-67 in breast cancers

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Caldeira, José R F; Felipes, Joice

    2008-01-01

    To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative ana...

  11. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  12. The regulation of steroid receptors by epigallocatechin-3-gallate in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hallman K

    2017-05-01

    Full Text Available Kelly Hallman,* Katie Aleck,* Meghan Quigley, Brigitte Dwyer, Victoria Lloyd, Monica Szmyd, Sumi Dinda Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center for Biomedical Research, Oakland University, Rochester, MI, USA *These authors contributed equally to this work Abstract: It has been reported that phytoestrogen epigallocatechin gallate (EGCG suppresses cancer cell proliferation and may have antitumor properties. In this study, we analyzed the effects of EGCG on estrogen receptor α (ERα and progesterone receptor in hormone-dependent T-47D breast cancer cells. Western blot analysis revealed EGCG induced a concentration-dependent decrease in ERα protein levels, with a 56% reduction occurring with 60 µM EGCG when compared to controls. Downregulation of ERα protein levels was observed after 24-hour co-treatment of T-47D cells with 60 µM EGCG and 10 nM 17β-estradiol (E2. The proliferative effect of E2 on cell viability was reversed when treated in combination with EGCG. In contrast, the combination of EGCG with the pure ER antagonist, ICI 182, 780, showed no further reduction in cell number as only 5% of the cells were viable after 6 days of treatment. These studies may provide further understanding of the interactions among flavonoids and steroid receptors in breast cancer cells. Keywords: phytoestrogen, ER, PR, T-47D, antiestrogens

  13. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  14. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  15. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  17. Identification and Transcriptional Modulation of the Largemouth Bass, Micropterus salmoides, Vitellogenin Receptor During Oocyte Development by Insulin and Sex Steroids1

    Science.gov (United States)

    Dominguez, Gustavo A.; Quattro, Joseph M.; Denslow, Nancy D.; Kroll, Kevin J.; Prucha, Melinda S.; Porak, Wesley F.; Grier, Harry J.; Sabo-Attwood, Tara L.

    2012-01-01

    ABSTRACT Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E2), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E2 or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E2 or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  18. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  19. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.

    Science.gov (United States)

    Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E

    1994-12-01

    A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.

  20. Oligoadenylate synthetase 1 (OAS1 expression in human breast and prostate cancer cases, and its regulation by sex steroid hormones

    Directory of Open Access Journals (Sweden)

    Cláudio Jorge Maia

    2016-06-01

    Full Text Available Oligoadenylate synthetase 1 (OAS1 is an interferon-induced protein characterised by its capacity to catalyse the synthesis of 2ʹ-5ʹ-linked oligomers of adenosine from adenosine triphosphate (2-5A. The 2-5A binds to a latent Ribonuclease L (RNase L, which subsequently dimerises into its active form and may play an important role in the control of cell growth, differentiation and apoptosis. Previously, our research group identified OAS1 as a differentially-expressed gene in breast and prostate cancer cell lines when compared to normal cells. This study evaluates: i the expression of OAS1 in human breast and prostate cancer specimens; and ii the effect of sex steroid hormones in regulating the expression of OAS1 in breast (MCF-7 and prostate (LNCaP cancer cell lines. The obtained results showed that OAS1 expression was down-regulated in human infiltrative ductal carcinoma of breast, adenocarcinoma of prostate, and benign prostate hyperplasia, both at mRNA and protein level. In addition, OAS1 expression was negatively correlated with the progression of breast and prostate cancer. With regards to the regulation of OAS1 gene, it was demonstrated that 17β-estradiol (E2 down-regulates OAS1 gene in MCF-7 cell lines, an effect that seems to be dependent on the activation of oestrogen receptor (ER. On the other hand, 5α-dihydrotestosterone (DHT treatment showed no effect on the expression of OAS1 in LNCaP cell lines. The lower levels of OAS1 in breast and prostate cancer cases indicated that the OAS1/RNaseL apoptotic pathway may be compromised in breast and prostate tumours. Moreover, the present findings suggested that this effect may be enhanced by oestrogen in ER-positive breast cancers.

  1. Nasal airway epithelial cell IL-6 and FKBP51 gene expression and steroid sensitivity in asthmatic children.

    Directory of Open Access Journals (Sweden)

    Michael Fayon

    Full Text Available Many asthmatic patients exhibit uncontrolled asthma despite high-dose inhaled corticosteroids (ICS. Airway epithelial cells (AEC have distinct activation profiles that can influence ICS response.A pilot study to identify gene expression markers of AEC dysfunction and markers of corticosteroid sensitivity in asthmatic and non-asthmatic control children, for comparison with published reports in adults.AEC were obtained by nasal brushings and primary submerged cultures, and incubated in control conditions or in the presence of 10 ng/ml TNFalpha, 10-8M dexamethasone, or both. RT-PCR-based expression of FKBP51 (a steroid hormone receptor signalling regulator, NF-kB, IL-6, LIF (an IL-6 family neurotrophic cytokine, serpinB2 (which inhibits plasminogen activation and promotes fibrin deposition and porin (a marker of mitochondrial mass were determined.6 patients without asthma (median age 11yr; min-max: 7-13, 8 with controlled asthma (11yr, 7-13; median daily fluticasone dose = 100 μg, and 4 with uncontrolled asthma (12yr, 7-14; 1000 μg fluticasone daily were included. Baseline expression of LIF mRNA was significantly increased in uncontrolled vs controlled asthmatic children. TNFalpha significantly increased LIF expression in uncontrolled asthma. A similar trend was observed regarding IL-6. Dexamethasone significantly upregulated FKBP51 expression in all groups but the response was blunted in asthmatic children. No significant upregulation was identified regarding NF-kB, serpinB2 and porin.LIF and FKBP51 expression in epithelial cells were the most interesting markers of AEC dysfunction/response to corticosteroid treatment.

  2. A multimedia teaching software for self directed training in steroid receptor assay

    International Nuclear Information System (INIS)

    Ch'ong, S.L.; Myint Aye Mu; Ch'ng, H.M.; Pathmanathan, R.

    1997-01-01

    Use of information technology as one of the instructional tools in problem based learning in the discipline of chemical pathology is receiving widespread interest (1). This will hopefully speed up the process of information access, retrieval, rehearsal, cognitive apprenticeship which will ultimately improve the understanding of chemical pathology and the optimal uses of laboratory investigation techniques. This program is written for self-directed training in steroid receptor assay (we believe to be the first of its kind) with a multimedia software Authorware (purchased from Macromedia, Inc. ) to create a rich blend of animation, colours, graphics, sounds and interactive questions (without giving the answer away). It is hoped that this software can assist the trainee in the process of learning by presenting to him/her sequence of 'related' problems with feedback for success or failure-learning from error, but with assistance - in a real-world job problem or case situated learning- cognitive apprenticeship to assist the trainee in appropriate neuro-networking to make the appropriate response

  3. Computer program for Scatchard analysis of protein: Ligand interaction - use for determination of soluble and nuclear steroid receptor concentrations

    International Nuclear Information System (INIS)

    Leake, R.; Cowan, S.; Eason, R.

    1998-01-01

    Steroid receptor concentration may be determined routinely in biopsy samples of breast and endometrial cancer by the competition method. This method yields data for both the soluble and nuclear fractions of the tissue. The data are usually subject to Scatchard analysis. This Appendix describes a computer program written initially for a PDP-11. It has been modified for use with IBM, Apple Macintosh and BBC microcomputers. The nature of the correction for competition is described and examples of the printout are given. The program is flexible and its use for different receptors is explained. The program can be readily adapted to other assays in which Scatchard analysis is appropriate

  4. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis.

    Science.gov (United States)

    Pediaditakis, Iosif; Kourgiantaki, Alexandra; Prousis, Kyriakos C; Potamitis, Constantinos; Xanthopoulos, Kleanthis P; Zervou, Maria; Calogeropoulou, Theodora; Charalampopoulos, Ioannis; Gravanis, Achille

    2016-01-01

    Neurotrophin receptors mediate a plethora of signals affecting neuronal survival. The p75 pan-neurotrophin receptor controls neuronal cell fate after its selective activation by immature and mature isoforms of all neurotrophins. It also exerts pleiotropic effects interacting with a variety of ligands in different neuronal or non-neuronal cells. In the present study, we explored the biophysical and functional interactions of a blood-brain-barrier (BBB) permeable, C17-spiroepoxy steroid derivative, BNN27, with p75 NTR receptor. BNN27 was recently shown to bind to NGF high-affinity receptor, TrkA. We now tested the p75 NTR -mediated effects of BNN27 in mouse Cerebellar Granule Neurons (CGNs), expressing p75 NTR , but not TrkA receptors. Our findings show that BNN27 physically interacts with p75 NTR receptors in specific amino-residues of its extracellular domain, inducing the recruitment of p75 NTR receptor to its effector protein RIP2 and the simultaneous release of RhoGDI in primary neuronal cells. Activation of the p75 NTR receptor by BNN27 reverses serum deprivation-induced apoptosis of CGNs resulting in the decrease of the phosphorylation of pro-apoptotic JNK kinase and of the cleavage of Caspase-3, effects completely abolished in CGNs, isolated from p75 NTR null mice. In conclusion, BNN27 represents a lead molecule for the development of novel p75 NTR ligands, controlling specific p75 NTR -mediated signaling of neuronal cell fate, with potential applications in therapeutics of neurodegenerative diseases and brain trauma.

  5. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D

    1990-01-01

    We describe the identification of a widely expressed receptor-type (transmembrane) protein tyrosine phosphatase (PTPase; EC 3.1.3.48). Screening of a mouse brain cDNA library under low-stringency conditions with a probe encompassing the intracellular (phosphatase) domain of the CD45 lymphocyte...... antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  6. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  7. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  8. IL-21 Receptor Expression in Human Tendinopathy

    Directory of Open Access Journals (Sweden)

    Abigail L. Campbell

    2014-01-01

    Full Text Available The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy.

  9. Role of endocrine disrupting chemicals on the tissue levels of AhR and sex steroid receptors in breast tumours

    Directory of Open Access Journals (Sweden)

    Sepideh Arbabi Bidgoli

    2016-09-01

    Full Text Available Breast cancer affects Iranian women at least one decade younger than their counterparts in other countries and the incidence of breast fibroadenoma is growing in the last two decades in Tehran. This study aimed to compare the AhR levels in premenopausal breast cancer and breast fibroadnemo with appropriate normal groups. Possible associations of AhR with lifestyle and reproductive risk factors and other fundamental genes of breast cancer and reproductive disorders were the other major goals of present study. To conduct the comparisons all possible reproductive, environmental and lifestyle risk factors of mentioned diseases were recorded in 100 breast cancer, 100 breast fibroadenoma and compared with 400 women in normal group from 2009 to 2011. AhR overexpression in epithelial cells of premenopausal patients emphasized the susceptibility of these cells to environmental induced reproductive disorders. The AhR overexpression was contributed to ER-/PgR- immunophenotype in malignant tissues. Weight gain (after 18 and after pregnancy, long term (>5yrs OCP consumption, smoking, severe stress ,history of ovarian cysts, hormonal deregulations, living near PAHs producing sources, were correlated with increased risk of breast cancer and reproductive disorders and were correlated with elevated tissue levels of AhR. It seems that increased risk of breast cancer and other reproductive tumours in Tehran may be the result of exposure to environmental endocrine disruptors. Long term exposure to environmental estrogens can increase the tissue levels of AhR and deregulate the expression pattern of sex steroid receptors and other genes in target tissues.

  10. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation.

    Science.gov (United States)

    Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen

    2015-07-01

    The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  11. Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke

    Directory of Open Access Journals (Sweden)

    Dorscheid Delbert R

    2007-11-01

    Full Text Available Abstract The toll-like receptors (TLRs are a key component of host defense in the respiratory epithelium. Cigarette smoking is associated with increased susceptibility to infection, while COPD is characterised by bacterial colonisation and infective exacerbations. We found reduced TLR4 gene expression in the nasal epithelium of smokers compared with non-smoking controls, while TLR2 expression was unchanged. Severe COPD was associated with reduced TLR4 expression compared to less severe disease, with good correlation between nasal and tracheal expression. We went on to examine the effect of potential modulators of TLR4 expression in respiratory epithelium pertinent to airways disease. Using an airway epithelial cell line, we found a dose-dependent downregulation in TLR4 mRNA and protein expression by stimulation with cigarette smoke extracts. Treatment with the corticosteroids fluticasone and dexamethasone resulted in a dose-dependent reduction in TLR4 mRNA and protein. The functional significance of this effect was demonstrated by impaired IL-8 and HBD2 induction in response to LPS. Stimulation with salmeterol (10-6 M caused upregulation of TLR4 membrane protein presentation with no upregulation of mRNA, suggesting a post-translational effect. The effect of dexamethasone and salmeterol in combination was additive, with downregulation of TLR4 gene expression, and no change in membrane receptor expression. Modulation of TLR4 in respiratory epithelium may have important implications for airway inflammation and infection in response to inhaled pathogens.

  12. Vitamin D Receptor Expression in Dogs

    Science.gov (United States)

    Gow, A.G.; Milne, E.; Drummond, D.; Smith, S.; Handel, I.; Mellanby, R.J.

    2018-01-01

    Background There is growing evidence linking low blood vitamin D concentration to numerous diseases in people and in dogs. Vitamin D influences cellular function by signaling through the vitamin D receptor (VDR). Little is known about which non‐skeletal tissues express the VDR or how inflammation influences its expression in the dog. Objectives To define which non‐skeletal canine tissues express the VDR and to investigate expression in inflamed small intestine. Animals Thirteen non‐skeletal tissues were collected prospectively from 6 control dogs. Thirty‐five dogs diagnosed with a chronic enteropathy (CE) and 24 control dogs were prospectively enrolled and duodenal biopsies were evaluated for VDR expression. Methods Prospective; blinded assessment of canine intestinal VDR. Dogs with CE were included once other identifiable causes of intestinal disease were excluded. Age matched controls were included with no intestinal clinical signs. VDR expression was assessed immunohistochemically in all samples, using a Rat IgG VDR monoclonal antibody. Quantitative real‐time polymerase chain reaction (qPCR) was also used for duodenal biopsies. Results VDR expression as assessed by immunohistochemistry (IHC) was highest in the kidney, duodenum, skin, ileum and spleen, and weak in the colon, heart, lymph node, liver, lung, and ovary. Gastric and testicular tissue did not express the VDR. There was no statistical difference in duodenal VDR expression between the 24 healthy dogs and 34 dogs with CE when quantified by either qPCR (P = 0.87) or IHC (P = 0.099). Conclusions and Clinical Importance The lack of down regulation of VDR expression in inflamed intestine contrasts with previous studies in humans. Our findings support future studies to investigate whether vitamin D and its analogues can be used to modulate intestinal inflammation in the dog. PMID:29469965

  13. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells.

    Science.gov (United States)

    Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-11-01

    In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  15. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2013-01-01

    Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  16. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB 1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB 1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB 1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  17. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    Science.gov (United States)

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  18. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  19. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    Science.gov (United States)

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Vitamin D receptor gene TaqI and Apal polymorphisms and steroid responsiveness in childhood idiopathic nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Al-Eisa AA

    2016-08-01

    Full Text Available Amal A Al-Eisa, Mohammad Z Haider Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait Background: Vitamin D activity is controlled by vitamin D receptors (VDRs, which are affected by different genetic polymorphisms, including TaqI and Apal restriction fragment length polymorphisms (RFLPs, which have been reported to be associated with several diseases. The aim of this study was to determine the frequency and the association of VDR gene polymorphisms with idiopathic nephrotic syndrome (INS and steroid responsiveness in Kuwaiti children. Subjects and methods: Genotypes of the VDR TaqI gene polymorphism and the Apal gene polymorphism were analyzed using polymerase chain reaction-RFLP in 78 INS patients and 56 matched controls. Results: A total of 78 INS (62 steroid sensitive [SS] and 16 steroid resistant [SR] patients with a mean age of 6.5±3.1 years were studied. Male:female ratio was 2:1. The TT genotype of VDR–TaqI polymorphism was detected in 41% of the INS patients compared to 42% of the controls (P=0.816. The heterozygous TC genotype was detected in 33% of INS patients compared to 46% of the controls (P=0.462. The CC genotype was detected in 25.6% of INS patients and 21% of the controls (P=0.719. The C-allele frequency, in its homozygous and heterozygous forms, was 71% in INS patients compared to 63% in the controls (P=0.342. Similarly, no significant difference was detected in terms of VDR–Apal polymorphism in INS patients compared to the controls for all the three genotypes (P=0.76, P=0.207, and P=0.364, respectively, for GG, GT, and TT genotypes. The T-allele frequency, in its homozygous and heterozygous forms, was 89% in INS patients compared to 93% in the controls (P=0.076. No significant difference was found in any of the allele frequencies between SS and SR subgroups when compared with each other or when compared to the controls. Conclusion: Our data do not support the use of VDR–TaqI or

  1. Distribution of aromatase and sex steroid receptors in the baculum during the rat life cycle: effects of estrogen during the early development of the baculum.

    Science.gov (United States)

    Yonezawa, Tomohiro; Higashi, Mayuko; Yoshioka, Kazuki; Mutoh, Ken-ichiro

    2011-07-01

    The baculum, also called os penis, plays an important role during copulation. However, the hormonal regulation of its development remains to be elucidated. To determine the direct involvement of sex steroids in the development of the baculum of rats, the distributions of androgen receptors (ARs), aromatase, and estrogen receptor alpha (ESR1) were observed immunohistochemically. On Postnatal Day 1, the rudiment of the baculum expressed ARs, aromatase, and ESR1. In the proximal segment of the baculum of neonatal rats, ARs were expressed in the parosteal layer but not in the periosteum or osteoblasts. Aromatase was expressed from the parosteal layer to the endosteum, particularly in the inner osteogenic layer. ESR1 was also abundantly expressed in almost all cells from the parosteal layer to the endosteum. ARs, aromatase, and ESR1 were all abundantly expressed during the neonatal period in the hyaline cartilage of the proximal segment and in fibrocartilage of the distal segment of the baculum. Expression in all the tissues was attenuated in an age-dependent manner and became quite weak at puberty. To determine the effect of estrogen on the growth of the baculum, the aromatase inhibitor 1,4,6-androstatrien-3,17-dione (ATD) was subcutaneously injected daily into pregnant rats from Days 19 to 23 of gestation and into pups on postnatal Days 1, 3, 5, 7, and 9. On Day 10, the length of the baculum in the ATD-treated rats was significantly shorter than that in the controls, although the body weight did not change. These findings suggest that not only androgen but also locally aromatized estrogen is involved in the early growth and development of the baculum.

  2. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats.

    Directory of Open Access Journals (Sweden)

    Rajib Mukherjee

    Full Text Available Caveolin-1 (CAV1 is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2 and androgen (dihydrotestosterone, DHT had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL and uncoupling protein 1 (UCP1 in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.

  3. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  4. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  5. Distinctly different dynamics and kinetics of two steroid receptors at the same response elements in living cells.

    Directory of Open Access Journals (Sweden)

    Hatice Z Nenseth

    Full Text Available Closely related transcription factors (TFs can bind to the same response elements (REs with similar affinities and activate transcription. However, it is unknown whether transcription is similarly orchestrated by different TFs bound at the same RE. Here we have compared the recovery half time (t1/2, binding site occupancy and the resulting temporal changes in transcription upon binding of two closely related steroid receptors, the androgen and glucocorticoid receptors (AR and GR, to their common hormone REs (HREs. We show that there are significant differences at all of these levels between AR and GR at the MMTV HRE when activated by their ligands. These data show that two TFs bound at the same RE can have significantly different modes of action that can affect their responses to environmental cues.

  6. The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Background. Stretching of skeletal muscle induces expression of the genes which encode myogenic transcription factors or muscle contractile proteins and results in muscle growth. Anabolic steroids are reported to strengthen muscles. We have previously studied the effects of muscle stretching on gene expression. Here, we studied the effect of a combination of passive stretching and the administration of an anabolic steroid on mRNA expression of a muscle growth factor, insulin-like growth factor-I autocrine variant, or mechano-growth factor (MGF. Methods. Twelve 8-week-old male Wistar rats were used. Metenolone was administered and passive repetitive dorsiflexion and plantar flexion of the ankle joint performed under deep anesthesia. After 24 h, the gastrocnemius muscles were removed and the mRNA expression of insulin-like growth factor-I autocrine variant was measured using quantitative real-time polymerase chain reaction. Results. Repetitive stretching in combination with metenolone, but not stretching alone, significantly increased MGF mRNA expression. Conclusion. Anabolic steroids enhance the effect of passive stretching on MGF expression in skeletal muscle.

  7. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    International Nuclear Information System (INIS)

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-01-01

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17β and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17βHSD1, 17βHSD4, CYP21, 3βHSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10 -7 to 10 -5 M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17β levels and increased progesterone secretion. At 10 -5 M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17βHSD4 and significantly suppressed expression of 3βHSD2. In comparison, 10 -7 to 2 x 10 -5 M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17β, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols

  8. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  9. Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain

    Directory of Open Access Journals (Sweden)

    Zalachoras Ioannis

    2013-01-01

    Full Text Available Abstract Background Antisense oligonucleotide (AON-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1, a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon. Methods For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants. Results We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression. Conclusions We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant

  10. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    OpenAIRE

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigeneti...

  11. Beyond the HPA-axis: The role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD.

    Science.gov (United States)

    Fenchel, Daphna; Levkovitz, Yechiel; Vainer, Ella; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD. Male rats were exposed to predator scent stress, followed by analysis of brain expression of androgen receptor (AR) receptor and estrogen receptor α (ERα). The behavioral effects of immediate treatment with testosterone, testosterone receptor antagonist (flutamide) or vehicle were evaluated using the elevated plus-maze, acoustic startle response and trauma-cue response. Levels of circulating corticosterone and testosterone were also measured after treatment. The behavioral effects of delayed testosterone treatment were explored in the same manner. We report that animals whose behavior was extremely disrupted (EBR) selectively displayed significant down-regulation of AR and ERα in the hippocampus. Immediate treatment with flutamide or delayed treatment with testosterone significantly increased prevalence rates of minimal behavioral response (MBR) and decreased prevalence of EBR with favorable behavioral results. Testosterone levels were higher in control un-exposed animals, while corticosterone was higher in control exposed animals. This study suggests that gonadal steroid hormones are involved in the neurobiological response to predator scent stress and thus warrant further study as a potential therapeutic avenue for the treatment of anxiety-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  12. Muscarinic acetylcholine receptor expression in aganglionic bowel.

    Science.gov (United States)

    Oue, T; Yoneda, A; Shima, H; Puri, P

    2000-01-01

    In Hirschsprung's disease (HD) there exists an overabundance of acetylcholine (ACh), which in turn stimulates excessive production of the enzyme acetylcholinesterase. Muscarinic ACh receptors (mAChRs) play an important role in smooth-muscle contraction. Recent studies have indicated five different subtypes of mAChRs encoded by five different genes, ml to m5. The purpose of this study was to investigate the expression of each mAChR subtype in aganglionic (AG) colon to further understand the pathophysiology of HD. Entire colon resected at the time of pull-through operation for HD was obtained from 14 patients. Specimens obtained at autopsy from 8 age-matched patients without gastrointestinal disease acted as controls. Frozen sections were used for indirect immunohistochemistry as well as in-situ hybridization. Immunohistochemistry was performed using specific antiserum against each mAChR subtype and in-situ hybridization was performed using specific oligonucleotide probes against ml to m5 subtypes. Messenger RNA (mRNA) was extracted from normoganglionic (NG) and AG bowel of HD patients and normal control bowel. Reverse transcription-polymerase chain reaction was performed to evaluate mRNA levels of each mAChR subtype. To adjust the levels of mRNA expression, a housekeeping gene G3PDH, known to be expressed normally, was used as an internal control. Strong m2 and m3 immunoreactivity was observed in the mucosal layer, smooth-muscle layers, and myenteric plexus of NG bowel, whereas ml immunoreactivity was only detected in the mucosal layer. The most striking finding was the abundance of m3-immunoreactive fibers in muscle layers of NG bowel while there was a total lack of m3 fibers in smooth-muscle of AG bowel. Intense mRNA signals encoding m2 and m3 and to a lesser degree ml were detected in NG bowel, and these signals were weak in AG bowel. Immunoreactivity and mRNA expression of m4 and m5 was not detected in NG or AG bowel. The lack of m3-immunoreactive fibers in the

  13. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  14. ent-Steroids: Novel Tools for Studies of Signaling Pathways

    OpenAIRE

    Covey, Douglas F.

    2008-01-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of natu...

  15. Inhaled Steroids

    Science.gov (United States)

    ... considerations when your dosage changes. What about side effects and inhaled steroids? The most common side effects with inhaled steroids ... inhaled steroid has much less potential for side effects than steroid pills or syrups. There have been concerns regarding ...

  16. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  17. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  18. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  19. Expression of prostanoid receptors in human ductus arteriosus

    Science.gov (United States)

    Leonhardt, Andreas; Glaser, Alexander; Wegmann, Markus; Schranz, Dietmar; Seyberth, Hannsjörg; Nüsing, Rolf

    2003-01-01

    Prostaglandins play a major role in maintaining ductal patency in utero. Ductal tone is regulated by both locally released and circulating vasodilatory prostaglandins. In infants with ductus arteriosus-dependent congenital heart disease, ductal patency is maintained by intravenous administration of prostaglandin (PG) E1. Little information is available regarding the expression of prostaglandin receptors in man. By means of RT–PCR and immunohistochemistry we studied the expression of the PGI2 receptor (IP), the four different PGE2 receptors (EP1, EP2, EP3 and EP4), and the receptors for thromboxane (Tx) A2 (TP), PGD2 (DP) and PGF2α (FP) in the ductus arteriosus of three newborn infants with ductus arteriosus-dependent congenital heart disease and intravenous infusion of PGE1 and of one 8 month old child with a patent ductus arteriosus. The EP3, EP4, FP, IP and TP receptor were markedly expressed at the mRNA and protein level, whereas the EP2 receptor was weakly expressed and the EP1 receptor was detected in two out of four tissue specimens only. The DP receptor was not detected in any of the samples. The most pronounced expression, which was located in the media of the ductus arteriosus, was observed for the EP4 and TP receptors followed by IP and FP receptor protein. These data indicate that ductal patency during the infusion of PGE1 in infants with ductus arteriosus-dependent congenital heart disease might be mediated by the EP4 and IP receptor. The data further suggest that a heterogeneous population of prostanoid receptors may contribute to the regulation of ductus arteriosus tone in humans. PMID:12598419

  20. Modeling Canadian Quality Control Test Program for Steroid Hormone Receptors in Breast Cancer: Diagnostic Accuracy Study.

    Science.gov (United States)

    Pérez, Teresa; Makrestsov, Nikita; Garatt, John; Torlakovic, Emina; Gilks, C Blake; Mallett, Susan

    The Canadian Immunohistochemistry Quality Control program monitors clinical laboratory performance for estrogen receptor and progesterone receptor tests used in breast cancer treatment management in Canada. Current methods assess sensitivity and specificity at each time point, compared with a reference standard. We investigate alternative performance analysis methods to enhance the quality assessment. We used 3 methods of analysis: meta-analysis of sensitivity and specificity of each laboratory across all time points; sensitivity and specificity at each time point for each laboratory; and fitting models for repeated measurements to examine differences between laboratories adjusted by test and time point. Results show 88 laboratories participated in quality control at up to 13 time points using typically 37 to 54 histology samples. In meta-analysis across all time points no laboratories have sensitivity or specificity below 80%. Current methods, presenting sensitivity and specificity separately for each run, result in wide 95% confidence intervals, typically spanning 15% to 30%. Models of a single diagnostic outcome demonstrated that 82% to 100% of laboratories had no difference to reference standard for estrogen receptor and 75% to 100% for progesterone receptor, with the exception of 1 progesterone receptor run. Laboratories with significant differences to reference standard identified with Generalized Estimating Equation modeling also have reduced performance by meta-analysis across all time points. The Canadian Immunohistochemistry Quality Control program has a good design, and with this modeling approach has sufficient precision to measure performance at each time point and allow laboratories with a significantly lower performance to be targeted for advice.

  1. A regulatory code for neuron-specific odor receptor expression.

    Directory of Open Access Journals (Sweden)

    Anandasankar Ray

    2008-05-01

    Full Text Available Olfactory receptor neurons (ORNs must select-from a large repertoire-which odor receptors to express. In Drosophila, most ORNs express one of 60 Or genes, and most Or genes are expressed in a single ORN class in a process that produces a stereotyped receptor-to-neuron map. The construction of this map poses a problem of receptor gene regulation that is remarkable in its dimension and about which little is known. By using a phylogenetic approach and the genome sequences of 12 Drosophila species, we systematically identified regulatory elements that are evolutionarily conserved and specific for individual Or genes of the maxillary palp. Genetic analysis of these elements supports a model in which each receptor gene contains a zip code, consisting of elements that act positively to promote expression in a subset of ORN classes, and elements that restrict expression to a single ORN class. We identified a transcription factor, Scalloped, that mediates repression. Some elements are used in other chemosensory organs, and some are conserved upstream of axon-guidance genes. Surprisingly, the odor response spectra and organization of maxillary palp ORNs have been extremely well-conserved for tens of millions of years, even though the amino acid sequences of the receptors are not highly conserved. These results, taken together, define the logic by which individual ORNs in the maxillary palp select which odor receptors to express.

  2. Cardiotonic steroid ouabain stimulates expression of blood-testis barrier proteins claudin-1 and -11 and formation of tight junctions in Sertoli cells.

    Science.gov (United States)

    Dietze, Raimund; Shihan, Mazen; Stammler, Angelika; Konrad, Lutz; Scheiner-Bobis, Georgios

    2015-04-15

    The interaction of ouabain with the sodium pump induces signalling cascades resembling those triggered by hormone/receptor interactions. In the rat Sertoli cell line 93RS2, ouabain at low concentrations stimulates the c-Src/c-Raf/Erk1/2 signalling cascade via its interaction with the α4 isoform of the sodium pump expressed in these cells, leading to the activation of the transcription factor CREB. As a result of this signalling sequence, ouabain stimulates expression of claudin-1 and claudin-11, which are also controlled by a CRE promoter. Both of these proteins are known to be essential constituents of tight junctions (TJ) between Sertoli cells, and as a result of the ouabain-induced signalling TJ formation between neighbouring Sertoli cells is significantly enhanced by the steroid. Thus, ouabain-treated cell monolayers display higher transepithelial resistance and reduced free diffusion of FITC-coupled dextran in tracer diffusion assays. Taking into consideration that the formation of TJ is indispensable for the maintenance of the blood-testis barrier (BTB) and therefore for male fertility, the actions of ouabain described here and the fact that this and other related cardiotonic steroids (CTS) are produced endogenously suggest a direct influence of ouabain/sodium pump interactions on the maintenance of the BTB and thereby an effect on male fertility. Since claudin-1 and claudin-11 are also present in other blood-tissue barriers, one can speculate that ouabain and perhaps other CTS influence the dynamics of these barriers as well. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Decompression Retinopathy after ExPRESS Shunt Implantation for Steroid-Induced Ocular Hypertension: A Case Report

    Directory of Open Access Journals (Sweden)

    Khawla Abu Samra

    2011-01-01

    Full Text Available Purpose. To present a unique case of decompression retinopathy after the implantation of ExPRESS drainage device. Method. A 25-year-old female patient underwent implantation of ExPRESS drainage device in the left eye for the management of steroid-induced ocular hypertension. Results. On the postoperative day one, best-corrected visual acuity in the left eye was 20/50. Fundus examination revealed diffuse intraretinal hemorrhages, some white-centered, throughout the retina. There was also marked tortuosity to the retinal vasculature and no evidence of choroidal effusion. Intravenous fluorescein angiography and indocyanine green did not contribute to the aetiopathogenesis. Conclusion. Decompression retinopathy can occur following the implantation of ExPRESS drainage device. It is very important to be aware of this complication in patients with relatively high intraocular pressure who is planned for filtration surgery, including the ExPRESS implant.

  4. Wired on steroids: Sexual differentiation of the brain and its role in the expression of sexual partner preferences

    Directory of Open Access Journals (Sweden)

    Brenda Mae Alexander

    2011-10-01

    Full Text Available The preference to seek out a sexual partner of the opposite sex is robust and ensures reproduction and survival of the species. Development of female-directed partner preference in the male is dependent on exposure of the developing brain to gonadal steroids synthesized during critical periods of sexual differentiation of the central nervous system. In the absence of androgen exposure, a male-directed partner preference develops. The development and expression of sexual partner preference has been extensively studied in rats, ferrets, and sheep model systems. From these models it is clear that gonadal testosterone, often through estrogenic metabolites, cause both masculinization and defeminization of behavior during critical periods of brain development. Changes in the steroid environment during these critical periods results in atypical sexual partner preference. In this manuscript, we review the major findings which support the hypothesis that the organizational actions of sex steroids are responsible for sexual differentiation of sexual partner preferences in select non-human species. We also explore how this information has helped to frame our understanding of the biological influences on human sexual orientation and gender identity.

  5. Wired on steroids: sexual differentiation of the brain and its role in the expression of sexual partner preferences.

    Science.gov (United States)

    Alexander, Brenda M; Skinner, Donal C; Roselli, Charles E

    2011-01-01

    The preference to seek out a sexual partner of the opposite sex is robust and ensures reproduction and survival of the species. Development of female-directed partner preference in the male is dependent on exposure of the developing brain to gonadal steroids synthesized during critical periods of sexual differentiation of the central nervous system. In the absence of androgen exposure, a male-directed partner preference develops. The development and expression of sexual partner preference has been extensively studied in rat, ferret, and sheep model systems. From these models it is clear that gonadal testosterone, often through estrogenic metabolites, cause both masculinization and defeminization of behavior during critical periods of brain development. Changes in the steroid environment during these critical periods result in atypical sexual partner preference. In this manuscript, we review the major findings which support the hypothesis that the organizational actions of sex steroids are responsible for sexual differentiation of sexual partner preferences in select non-human species. We also explore how this information has helped to frame our understanding of the biological influences on human sexual orientation and gender identity.

  6. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    Science.gov (United States)

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  7. Expression of androgen and estrogen receptors in the testicular ...

    African Journals Online (AJOL)

    enoh

    2012-04-10

    Apr 10, 2012 ... 66: 1161-1168. Oliveira CA, Mahecha GA, Carnes K, Prins GS, Saunders PT, Franca. LR, Hess RA (2004). Differential hormonal regulation of estrogen receptors ERα and ER and androgen receptor expression in rat efferent ductules. Reproduction, 128(1): 73-86. O'Shaughnessy PJ, Johnston H, Willerton L ...

  8. Stress and Cognition: the relevance of timing, steroid receptors and sex differences

    NARCIS (Netherlands)

    Cornelisse, S.

    2013-01-01

    In response to a stressful situation the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis are activated, eventually leading to the release of catecholamines and corticosteroids. These stress hormones bind to different receptors in the brain (in case of corticosteroids,

  9. Dynamic Regulation of FoxA1 by Steroid Receptors | Center for Cancer Research

    Science.gov (United States)

    The estrogen receptor (ER) is a key regulator in breast cancer initiation and progression. A widely discussed model proposes that forkhead box protein A1 (FoxA1) acts as a pioneer factor in cancer by binding and penetrating closed chromatin to allow access by transcription factors (TFs), including ER.

  10. Odor memories regulate olfactory receptor expression in the sensory periphery.

    Science.gov (United States)

    Claudianos, Charles; Lim, Julianne; Young, Melanie; Yan, Shanzhi; Cristino, Alexandre S; Newcomb, Richard D; Gunasekaran, Nivetha; Reinhard, Judith

    2014-05-01

    Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Androgen Receptor Expression in Thai Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Suthat Chottanapund

    2016-09-01

    Full Text Available The aim of this study was to investigate prevalence and related factors of androgen receptor (AR expression in Thai breast cancer patients. A descriptive study was done in 95 patients, who were admitted to Charoenkrung Pracharak Hospital, Bangkok (2011–2013. Statistical relationships were examined between AR protein expression, tumor status, and patient characteristics. Compared with those from Western countries, ethnic Thai patients were younger at age of diagnosis and had a higher proliferative index (high Ki-67 expression, which indicates unfavorable prognosis. In addition, 91% of the Thai breast tumors that were positive for any of the following receptors, estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor receptor 2 (HER2 also expressed the AR protein, while in triple negative breast tumors only 33% were AR positive. ER and PR expression was positively related with AR expression, while AR expression was inversely correlated to Ki-67 expression. AR status was strongly correlated with ER and PR status in Thai patients. There is an inverse relationship between Ki-67 and AR, which suggests that AR may be a prognostic factor for breast cancer.

  12. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile.

    Science.gov (United States)

    Rosen, J; Negro-Vilar, A

    2002-03-01

    A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly

  13. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways.

    Science.gov (United States)

    Narayanan, Ramesh; Coss, Christopher C; Yepuru, Muralimohan; Kearbey, Jeffrey D; Miller, Duane D; Dalton, James T

    2008-11-01

    Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.

  14. Org 214007-0: a novel non-steroidal selective glucocorticoid receptor modulator with full anti-inflammatory properties and improved therapeutic index.

    Science.gov (United States)

    van Lierop, Marie-José C; Alkema, Wynand; Laskewitz, Anke J; Dijkema, Rein; van der Maaden, Hans M; Smit, Martin J; Plate, Ralf; Conti, Paolo G M; Jans, Christan G J M; Timmers, C Marco; van Boeckel, Constant A A; Lusher, Scott J; McGuire, Ross; van Schaik, Rene C; de Vlieg, Jacob; Smeets, Ruben L; Hofstra, Claudia L; Boots, Annemieke M H; van Duin, Marcel; Ingelse, Benno A; Schoonen, Willem G E J; Grefhorst, Aldo; van Dijk, Theo H; Kuipers, Folkert; Dokter, Wim H A

    2012-01-01

    Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.

  15. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    Science.gov (United States)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  16. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  17. Expression of Estrogen and Progesterone Receptors among ...

    African Journals Online (AJOL)

    Study design: This is a descriptive study to detect the level of Estrogen (ER) and Progesterone (PR) receptors in a sample of biopsies from Sudanese women with breast cancer presented at Khartoum teaching Hospital Material and Methods: Forty biopsies from breast cancer patients were examined with immunostaining

  18. The Relationship of Erythropoietin Receptor Expression and ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... brain tumor characterized with poor prognosis and short survival. In addition to the standard treatment protocols, targeted molecular treatment options are under trial. In the recent trials, erythropoietin and erythropoietin receptor were found to be linked with the progression of GBM cells. Aim: In this study, we.

  19. New method for recognition of sterol signalling molecules: Methinium salts as receptors for sulphated steroids

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Bříza, T.; Králová, Jarmila; Mikula, I.; Poučková, P.; Martásek, P.; Král, V.

    2015-01-01

    Roč. 94, February 2015 (2015), s. 15-20 ISSN 1878-5867 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/11/1291; GA MŠk(CZ) LH14008; GA MŠk(CZ) CZ.1.07/2.300/30.0060; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Polymethinium salts * Sulphated sterols * Molecular recognition * Synthetic receptors Subject RIV: EB - Genetics ; Molecular Biology

  20. Effect of pregnancy on endometrial sex steroid receptors and on prostaglandin F2α release after uterine biopsy in heifers

    International Nuclear Information System (INIS)

    Meikle, A.; Garofalo, E.G.; Sahlin, L.; Thatcher, W.W.; Kindahl, H.; Forsberg, M.

    2005-01-01

    The effect of pregnancy on oestrogen receptor (ER) and progesterone receptor (PR) endometrial expression in heifers was studied. Holstein heifers were not inseminated (controls, n = 8) or inseminated (n = 21). Endometrial biopsies were taken at Day 17 h from the uterine horn ipsilateral to the corpus luteum. Hourly samples were taken on the day of the biopsy in 12 animals (controls = 4 and inseminated = 8) to analyze 15-ketodihydro-PGF 2α (PGFM) and progesterone concentrations. Pregnancy determined by ultrasonography diagnosed 6 pregnant cows. The uterine biopsy increased PGFM concentrations, which remained high for 2 to 4 hours, followed by a transient decrease in progesterone concentrations, but the procedure neither provoked luteolysis nor blocked pregnancy. PGFM concentrations were higher in cyclic than in pregnant cows. No differences in PR mRNA expression were observed among groups, but ER mRNA in pregnant heifers tended to be lower than controls, suggesting that this pathway is implicated in maintenance of pregnancy. (author)

  1. Expression of Estrogen Alpha and Beta Receptors in Prostate ...

    African Journals Online (AJOL)

    Expression of Estrogen Alpha and Beta Receptors in Prostate Cancer and Hyperplasia: Immunohistochemical Analysis. ... Additionally, ER-α was not expressed in either luminal or basal cells in any of the 35 BPH cases. However ... Key Words: ER-α, ER-β, prostate, hyperplasia, premalignant, cancer, immunohistochemistry ...

  2. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations

    NARCIS (Netherlands)

    Pouwels, Simon D.; Van Geffen, Wouter H.; Jonker, Marnix R.; Kerstjens, Huib A. M.; Nawijn, Martijn C.; Heijink, Irene H.

    Previously, we observed increased serum levels of damage-associated molecular patterns (DAMPs) during COPD exacerbations. Here, gene expression of DAMP receptors was measured in peripheral blood neutrophils of COPD patients during stable disease and severe acute exacerbation. The expression of

  3. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  4. P/CAF Function in Transcriptional Activation by Steroid Hormone Receptors and Mammary Cell Proliferation

    Science.gov (United States)

    1999-07-01

    majority (see below) of GCN5 nulls, no expression of Shh and HNF-3ß was observed in the region of the notochord (Fig. 5f, 5g), suggesting that...apparent head fold and body axis. Notochord staining of Shh and tiny patches of paraxis expression are detected in a subset of these less severe...143, 363-73 (1991). 17. Ang, S.L. & Rossant, J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78, 561-74 (1994

  5. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  7. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  8. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    International Nuclear Information System (INIS)

    Lucy, M.C.; Boyd, C.K.; Koenigsfeld, A.T.; Okamura, C.S.

    1998-01-01

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  9. Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors

    Czech Academy of Sciences Publication Activity Database

    Adla, Santosh Kumar; Slavíková, Barbora; Šmídková, Markéta; Tloušťová, Eva; Svoboda, Martin; Vyklický, Vojtěch; Krausová, Barbora; Hubálková, Pavla; Nekardová, Michaela; Holubová, Kristína; Valeš, Karel; Buděšínský, Miloš; Vyklický ml., Ladislav; Chodounská, Hana; Kudová, Eva

    2017-01-01

    Roč. 117, Jan (2017), s. 52-61 ISSN 0039-128X. [Conference on Isoprenoids /23./. Minsk, 04.09.2016-07.09.2016] R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/12/1464; GA MŠk LO1302; GA MZd(CZ) NV15-29370A; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : neurosteroid * NMDA receptor * structure-activity relationship * amide * blood-brain-barrier permeability * Caco-2 assay Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry; Organic chemistry (FGU-C) Impact factor: 2.282, year: 2016

  10. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  11. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  12. Effects of cypermethrin on the ligand-independent interaction between androgen receptor and steroid receptor coactivator-1

    International Nuclear Information System (INIS)

    Pan, Chen; Liu, Ya-Peng; Li, Yan-Fang; Hu, Jin-Xia; Zhang, Jin-Peng; Wang, Hong-Mei; Li, Jing; Xu, Li-Chun

    2012-01-01

    The pyrethroid insecticide, cypermethrin has been considered as an environmental anti-androgen by interfering with the androgen receptor (AR) transactivation. In order to clarify the effects of cypermethrin on the ligand-independent interaction between the AR and SRC-1, the mammalian two-hybrid assay has been developed in the study. The AR N-terminal domain 1–660 amino acid residues were subcloned into the plasmid pVP16 to construct the vector pVP16-ARNTD. The SRC-1 C-terminal domain 989–1240 amino acid residues were subcloned into the plasmid pM to construct the vector pM-SRC-1. The fusion vectors pVP16-ARNTD, pM-SRC-1 and the pG5CAT Reporter Vector were cotransfected into the CV-1 cells. The AR AF1 interacted with SRC-1 in the absence of exogenous ligand 5α-dihydrotestosterone (DHT). Furthermore, DHT did not enhance the interaction between AR AF-1 and SRC-1 at the concentrations from 10 −10 M to 10 −8 M. Cypermethrin inhibited the interaction between the AR AF1 and SRC-1, and the significant reduction was detected at the concentration of 10 −5 M. It is suggested that the interaction between the AR AF1 and SRC-1 is ligand-independent. Cypermethrin inhibits AR activity by disrupting the ligand-independent AR–SRC-1 interaction.

  13. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

    International Nuclear Information System (INIS)

    Farhat, Amani; Buick, Julie K.; Williams, Andrew; Yauk, Carole L.; O'Brien, Jason M.; Crump, Doug; Williams, Kim L.; Chiu, Suzanne; Kennedy, Sean W.

    2014-01-01

    We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The gene expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction

  14. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Amani [Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Buick, Julie K.; Williams, Andrew; Yauk, Carole L.; O' Brien, Jason M. [Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 (Canada); Crump, Doug; Williams, Kim L.; Chiu, Suzanne [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W., E-mail: sean.kennedy@ec.gc.ca [Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada)

    2014-03-01

    We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The gene expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.

  15. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function

    NARCIS (Netherlands)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CBI

  16. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2017-01-01

    Full Text Available The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR, are the main endocrine therapies for prostate cancer (PCa. But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series of 7α-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability. The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem, resulting in the finding of novel compounds CID_70128824, CID_70127147, and CID_70126881, whose in silico bioactivities are much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics (MD simulations, and MM/GBSA have been employed to analyze and compare the binding modes between the novel compounds and AR. Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals interaction is the main driving force during the binding process.

  17. Characterization of Steroid Receptor RNA Activator Protein Function in Modulating the Estrogen Signaling Pathway

    Science.gov (United States)

    2008-03-01

    two opposite directions. Material and methods Alignment of SRAP sequences: Putative SRAP sequence from Homo sapiens , Bos Taurus, Mus musculus...0.5 1 1.5 2 control IP IP +V5 competition R el at iv e H D A C a ct iv ity IP IP + V5 * MCF-7cont MCF-7 SRAP-V5 High.A cells Fig 7 Appendix 5...1 0 1 2 3 PRO WT NONE RNA UT D el ta C T ** A B C Figure 4: SRAP down regulates the ERbeta expression in mRNA level. A) Four plenti-SRA constructs

  18. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  19. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  20. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  1. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    Directory of Open Access Journals (Sweden)

    Wise Petra M

    2010-04-01

    Full Text Available Abstract Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2 is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4, an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ and females (ZW because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.

  2. Vascular endothelial growth factor ( VEGF ) receptor expression ...

    African Journals Online (AJOL)

    Avidin-biotin complex method was employed for immunohistochemical detection of VEGF. Results: VEGF immuno-expression was positive in 51.9% of CRC, while it was 18.2% in the normal colonic tissue (p<0.05). VEGF immunostaining was positively correlated with grade of colonic malignancy (p<0.05). Conclusion: ...

  3. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  4. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  5. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  6. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  7. Immunohistochemical Expression of Estrogen and Progesterone Receptors in Epulis Fissuratum

    Directory of Open Access Journals (Sweden)

    Maryam Seyedmajidi

    2013-01-01

    Full Text Available Background: Epulis Fissuratum (Epulis Fissuratum (EF or Denture Epulis or inflammatory fibrous hyperplasia is a common hyperplastic tumor-like lesion with reactive nature, related to loose and ill-fitting, full or partial removable dentures and it is more common in women than men. For this reason, hormonal influences may also play role in its creation. The effect of steroid hormones especially sex hormones (Estrogen and progesterone on oral mucosa is identified in some studies. In the present study, the distribution pattern and presence of estrogen and progesterone receptors in epithelial, stromal, endothelial and inflammatory cells in Epulis Fissuratum was investigated. Materials and Methods: This cross-sectional study was carried out on 30 samples of paraffin blocks with Epulis Fissuratum diagnosis and 30 samples of normal mucosal tissues as a control group who have had surgery as a margin beside the above lesions and had been obtained from the oral and maxillofacial pathology departement of Babol Dental School since 2003 up to 2010. Intensity of staining and immunoreactivity were evaluated using subjective index and considering the positive control group (breast carcinoma.Results: Epithelial, stromal, endothelial and inflammatory cells didn’t show reaction with monoclonal antibodies against estrogen and progesterone in none of the samples. Conclusion: It seems that the hypothesis of the existence of estrogen and progesterone receptors in epulis fissuratum and normal oral mucosa is ruled out. The possibility of direct effect of estrogen and progesterone in occurring of epulis fissuratum is rejected.

  8. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Directory of Open Access Journals (Sweden)

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  9. Effects of Wenyangbushen formula on the expression of VEGF, OPG, RANK and RANKL in rabbits with steroid-induced femoral head avascular necrosis.

    Science.gov (United States)

    Song, Hong-Mei; Wei, Ying-Chen; Li, Nan; Wu, Bin; Xie, Na; Zhang, Kun-Mu; Wang, Shi-Zhong; Wang, He-Ming

    2015-12-01

    The present study aimed to investigate the effects of Wenyangbushen formula on the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), receptor activator of nuclear factor (NF)‑κβ ligand (RANK), and RANK ligand (RANKL) in a rabbit model of steroid‑induced avascular necrosis of the femoral head (SANFH). The present study also aimed to examine the potential mechanism underlying the effect of this formula on the treatment of SANFH. A total of 136 New Zealand rabbits were randomly divided into five groups: Normal group, model group, and three groups treated with the traditional Chinese medicine (TCM), Wenyangbushen decoction, at a low, moderate and high dose, respectively. The normal group and positive control group were intragastrically administered with saline. The TCM groups were treated with Wenyangbushen decoction at the indicated dosage. Following treatment for 8 weeks, the mRNA and protein expression levels of VEGF, OPG, RANK and RANKL in the femoral head tissues were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. The data revealed that Wenyangbushen decoction effectively promoted the growth of bone cells, osteoblasts and chondrocytes, and prevented cell apoptosis in the SANFH. The mRNA and protein expression levels of OPG and VEGF were increased, while the levels of RANK and RANKL were reduced in the necrotic tissue of the model group, compared with those in the normal rabbits. Wenyangbushen treatment prevented these changes, manifested by an upregulation in the expression levels of VEGF and OPG, and downregulation in the expression levels of RANK and RANKL in a dose‑dependent manner. It was concluded that treatment with Wenyangbushen formula alleviated necrosis of the femoral head induced by steroids. It was observed to promote bone cell, osteoblast and chondrocyte growth, as well as prevent cell apoptosis. In addition, it

  10. Expression of sulfonylurea receptors in rat taste buds.

    Science.gov (United States)

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  12. Toll-like receptor-4 (TLR-4) expression on polymorphonuclear ...

    African Journals Online (AJOL)

    To establish a foundation for further researches on the improvement of polymorphonuclear neutrophil leukocytes (PMN) functions in dairy cow during perinatal period, the counting of PMN, as well as the mRNA and protein expression of toll-like receptor-4 (TLR-4) on PMN was studied during this critical period.

  13. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action

    Directory of Open Access Journals (Sweden)

    Kathleen A. O'Leary

    2017-10-01

    Full Text Available Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL to increased risk for aggressive cancers that express estrogen receptor α (ERα. However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.

  14. Inhibition of tolbutamide 4-methylhydroxylation by a series of non-steroidal anti-inflammatory drugs in V79-NH cells expressing human cytochrome P4502C10

    NARCIS (Netherlands)

    Kappers, W.A.; Groene, E.M. de; Kleij, L.A.; Witkamp, R.F.; Zweers-Zeilmaker, W.M.; Feron, V.J.; Horbach, G.J.

    1996-01-01

    1. To study the role of cytochrome P4502C10 in the metabolism of the non-steroidal antiinflammatory drugs (NSAIDs) diclofenac, phenylbutazone, fenoprofen, ibuprofen, flurbiprofen, ketoprofen and naproxen, a cell line was developed stably expressing CYP2C10 cDNA. A retroviral vector construct,

  15. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Xu, Gefeng; Huang, Tianqing; Jin, Xian; Cui, Cunhe; Li, Depeng; Sun, Cong; Han, Ying; Mu, Zhenbo

    2016-02-01

    In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal.

  16. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  17. Erythropoetin receptor expression in the human diabetic retina

    Directory of Open Access Journals (Sweden)

    Tsang Stephen H

    2009-11-01

    Full Text Available Abstract Background Recent evidence suggests erythropoietin (EPO and the erythropoietin receptor (EPOR may play a direct role in the pathogenesis of diabetic retinopathy. Better characterization of the EPO-EPOR signaling system in the ischemic retina may offer a new therapeutic modality for ischemic ophthalmic diseases. This study was performed to identify EPOR mRNA expression in the human diabetic eye. Findings EPOR antisense RNA probes were validated on human pancreas tissue. In the normal eye, EPOR was expressed in the retinal ganglion cell layer. Minimal expression was observed in the inner and outer nuclear layer. Under conditions of diabetic retinopathy, EPOR expression shifted to photoreceptor cells. Increased expression was also observed in the peripheral retina. Conclusion EPOR expression may be a biomarker or contribute to disease mechanisms in diabetic retinopathy.

  18. Involvement of 1,25D{sub 3}-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Cynthia L. [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Farach-Carson, Mary C.; Rohe, Ben [Department of Biological Sciences, University of Delaware, Newark, DE 19716 (United States); Nemere, Ilka [Department of Nutrition and Food Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT 84322 8700 (United States); Meckling, Kelly A., E-mail: kmecklin@uoguelph.ca [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2010-03-10

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.

  19. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  20. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Directory of Open Access Journals (Sweden)

    Annika Mohr

    Full Text Available Immunohistochemistry (IHC is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1, progesterone receptor (PGR, prolactin receptor (PRLR and growth hormone receptor (GHR gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  1. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-05-15

    The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culture system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1–100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3–4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles. -- Highlights: ►TCDD disrupts sex steroid hormone levels, but not growth of antral follicles. ►Pregnenolone co-treatment by-passes TCDD-induced steroid hormone disruption. ►TCDD affects steroid hormone levels through an AHR pathway in antral follicles.

  2. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  3. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex.

    Science.gov (United States)

    Colucci, Jennifer K; Ortlund, Eric A

    2013-09-01

    Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).

  4. Selective receptor expression restricts Nipah virus infection of endothelial cells

    Directory of Open Access Journals (Sweden)

    Diederich Sandra

    2008-11-01

    Full Text Available Abstract Nipah virus (NiV is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2 or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.

  5. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  6. Identification of selected in vitro generated phase-I metabolites of the steroidal selective androgen receptor modulator MK-0773 for doping control purposes.

    Science.gov (United States)

    Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the

  7. Tropomyosin Receptor Kinase A Expression on Merkel Cell Carcinoma Cells.

    Science.gov (United States)

    Wehkamp, Ulrike; Stern, Sophie; Krüger, Sandra; Hauschild, Axel; Röcken, Christoph; Egberts, Friederike

    2017-11-01

    Merkel cell carcinoma (MCC) is a malignant neuroendocrine skin tumor frequently associated with the Merkel cell polyomavirus. Immune checkpoint therapy showed remarkable results, although not all patients are responsive to this therapy. Anti-tropomyosin receptor kinase A (TrkA)-targeted treatment has shown promising results in several tumor entities. To determine TrkA expression in MCC as a rationale for potential targeted therapy. This case series study investigated the MCC specimens of 55 patients treated at the Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany, from January 1, 2005, through December 31, 2015. Thirty-nine of the 55 samples were suitable for further histopathologic examination. Expression of TrkA was explored by immunohistochemical analysis. Diagnosis of MCC was confirmed by staining positive for cytokeratin 20 (CK20) and synaptophysin. Expression of TrkA on the tumor cells. Specimens of 39 patients (21 women and 18 men; mean [SD] age, 75.0 [7.8] years) underwent immunohistochemical investigation. Thirty-eight of 38 specimens expressed CK20 and synaptophysin on the MCC tumor cells (100% expression). Merkel cell polyomavirus was detected in 32 of 38 specimens (84%). Tropomyosin receptor kinase A was found in all 36 evaluable specimens on the tumor cells; 34 (94%) showed a weak and 2 (6%) showed a strong cytoplasmic expression. In addition, strongly positive perinuclear dots were observed in 30 of 36 specimens (83%). Tropomyosin receptor kinase A was expressed on MCC tumor cells in 100% of evaluable specimens. This result may lead to the exploration of new targeted treatment options in MCC, especially for patients who do not respond to anti-programmed cell death protein 1 treatment.

  8. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor......) in young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  9. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    Science.gov (United States)

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  10. Steroidal Saponins

    Science.gov (United States)

    Sahu, N. P.; Banerjee, S.; Mondal, N. B.; Mandal, D.

    The medicinal activities of plants are generally due to the secondary metabolites (1) which often occur as glycosides of steroids, terpenoids, phenols etc. Saponins are a group of naturally occurring plant glycosides, characterized by their strong foam-forming properties in aqueous solution. The cardiac glycosides also possess this, property but are classified separately because of their specific biological activity. Unlike the cardiac glycosides, saponins generally do not affect the heart. These are classified as steroid or triterpenoid saponins depending on the nature of the aglycone. Steroidal glycosides are naturally occurring sugar conjugates of C27 steroidal compounds. The aglycone of a steroid saponin is usually a spirostanol or a furostanol. The glycone parts of these compounds are mostly oligosaccharides, arranged either in a linear or branched fashion, attached to hydroxyl groups through an acetal linkage (2, 3). Another class of saponins, the basic steroid saponins, contain nitrogen analogues of steroid sapogenins as aglycones.

  11. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  12. Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: a case-control study

    LENUS (Irish Health Repository)

    Sunnotel, Olaf

    2010-03-08

    Abstract Background Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR) signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL) maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients. Methods To determine whether mutations in FKBPL could contribute to the azoospermic phenotype, we examined expression in mouse and human tissues by RNA array blot, RT-PCR and immunohistochemistry and sequenced the complete gene from two azoospermic patient cohorts and matching control groups. FKBPL-AR interaction was assayed using reporter constructs in vitro. Results FKBPL is strongly expressed in mouse testis, with expression upregulated at puberty. The protein is expressed in human testis in a pattern similar to FKBP52 and also enhanced AR transcriptional activity in reporter assays. We examined sixty patients from the Japanese patient group and found one inactivating mutation and one coding change, as well as a number of non-coding changes, all absent in fifty-six controls. A second, Irish patient cohort of thirty showed another two coding changes not present in thirty proven fertile controls. Conclusions Our results describe the first alterations in the gene for FKBPL in azoospermic patients and indicate a potential role in AR-mediated signalling in the testis.

  13. Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: a case-control study

    Directory of Open Access Journals (Sweden)

    Barton David

    2010-03-01

    Full Text Available Abstract Background Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients. Methods To determine whether mutations in FKBPL could contribute to the azoospermic phenotype, we examined expression in mouse and human tissues by RNA array blot, RT-PCR and immunohistochemistry and sequenced the complete gene from two azoospermic patient cohorts and matching control groups. FKBPL-AR interaction was assayed using reporter constructs in vitro. Results FKBPL is strongly expressed in mouse testis, with expression upregulated at puberty. The protein is expressed in human testis in a pattern similar to FKBP52 and also enhanced AR transcriptional activity in reporter assays. We examined sixty patients from the Japanese patient group and found one inactivating mutation and one coding change, as well as a number of non-coding changes, all absent in fifty-six controls. A second, Irish patient cohort of thirty showed another two coding changes not present in thirty proven fertile controls. Conclusions Our results describe the first alterations in the gene for FKBPL in azoospermic patients and indicate a potential role in AR-mediated signalling in the testis.

  14. Nuclear Progestin Receptor (Pgr Knockouts in Zebrafish Demonstrate Role for Pgr in Ovulation But Not in Rapid Nongenomic Steroid Mediated Meiosis Resumption

    Directory of Open Access Journals (Sweden)

    Yong eZhu

    2015-03-01

    Full Text Available Progestins, progesterone derivatives, are the most critical signaling steroid for initiating final oocyte maturation (FOM and ovulation, in order to advance fully-grown immature oocytes to become fertilizable eggs in basal vertebrates. It is well-established that progestin induces FOM via an elusive membrane receptor and a nongenomic steroid signaling process, which precedes progestin triggered ovulation that is mediated through a nuclear progestin receptor (Pgr and genomic signaling pathway. To determine whether Pgr plays a role in a nongenomic signaling mechanism during FOM, we knocked out Pgr in zebrafish using transcription activator-like effector nucleases (TALENs and studied the oocyte maturation phenotypes of Pgr knockouts (Pgr-KOs. Three TALENs-induced mutant lines with different frame shift mutations were generated. Homozygous Pgr-KO female fish were all infertile while no fertility effects were evident in homozygous Pgr-KO males. Oocytes developed and underwent FOM normally in vivo in homozygous Pgr-KO female compared to the wildtype controls, but these mature oocytes were trapped within the follicular cells and failed to ovulate from the ovaries. These oocytes also underwent normal germinal vesicle breakdown (GVBD and FOM in vitro, but failed to ovulate even after treatment with human chronic gonadotropin (HCG or progestin (17alpha,20beta-dihydroxyprogesterone or DHP, which typically induce FOM and ovulation in wildtype oocytes. The results indicate that anovulation and infertility in homozygous Pgr-KO female fish was, at least in part, due to a lack of functional Pgr-mediated genomic progestin signaling in the follicular cells adjacent to the oocytes. Our study of Pgr-KO supports previous results that demonstrate a role for Pgr in steroid-dependent genomic signaling pathways leading to ovulation, and the first convincing evidence that Pgr is not essential for initiating nongenomic progestin signaling and triggering meiosis resumption.

  15. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates

    National Research Council Canada - National Science Library

    Nordeen, Steven

    2000-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  16. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templaces

    National Research Council Canada - National Science Library

    Nordeen, Steve

    2001-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  17. Expression of annexin and Annexin-mRNA in rat brain under influence of steroid drugs

    NARCIS (Netherlands)

    Voermans, PH; Go, KG; ter Horst, GJ; Ruiters, MHJ; Solito, E; Parente, L; James, HE; Marshall, LF; Reulen, HJ; Baethmann, A; Marmarou, A; Ito, U; Hoff, JT; Kuroiwa, T; Czernicki, Z

    1997-01-01

    Brain tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of Annexin-l (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase

  18. Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus

    NARCIS (Netherlands)

    Arceci, R. J.; Baas, F.; Raponi, R.; Horwitz, S. B.; Housman, D.; Croop, J. M.

    1990-01-01

    The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic

  19. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  20. CLONING AND IN VITRO EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR α FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the ma...

  1. Glucose transporters are expressed in taste receptor cells.

    Science.gov (United States)

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-08-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. © 2011 The Authors. Journal of Anatomy © 2011

  2. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  3. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile.

    Science.gov (United States)

    Lin, Zhe; Lin, Yongsheng

    2017-09-05

    The aim of this study was to explore potential crucial genes associated with the steroid-induced necrosis of femoral head (SINFH) and to provide valid biological information for further investigation of SINFH. Gene expression profile of GSE26316, generated from 3 SINFH rat samples and 3 normal rat samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using LIMMA package. After functional enrichment analyses of DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted based on the STRING database and cytoscape. In total, 59 up-regulated DEGs and 156 downregulated DEGs were identified. The up-regulated DEGs were mainly involved in functions about immunity (e.g. Fcer1A and Il7R), and the downregulated DEGs were mainly enriched in muscle system process (e.g. Tnni2, Mylpf and Myl1). The PPI network of DEGs consisted of 123 nodes and 300 interactions. Tnni2, Mylpf, and Myl1 were the top 3 outstanding genes based on both subgraph centrality and degree centrality evaluation. These three genes interacted with each other in the network. Furthermore, the significant network module was composed of 22 downregulated genes (e.g. Tnni2, Mylpf and Myl1). These genes were mainly enriched in functions like muscle system process. The DEGs related to the regulation of immune system process (e.g. Fcer1A and Il7R), and DEGs correlated with muscle system process (e.g. Tnni2, Mylpf and Myl1) may be closely associated with the progress of SINFH, which is still needed to be confirmed by experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  5. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  6. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  7. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  8. Actions of sex steroids on kisspeptin expression and other reproduction-related genes in the brain of the teleost fish European sea bass.

    Science.gov (United States)

    Alvarado, M V; Servili, A; Molés, G; Gueguen, M M; Carrillo, M; Kah, O; Felip, A

    2016-11-01

    Kisspeptins are well known as mediators of the coordinated communication between the brain-pituitary axis and the gonads in many vertebrates. To test the hypothesis that gonadal steroids regulate kiss1 and kiss2 mRNA expression in European sea bass (a teleost fish), we examined the brains of gonad-intact (control) and castrated animals, as well as castrated males (GDX) and ovariectomized females (OVX) that received testosterone (T) and estradiol (E 2 ) replacement, respectively, during recrudescence. In GDX males, low expression of kiss1 mRNA is observed by in situ hybridization in the caudal hypothalamus (CH) and the mediobasal hypothalamus (MBH), although hypothalamic changes in kiss1 mRNA levels were not statistically different among the groups, as revealed by real-time PCR. However, T strongly decreased kiss2 expression levels in the hypothalamus, which was documented in the MBH and the nucleus of the lateral recess (NRLd) in GDX T-treated sea bass males. Conversely, it appears that E 2 evokes low kiss1 mRNA in the CH, while there were cells expressing kiss2 in the MBH and NRLd in these OVX females. These results demonstrate that kisspeptin neurons are presumably sensitive to the feedback actions of sex steroids in the sea bass, suggesting that the MBH represents a major site for sex steroid actions on kisspeptins in this species. Also, recent data provide evidence that both positive and negative actions occur in key factors involved in sea bass reproductive function, including changes in the expression of gnrh-1/gonadotropin, cyp19b, er and ar genes and sex steroid and gonadotropin plasma levels in this teleost fish. © 2016. Published by The Company of Biologists Ltd.

  9. Expression of estrogen receptor α 36 (ESR36) in the hamster ovary throughout the estrous cycle: effects of gonadotropins.

    Science.gov (United States)

    Chakraborty, Prabuddha; Roy, Shyamal K

    2013-01-01

    Estradiol-17β (E) plays an important role in ovarian follicular development. Evidence indicates that some of the effect of E is mediated by the transmembrane estrogen receptor. In this study, we examined the spatio-temporal expression of recently discovered ERα36 (ESR36), a splice variant of Esr1 and a receptor for non-genomic E signaling, in the hamster ovary during the estrous cycle and the role of gonadotropins and ovarian steroid hormones in ESR36 expression. ESR36 expression was high on estrus (D1:0900 h) and declined precipitously by proestrus (D4:0900 h) and remained low up to D4:1600 h. Immunofluorescence findings corroborated immunoblot findings and revealed that ESR36 was expressed only in the cell membrane of both follicular and non-follicular cells, except the oocytes. Ovarian ESR36 was capable of binding to the E-affinity matrix, and have different molecular weight than that of the ESR1 or GPER. Hypophysectomy (Hx) resulted in a marked decline in ESR36 protein levels. FSH and LH, alone or combined, markedly upregulated ESR36 protein in Hx hamsters to the levels observed in D1 hamsters, but neither E nor P had any effect. Inhibition of the gonadotropin surge by phenobarbital treatment on D4:1100 h attenuated ESR36 expression in D1:0900 h ovaries, but the decline was restored by either FSH or LH replacement on D4 afternoon. This is the first report to show that ESR36, which is distinct from ESR1 or GPER is expressed in the plasma membrane of ovarian follicular and non-follicular cells, binds to E and its expression is regulated directly by the gonadotropins. In light of our previous findings, the results suggest that ovarian cells contain at least two distinct membrane estrogen receptors, such as GPER and ESR36, and strongly suggest for a non-genomic action of E regulating ovarian follicular functions.

  10. Differential expression of VEGF ligands and receptors in prostate cancer.

    Science.gov (United States)

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  11. Oral contraceptives and neuroactive steroids.

    Science.gov (United States)

    Rapkin, Andrea J; Biggio, Giovanni; Concas, Alessandra

    2006-08-01

    A deregulation in the peripheral and brain concentrations of neuroactive steroids has been found in certain pathological conditions characterized by emotional or affective disturbances, including major depression and anxiety disorders. In this article we summarize data pertaining to the modulatory effects of oral contraceptive treatment on neuroactive steroids in women and rats. Given that the neuroactive steroids concentrations are reduced by oral contraceptives, together with the evidence that a subset of women taking oral contraceptives experience negative mood symptoms, we propose the use of this pharmacological treatment as a putative model to study the role of neuroactive steroids in the etiopathology of mood disorders. Moreover, since neuroactive steroids are potent modulators of GABA(A) receptor function and plasticity, the treatment with oral contraceptives might also represent a useful experimental model to further investigate the physiological role of these steroids in the modulation of GABAergic transmission.

  12. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    International Nuclear Information System (INIS)

    Liu Jie; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-01-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17β-hydroxysteroid dehydrogenase-7 (HSD17β7; involved in estradiol production) and decreased expression of HSD17β5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood

  13. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  14. Sex steroids and neurogenesis.

    Science.gov (United States)

    Heberden, Christine

    2017-10-01

    The brain has long been known as a dimorphic organ and as a target of sex steroids. It is also a site for their synthesis. Sex steroids in numerous ways can modify cerebral physiology, and along with many processes adult neurogenesis is also modulated by sex steroids. This review will focus on the effects of the main steroids, estrogens, androgens and progestogens, and unveil some aspects of their partly disclosed mechanisms of actions. Gonadal steroids act on different steps of neurogenesis: cell proliferation seems to be increased by estrogens only, while androgens and progestogens favor neuronal renewal by increasing cell survival; differentiation is a common target. Aging is characterized by a cognitive deficiency, paralleled by a decrease in the rate of neuronal renewal and in the levels of circulating gonadal hormones. Therefore, the effects of gonadal hormones on the aging brain are important to consider. The review will also be expanded to related molecules which are agonists to the nuclear receptors. Sex steroids can modify adult neuronal renewal and the extensive knowledge of their actions on neurogenesis is essential, as it can be a leading pathway to therapeutic perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of Estrogen Receptor Alpha in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Parvin Rajabi

    2017-01-01

    Full Text Available Background: Features of malignant melanoma (MM vary in the different geographic regions of the world. This may be attributable to environmental, ethnic, and genetic factors. The aim of this study was to determine the expression of estrogen receptor alpha (ER-α in MM in Isfahan, Iran. Materials and Methods: This study was planned as a descriptive, analytical, cross-sectional investigation. During this study, paraffin-embedded tissue blocks of patients with a histopathologic diagnosis of MM was studied for ER-α using immunohistochemistry (IHC. Results: In this study, 38 patients (female/male; 20/18 with a definite diagnosis of malignant cutaneous melanoma and mean age of 52.4 ± 11.2 years were investigated. Using envision IHC staining, there were not any cases with ER-α expression. Conclusion: In confirmation to the most previous studies, expression of ER-α was negative in MM. It is recommended to investigate the expression of estrogen receptor beta and other markers in MM.

  16. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  17. Steroid osteopathy

    Energy Technology Data Exchange (ETDEWEB)

    Conway, J.J.; Weiss, S.C.

    1984-01-01

    Patients receiving steroids or having disease processes which increase natural steroid production often demonstrate ''the classic x-ray changes'' of avascular necrosis of bone. Bone scintigraphy in these patients most frequently demonstrates an increased radionuclide localization. The literature suggests that the increased activity is related to healing of the avascular process. In a recent study of Legg-Calve-Perthes Disease (LCPD), 37 of the children had multiple studies and increased activity within the epiphysis during revascularization was extremely rare. Not only are the scintigraphic findings in steroid osteopathy dissimilar to that in healing LCPD, but the time interval for healing is much to short for that of a vascular necrosis and no patients demonstrated an avascular phase on bone scintigraphy. Of 15 children with renal transplants on steroid therapy, 9 demonstrated x-ray and clinical findings of osteopathy. In 8 of 9 instances, bone scintigraphy showed increased localization of radionuclide in the affected bone. Improvement or a return to normal occurred in those patients in whom steroids were discontinued. The following is a proposed mechanism for steroid osteopathy. Steroids affect the osteoblastic and osteoclastic activity of bone and weaken its internal structure. Ordinary stress produces microtrabecular fractures. Fractures characteristically stimulate reactive hyperemia and increase bone metabolism. The result is increased bone radiopharmaceutical localization. The importance of recognizing this concept is that steroid osteopathy is preventable by reducing the administered steroid dose. As opposed to avascular necrosis, bone changes are reversible.

  18. Steroid osteopathy

    International Nuclear Information System (INIS)

    Conway, J.J.; Weiss, S.C.

    1984-01-01

    Patients receiving steroids or having disease processes which increase natural steroid production often demonstrate ''the classic x-ray changes'' of avascular necrosis of bone. Bone scintigraphy in these patients most frequently demonstrates an increased radionuclide localization. The literature suggests that the increased activity is related to healing of the avascular process. In a recent study of Legg-Calve-Perthes Disease (LCPD), 37 of the children had multiple studies and increased activity within the epiphysis during revascularization was extremely rare. Not only are the scintigraphic findings in steroid osteopathy dissimilar to that in healing LCPD, but the time interval for healing is much to short for that of a vascular necrosis and no patients demonstrated an avascular phase on bone scintigraphy. Of 15 children with renal transplants on steroid therapy, 9 demonstrated x-ray and clinical findings of osteopathy. In 8 of 9 instances, bone scintigraphy showed increased localization of radionuclide in the affected bone. Improvement or a return to normal occurred in those patients in whom steroids were discontinued. The following is a proposed mechanism for steroid osteopathy. Steroids affect the osteoblastic and osteoclastic activity of bone and weaken its internal structure. Ordinary stress produces microtrabecular fractures. Fractures characteristically stimulate reactive hyperemia and increase bone metabolism. The result is increased bone radiopharmaceutical localization. The importance of recognizing this concept is that steroid osteopathy is preventable by reducing the administered steroid dose. As opposed to avascular necrosis, bone changes are reversible

  19. Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour.

    Science.gov (United States)

    Graham, M Dean; Gardner Gregory, James; Hussain, Dema; Brake, Wayne G; Pfaus, James G

    2015-12-01

    Dopamine (DA) transmission in the medial preoptic area (mPOA) plays a critical role in the control of appetitive sexual behaviour in the female rat. We have shown previously that a DA D1 receptor (D1R)-mediated excitatory state appears to occur in females primed with estradiol benzoate (EB) and progesterone (P), whereas a DA D2 receptor (D2R)-mediated inhibitory state appears to occur in females primed only with EB. The present experiment employed three techniques to better understand what changes occur to DA receptors (DARs) in the mPOA under different hormonal profiles. Ovariectomized females were randomly assigned to one of three steroid treatment groups: EB + P (10 and 500 μg, respectively), EB + Oil, or the control (Oil + Oil), with hormone injections administered at 48 and 4 h prior to euthanizing. First, the number of neurons in the mPOA that contained D1R or D2R was assessed using immunohistochemistry. Second, the mPOA and two control areas (the prelimbic cortex and caudate putamen) were analysed for DAR protein levels using western blot, and DAR functional binding levels using autoradiography. Ovarian steroid hormones affected the two DAR subtypes in opposite ways in the mPOA. All three techniques supported previous behavioural findings that females primed with EB have a lower D1R : D2R ratio, and thus a D2R-mediated system, and females primed with EB + P have a higher D1R : D2R ratio, and thus a D1R-mediated system. This provides strong evidence for a DA-driven pathway of female sexual motivation, desire, and behaviour that is modified by different hormone priming regimens. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    OpenAIRE

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the...

  1. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    Science.gov (United States)

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  2. Somatostatin receptor subtype expression in human thyroid tumours.

    Science.gov (United States)

    Klagge, A; Krause, K; Schierle, K; Steinert, F; Dralle, H; Fuhrer, D

    2010-04-01

    Somatostatin receptors (SSTR) are expressed in various endocrine tumours. The expression of SSTR at the tumour cell surface confers the possibility for diagnostic imaging and therapy of tumours using radiolabeled somatostatin analogues. The majority of currently available somatostatin analogues show a higher binding affinity for the SSTR2 subtype. To date, the precise expression pattern of the SSTR subtypes 1-5 in thyroid epithelial tumours remains to be determined. We investigated the mRNA expression of SSTR1-5 in benign and malignant epithelial thyroid tumours [20 cold thyroid nodules (CTNs), 20 toxic thyroid nodules (TTNs), 20 papillary, 20 follicular, and 5 anaplastic carcinomas (PTCs, FTCs, ATCs, respectively)] and compared them to normal surrounding thyroid tissues. Four out of five SSTR subtypes were detected in malignant thyroid tumours, benign neoplasia, and normal surrounding tissue with a predominant expression of SSTR2 and SSTR5, and a weak expression of SSTR1 and SSTR3. Weak SSTR4 mRNA expression was detected in some PTCs. Compared to normal thyroid tissue, SSTR2 was significantly upregulated in PTC and ATC. In addition significant upregulation of SSTR3 was found in PTC. SSTR5 mRNA expression was increased in PTC and FTC and significantly decreased in CTN and TTN compared to normal thyroid tissue. SSTR2 is the predominant subtype in thyroid epithelial tumours with a high expression pattern, in particular, in PTC . Perspectively, the expression of distinct SSTR in thyroid epithelial tumours might represent a promising avenue for diagnostics and therapy of advanced thyroid cancer with somatostatin analogues. Georg Thieme Verlag KG Stuttgart New York.

  3. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  4. Downregulation of transferrin receptor surface expression by intracellular antibody

    International Nuclear Information System (INIS)

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin

    2007-01-01

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 ± 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors

  5. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    Directory of Open Access Journals (Sweden)

    Hélène De Naeyer

    Full Text Available OBJECTIVE: The relationship between serum testosterone (T levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. DESIGN: 677 men (25-45 years were recruited in a cross-sectional, population-based sibling pair study. METHODS: Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs, sex steroid levels (by LC-MS/MS, body composition (by DXA, muscle cross-sectional area (CSA (by pQCT, muscle force (isokinetic peak torque, grip strength and anthropometrics were studied using linear mixed-effect modelling. RESULTS: Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT and free T (FT levels were positively related to muscle CSA, whereas estradiol (E2 and free E2 (FE2 concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. CONCLUSIONS: Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR

  6. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  7. ACTH-induced stress in weaned sows impairs LH receptor expression and steroidogenesis capacity in the ovary

    Directory of Open Access Journals (Sweden)

    H. S. Zhu

    2016-11-01

    Full Text Available Abstract Background Stress has been proved to impair the porcine reproduction soundly. Endocrine disruption, which is closely related to the persistent follicles, is possibly one of the results of stress, although the mechanism is unclear. Since the expression of luteinizing hormone receptor (LHR in ovarian follicular wall and concentrations of steroid hormone in follicular fluid are related to the development of persistent follicles, this study is designed to evaluate the effect of administered adrenocorticotrophic hormone (ACTH to weaned pigs on their ovarian steroidogenesis capacity and LHR expression. Methods Ten multiparous sows were weaned and randomly divided into two groups (n = 5 each. Sows received 1 IU/kg ACTH (ACTH group or saline (control group every 8 h from days 3–9 after jugular vein intubation. Blood samples were collected throughout the experiment, and ovaries were collected after slaughter on day 10. Follicular fluid (FF was used to determine the steroid hormone concentrations. The ovarian follicle wall was obtained and stored in liquid nitrogen to detect mRNA levels. Results The plasma cortisol concentration was significantly (P  0.05. Immunostaining results revealed 3β-HSD,P450c17, and LHR expression in theca cells, and P450arom expression in granulosa cells. Immunohistochemical staining showed significant differences in the distribution of 3β-HSD, P450c17, LHR, and P450arom between the two groups. Conclusions These findings indicated that ACTH significantly diminished the LHR expression and steroidogenesis capacity of the ovaries of weaned sows.

  8. Oral Steroids (Steroid Pills and Syrups)

    Science.gov (United States)

    ... steroid bursts can cause a number of side effects. Steroid side effects usually occur after long-term use ... how the dosage of steroids is determined; side effects of inhaled steroids, and some recommendations to decrease or prevent side ...

  9. Fetal kidney programming by severe food restriction: effects on structure, hormonal receptor expression and urinary sodium excretion in rats.

    Science.gov (United States)

    Vaccari, Barbara; Mesquita, Flavia F; Gontijo, Jose A R; Boer, Patricia A

    2015-03-01

    The present study investigates, in 23-day-old and adult male rats, the effect of severe food restriction in utero on blood pressure (BP), and its association with nephron structure and function changes, angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MR) receptor expression. The daily food supply to pregnant rats was measured and one group (n=15) received normal quantity of food (NF) while the other received 50% of that (FR50%) (n=15). Kidneys were processed to AT1R, AT2R, MR, and GR immunolocalization and for western blotting analysis. The renal function was estimated by creatinine and lithium clearances in 12-week-old offspring. By stereological analyses, FR50% offspring present a reduction of nephron numbers (35%) with unchanged renal volume. Expression of AT1R and AT2R was significantly decreased in FR50% while the expression of GR and MR increased in FR50%. We also verified a pronounced decrease in urinary sodium excretion accompanied by increased BP in 12-week-old FR50% offspring. The current data suggest that changes in renal function are conducive to excess sodium tubule reabsorption, and this might potentiate the programming of adult hypertension. It is plausible to arise in the current study an association between decreasing natriuresis, reciprocal changes in renal AngII and steroid receptors with the hypertension development found in FR50% compared with age-matched NF offspring. © The Author(s) 2013.

  10. Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids.

    Science.gov (United States)

    Alvarez-Ginarte, Yoanna María; Montero-Cabrera, Luis Alberto; García-de la Vega, José Manuel; Bencomo-Martínez, Alberto; Pupo, Amaury; Agramonte-Delgado, Alina; Marrero-Ponce, Yovani; Ruiz-García, José Alberto; Mikosch, Hans

    2013-11-01

    Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure-activity relationship (QSAR) model expressed by selected descriptors as the octanol-water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid-receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a "docking" procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The effect of core decompression on local expression of BMP-2, PPAR-γ and bone regeneration in the steroid-induced femoral head osteonecrosis

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-08-01

    Full Text Available Abstract Background To investigate the efficacy of the sole core decompression surgery for the treatment of steroid-induced femoral head osteonecrosis. Methods The model was established by administration of steroids in combination with horse serum. The rabbits with bilateral femoral head osteonecrosis were randomly selected to do the one side of core decompression. The other side was used as the sham. Quantitative RT-PCR and western blot techniques were used to measure the local expression of BMP-2 and PPAR-γ. Bone tissues from control and operation groups were histologically analyzed by H&E staining. The comparisons of the local expression of BMP-2 and PPAR-γ and the bone regeneration were further analyzed between different groups at each time point. Results The expression of BMP-2 in the osteonecrosis femoral head with or without decompression was significantly lower than that in normal animals. BMP-2 expression both showed the decreasing trend with the increased post-operation time. No significant difference of BMP-2 expression occurred between femoral head osteonecrosis with and without decompression. The PPAR-γ expression in the femoral head osteonecrosis with and without core decompression both was significantly higher than that in control. Its expression pattern showed a significantly increased trend with increased the post-operation time. However, there was no significant difference of PPAR-γ expression between the femoral head osteonecrosis with and without decompression at each time point. Histopathological analysis revealed that new trabecular bone and a large number of osteoblasts were observed in the steroid-induced femoral head osteonecrosis with lateral decompression at 8 weeks after surgery, but there still existed trabecular bone fractures and bone necrosis. Conclusions Although decompression takes partial effect in promoting bone regeneration in the early treatment of femoral head osteonecrosis, such an effect does not

  12. Fetal betamethasone exposure attenuates angiotensin-(1-7)-Mas receptor expression in the dorsal medulla of adult sheep.

    Science.gov (United States)

    Marshall, Allyson C; Shaltout, Hossam A; Nautiyal, Manisha; Rose, James C; Chappell, Mark C; Diz, Debra I

    2013-06-01

    Glucocorticoids including betamethasone (BM) are routinely administered to women entering into early preterm labor to facilitate fetal lung development and decrease infant mortality; however, fetal steroid exposure may lead to deleterious long term consequences. In a sheep model of fetal programming, BM-exposed (BMX) offspring exhibit elevated mean arterial pressure (MAP) and decreased baroreflex sensitivity (BRS) for control of heart rate by 0.5-years of age associated with changes in the circulating and renal renin-angiotensin systems (RAS). In the brain solitary tract nucleus, angiotensin (Ang) II actions through the AT1 receptor oppose the beneficial actions of Ang-(1-7) at the Mas receptor for BRS regulation. Therefore, we examined Ang peptides, angiotensinogen (Aogen), and receptor expression in this brain region of exposed and control offspring of 0.5- and 1.8-years of age. Mas protein expression was significantly lower (>40%) in the dorsal medulla of BMX animals at both ages; however, AT1 receptor expression was not changed. BMX offspring exhibited a higher ratio of Ang II to Ang-(1-7) (2.30±0.36 versus 0.99±0.28; p<0.01) and Ang II to Ang I at 0.5-years. Although total Aogen was unchanged, Ang I-intact Aogen was lower in 0.5-year BMX animals (0.78±0.06 vs. 1.94±0.41; p<0.05) suggesting a greater degree of enzymatic processing of the precursor protein in exposed animals. We conclude that in utero BM exposure promotes an imbalance in the central RAS pathways of Ang II and Ang-(1-7) that may contribute to the elevated MAP and lower BRS in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    Science.gov (United States)

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  14. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  15. Intracellular actions of steroid hormones and their therapeutic value, including the potential of radiohalosteroids against ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J.A. (Chicago Univ. (United States). Dept. of Obstetrics and Gynecology); Scharl, A. (Koeln Univ., Cologne (Germany). Frauen-Klinik); Kullander, S. (Lund Univ. (Sweden). Womens Hospital Malmoe); Beckmann, M.W. (Johann Wolfgang von Goethe Univ., Frankfurt am Main (Germany). Zentrum fuer Frauenheilkunde und Geburtshilfe)

    1992-01-01

    With recombinant cDNA technology, yeast and cultured animal cells can be made to express mammalian cDNA steroid receptors from cDNA clones that contain deletions and substitutions. Among the leading problems addressed in these models is the characterization of sequences that promote association or interaction with other transcription regulating molecules, including oncogene products. Recently it has been found that heat shock proteins may serve not only to stabilize the receptor proteins but also to precondition the activation imparted by ligand binding. Aberrant receptor proteins can be found in ovarian cancer. Whether aberrant receptor proteins are associated with transformation in general or with a variable clinical response to steroidal or anti-steroidal therapy is not known. Even after chemotherapy, steroid receptors are expressed in the metastases of ovarian cancers seen clinically, and they may have potential use for localization and treatment of receptor-rich cancers. Radioligand pharmaceuticals appropriate for imaging or for site-directed radiocytotoxicity can be sequestered to the nuclei of receptor-rich cancers. Initial clinical imaging and therapy trials with such pharmaceuticals have been approved and begun. In the use of halogenated estrogen radiopharmaceuticals, liver metabolism and enterohepatic recirculation are important considerations. Ascites prolongs retention of radiohalogenated estrogen in the abdominal cavity. Distant metastases have been localized with [[sup 123]I]-estrogen in breast cancer patients in pre-operative procedures. Receptor-mediated cytotoxicity occurs when estrogen receptor radioligand pharmaceuticals that are Auger electron emitters are used in vitro. (au) (119 refs., 3 figs.).

  16. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  17. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause

    Directory of Open Access Journals (Sweden)

    Marzieh Davoudi

    2016-07-01

    Full Text Available Background: The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. Objective: The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. Materials and Methods: In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2, progesterone (P4, and a combination of E2 and P4 (E2 & P4 for 5 days. Uterine tissues were removed, and immunofluorescent (IF staining and quantitative real-time PCR of oct4 and sox2 markers were performed. Results: IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022 and sox2 (p=0.042 in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively and E2 & P4-treated groups (p=0.267 and 0.264 respectively did not show significant differences compared to the control group. Conclusion: The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.

  18. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  19. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    Science.gov (United States)

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (Pcancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  20. Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle

    NARCIS (Netherlands)

    Haywood, S.A.; Simonian, S.X.; Beek, van der E.M.; Bicknell, R.J.; Herbison, A.E.

    1999-01-01

    Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen

  1. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    Science.gov (United States)

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A potato tuber-expressed mNRA with homology to steroid dehydrogenases affects gibberellin levels and plant development

    NARCIS (Netherlands)

    Bachem, C.W.B.; Horvath, B.M.; Trindade, L.M.; Claassens, M.M.J.; Davelaar, E.; Jordi, W.J.R.M.; Visser, R.G.F.

    2001-01-01

    Using cDNA-AFLP RNA fingerprinting throughout potato tuber development, we have isolated a transcript-derived fragment (TDF511) with strong homology to plant steroid dehydrogenases. During in vitro tuberization, the abundance profile of the TDF shows close correlation to the process of tuber

  3. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  4. ent-Steroids: novel tools for studies of signaling pathways.

    Science.gov (United States)

    Covey, Douglas F

    2009-07-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.

  5. Expression of melatonin receptors in arteries involved in thermoregulation

    International Nuclear Information System (INIS)

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M.

    1990-01-01

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-[125I]iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation

  6. Arachidonic Acid-Induced Expression of the Organic Solute and Steroid Transporter-beta (Ost-beta) in a Cartilaginous Fish Cell Line

    Science.gov (United States)

    Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David

    2008-01-01

    The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792

  7. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  8. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    International Nuclear Information System (INIS)

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-01-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of [ 3 H]dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear [ 3 H]dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37 0 C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for [ 3 H]dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator

  9. Protective Effects of Fetal Zone Steroids Are Comparable to Estradiol in Hyperoxia-Induced Cell Death of Immature Glia.

    Science.gov (United States)

    Hübner, Stephanie; Sunny, Donna E; Pöhlke, Christine; Ruhnau, Johanna; Vogelgesang, Antje; Reich, Bettina; Heckmann, Matthias

    2017-05-01

    Impaired neurodevelopment in preterm infants is caused by prematurity itself; however, hypoxia/ischemia, inflammation, and hyperoxia contribute to the extent of impairment. Because preterm birth is accompanied by a dramatic decrease in 17β-estradiol (E2) and progesterone, preliminary clinical studies have been carried out to substitute these steroids in preterm infants; however, they failed to confirm significantly improved neurologic outcomes. We therefore hypothesized that the persistently high postnatal production of fetal zone steroids [mainly dehydroepiandrosterone (DHEA)] until term could interfere with E2-mediated protection. We investigated whether E2 could reduce hyperoxia-mediated apoptosis in three immature glial cell types and detected the involved receptors. Thereafter, we investigated protection by the fetal zone steroids DHEA, 16α-hydroxy-DHEA, and androstenediol. For DHEA, the involved receptors were evaluated. We examined aromatases, which convert fetal zone steroids into more estrogenic compounds. Finally, cotreatment was compared against single hormone treatment to investigate synergism. In all cell types, E2 and fetal zone steroids resulted in significant dose-dependent protection, whereas the mediating receptors differed. The neuroprotection by fetal zone steroids highly depended on the cell type-specific expression of aromatases, the receptor repertoire, and the potency of the fetal zone steroids toward these receptors. No synergism in fetal zone steroid and E2 cotreatment was detected in two of three cell types. Therefore, E2 supplementation may not be beneficial with respect to neuroprotection because fetal zone steroids circulate in persistently high concentrations until term in preterm infants. Hence, a refined experimental model for preterm infants is required to investigate potential treatments. Copyright © 2017 Endocrine Society.

  10. Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.

    Science.gov (United States)

    Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan

    2015-10-01

    Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  12. Increased aryl hydrocarbon receptor expression in patients with allergic rhinitis.

    Science.gov (United States)

    Wei, P; Hu, G-H; Kang, H-Y; Yao, H-B; Kou, W; Liu, H; Hong, S-L

    2014-02-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) plays a vital role in promoting or inhibiting the development of specific Th cells. However, its role in AR remains undefined. To analyze the potential role of AhR in the pathogenesis of AR. In total, 30 AR patients and 13 healthy controls were recruited for this study and AR patients had clinical features, as demonstrated by rhinoconjunctivitis quality of life questionnaires, total symptom scores and visual analog scale scores. The expression of AhR, IL-17 and IL-22 and the presence of Th17 cells in peripheral blood mononuclear cells were measured before and after treatment with the nontoxic AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Pretreatment ITE studies revealed that all AR patients had a significant increase in AhR expression compared with controls and AhR expression positively correlated with clinical parameters. After ITE intervention, a severe reduction in the differentiation of Th17 cells and the production of IL-17 and IL-22 was noted in both AR patients and normal subjects. Simultaneously, a dramatic enhancement of AhR expression was also observed in all healthy controls, but not in AR patients. The results suggested that the AhR may be one of the mechanisms underlying the Th17 response during the pathogenesis of AR and AhR levels were closely related to clinical severity in all AR patients. Additionally, ITE may represent a new drug candidate in the treatment of AR.

  13. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    International Nuclear Information System (INIS)

    Luettichau, Irene von; Huss, Ralf; Nelson, Peter J; Segerer, Stephan; Wechselberger, Alexandra; Notohamiprodjo, Mike; Nathrath, Michaela; Kremer, Markus; Henger, Anna; Djafarzadeh, Roghieh; Burdach, Stefan

    2008-01-01

    Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their receptors in diverse aspects of the biology

  14. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects.

    Science.gov (United States)

    Scott, Alexander P

    2013-02-01

    In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  15. Radioimmunoassay of anabolic steroids

    International Nuclear Information System (INIS)

    Hampl, R.; Stranska, I.; Starka, L.; Picha, J.; Chundela, B.

    1978-01-01

    Alternative antisera against 17 α-methyltestosterone and 19-nortestosterone were raised and used for radioimmunoassay of anabolic steroids. Tritiated compounds were used as radioligands. The RIA method suitable for doping control is proposed for 17 α-alkylated anabolic steroids in both plasma and urine, using qoat antiserum against methyltestosterone-3-carboxymethyloxime-BSA. Sensitivity of the method was expressed as least amount of nonradioactive methandienone which, when added to normal urine or plasma, caused statistically significant decrease of measured supernatant radioactivity at 99% level. The amounts from 50 to 500 pg were tested, each in eight parallel determinations. The amounts of 100 pg for plasma and 200 pg for urine met these criteria. The respective coefficients of variation did not depend on the amount of steroid added in this range. They averaged 4.60% for plasma and 4.95% for urine, respectively. (T.I.)

  16. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    Science.gov (United States)

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  17. Sequence genomic organization and expression of two channel catfish Ictalurus punctatus Ghrelin receptors

    Science.gov (United States)

    Two ghrelin receptor (GHS-R) genes were isolated from channel catfish tissue and a bacterial artificial chromosome (BAC) library. The two receptors were characterized by determining tissue distribution, ontogeny of receptor mRNA expression, and effects of exogenous homologous ghrelin administration ...

  18. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, : The Effects of Hypo-osmotic Environmental Changes

    Directory of Open Access Journals (Sweden)

    Young Jae Choi

    2014-04-01

    Full Text Available Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs, and vitellogenin (VTG in chum salmon (Oncorhynchus keta. The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

  19. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-05-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors

  20. Estrogen Receptor and Progesterone Receptor Expression in Normal Terminal Duct Lobular Units Surrounding Invasive Breast Cancer

    Science.gov (United States)

    Yang, Xiaohong R.; Figueroa, Jonine D.; Hewitt, Stephen M.; Falk, Roni T.; Pfeiffer, Ruth M.; Lissowska, Jolanta; Peplonska, Beata; Brinton, Louise A.; Garcia-Closas, Montserrat; Sherman, Mark E.

    2014-01-01

    Introduction Molecular and morphological alterations related to carcinogenesis have been found in terminal duct lobular units (TDLUs), the microscopic structures from which most breast cancer precursors and cancers develop, and therefore, analysis of these structures may reveal early changes in breast carcinogenesis and etiologic heterogeneity. Accordingly, we evaluated relationships of breast cancer risk factors and tumor pathology to estrogen receptor (ER) and progesterone receptor (PR) expression in TDLUs surrounding breast cancers. Methods We analyzed 270 breast cancer cases included in a population-based breast cancer case-control study conducted in Poland. TDLUs were mapped in relation to breast cancer: within the same block as the tumor (TDLU-T), proximal to tumor (TDLU-PT), or distant from (TDLU-DT). ER/PR was quantitated using image analysis of immunohistochemically stained TDLUs prepared as tissue microarrays. Results In surgical specimens containing ER-positive breast cancers, ER and PR levels were significantly higher in breast cancer cells than in normal TDLUs, and higher in TDLU-T than in TDLU-DT or TDLU-PT, which showed similar results. Analyses combining DT-/PT TDLUs within subjects demonstrated that ER levels were significantly lower in premenopausal women vs. postmenopausal women (odds ratio [OR]=0.38, 95% confidence interval [CI]=0.19, 0.76, P=0.0064) and among recent or current menopausal hormone therapy users compared with never users (OR=0.14, 95% CI=0.046–0.43, Ptrend=0.0006). Compared with premenopausal women, TDLUs of postmenopausal women showed lower levels of PR (OR=0.90, 95% CI=0.83–0.97, Ptrend=0.007). ER and PR expression in TDLUs was associated with epidermal growth factor receptor (EGFR) expression in invasive tumors (P=0.019 for ER and P=0.03 for PR), but not with other tumor features. Conclusions Our data suggest that TDLUs near breast cancers reflect field effects, whereas those at a distance demonstrate influences of breast

  1. Receptor localization of steroid hormones and drugs: discoveries through the use of thaw-mount and dry-mount autoradiography

    Directory of Open Access Journals (Sweden)

    Stumpf W.E.

    1998-01-01

    Full Text Available The history of receptor autoradiography, its development and applications, testify to the utility of this histochemical technique for localizing radiolabeled hormones and drugs at cellular and subcellular sites of action in intact tissues. Localization of diffusible compounds has been a challenge that was met through the introduction of the "thaw-mount" and "dry-mount" autoradiographic techniques thirty years ago. With this cellular receptor autoradiography, used alone or combined with other histochemical techniques, sites of specific binding and deposition in vivo and in vitro have been characterized. Numerous discoveries, some reviewed in this article, provided information that led to new concepts and opened new areas of research. As an example, in recent years more than fifty target tissues for vitamin D have been specified, challenging the conventional view about the main biological role of vitamin D. The functions of most of these vitamin D target tissues are unrelated to the regulation of systemic calcium homeostasis, but pertain to the (seasonal regulation of endo- and exocrine secretion, cell proliferation, reproduction, neural, immune and cardiovascular responses, and adaptation to stress. Receptor autoradiography with cellular resolution has become an indispensable tool in drug research and development, since information can be obtained that is difficult or impossible to gain otherwise

  2. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis

    NARCIS (Netherlands)

    Geurts, J. J. G.; Wolswijk, G.; Bö, L.; van der Valk, P.; Polman, C. H.; Troost, D.; Aronica, E.

    2003-01-01

    Recent evidence supports a role for glutamate receptors in the pathophysiology of multiple sclerosis. In the present study, we have focused specifically on the expression of metabotropic glutamate receptors (mGluRs) in multiple sclerosis brain tissue. The expression of group I (mGluR1alpha and

  3. Cloning and expression analysis of tyrosine hydroxylase and changes in catecholamine levels in brain during ontogeny and after sex steroid analogues exposure in the catfish, Clarias batrachus.

    Science.gov (United States)

    Mamta, Sajwan Khatri; Raghuveer, Kavarthapu; Sudhakumari, Cheni-Chery; Rajakumar, Anbazhagan; Basavaraju, Yaraguntappa; Senthilkumaran, Balasubramanian

    2014-02-01

    Tyrosine hydroxylase (Th) is the rate-limiting enzyme for catecholamine (CA) biosynthesis and is considered to be a marker for CA-ergic neurons, which regulate the levels of gonadotropin-releasing hormone in brain and gonadotropins in the pituitary. In the present study, we cloned full-length cDNA of Th from the catfish brain and evaluated its expression pattern in the male and female brain during early development and after sex-steroid analogues treatment using quantitative real-time PCR. We measured the CA levels to compare our results on Th. Cloned Th from catfish brain is 1.591 kb, which encodes a putative protein of 458 amino acid residues and showed high homology with other teleosts. The tissue distribution of Th revealed ubiquitous expression in all the tissues analyzed with maximum expression in male and female brain. Copy number analysis showed two-fold more transcript abundance in the female brain when compared with the male brain. A differential expression pattern of Th was observed in which the mRNA levels were significantly higher in females compared with males, during early brain development. CAs, l-3,4-dihydroxyphenylalanine, dopamine, and norepinephrine levels measured using high-performance liquid chromatography with electrochemical detection in the developing male and female brain confirmed the prominence of the CA-ergic system in the female brain. Sex-steroid analogue treatment using methyltestosterone and ethinylestradiol confirmed our findings of the differential expression of Th related to CA levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary.

    Science.gov (United States)

    Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J

    2011-06-01

    Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.

  5. Functional expression of the 5-HT1c receptor in neuronal and nonneuronal cells

    International Nuclear Information System (INIS)

    Julius, D.; MacDermott, A.B.; Jessel, T.M.; Huang, K.; Molineaux, S.; Schieren, I.; Axel, R.

    1988-01-01

    The isolation of the genes encoding the multiple serotonin receptor subtypes and the ability to express these receptors in new cellular environments will help to elucidate the molecular mechanisms of action of serotonin in the mammalian brain. The cloning of most neurotransmitter receptors has required the purification of receptor, the determination of partial protein sequence, and the synthesis of oligonucleotide probes with which to obtain cDNA or genomic clones. However, the serotonin receptors have not been purified and antibodies have not been generated. The authors therefore designed a cDNA expression system that permits the identification of functional cDNA clones encoding serotonin receptors in the absence of protein sequence information. They have combined cloning in RNA expression vectors with an electrophysiological assay in oocytes to isolate a functional cDNA clone encoding the entire 5-HT 1c receptor. The sequence of this clone reveals that the 5-HT 1c receptor belongs to a family of G-protein-coupled receptors that are thought to traverse the membrane seven times. Mouse fibroblasts transformed with this clone bind serotonergic ligands and respond to serotonin with an elevation in intracellular calcium. Moreover, in situ hybridization and Northern blot analysis indicate that the 5-HT 1c receptor mRNA is expressed in a wide variety of neurons in the rat central nervous system, suggesting that this receptor plays a prominent role in neuronal function

  6. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  7. Expression of estrogen receptor α 36 (ESR36 in the hamster ovary throughout the estrous cycle: effects of gonadotropins.

    Directory of Open Access Journals (Sweden)

    Prabuddha Chakraborty

    Full Text Available Estradiol-17β (E plays an important role in ovarian follicular development. Evidence indicates that some of the effect of E is mediated by the transmembrane estrogen receptor. In this study, we examined the spatio-temporal expression of recently discovered ERα36 (ESR36, a splice variant of Esr1 and a receptor for non-genomic E signaling, in the hamster ovary during the estrous cycle and the role of gonadotropins and ovarian steroid hormones in ESR36 expression. ESR36 expression was high on estrus (D1:0900 h and declined precipitously by proestrus (D4:0900 h and remained low up to D4:1600 h. Immunofluorescence findings corroborated immunoblot findings and revealed that ESR36 was expressed only in the cell membrane of both follicular and non-follicular cells, except the oocytes. Ovarian ESR36 was capable of binding to the E-affinity matrix, and have different molecular weight than that of the ESR1 or GPER. Hypophysectomy (Hx resulted in a marked decline in ESR36 protein levels. FSH and LH, alone or combined, markedly upregulated ESR36 protein in Hx hamsters to the levels observed in D1 hamsters, but neither E nor P had any effect. Inhibition of the gonadotropin surge by phenobarbital treatment on D4:1100 h attenuated ESR36 expression in D1:0900 h ovaries, but the decline was restored by either FSH or LH replacement on D4 afternoon. This is the first report to show that ESR36, which is distinct from ESR1 or GPER is expressed in the plasma membrane of ovarian follicular and non-follicular cells, binds to E and its expression is regulated directly by the gonadotropins. In light of our previous findings, the results suggest that ovarian cells contain at least two distinct membrane estrogen receptors, such as GPER and ESR36, and strongly suggest for a non-genomic action of E regulating ovarian follicular functions.

  8. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression v...

  9. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice.

    Science.gov (United States)

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-02-21

    vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.

  10. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice

    Directory of Open Access Journals (Sweden)

    Baskin Laurence S

    2006-02-01

    estradiol. Conclusion The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.

  11. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Gan, Lu; He, Jian; Zhang, Xia; Zhang, Yong-Jie; Yu, Guan-Zhen; Chen, Ying; Pan, Jun; Wang, Jie-Jun; Wang, Xi

    2012-01-01

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  12. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  13. Leptin, its receptor and aromatase expression in deep infiltrating endometriosis.

    Science.gov (United States)

    Gonçalves, Helder F; Zendron, Carolina; Cavalcante, Fernanda S; Aiceles, Verônica; Oliveira, Marco Aurélio P; Manaia, Jorge Henrique M; Babinski, Márcio A; Ramos, Cristiane F

    2015-08-05

    The aim of this study was to evaluate the leptin levels in the serum and peritoneal fluid (PF) and the protein expression in three different peritoneal ectopic implants in patients who underwent surgery for deep infiltrating endometriosis. All patients had been treated at the Department of Gynecology of the Pedro Ernesto University Hospital, Rio de Janeiro. The study group consisted of 15 patients who underwent surgery for adnexal masses and infertility, while the control group consisted of ten women who underwent surgery for tubal ligation. Peritoneal fluid and samples tissues were collected during surgery. Serum samples were obtained before anesthesia. In this study, the leptin levels in the serum and peritoneal fluid (PF) were evaluated by ELISA. The protein expression of leptin and its receptors (ObR) and aromatase enzyme were evaluated by Western blot analysis of the intestine, uterosacral ligament and vaginal septum in the ectopic implants. The t-test and one-way ANOVA with Holm-Sìdak post-test were used, and p endometriosis = 19.2 ng/mL ± 1.84, p endometriosis = 7.71 ng/mL ± 0.59, p = 0.18). Comparing women with and without ovarian implants, the leptin levels in both the serum and PF were significantly higher in women without ovarian implants (serum: with ovarian implant = 15.85 ± 1.99; without ovarian implant = 23.14 ± 2.60; ng/mL, p = 0.04; PF: with ovarian implant = 4.28 ± 1.30; without ovarian implant = 11.18 ± 2.98;ng/mL, p = 0.048). The leptin, ObR and aromatase protein expression levels were increased in lesions in the vaginal septum and were decreased in the intestine lesions. This study reports several interesting associations between the leptin levels in serum, peritoneal fluid, and tissue samples and the localization of the ectopic endometrium. Although this study does not provide a clear picture of the role of leptin in the development and progression of peritoneal implants

  14. Sex steroid receptors profiling is influenced by nandrolone decanoate in the ampulla of the fallopian tube: Post-treatment and post-recovery analyses.

    Science.gov (United States)

    Andrade, G H B; Simão, V A; Souza, B R; Chuffa, L G A; Camargo, I C C

    2018-02-01

    Anabolic androgenic steroids (AAS) are recommended for therapeutic clinic, but their use has increased in recent decades for aesthetic reasons. No study has evaluated the impact of AAS in the fallopian tube, after treatment and recovery periods. Herein, the aim of study was to investigate the effects of Nandrolone Decanoate (ND), administered in different doses (1.87; 3.75; 7.5 and 15 mg/kg) on the ampulla of the fallopian tube in rats, following post-treatment (PT; 15 consecutive days) and post-recovery (PR; 30 consecutive days) periods. The control group received mineral oil. Estrous cycle was monitored daily during both periods and in sequence the rats (n = 8/group/period) were killed. All ND-treated animals showed estral acyclicity during the PT and PR periods, but the histomorphometric changes in the fallopian tube varied according to the ND dose level. The expression of AR, ERα and ERβ varied in the nucleus and cytoplasm of epithelial cells. No AR expression was observed in the stroma. The muscle cells exhibited variation in immunostaining. In conclusion, ND promoted histomorphometric and immunohistochemical changes in the ampullary portion of the fallopian tube after treatment and recovery periods in a dose-independent manner. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  16. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  17. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Yi, Ka Hee; Kim, Chang Min

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves' patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves' disease will be elucidated. (author). 25 refs

  18. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  19. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    Directory of Open Access Journals (Sweden)

    Genoveva Keustermans

    Full Text Available Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D and cardiovascular disease (CVD. The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children.13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2 and leptin receptor expression on peripheral blood mononuclear cell subsets was performed.Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI. The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also

  20. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nimmagadda, Sridhar, E-mail: snimmag1@jhmi.edu [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD (United States)

    2012-05-30

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  1. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    International Nuclear Information System (INIS)

    Nimmagadda, Sridhar

    2012-01-01

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  2. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  3. Postmenopausal Serum Sex Steroids and Risk of Hormone Receptor-Positive and -Negative Breast Cancer : a Nested Case-Control Study

    NARCIS (Netherlands)

    James, Rebecca E.; Lukanova, Annekatrin; Dossus, Laure; Becker, Susen; Rinaldi, Sabina; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Engel, Pierre; Clavel-Chapelon, Francoise; Chang-Claude, Jenny; Vrieling, Alina; Boeing, Heiner; Schuetze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; Rodriguez, Laudina; Buckland, Genevieve; Sanchez, Maria-Jose; Amiano, Pilar; Ardanaz, Eva; Bueno-de-Mesquita, Bas; Ros, Martine M.; van Gils, Carla H.; Peeters, Petra H.; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J.; Allen, Naomi E.; Romieu, Isabelle; Siddiq, Afshan; Cox, David; Riboli, Elio; Kaaks, Rudolf

    2011-01-01

    Prediagnostic endogenous sex steroid hormone levels have well established associations with overall risk of breast cancer. While evidence toward the existence of distinct subtypes of breast cancer accumulates, few studies have investigated the associations of sex steroid hormone levels with risk of

  4. Postmenopausal serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study

    NARCIS (Netherlands)

    James, R.E.; Lukanova, A.; Dossus, L.; Becker, S.; Rinaldi, S.; Tjonneland, A.; Olsen, A.; Overvad, K.; Mesrine, S.; Engel, P.; Clavel-Chapelon, F.; Chang-Claude, J.; Vrieling, A.; Boeing, H.; Schutze, M.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Rodriguez, L.; Buckland, G.; Sanchez, M.J.; Amiano, P.; Ardanaz, E.; Bueno-de-Mesquita, B.; Ros, M.M.; Gils, C.H. van; Peeters, P.H.M.; Khaw, K.T.; Wareham, N.; Key, T.J.; Allen, N.E.; Romieu, I.; Siddiq, A.; Cox, D.; Riboli, E.; Kaaks, R.

    2011-01-01

    Prediagnostic endogenous sex steroid hormone levels have well established associations with overall risk of breast cancer. While evidence toward the existence of distinct subtypes of breast cancer accumulates, few studies have investigated the associations of sex steroid hormone levels with risk of

  5. Immunohistochemical Expression of Vitamin-D Receptor in Oral and ...

    African Journals Online (AJOL)

    user

    Receptor in Oral and Skin Squamous Cell Carcinoma of a Black African Subpopulation. *Corresponding Author ... Objective:The nuclear vitamin D receptor (VDR) is involved in multiple pathways that have a role to .... Figure1: Sections A (++) and B (+++) of OSCC showing nuclear positivity (red arrows) for malignant nests of ...

  6. Hormone receptor expression in male breast cancers | Akosa ...

    African Journals Online (AJOL)

    Male breast cancers are rare but have been found in higher proportions in Black Africans. Prognostic factors for breast cancers include tumour size, grade and stage, and hormone receptor status. The hormone receptor status is an invaluable guide in the use of adjuvant endocrine therapy, but none of the reports available ...

  7. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  8. Advantage of the Highly Restricted Odorant Receptor Expression Pattern in Chemosensory Neurons of Drosophila.

    Science.gov (United States)

    Tharadra, Sana Khalid; Medina, Adriana; Ray, Anandasankar

    2013-01-01

    A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.

  9. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  10. Histamine H1 receptors are expressed in mouse and frog semicircular canal sensory epithelia.

    Science.gov (United States)

    Botta, Laura; Tritto, Simona; Perin, Paola; Laforenza, Umberto; Gastaldi, Giulia; Zampini, Valeria; Zucca, Gianpiero; Valli, Stefano; Masetto, Sergio; Valli, Paolo

    2008-03-05

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. Their site and mechanism of action, however, are still poorly understood. To increase our knowledge of the histaminergic system in the vestibular organs, we have investigated the expression of H1 and H3 histamine receptors in the frog and mouse semicircular canal sensory epithelia. Analysis was performed by mRNA reverse transcriptase-PCR, immunoblotting and immunocytochemistry experiments. Our data show that both frog and mouse vestibular epithelia express H1 receptors. Conversely no clear evidence for H3 receptors expression was found.

  11. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  12. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  13. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism

    Science.gov (United States)

    Goodman, C R; Sato, T; Peck, A R; Girondo, M A; Yang, N; Liu, C; Yanac, A F; Kovatich, A J; Hooke, J A; Shriver, C D; Mitchell, E P; Hyslop, T; Rui, H

    2016-01-01

    Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers. PMID:26096934

  14. The Expression Profiles of Lysophospholipid Receptors (LPLRs in Different Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yu-Wei Lee

    2006-03-01

    Full Text Available Sphingosine-1-phosphate (S1P and lysophosphatidic acid (LPA are two bioactive lysophospholipids (LPLs, stored primarily in platelets and released during platelet activation. Both LPLs are capable of regulating endothelial cell functions. The physiological functions of S1P and LPA are mediated by interacting with eight different G-protein coupled receptors: S1P1 through 5 and LPA1 through 3, which activate three different heterotrimeric GTP proteins-including Gi、Gq and G(12/13. The expression of LPL receptors in endothelial cells would affect the responses of S1P and LPA to these cells. There is no previous report discussing the expression profiles of LPL receptors in different endothelial cells from various species. In this study, we aim to investigate the expression profiles of S1P and LPA receptors in different endothelial cells isolated from human, rat, mouse and bovine origin. We used RT-PCR to determine LPLs receptors expression profiles in different endothelial cells. Our results indicated that endothelial cells from various species express different LPL receptors. Endothelial cells isolated from the same source of different species also had different LPLs receptors expression profiles. Therefore, different endothelial cells should respond to LPLs in different manners.

  15. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M

    2006-01-01

    chemokine receptor (CXCR)3 was unaltered. Conversely, at 9-12 h after the most recent IFN-beta injection, CCR4, CCR5 and CCR7 expressions were unaltered, while CXCR3 expression was reduced. CD4(+) T-cell surface expression of CCR4 was significantly lower in untreated MS patients compared with healthy...

  16. Polarized expression of the GFP-tagged rat V(1a) vasopressin receptor.

    Science.gov (United States)

    Campos, D M; Reyes, C E; Sarmiento, J; Navarro, J; González, C B

    2001-11-30

    We investigated the targeting of the V(1a) receptor fused with the green fluorescence protein (V(1a)R-GFP) in polarized MDCK cells. Cells expressing V(1a)R-GFP displayed binding to vasopressin (AVP) and AVP-induced calcium responses, similar to cells expressing the wild-type V1a receptor. Interestingly, as with the wild-type V(1a)R, V(1a)R-GFP is preferentially distributed in the basolateral side of MDCK cells as monitored by confocal microscopy. Furthermore, AVP induced internalization of GFP-tagged receptors. Therefore, the GFP-tagged V(1a) receptor retains all the sorting signals of the wild-type receptor and offers an excellent system to elucidate the mechanisms of cell trafficking of V(1a) receptors.

  17. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  19. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    Science.gov (United States)

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  20. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  1. Expressions of toll-like receptors 2 and 4, and relative cellular ...

    African Journals Online (AJOL)

    Purpose: To investigate the expressions of toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), tumor necrosis factor alpha (TNF-α), IFN-γ (IFN- gamma), interleukin 2 (IL-2), interleukin 6 (IL-6) and interleukin 10 (IL-10) in human immunodeficiency virus (HIV) patients with tuberculosis (TB) infection. Methods: Two groups of ...

  2. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva

    2015-01-01

    Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering...

  3. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  4. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  5. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.

    NARCIS (Netherlands)

    Guggenberg, E. von; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C.

    2012-01-01

    PURPOSE: Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic

  6. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  7. Phrenic motoneuron expression of serotonergic and glutamatergic receptors following upper cervical spinal cord injury

    Science.gov (United States)

    Mantilla, Carlos B.; Bailey, Jeffrey P.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    Following cervical spinal cord injury at C2 (SH hemisection model) there is progressive recovery of phrenic activity. Neuroplasticity in the postsynaptic expression of neurotransmitter receptors may contribute to functional recovery. Phrenic motoneurons express multiple serotonergic (5-HTR) and glutamatergic (GluR) receptors, but the timing and possible role of these different neurotransmitter receptor subtypes in the neuroplasticity following SH are not clear. The current study was designed to test the hypothesis that there is an increased expression of serotonergic and glutamatergic neurotransmitter receptors within phrenic motoneurons after SH. In adult male rats, phrenic motoneurons were labeled retrogradely by intrapleural injection of Alexa 488-conjugated cholera toxin B. In thin (10 μm) frozen sections of the spinal cord, fluorescently-labeled phrenic motoneurons were visualized for laser capture microdissection (LCM). Using quantitative real-time RT-PCR in LCM samples, the time course of changes in 5-HTR and GluR mRNA expression was determined in phrenic motoneurons up to 21 days post-SH. Expression of 5-HTR subtypes 1b, 2a and 2c and GluR subtypes AMPA, NMDA, mGluR1 and mGluR5 was evident in phrenic motoneurons from control and SH rats. Phrenic motoneuron expression of 5-HTR2a increased ~8-fold (relative to control) at 14 days post-SH, whereas NMDA expression increased ~16-fold by 21-days post-SH. There were no other significant changes in receptor expression at any time post-SH. This is the first study to systematically document changes in motoneuron expression of multiple neurotransmitter receptors involved in regulation of motoneuron excitability. By providing information on the neuroplasticity of receptors expressed in a motoneuron pool that is inactivated by a higher-level spinal cord injury, appropriate pharmacological targets can be identified to alter motoneuron excitability. PMID:22227062

  8. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  9. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  10. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    Science.gov (United States)

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  11. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  12. Determination of estradiol, estrone and progesterone in serum and human endometrium in correlation to the content of steroid receptors and 17β-hydroxysteroid dehydrogenase activity during menstrual cycle

    International Nuclear Information System (INIS)

    Schmidt-Gollwitzer, M.; Eiletz, J.; Pachaly, J.

    1977-01-01

    A study has been carried out to compare the influence of estradiol estrone and progesterone on the estradiol and progesterone receptor levels and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in human endometrium. The steroid hormone concentrations were measured simultaneously in both serum and endometrial tissue. The estradiol receptor levels were highest during the early proliferative phase and were inversely correlated to the endometrial tissue and serum concentrations of estradiol and progesterone. The highest progesterone binding capacity was found in endometrical cytosol during the late proliferative phase (midcycle) of the menstrual cycle. The midcycle peak of the progesterone receptor level correlated well with the first peak of the serum and tissue concentrations of estradiol. During,the luteal phase, in contrast to the proliferative phase, the progesterone receptor level decreased whereas serum progesterone concentrations were high. Estrone concentrations were higher in secretory than proliferative endometrium and were correlated to the increase of progesterone receptor content and 17β-HSD activity during early secretory phase. The 17β-HSD activity was approximately 10-fold higher during the early secretory than during the proliferative phase. The progesterone receptor level was highly correlated to the specific 17β-HSD activity of the microsomal fraction whereas a significant inverse correlation between the enzyme activity and the estradiol receptor level was observed. (orig.) [de

  13. Expression and functional implications of peroxisome proliferator-activated receptor gamma (PPARγ) in canine reproductive tissues during normal pregnancy and parturition and at antiprogestin induced abortion.

    Science.gov (United States)

    Kowalewski, Mariusz Pawel; Meyer, Andrea; Hoffmann, Bernd; Aslan, Selim; Boos, Alois

    2011-03-15

    PPARγ is a nuclear hormone receptor of the PPAR family of transcription factors closely related to the steroid hormone receptors serving multiple roles in regulating reproductive function. Endogenous factors from the arachidonic acid metabolites group serve as ligands for PPARs. PPARγ modifies the steroidogenic capacity of reproductive tissues and has been defined as a key mediator of biological actions of progesterone receptor in granulosa cells; it modulates biochemical and morphological placental trophoblast differentiation during implantation and placentation. However, no such information is available for the dog. Hence, the expression and possible functions of PPARγ were assessed in corpora lutea (CL) and utero/placental (Ut/Pl) compartment collected from bitches (n = 3 to 5) on days 8 to 12 (pre-implantation), 18 to 25 (post-implantation), 35 to 40 (mid-gestation) of pregnancy and at prepartal luteolysis. Additionally, 10 mid-pregnant bitches were treated with the antiprogestin Aglepristone [10mg/Kg bw (2x/24h)]; ovariohysterectomy was 24h and 72 h after the 2nd treatment. Of the two PPARγ isoforms, PPARγ1 was the only isoform clearly detectable in all canine CL and utero/placental samples. The luteal PPARγ was upregulated throughout pregnancy, a prepartal downregulation was observed. Placental expression of PPARγ was elevated after implantation and at mid-gestation, followed by a prepartal downregulation. All changes were more pronounced at the protein-level suggesting that the PPARγ expression may be regulated at the post-transcriptional level. Within the CL PPARγ was localized to the luteal cells. Placental expression was targeted solely to the fetal trophoblast cells; a regulatory role of PPARγ in canine placental development possibly through influencing the invasion of fetal trophoblast cells is suggested. Treatment with Aglepristone led to downregulation of PPARγ in either compartment, implying the functional interrelationship with

  14. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    of gene expression in the ventral prostate, it is not clear whether all the gene expression ... These include clusterin, methionine adenosyl transferase IIα, and prostate-specific ..... MAGEE1 melanoma antigen and no similarity was found with the ...

  15. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  17. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  18. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    Science.gov (United States)

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.

  19. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  20. Cloning and expression of a rat brain α2B-adrenergic receptor

    International Nuclear Information System (INIS)

    Flordellis, C.S.; Handy, D.E.; Bresnahan, M.R.; Zannis, V.I.; Gavras, H.

    1991-01-01

    The authors isolated a cDNA clone (RBα 2B ) and its homologous gene (GRα 2B ) encoding an α 2B -adrenergic receptor subtype by screening a rat brain cDNA and a rat genomic library. Nucleotide sequence analysis showed that both clones code for a protein of 458 amino acids, which is 87% homologous to the human kidney glycosylated adrenergic receptor (α 2 -C4) and divergent from the rat kidney nonglycosylated α 2B subtype (RNGα 2 ). Transient expression of RBα 2B in COS-7 cells resulted in high-affinity saturable binding for [ 3 H]rauwolscine and a high receptor number in the membranes of transfected COS-7 cells. Pharmacological analysis demonstrated that the expressed receptor bound adrenergic ligands with the following order of potency: rauwolscine > yohimbine > prazosin > oxymetazoline, with a prazosin-to-oxymetazoline K i ratio of 0.34. This profile is characteristic of the α 2B -adrenergic receptor subtype. Blotting analysis of rat brain mRNA gave one major and two minor mRNA species, and hybridization with strand-specific probes showed that both DNA strands of GRα 2B may be transcriptionally active. These findings show that rat brain expresses an α 2B -adrenergic receptor subtype that is structurally different from the rat kidney nonglycosylated α 2B subtype. Thus the rat expresses at least two divergent α 2B -adrenergic receptors

  1. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

    International Nuclear Information System (INIS)

    Tieszen, Chelsea R; Goyeneche, Alicia A; Brandhagen, BreeAnn N; Ortbahn, Casey T; Telleria, Carlos M

    2011-01-01

    Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR. Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1. MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR. Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased

  2. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

    Directory of Open Access Journals (Sweden)

    Ortbahn Casey T

    2011-05-01

    Full Text Available Abstract Background Mifepristone (MF has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR. The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR. Methods Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1. Results MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR. Conclusions Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and

  3. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  4. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  5. Signal Peptide and Denaturing Temperature are Critical Factors for Efficient Mammalian Expression and Immunoblotting of Cannabinoid Receptors*

    Science.gov (United States)

    WANG, Chenyun; WANG, Yingying; WANG, Miao; CHEN, Jiankui; YU, Nong; SONG, Shiping; KAMINSKI, Norbert E.; ZHANG, Wei

    2013-01-01

    Summary Many researchers employed mammalian expression system to artificially express cannabinoid receptors, but immunoblot data that directly prove efficient protein expression can hardly be seen in related research reports. In present study, we demonstrated cannabinoid receptor protein was not able to be properly expressed with routine mammalian expression system. This inefficient expression was rescued by endowing an exogenous signal peptide ahead of cannabinoid receptor peptide. In addition, the artificially synthesized cannabinoid receptor was found to aggregate under routine sample denaturing temperatures (i.e., ≥95°C), forming a large molecular weight band when analyzed by immunoblotting. Only denaturing temperatures ≤75°C yielded a clear band at the predicted molecular weight. Collectively, we showed that efficient mammalian expression of cannabinoid receptors need a signal peptide sequence, and described the requirement for a low sample denaturing temperature in immunoblot analysis. These findings provide very useful information for efficient mammalian expression and immunoblotting of membrane receptors. PMID:22528237

  6. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  7. Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy

    International Nuclear Information System (INIS)

    Lau, A.S.; Hannigan, G.E.; Freedman, M.H.; Williams, B.R.

    1986-01-01

    Interferons (IFN) elicit antiviral and antineoplastic activities by binding to specific receptors on the cell surface. The binding characteristics of IFN to human lymphocytes were studied using IFN alpha 2 labeled with 125 I to high specific activity. The specific binding curves generated were analyzed by the LIGAND program of Munson and Rodbard to determine receptor numbers. The number of receptors in peripheral blood lymphocytes (PBL) and tonsillar B-lymphocytes (TBL) from normal individuals were 505 +/- 293 (n = 10) and 393 +/- 147 (n = 3) respectively. When these cells were preincubated in vitro with unlabeled IFN alpha 2, the receptor number decreased to 82 +/- 45 and 61 +/- 16 respectively. Receptor binding activities recovered gradually over a period of 72 h when the cells were incubated in IFN-free medium. This recovery of receptors could be blocked by the addition of actinomycin D to the incubation medium. A similar decrease in receptor expression was observed in vivo in PBL from patients being treated daily with 5 X 10(6) units/m2 per d of IFN alpha 2 by subcutaneous injection, for acute lymphoblastic leukemia or papilloma virus infections. Receptor numbers in PBL in vivo were further reduced concurrent with the progression of IFN therapy. Thus, the reduction in IFN receptor expression observed in vitro can be demonstrated in vivo. These studies indicate that monitoring IFN receptor expression in vivo can provide information regarding the availability of IFN receptors at the cell surface for the mediation of IFN actions during the course of IFN therapy

  8. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  9. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  10. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  11. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  12. Regulation of HIV receptor expression in cervical epithelial cells by ...

    African Journals Online (AJOL)

    Background. Sexually transmitted infections (STIs) caused by the Gram-negative bacteria Chlamydia trachomatis and Neisseria gonorrhoeae are associated with an increased risk of HIV acquisition in South African women. HIV infection involves binding of the virus to CD4+ receptors on host cells and subsequent binding to ...

  13. Expression of histamine receptors in the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, M Nue; Kirkeby, S; Vikeså, J.

    2016-01-01

    in 2012. This leaves betahistine (Betaserc) as the only drug for potential prevention of the incapacitating attacks of dizziness, tinnitus and hearing loss. However, the histamine receptors targeted by betahistine have never been demonstrated in the human ES. Accordingly, this study aims to investigate...

  14. Selective suppression of endothelial cytokine production by progesterone receptor

    OpenAIRE

    Goddard, Lauren M.; Ton, Amy N.; Org, Tõnis; Mikkola, Hanna K.A.; Iruela-Arispe, M. Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequenc...

  15. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.

    Science.gov (United States)

    Li, Baorui; Terazono, Yusuke; Hirasaki, Naoto; Tatemichi, Yuki; Kinoshita, Emiko; Obata, Akio; Matsui, Toshiro

    2018-02-14

    We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.

  16. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  17. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  18. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide

    Directory of Open Access Journals (Sweden)

    Bliss Tim VP

    2013-01-01

    Full Text Available Abstract A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.

  19. Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3.

    Science.gov (United States)

    Boini, Krishna M; Bhandaru, Madhuri; Mack, Andreas; Lang, Florian

    2008-09-01

    activity in the regulation of steroid hormone release, renal water and electrolyte excretion and blood pressure control.

  20. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    Science.gov (United States)

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (Pcells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (Pprotein, and down-regulated the expression of β-catenin mRNA and protin (Pprotein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (Pcells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  1. Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts

    International Nuclear Information System (INIS)

    Massou, S.; Puech, V.; Talmont, F.; Demange, P.; Lindley, N.D.; Tropis, M.; Milon, A.

    1999-01-01

    Methylotrophic yeast has previously been shown to be an excellent system for the cost-effective production of perdeuterated biomass and for the heterologous expression of membrane receptors. A protocol for the expression of 85% deuterated, functional human μ-opiate receptor was established. For partially deuterated biomass, deuteration level and distribution were determined for fatty acids, amino acids and carbohydrates. It was shown that prior to biosynthesis of lipids and amino acids (and of carbohydrates, to a lower extent), exchange occurs between water and methanol hydrogen atoms, so that 80%-90% randomly deuterated biomass and over-expressed proteins may be obtained using only deuterated water

  2. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    Science.gov (United States)

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  3. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  4. Expression and purification of functional human mu opioid receptor from E.coli.

    Directory of Open Access Journals (Sweden)

    Yanbin Ma

    Full Text Available N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3-0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a K(D of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.

  5. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study.

    Science.gov (United States)

    Faridi, Mohammad Shazib; Jaiswal, Mahabir Saran Das; Goel, Sudhir K

    2015-07-01

    Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple's procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if pgallbladder and there was no difference among them (p>0.05). This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance.

  6. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  7. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action.

    Science.gov (United States)

    O'Leary, Kathleen A; Shea, Michael P; Salituro, Stephanie; Blohm, Courtney E; Schuler, Linda A

    2017-10-10

    Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61 + luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows.

    Science.gov (United States)

    Agrawal, Alea; Alharthi, Abdulrahman; Vailati-Riboni, Mario; Zhou, Zheng; Loor, Juan J

    2017-01-01

    G-protein coupled receptors (GPCR), also referred as Free Fatty Acid Receptors (FFAR), are widely studied within human medicine as drug targets for metabolic disorders. To combat metabolic disorders prevalent in dairy cows during the transition period, which co-occur with negative energy balance and changes to lipid and glucose metabolism, it may be helpful to identify locations and roles of FFAR and other members of the GPCR family in bovine tissues. Quantitative RT-PCR (qPCR) of subcutaneous adipose, liver, and PMNL samples during the transition period (-10, +7, and +20 or +30 d) were used for expression profiling of medium- (MCFA) and long-chain fatty acid (LCFA) receptors GPR120 and GPR40 , MCFA receptor GPR84 , and niacin receptor HCAR2/3 . Adipose samples were obtained from cows with either high (HI; BCS ≥ 3.75) or low (LO; BCS ≤ 3.25) body condition score (BCS) to examine whether FFAR expression is correlated with this indicator of health and body reserves. Supplementation of rumen-protected methionine (MET), which may improve immune function and production postpartum, was also compared with unsupplemented control (CON) cows for liver and blood polymorphonuclear leukocytes (PMNL) samples. In adipose tissue, GPR84 and GPR120 were differentially expressed over time, while GPR40 was not expressed; in PMNL, GPR40 was differentially expressed over time and between MET vs. CON, GPR84 expression differed only between dietary groups, and GPR120 was not expressed; in liver, GPCR were either not expressed or barely detectable. The data indicate that there is likely not a direct role in liver for the selected GPCR during the transition period, but they do play variable roles in adipose and PMN. In future, these receptors may prove useful targets and/or markers for peripartal metabolism and immunity.

  9. Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Wagner, Niels; Lidegaard Frederiksen, Birgitte

    2005-01-01

    , this study determines expression of EPO and EPOR in the inner ear of the guinea pig. Normal guinea pig inner ears were processed for immunohistochemistry, using poly-clonal antibodies against EPO and the EPO receptor. EPO expression was exclusively found in most, but not all spiral ganglion neurons...... expressed by several cell types within the guinea pig cochlea. We hypothesize on the existence of a local paracrine system and that EPO treatment may be feasible following inner ear damage....

  10. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    Science.gov (United States)

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

  11. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  12. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    Science.gov (United States)

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  13. Original article Expression of Estrogen Alpha and Beta Receptors in ...

    African Journals Online (AJOL)

    mn

    Immunohistochemical Analysis ... Seven PCa cases contained foci of high-grade prostate intraepithelial neoplasia ... Immunohistochemistry was used to test the protein expression of ER-α and ER-β ... interactions of estrogens and ER as well.

  14. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  15. Molecular characterization of kiss2 and differential regulation of reproduction-related genes by sex steroids in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Song, Xuesong; Shi, Bao

    2017-11-01

    Kisspeptin (Kiss) plays a critical role in mediating gonadal steroid feedback to the gonadotropin-releasing hormone (GnRH) neurons in mammals. However, little information regarding the regulation of kisspeptin gene by sex steroids is available in teleosts. In this study, we examined the direct actions of estradiol (E2) and testosterone (T) on hypothalamic expression of kisspeptin and other key factors involved in reproductive function of half-smooth tongue sole. As a first step, a partial-length cDNA of kiss2 was identified from the brain of tongue sole and kiss2 transcript levels were shown to be widely expressed in various tissues, notably in the ovary. Then, the actions of sex steroids on kiss2 and other reproduction-related genes were evaluated using a primary hypothalamus culture system. Our results showed that neither kiss2 nor its receptor kiss2r mRNA levels were significantly altered by sex steroids. Moreover, sex steroids did not modify hypothalamic expression of gonadotropin-inhibitory hormone (gnih) and its receptor gnihr mRNAs, either. However, E2 markedly stimulated both gnrh2 and gnrh3 mRNAs levels. Overall, this study provides insights into the role of sex steroids in the reproductive function of Pleuronectiform teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  17. Age-dependent changes in expression of alpha1-adrenergic receptors in rat myocardium

    International Nuclear Information System (INIS)

    Schaffer, W.; Williams, R.S.

    1986-01-01

    The expression of alpha 1 -adrenergic receptors within ventricular myocardium of rats ranging in age from 21 days of fetal life to 24 months after birth was measured from [ 125 I] 2-(β hydroxy phenyl) ethylaminomethyl tetralone binding isotherms. No difference was observed in binding affinity between any of the age groups studied. The number of alpha 1 -adrenergic receptors was found to be 60-120% higher in membranes from fetal or immature rats up to 25 days of age when compared with adult animals. The increased expression of alpha 1 -adrenergic receptors in the developing heart relative to that observed in adult heart is consistent with the hypothesis that alpha 1 -adrenergic receptor stimulation may modulate protein synthesis and growth in mammalian myocardium

  18. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  19. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    Directory of Open Access Journals (Sweden)

    Stallcup Michael R

    2009-01-01

    Full Text Available Abstract Background Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. Methods We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95: African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. Results We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants. We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26. A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other

  20. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    International Nuclear Information System (INIS)

    Haiman, Christopher A; Stallcup, Michael R; Greene, Geoffrey L; Press, Michael F; Garcia, Rachel R; Hsu, Chris; Xia, Lucy; Ha, Helen; Sheng, Xin; Le Marchand, Loic; Kolonel, Laurence N; Henderson, Brian E

    2009-01-01

    Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP) suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95): African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls) nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants). We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26). A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other studies. Our findings suggest that common coding

  1. Loss of steroid hormone receptors is common in malignant pleural and peritoneal effusions of breast cancer patients treated with endocrine therapy

    NARCIS (Netherlands)

    Schrijver, Willemijne A.M.E.; Schuurman, Karianne G.; Van Rossum, Annelot; Peeters, Ton; Hoeve, Natalie Ter; Zwart, Wilbert; van Diest, Paul J.; Moelans, Cathy B.; Linn, Sabine

    2017-01-01

    Discordance in estrogen receptor alpha (ERa), progesterone receptor (PR), androgen receptor (AR) and human epidermal growth factor receptor 2 (HER2) status between primary breast cancers and solid distant metastases ("conversion") has been reported previously. Even though metastatic spread to the

  2. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease

    DEFF Research Database (Denmark)

    Pitt, Bertram; Kober, Lars; Ponikowski, Piotr

    2013-01-01

    Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non-steroida......Mineralocorticoid receptor antagonists (MRAs) improve outcomes in patients with heart failure and reduced left ventricular ejection fraction (HFrEF), but their use is limited by hyperkalaemia and/or worsening renal function (WRF). BAY 94-8862 is a highly selective and strongly potent non......-steroidal MRA. We investigated its safety and tolerability in patients with HFrEF associated with mild or moderate chronic kidney disease (CKD)....

  3. Impact of maternal dietary exposure to endocrine-acting chemicals on progesterone receptor expression in microdissected hypothalamic medial preoptic areas of rat offspring

    International Nuclear Information System (INIS)

    Takagi, Hironori; Shibutani, Makoto; Lee, Kyoung-Youl; Masutomi, Naoya; Fujita, Haruka; Inoue, Kaoru; Mitsumori, Kunitoshi; Hirose, Masao

    2005-01-01

    We have previously examined the impact of perinatal exposure to ethinylestradiol (EE), methoxychlor (MXC), diisononyl phthalate (DINP), and genistein (GEN) in maternal diet on rat offspring, and found developmental and/or reproductive toxicity with 0.5 ppm EE, 1200 ppm MXC, and 20,000 ppm DINP. Although the toxicological profile with MXC was similar to the EE case, the population changes in pituitary hormone-producing cells totally differed between the two cases, changes being evident from 240 ppm with MXC. In the present study, to assess the impact of these agents on brain sexual differentiation, region-specific mRNA expression of estrogen receptors (ER) α and β, the progesterone receptor (PR), gonadotrophin-releasing hormone, steroid receptor coactivators (SRC)-1 and -2, and calbindin-D in microdissected hypothalamic medial preoptic areas (MPOAs) at postnatal day 10 was first analyzed in rats exposed to 0.5 ppm-EE from gestational day 15 by real-time RT-PCR. Sexually dimorphic expression of ERα and PR was noted with predominance in females and males, respectively, EE up-regulating SRC-1 in males and ERβ and PR in females. Next, we similarly examined expression changes of ERα and β, PR, and SRC-1 in animals exposed to MXC at 24, 240, and 1200 ppm, DINP at 4000 and 20,000 ppm, and GEN at 1000 ppm. MXC at 1200 ppm down- and up-regulated PR in males and females, respectively, and DINP at 20,000 ppm down-regulated PR in females, while GEN did not exert any clear effects. The results thus suggest that agents causing developmental and/or reproductive abnormalities in later life may affect hypothalamic PR expression during the exposure period in early life

  4. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G

  5. Steroid radioimmunoassays

    International Nuclear Information System (INIS)

    Shinde, Y.; Hacker, R.R.; Ntunde, B.; Smith, V.G.

    1981-01-01

    An estrogen radioimmunoassay was used to study the problem of blanks in steroid assays. Negligible binding (1.5 percent) in the non-antibody tubes prevailed throughout the study. The assay was validated using accepted procedures. Both water and solvent blanks had estrogen concentrations of 7-9 pg/tube. However, neither water nor solvent blanks showed a dose-related response, indicating that they were 'real' blanks. Exogenous estradiol, when added to water and solvent in quantities less than the estimated blank, was not quantitatively recovered. However, exogenous estradiol added to the water solvent in quantities greater than the blank estimate was quantitatively recovered. The sensitivity of the reference standard curve was 6-10 pg/tube, approximately the same as the blank estimate. These results indicated that the estimates of water and solvent blanks were measures of the assay sensitivity. In such circumstances, it is suggested that blank estimates should not be subtracted from sample values. If the blank estimates are high, attention should be directed towards improving the sensitivity of the assay

  6. Change of expression of renal alpha1-adrenergic receptor and angiotensin II receptor subtypes with aging in rats.

    Science.gov (United States)

    Li, Yan-Fang; Cao, Xiao-Jing; Bai, Xue-Yuan; Lin, Shu-Peng; Shi, Shu-Tian

    2010-04-01

    It has been considered that the functional decline of renal vasoconstriction during senescence is associated with an alteration in renal alpha1-adrenergic receptor (alpha1-AR) expression. While alterations in renal angiotensin II receptor (ATR) expression was considered to have an effect on renal structure and function, until now little information has been available concerning alpha1-AR and ATR expression variations over the entire aging continuum. The present study was undertaken to examine the expression levels of alpha1-AR and ATR subtypes in renal tissue during the spectrum running from young adulthood, to middle age, to the presenium, and to the senium. Semiquantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Western Blot were used to quantify the messenger RNA (mRNA) and protein levels of alpha1-AR and ATR subtypes in renal tissue in 3-month-old (young adult), 12-month-old (middle age), 18-month-old (presenium) and 24-month-old (senium) Wistar rats. alpha1A-AR expression decreased gradually with aging: it was decreased during middle age, the presenium and the senium, compared, respectively, with young adult values (page and in the senium with respect to the presenium. alpha1B-AR and alpha1D-AR expression were unmodified during senescence. AT1R expression was unaffected by aging during young adulthood and middle age, but exhibited a remarkable downregulation in the presenium and senium periods (prenal alpha1-AR and ATR subtypes during aging. alpha1A-AR expression downregulation may account for the reduced reactivity of renal alpha1-AR to vasoconstrictors and to renal function decline in the senium. Both the downregulation of AT1R and the upregulation of AT2R may be influential in maintaining normal physiological renal function during aging.

  7. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    OpenAIRE

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protei...

  8. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat.

    Science.gov (United States)

    Alea, O A; Czapla, M A; Lasky, J A; Simakajornboon, N; Gozal, E; Gozal, D

    2000-11-01

    Activation of platelet-derived growth factor-beta (PDGF-beta) receptors in the nucleus of the solitary tract (nTS) modulates the late phase of the acute hypoxic ventilatory response (HVR) in the rat. We hypothesized that temporal changes in PDGF-beta receptor expression could underlie the ventilatory acclimatization to hypoxia (VAH). Normoxic ventilation was examined in adult Sprague-Dawley rats chronically exposed to 10% O(2), and at 0, 1, 2, 7, and 14 days, Northern and Western blots of the dorsocaudal brain stem were performed for assessment of PDGF-beta receptor expression. Although no significant changes in PDGF-beta receptor mRNA occurred over time, marked attenuation of PDGF-beta receptor protein became apparent after day 7 of hypoxic exposure. Such changes were significantly correlated with concomitant increases in normoxic ventilation, i.e., with VAH (r: -0.56, P < 0.005). In addition, long-term administration of PDGF-BB in the nTS via osmotic pumps loaded with either PDGF-BB (n = 8) or vehicle (Veh; n = 8) showed that although no significant changes in the magnitude of acute HVR occurred in Veh over time, the typical attenuation of HVR by PDGF-BB decreased over time. Furthermore, PDGF-BB microinjections did not attenuate HVR in acclimatized rats at 7 and 14 days of hypoxia (n = 10). We conclude that decreased expression of PDGF-beta receptors in the dorsocaudal brain stem correlates with the magnitude of VAH. We speculate that the decreased expression of PDGF-beta receptors is mediated via internalization and degradation of the receptor rather than by transcriptional regulation.

  9. The G protein-coupled receptor, class C, group 6, subtype A (GPRC6A) receptor

    DEFF Research Database (Denmark)

    Clemmensen, C; Smajilovic, S; Wellendorph, P

    2014-01-01

    the physiological concentration in most tissues. More recently, the peptide osteocalcin and the steroid testosterone have also been suggested to be endogenous GPRC6A agonists. The receptor is widely expressed in all three species which, along with the omnipresence of the amino acids and divalent cation ligands...

  10. Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice.

    Science.gov (United States)

    Murakami, G; Hunter, R G; Fontaine, C; Ribeiro, A; Pfaff, D

    2011-08-01

    The incidence of social disorders such as autism and schizophrenia is significantly higher in males, and the presentation more severe, than in females. This suggests the possible contribution of sex hormones to the development of these psychiatric disorders. There is also evidence that these disorders are highly heritable. To contribute toward our understanding of the mechanisms underlying social behaviors, particularly social interaction, we assessed the relationship of social interaction with gene expression for two neuropeptides, oxytocin (OT) and arginine vasopressin (AVP), using adult male mice. Social interaction was positively correlated with: oxytocin receptor (OTR) and vasopressin receptor (V1aR) mRNA expression in the medial amygdala; and OT and AVP mRNA expression in the paraventricular nucleus of the hypothalamus (PVN). When mice representing extremes of social interaction were compared, all of these mRNAs were more highly expressed in high social interaction mice than in low social interaction mice. OTR and V1aR mRNAs were highly correlated with estrogen receptor α (ERα) mRNA in the medial amygdala, and OT and AVP mRNAs with estrogen receptor β (ERβ) mRNA in the PVN, indicating that OT and AVP systems are tightly regulated by estrogen receptors. A significant difference in the level of ERα mRNA in the medial amygdala between high and low social interaction mice was also observed. These results support the hypothesis that variations of estrogen receptor levels are associated with differences in social interaction through the OT and AVP systems, by upregulating gene expression for those peptides and their receptors. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  14. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  15. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  16. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B

    1994-01-01

    BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors by troph......BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors...... at the leading edge of migrating extravillous trophoblast cells. Receptors were also abundantly expressed during the first and second trimesters of gestation by villous trophoblast, where they were located on apical villous projections and within intracellular vacuoles, a subset of which were lysosomes...

  17. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  18. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  19. Effects on circulating steroid hormones and gene expression along the hypothalamus–pituitary–gonadal axis in adult Japanese quail exposed to 17β-trenbolone across multiple generations

    Science.gov (United States)

    Karouna-Renier, Natalie K.; Chen, Yu; Henry, Paula F.; Maddox, Catherine M.; Sprague, Dan

    2017-01-01

    We investigated the effects of the androgenic growth promoter 17β-trenbolone (17βTB) on adult Japanese quail (Coturnix japonica) exposed across three generations. The F0 generation was exposed after sexual maturity to 0, 1, 5, 10, 20, and 40 ppm through feed. The F1 generation was exposed in ovo by maternal transfer and through feed at the same doses as their parents. The F2 generation was exposed in ovo only. Levels of plasma sex steroids, gonadal Cytochrome P450 aromatase (CYP19A1) mRNA and select brain neuroendocrine peptide mRNAs were measured. In males, testosterone levels did not differ in any generation from those in controls. Estradiol was significantly elevated in 17βTB treated F0 and F1 males. In F0 and F1 females, testosterone was suppressed by 17βTB, whereas estradiol was significantly higher at 40 ppm in F0 and at 10 ppm in F1 females. CYP19A1 expression in F1 males and females increased suggesting a compensatory response to the androgenic effects of 17βTB. Few significant effects were observed in the F2 birds indicating that in ovo exposure had limited effects on the monitored endpoints. Overall, our results confirmed endocrine disrupting effects of dietary 17βTB in Japanese quail but the response was dependent on sex, developmental stage at initiation of exposure, and dose.

  20. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    Science.gov (United States)

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.

  1. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    Science.gov (United States)

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  2. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    Science.gov (United States)

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  3. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  4. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  5. Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding

    Directory of Open Access Journals (Sweden)

    Yachen Shen

    2017-10-01

    Conclusions: Our data suggest that the GR plays a role in normal adipose physiology via effects on lipolysis and mediates at least some of the adverse effects of exogenous steroids on metabolic function. The data also indicate that intra-adipocyte GR plays less of a role than previously believed in the local and systemic pathology associated with overnutrition.

  6. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  7. Modification of behavioral effects of drugs in mice by neuroactive steroids

    NARCIS (Netherlands)

    Ungard, JT; Beekman, M; Gasior, M; Carter, RB; Dijkstra, D; Witkin, JM

    Rationale: Neuroactive steroids represent a novel class of potential therapeutic agents (epilepsy, anxiety, migraine, drug dependence) thought to act through positive allosteric modulation of the GABA(A) receptor A synthetically derived neuroactive steroid, ganaxolone (3 alpha-hydroxy-3

  8. Basophil Membrane Expression of Epithelial Cytokine Receptors in Patients with Severe Asthma.

    Science.gov (United States)

    Boita, Monica; Heffler, Enrico; Omedè, Paola; Bellocchia, Michela; Bussolino, Claudia; Solidoro, Paolo; Giorgis, Veronica; Guerrera, Francesco; Riva, Giuseppe; Brussino, Luisa; Bucca, Caterina; Rolla, Giovanni

    2018-01-01

    Severe asthma is a heterogeneous disease, which is characterized by airway damage and remodeling. All triggers of asthma, such as allergens, bacteria, viruses, and pollutants, interact with the airway epithelial cells, which drive the airway inflammatory response through the release of cytokines, particularly IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). To investigate whether the expression of the IL-25, IL-33, and TSLP receptors on the basophil membrane are associated with asthma severity. Twenty-six patients with asthma (11 severe and 15 moderate/mild) and 10 healthy subjects (controls) were enrolled in the study. The results of the basophil activation test and flow cytometry analysis were assessed to investigate basophil membrane expression of IL-25, TSLP, and IL-33 receptors before and after IgE stimulation. IL-25 and IL-33 receptor expression on the basophil membrane at baseline were significantly higher in patients with severe asthma than in those with mild/moderate asthma or healthy subjects, independent of atopy, eosinophilia, asthma control, and exacerbation frequency. Following IgE stimulation, a significantly higher increase in the IL-25 and IL-33 receptors was observed in mild/moderate versus severe asthma. The high expression of the IL-25 and IL-33 receptors on the basophil membrane of patients with severe asthma indicates an overstimulation of basophils by these cytokines in severe asthma. This finding can possibly be used as a biomarker of asthma severity. © 2018 S. Karger AG, Basel.

  9. NRP-1 Receptor Expression Mismatch in Skin of Subjects with Experimental and Diabetic Small Fiber Neuropathy.

    Directory of Open Access Journals (Sweden)

    Nathalie Van Acker

    Full Text Available The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN. Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes.

  10. TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila

    Directory of Open Access Journals (Sweden)

    Lies Vanden Broeck

    2013-01-01

    Full Text Available TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43 in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.

  11. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors.

    Science.gov (United States)

    Wu, Yue; Godoy, Alejandro; Azzouni, Faris; Wilton, John H; Ip, Clement; Mohler, James L

    2013-09-01

    Blocking 5α-reductase-mediated testosterone conversion to dihydrotestosterone (DHT) with finasteride or dutasteride is the driving hypothesis behind two prostate cancer prevention trials. Factors affecting intracellular androgen levels and the androgen receptor (AR) signaling axis need to be examined systematically in order to fully understand the outcome of interventions using these drugs. The expression of three 5α-reductase isozymes, as determined by immunohistochemistry and qRT-PCR, was studied in five human prostate cancer cell lines. Intracellular testosterone and DHT were analyzed using mass spectrometry. A luciferase reporter assay and AR-regulated genes were used to evaluate the modulation of AR activity. Prostate cancer cells were capable of accumulating testosterone to a level 15-50 times higher than that in the medium. The profile and expression of 5α-reductase isozymes did not predict the capacity to convert testosterone to DHT. Finasteride and dutasteride were able to depress testosterone uptake in addition to lowering intracellular DHT. The inhibition of AR activity following drug treatment often exceeded the expected response due to reduced availability of DHT. The ability to maintain high intracellular testosterone might compensate for the shortage of DHT. The biological effect of finasteride or dutasteride appears to be complex and may depend on the interplay of several factors, which include testosterone turnover, enzymology of DHT production, ability to use testosterone and DHT interchangeably, and propensity of cells for off-target AR inhibitory effect. © 2013 Wiley Periodicals, Inc.

  12. Human epidermal growth factor receptor (HER 2)/neu expression ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... expression and gene amplification in colorectal cancer. Wei Deng 1, Wei-Guo .... patients whose clinical data (include diagnosis, age, sex, address, disease history, etc) intact ..... Anal Cell Pathol.10: 149-160. Tapia C, Glatz K, ...

  13. Immunohistochemical Expression of Vitamin-D Receptor in Oral and ...

    African Journals Online (AJOL)

    user

    positive while 80% of well-differentiated skin SCC was strongly positive for VDR. In a previous study,. Grimm et al [7] demonstrated low VDR expression as an adverse prognostic factor for the survival of patients with OSCC. This may imply a potentially higher response rate of well-differentiated skin SCC to VD therapy than ...

  14. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    Science.gov (United States)

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  15. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  16. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    International Nuclear Information System (INIS)

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-01-01

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  17. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lusi [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015 (China); Jiang, Ying [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Zuo, Xiaoxia, E-mail: susanzuo@hotmail.com [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China)

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  18. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  19. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Buckley, S.T.; Dodd, P.R.

    2001-01-01

    Full text: Changes in GABA A receptor pharmacology can be ascribed to alterations in expression of specific GABA A receptor subunits. Ethanol is known to be a potent agonist of the GABA A receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABA A receptor subunits in chronic human alcoholism. This suggests that alterations in GABA A receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β 1 ,β 2 and β 3 isoforms of the GABA A receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β 1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABA A receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  20. The relationship of cerb B 2 expression with estrogen receptor and progesterone receptor and prognostic parameters in endometrial carcinomas

    Directory of Open Access Journals (Sweden)

    Kandemir Nilufer

    2010-02-01

    Full Text Available Abstract Background Endometrial carcinoma (EC is the most common malignancy of the female genital tract. Gene alterations and overexpression of various oncogenes are important in tumor development. The human HER 2 neu (c-erbB-2 gene product is a transmembrane receptor with an intracellular tyrosine kinase that plays an important role in coordinating the endometrial growth factor receptor signaling network. The aim of this study was to investigate the expression of c-erbB-2 in endometrial cancer, to study its correlation to established prognostic parameters and estrogen receptor (ER and progesterone receptor (PR status. Methods Immunohistochemical (IHC analyses of ER, PR and c-erbB-2 were performed in 72 EC cases. Results We detected a positive staining with c erbB 2 in 18.1% of the cases and determined a statistically significant relation between c-erbB-2 and PR. We could not find a statistically significant relation between c-erbB-2 staining and ER. There was not a statistically significant difference between c-erbB-2 and histological grade. The highest level of c-erbB-2 was found in grade 2 cases. There was not any statistically significant relation between c-erbB-2 and menstrual status, myometrial invasion, lymph node status, stage and survival. Conclusions Although our study provides additional evidence of the potential prognostic role of c-erbB-2, further prospective and controlled studies are required to validate their clinical usefulness.

  1. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  2. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    International Nuclear Information System (INIS)

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-01-01

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα

  3. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  4. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  5. Die Expression des Calcitonin receptor-like receptors in humanen Gliomen

    OpenAIRE

    Kappus, Christoph

    2014-01-01

    In dieser Arbeit wurden humane Gliome vom WHO-Grad II-IV auf das Vorkommen des Calcitonin receptor-like Rezeptors untersucht. Hierzu erfolgte zunächst der Nachweis der CRLR-RNS in den humanen Gliomzellinien G 109 und G 139, welche sich eindeutig posi-tiv zeigten. Sodann wurden paraffinasservierte Schnitte aus humanen Gliomen mittels im-munhistochemischer Färbung auf das Vorkommen des CRLRs untersucht. Hierzu diente ein Antikörper ...

  6. Toll-like receptor 2 expression in refractory periapical lesions.

    Science.gov (United States)

    Desai, S V; Love, R M; Rich, A M; Seymour, G J

    2011-10-01

    To investigate the expression of TLR2 in refractory periapical lesions. Refractory periapical lesion biopsies were histopathologically and clinically categorized into asymptomatic periapical granuloma (n=10), symptomatic periapical granuloma (n=10) or periapical cyst (n=10) and prepared for immunohistochemical staining using antibodies to TLR2, CD3 and CD19 or staining with methyl green pyronin. Sections were viewed under light microscopy and the presence or absence of the target cells was correlated with the histopathological and clinical data. Additionally, TLR2 expression was quantified by counting TLR(+) cells. Various mononuclear inflammatory cells in the bacteria-induced periapical lesions were reactive to TLR2 antibody, with many showing morphological similarities to lymphocytes and plasma cells. Lymphocytes were the most numerous cells in the inflammatory infiltrate. In refractory periapical granuloma, CD3(+) T cells were more numerous, whereas in periapical cysts, CD19(+) B cells were more numerous. There was a statistically significant (Pperiapical granuloma than asymptomatic periapical granuloma or periapical cyst. The presence of TLR-expressing cells in periapical granulomas and cysts provides further evidence that periapical cysts are likely to be sustained by the immune system via reaction to bacterial antigens. © 2011 International Endodontic Journal.

  7. Expression and Functional Pathway Analysis of Nuclear Receptor NR2F2 in Ovarian Cancer

    Science.gov (United States)

    Hawkins, Shannon M.; Loomans, Holli A.; Wan, Ying-Wooi; Ghosh-Choudhury, Triparna; Coffey, Donna; Xiao, Weimin; Liu, Zhandong; Sangi-Haghpeykar, Haleh

    2013-01-01

    Context: Recent evidence implicates the orphan nuclear receptor, nuclear receptor subfamily 2, group F, member 2 (NR2F2; chicken ovalbumin upstream promoter-transcription factor II) as both a master regulator of angiogenesis and an oncogene in prostate and other human cancers. Objective: The objective of the study was to determine whether NR2F2 plays a role in ovarian cancer and dissect its potential mechanisms of action. Design, Setting, and Patients: We examined NR2F2 expression in healthy ovary and ovarian cancers using quantitative PCR and immunohistochemistry. NR2F2 expression was targeted in established ovarian cancer cell lines to assess the impact of dysregulated NR2F2 expression in the epithelial compartment of ovarian cancers. Results: Our results indicate that NR2F2 is robustly expressed in the stroma of healthy ovary with little or no expression in epithelia lining the ovarian surface, clefts, or crypts. This pattern of NR2F2 expression was markedly disrupted in ovarian cancers, in which decreased levels of stromal expression and ectopic epithelial expression were frequently observed. Ovarian cancers with the most disrupted patterns of NR2F2 were associated with significantly shorter disease-free interval by Kaplan-Meier analysis. Targeting NR2F2 expression in established ovarian cancer cell lines enhanced apoptosis and increased proliferation. In addition, we found that NR2F2 regulates the expression of NEK2, RAI14, and multiple other genes involved in the cell cycle, suggesting potential pathways by which dysregulated expression of NR2F2 impacts ovarian cancer. Conclusions: These results uncover novel roles for NR2F2