WorldWideScience

Sample records for stellar interiors ii

  1. ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS

    International Nuclear Information System (INIS)

    Vasil, Geoffrey M.; Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Wood, Toby S.

    2013-01-01

    The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set

  2. Recent advances in modeling stellar interiors (u)

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Joyce Ann [Los Alamos National Laboratory

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  3. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  4. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, Joergen; Carpenter, Kenneth G; Schrijver, Carolus J; Karovska, Margarita

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  5. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University (Denmark); Carpenter, Kenneth G [Code 667 NASA-GSFC, Greenbelt, MD 20771 (United States); Schrijver, Carolus J [LMATC 3251 Hanover St., Bldg. 252, Palo Alto, CA 94304 (United States); Karovska, Margarita, E-mail: jcd@phys.au.d, E-mail: Kenneth.G.Carpenter@nasa.gov, E-mail: schryver@lmsal.com, E-mail: karovska@head.cfa.harvard.edu [60 Garden St., Cambridge, MA 02138 (United States)

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  6. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  7. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  8. Measuring the opacity of stellar interior matter in terrestrial laboratories

    Science.gov (United States)

    Bailey, James

    2015-11-01

    How does energy propagate from the core to the surface of the Sun, where it emerges to warm the Earth? Nearly a century ago Eddington recognized that the attenuation of radiation by stellar matter controls the internal structure of stars like the sun. Opacities for high energy density (HED) matter are challenging to calculate because accurate and complete descriptions of the energy levels, populations, and plasma effects such as continuum lowering and line broadening are needed for partially ionized atoms. This requires approximations, in part because billions of bound-bound and bound-free electronic transitions can contribute to the opacity. Opacity calculations, however, have never been benchmarked against laboratory measurements at stellar interior conditions. Laboratory opacity measurements were limited in the past by the challenges of creating and diagnosing sufficiently large and uniform samples at the extreme conditions found inside stars. In research conducted over more than 10 years, we developed an experimental platform on the Z facility and measured wavelength-resolved iron opacity at electron temperatures Te = 156-195 eV and densities ne = 0.7-4.0 x 1022 cm-3 - conditions very similar to the radiation/convection boundary zone within the Sun. The wavelength-dependent opacity in the 975-1775 eV photon energy range is 30-400% higher than models predict. This raises questions about how well we understand the behavior of atoms in HED plasma. These measurements may also help resolve decade-old discrepancies between solar model predictions and helioseismic observations. This talk will provide an overview of the measurements, investigations of possible errors, and ongoing experiments aimed at testing hypotheses to resolve the model-data discrepancy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  9. Constraints on Super-Earth Interiors from Stellar Abundances

    Science.gov (United States)

    Brugger, B.; Mousis, O.; Deleuil, M.; Deschamps, F.

    2017-11-01

    Modeling the interior of exoplanets is essential to go further than the conclusions provided by mean density measurements. In addition to the still limited precision on the planets’ fundamental parameters, models are limited by the existence of degeneracies on their compositions. Here, we present a model of internal structure dedicated to the study of solid planets up to ˜10 Earth masses, I.e., super-Earths. When the measurement is available, the assumption that the bulk Fe/Si ratio of a planet is similar to that of its host star allows us to significantly reduce the existing degeneracy and more precisely constrain the planet’s composition. Based on our model, we provide an update of the mass-radius relationships used to provide a first estimate of a planet’s composition from density measurements. Our model is also applied to the cases of two well-known exoplanets, CoRoT-7b and Kepler-10b, using their recently updated parameters. The core mass fractions of CoRoT-7b and Kepler-10b are found to lie within the 10%-37% and 10%-33% ranges, respectively, allowing both planets to be compatible with an Earth-like composition. We also extend the recent study of Proxima Centauri b and show that its radius may reach 1.94 {R}\\oplus in the case of a 5 {M}\\oplus planet, as there is a 96.7% probability that the real mass of Proxima Centauri b is below this value.

  10. Collisionless microinstabilities in stellarators. II. Numerical simulations

    International Nuclear Information System (INIS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-01-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations

  11. Models of large-scale magnetic fields in stellar interiors. Application to solar and ap stars

    International Nuclear Information System (INIS)

    Duez, Vincent

    2009-01-01

    Stellar astrophysics needs today new models of large-scale magnetic fields, which are observed through spectropolarimetry at the surface of Ap/Bp stars, and thought to be an explanation for the uniform rotation of the solar radiation zone, deduced from helio seismic inversions. During my PhD, I focused on describing the possible magnetic equilibria in stellar interiors. The found configurations are mixed poloidal-toroidal, and minimize the energy for a given helicity, in analogy with Taylor states encountered in spheromaks. Taking into account the self-gravity leads us to the 'non force-free' equilibria family, that will thus influence the stellar structure. I derived all the physical quantities associated with the magnetic field; then I evaluated the perturbations they induce on gravity, thermodynamic quantities as well as energetic ones, for a solar model and an Ap star. 3D MHD simulations allowed me to show that these equilibria form a first stable states family, the generalization of such states remaining an open question. It has been shown that a large-scale magnetic field confined in the solar radiation zone can induce an oblateness comparable to a high core rotation law. I also studied the secular interaction between the magnetic field, the differential rotation and the meridional circulation in the aim of implementing their effects in a next generation stellar evolution code. The influence of the magnetism on convection has also been studied. Finally, hydrodynamic processes responsible for the mixing have been compared with diffusion and a change of convection's efficiency in the case of a CoRoT star target. (author) [fr

  12. Profile structures of TJ-II stellarator plasmas

    NARCIS (Netherlands)

    Herranz, J.; Pastor, I.; Castejon, F.; de la Luna, E.; Garcia-Cortes, I.; Barth, C. J.; Ascasibar, E.; Sanchez, J.; Tribaldos, V.

    2000-01-01

    Fine structures are found in the TJ-II stellarator electron temperature and density profiles, when they are measured using a high spatial resolution Thomson scattering system. These structures consist of peaks and valleys superimposed to a smooth average. Some irregularities remain in an ensemble

  13. Confinement studies in the TJ-II stellarator

    NARCIS (Netherlands)

    Alejaldre, C.; Alonso, J.; Almoguera, L.; Ascasibar, E.; Baciero, A.; Balbin, R.; Blaumoser, M.; Botija, J.; Branas, B.; De La Cal, E.; Cappa, A.; Carrasco, R.; Castejon, F.; Cepero, J. R.; Cremy, C.; Delgrado, J. M.; Doncel, J.; Dulya, C.; Estrada, T.; Fernandez, A.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Herranz, J.; Hidalgo, C.; Jimenez, J. A.; Kirpitchev, I.; Krivenski, V.; Labrador, I.; Lapayese, F.; Likin, K.; Linier, M.; Lopez-Fraguas, A.; Lopez-Sanchez, A.; de la Luna, E.; Martin, R.; Martinez, A.; Martinez-Laso, L.; Medrano, M.; Mendez, P.; McCarthy, K. J.; Medina, F.; van Milligen, B.; Ochando, M.; Pacios, L.; Pastor, I.; Pedrosa, M. A.; de la Pena, A.; Portas, A.; Qin, J.; Rodriguez-Rodrigo, L.; Salas, A.; Sanchez, E.; Sanchez, J.; Tabares, F.; Tafalla, D.; Tribaldos, V.; Vega, J.; Zurro, B.; Akulina, D.; Fedyanin, O. I.; Grebenshchikov, S.; Kharchev, N.; Meshcheryakov, A.; Sarksian, K. A.; Barth, R.; van Dijk, G.; van der Meiden, H.

    1999-01-01

    ECR (electron cyclotron resonance) heated plasmas have been studied in the low magnetic shear TJ-II stellarator (R = 1.5 m, a < 0.22 m, B = 1 T, f = 53.2 GHz, P-ECRH = 300 kW, power density = 1-25 W cm(-3)). Recent experiments have explored the flexibility of the TJ-II across a wide range of

  14. Fabrication of the vacuum vessel of the Spanish stellarator TJ-II

    International Nuclear Information System (INIS)

    Botija, J.; Blaumoser, M.; Cal, E. de la; Garcia, A.; Tabares, F.; Molleta, L.; Rigadello, D.; Dal Maso, S.; Bevilacqua, G.

    1995-01-01

    TJ-II is a medium size stellarator under construction in Madrid, Spain. Its major plasma radius is 1.5 m and its minor plasma dimensions are 0.2m by 0.4m. The toroidal magnetic field on the axis is 1T. The bean shaped helical plasma is contained in a stainless steel vacuum vessel with a total of 96 ports, including 8 manholes to have access to its interior. The vacuum vessel will be baked at 150 C. Its complicated geometry along with the high tolerance requirements make this component a difficult manufacturing challenge. (orig.)

  15. Effect of rotation on fingering convection in stellar and planetary interiors

    Science.gov (United States)

    Sengupta, Sutirtha; Garaud, Pascale

    2018-01-01

    We study the effects of global rotation on the growth and saturation of the fingering (double-diffusive) instability at low Prandtl numbers and estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Taylor number, Ta^* (defined in terms of the rotation rate, Ω, thermal diffusivity κ_T and associated finger length scale d) and density ratio through direct numerical simulations. Within our explored range of parameters, we find rotation to have very little effect on vertical transport apart for an exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly high Taylor number. The LSV leads to significant enhancement in the fingering transport rates by concentrating high composition fluid at its core which moves downward. The formation of such LSVs is of particular interest for solving the missing mixing problem in the astrophysical context of RGB stars though the parameter regime in which we observe the emergence of this LSV seems to be quite far from the stellar scenario. However, understanding the basic mechanism driving such large scale structures as observed frequently in polar regions of planets (e.g. those seen by Juno near the poles of Jupiter) is important in general for studies of rotating turbulence and its applications to stellar and planetary interior studies, and will be investigated in further detail in a forthcoming work.

  16. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

    International Nuclear Information System (INIS)

    Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2009-01-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156±6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

  17. Control system for the Spanish Stellarator TJ-II

    International Nuclear Information System (INIS)

    Pacios, L.; Blaumoser, M.; Pena, A. de la; Carrasco, R.; Labrador, I.; Lapayese, F.; Diaz, J.C.; Laso, L.M.

    1995-01-01

    We describe the distributed control and monitoring system for the Spanish Stellarator TJ-II, which is under construction at CIEMAT in Madrid. It consists of one central UNIX workstation and several autonomous subsystems based on VME crates with embedded processors under OS-9 real-time operating system and PLCs. The system integrates the machine and discharge control. An operator can perform the control and plasma discharge by means of a user-friendly graphic interface. (orig.)

  18. Confinement studies in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.; Ascasibar, E.; Baciero, A.; Balbin, R.; Blaumoser, M.; Botija, J.; Branas, B.; Cal, E. de la; Cappa, A.; Carrasco, R.; Castejon, F.; Cepero, J.R.; Cremy, C.; Delgado, J.M.; Doncel, J.; Dulya, C.; Estrada, T.; Fernandez, A.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Herranz, J.; Hidalgo, C.; Jimenez, J.A.; Kirpitchev, I.; Krivenski, V.; Labrador, I.; Lapayese, F.; Likin, K.; Linier, M.; Lopez-Fraguas, A.; Lopez-Sanchez, A.; Luna, E. de la; Martin, R.; Martinez, A.; Martinez-Laso, L.; Medrano, M.; Mendez, P.; McCarthy, K.J.; Medina, F.; Milligen, B. van; Ochando, M.; Pacios, L.; Pastor, I.; Pedrosa, M.A.; Pena, A. de la; Portas, A.; Qin, J.; Rodriguez-Rodrigo, L.; Salas, A.; Sanchez, E.; Sanchez, J.; Tabares, F.; Tafalla, D.; Tribaldos, V.; Vega, J.; Zurro, B.; Akulina, D.; Fedyanin, O.I.; Grebenshchikov, S.; Kharchev, N.; Meshcheryakov, A.; Sarksian, K.A.; Barth, R.; Dijk, G. van; Meiden, H. van der

    1999-01-01

    ECR (electron cyclotron resonance) heated plasmas have been studied in the low magnetic shear TJ-II stellarator (R = 1.5 m, a ECRH = 300 kW, power density = 1-25 W cm -3 ). Recent experiments have explored the flexibility of the TJ-II across a wide range of plasma volumes with different rotational transforms and rational surface densities. In this paper, the main results of this campaign are presented and, in particular, the influence of iota and rational surfaces on plasma profiles is discussed. (author)

  19. Behavior of lambda 2800 Mg II in stellar spectra

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1975-01-01

    The results of measurements of the equivalent widths of the resonance doublet of ionized magnesium lambda 2800 Mg II in the spectra of 51 relatively faint stars, up to 10/sup m/, of the spectral classes B1-K5 are presented. The observed material has been obtained by means of the space observatory ''Orion-2''. Some regularities in the behavior of lambda 2800 Mg II in stellar spectra have been revealed: wide and deep depression of the continuous spectra at 2800 A in F-G type stars; the presence of the doublet lambda 2800 Mg II in the form of weak emission in the spectra of cold stars (K2-K5); the presence both of the multiplet lambda 3080 Ti II and the doublet lambda 2800 Mg II simultaneously either in emission--in the late-type stars--or in absorption in earlier types; the existence of combined profiles of lambda 2800 Mg II, i.e., a wide absorption line with a weak emission in the center, in stars of the transitional class (G5-K0), etc. A well-defined empirical relationship between the equivalent width of lambda 2800 Mg II and the spectral class of the star has been established (Fig. 8). (U.S.)

  20. Stellar activity with LAMOST - II. Chromospheric activity in open clusters

    Science.gov (United States)

    Fang, Xiang-Song; Zhao, Gang; Zhao, Jing-Kun; Bharat Kumar, Yerra

    2018-05-01

    We use the LAMOST spectra of member stars in Pleiades, M34, Praesepe, and Hyades to study how chromospheric activity varies as a function of mass and rotation at different age. We measured excess equivalent widths of H α, H β, and Ca II K based on estimated chromospheric contributions from old and inactive field dwarfs, and excess luminosities are obtained by normalizing bolometric luminosity, for more than 700 late-type stars in these open clusters. Results indicate two activity sequences in cool spot coverage and H α excess emission among GK dwarfs in Pleiades and M dwarfs in Praesepe and Hyades, paralleling with well-known rotation sequences. A weak dependence of chromospheric emission on rotation exists among ultrafast rotators in saturated regime with Rossby number Ro ≲ 0.1. In the unsaturated regime, chromospheric and coronal emission show similar dependence on Ro, but with a shift towards larger Ro, indicating chromospheric emission gets easily saturated than coronal emission, and/or convective turnover time-scales based on X-ray data do not work well with chromospheric emission. More interestingly, our analysis shows fully convective slow rotators obey the rotation-chromospheric activity relation similar to hotter stars, confirming the previous finding. We found correlations among H α, H β, and Ca II K emissions, in which H α losses are more important than Ca II K for cooler and more active stars. In addition, a weak correlation is seen between chromospheric emission and photospheric activity that shows dependence on stellar spectral type and activity level, which provides some clues on how spot configuration varies as a function of mass and activity level.

  1. Transient Particle Transport Analysis on TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Eguilior, S.; Castejon, F.; Guasp, J.; Estrada, T.; Medina, F.; Tabares, F.L.; Branas, B.

    2006-12-18

    Particle diffusivity and convective velocity have been determined in ECRH plasmas confined in the stellarator TJ-II by analysing the evolving density profile. This is obtained from an amplitude modulation reflectometry system in addition to an X-ray tomographic reconstruction. The source term, which is needed as an input for transport equations, is obtained using EIRENE code. In order to discriminate between the diffusive and convective contributions, the dynamics of the density evolution has been analysed in several perturbative experiments. This evolution has been considered in discharges with injection of a single pulse of H2 as well as in those that present a spontaneous transition to an enhanced confinement mode and whose confinement properties are modified by inducing an ohmic current. The pinch velocity and diffusivity are parameterized by different expressions in order to fit the experimental time evolution of density profile. The profile evolution is very different from one case to another due to the different values of convective velocities and diffusivities, besides the different source terms. (Author) 19 refs.

  2. INTERIORITY

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier

    Dealing with the general theme of domestic architectural quality, the PhD thesis ‘INTERIORITY’ takes its point of departure in the continuous and increasing need to improve our capability as architects to theoretically articulate the intangible concept of quality, and to reveal it through an active...... been motivated by the particular hypothesis that an introduction of the notion of interiority, as an ability of the spatial envelope itself to address the sensuous scale of furniture, unfolds a particular dual critical potential signifying our experience of domestic architectural quality: On the one......, tectonically. Hence, it has been a particular idea of the study to explore the relation between furniture, the spatial envelope itself, and its construct by using furniture as an architectural concept. Consequently, the thesis has specifically investigated whether this notion of interiority, describing...

  3. Interior Gradient Estimates for Nonuniformly Parabolic Equations II

    Directory of Open Access Journals (Sweden)

    Lieberman Gary M

    2007-01-01

    Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.

  4. Stellar dynamics around a massive black hole - II. Resonant relaxation

    Science.gov (United States)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  5. The M33 Synoptic Stellar Survey. II. Mira Variables

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenlong; Macri, Lucas M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); He, Shiyuan; Long, James; Huang, Jianhua Z., E-mail: lmacri@tamu.edu [Department of Statistics, Texas A and M University, College Station, TX 77843 (United States)

    2017-04-01

    We present the discovery of 1847 Mira candidates in the Local Group galaxy M33 using a novel semi-parametric periodogram technique coupled with a random forest classifier. The algorithms were applied to ∼2.4 × 10{sup 5} I -band light curves previously obtained by the M33 Synoptic Stellar Survey. We derive preliminary period–luminosity relations at optical, near-infrared, and mid-infrared wavelengths and compare them to the corresponding relations in the Large Magellanic Cloud.

  6. Composition gradients across spiral galaxies II. The stellar mass limit

    International Nuclear Information System (INIS)

    Shields, G.A.; Tinsley, B.M.

    1976-01-01

    The equivalent width of the Hβ emission from H ii regions in spiral galaxies increases with distance from the nucleus. This W (Hβ) gradient is interpreted in terms of a radial gradient in the temperature of the hottest exciting stars. (T/subu/). From Searle's observations of M101, an increase Δ log T/subu/=0.02--0.13 from the intermediate to outermost spiral arms of M101 is inferred. There is also a radial decrease in the metal abundance (Z) across M101, and the T/subu/ gradient is consistent with the prediction of Kahn's recent theory that the upper mass limit for star formation should be smaller in regions of high Z. It is noted also that, even in the absence of changes in the upper mass limit, a T/subu/ gradient is expected because metal-rich stars of given mass have smaller effective temperatures. Several observational and theoretical improvements are needed before firm conclusions can be drawn, but it is clear that the presence of a T/subu/ gradient may lead to several important systematic changes in the interpretation of gradients in the properties of H ii regions across galaxies. A T/subu/ gradient reduces the Z gradient that is inferred from emission-line ratios, and it may help to explain why O ii is strong in the innermost regions where O iii is weak. A T/subu/ gradient may also partly camouflage a helium abundance gradient

  7. Power supply for the Spanish Stellarator TJ-II

    International Nuclear Information System (INIS)

    Almoguera, L. de; Blaumoser, M.; Mendez, P.; Kirpitchev, I.

    1995-01-01

    TJ-II is a flexible, medium size, heliac under construction at the EURATOM-CIEMAT Association in Madrid, Spain. Its main data are: major plasma radius: 1,5 m; minor plasma dimension: 0,2 m by 0,4 m; toroidal magnetic field: 1 T; rotational transform: 0,9 to 2,5; shear: -1% to 10 %; magnetic well: 0 to 6 %. This device requires an entirely new electrical system to power its magnetic field coils and the plasma heating systems. As the local grid is not powerful enough, a pulse power system will be installed which consists of a DC-pony motor, a synchronous generator and seven 12-pulse controlled thyristor rectifiers. A contract has been placed with JEMA, San Sebastian, Spain, as the general contractor which provides the entire power supply system as a turn-key package. (orig.)

  8. Recent results with NBI plasmas in TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Liniers, M.; Ascasibar, E.; Estrada, T.; Tabares, F. L.; Acedo, M.; Alonso, J.; Balbin, R.; Blanco, B.; Branas, B.; Cappa, A.; Carrasco, R.; Castejon, F.; Fernandez, A.; Fontdecaba, J. M.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Hidalgo, A.; Hidalgo, C.; Jimenez, R.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Marcon, G.; McCarthy, K. J.; Medina, F.; Medrano, M.; Ochando, M.; Pastor, I.; Pedrosa, M. A.; Rapisarda, D.; Sanchez, E.; Sanchez, M.; Sanchez, J.; Tafalla, D.; Wolfers, G.; Zurro, B.

    2005-07-01

    During the last experimental campaign Neutral Beam Injection into TJ-II plasmas has been available, with a single H0 beam aiming tangentially in the Co-direction. As the ion source conditioning was improved along the campaign, the injected power increased from 200 kW to 400 kW port-through, and the beam energy was raised from 26 kV to 30 kV [1]. Target plasmas are created by ECR heating, using two gyrotrons of 200 kW power, at the second harmonic frequency (53 GHz). The injection direction of the microwaves can be steered by means of movable mirrors placed inside the vacuum chamber, making it possible to vary the power deposition region from the plasma core (on-axis) to the outer regions near ?=0.5 (off-axis). The plasma temperature and density profiles obtained with on-axis or off axis ECRH are seen to differ widely, allowing us to study the neutral beam absorption in two qualitatively different plasma target scenarios. Other factors affecting the plasma profiles have also been investigated, such as the magnetic configuration or the OH-driven current. TJ-II has the capability of varying the magnetic configuration by changing the ratio of the current through the circular and helical conductors that form the Central Conductor. The iota values can be swept between 0.9 and 2.2 and the magnetic well between -1% and 6% giving rise to configurations with different confinement properties. A negative OH driven current has the effect of increasing the magnetic shear value, allowing low-order rationals in the central region which have been seen to modify density profiles in ECH plasmas. In most NBI discharges the central plasma density increases continuously from ECH typical values below 1.1 x 10 19 m-3 up to 6.5 x 10 19 m-3, as the beam is injected, until a thermal collapse that terminates the discharge is reached. So far, density control with NBI plasmas has not been achieved, although an improved behaviour is observed with wall cleaning. (Author)

  9. Recent results with NBI plasmas in TJ-II stellarator

    International Nuclear Information System (INIS)

    Liniers, M.; Ascasibar, E.; Estrada, T.; Tabares, F. L.; Acedo, M.; Alonso, J.; Balbin, R.; Blanco, B.; Branas, B.; Cappa, A.; Carrasco, R.; Castejon, F.; Fernandez, A.; Fontdecaba, J. M.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Hidalgo, A.; Hidalgo, C.; Jimenez, R.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Marcon, G.; McCarthy, K. J.; Medina, F.; Medrano, M.; Ochando, M.; Pastor, I.; Pedrosa, M. A.; Rapisarda, D.; Sanchez, E.; Sanchez, M.; Sanchez, J.; Tafalla, D.; Wolfers, G.; Zurro, B.

    2005-01-01

    During the last experimental campaign Neutral Beam Injection into TJ-II plasmas has been available, with a single H0 beam aiming tangentially in the Co-direction. As the ion source conditioning was improved along the campaign, the injected power increased from 200 kW to 400 kW port-through, and the beam energy was raised from 26 kV to 30 kV [1]. Target plasmas are created by ECR heating, using two gyrotrons of 200 kW power, at the second harmonic frequency (53 GHz). The injection direction of the microwaves can be steered by means of movable mirrors placed inside the vacuum chamber, making it possible to vary the power deposition region from the plasma core (on-axis) to the outer regions near ?=0.5 (off-axis). The plasma temperature and density profiles obtained with on-axis or off axis ECRH are seen to differ widely, allowing us to study the neutral beam absorption in two qualitatively different plasma target scenarios. Other factors affecting the plasma profiles have also been investigated, such as the magnetic configuration or the OH-driven current. TJ-II has the capability of varying the magnetic configuration by changing the ratio of the current through the circular and helical conductors that form the Central Conductor. The iota values can be swept between 0.9 and 2.2 and the magnetic well between -1% and 6% giving rise to configurations with different confinement properties. A negative OH driven current has the effect of increasing the magnetic shear value, allowing low-order rationals in the central region which have been seen to modify density profiles in ECH plasmas. In most NBI discharges the central plasma density increases continuously from ECH typical values below 1.1 x 10 19 m-3 up to 6.5 x 10 19 m-3, as the beam is injected, until a thermal collapse that terminates the discharge is reached. So far, density control with NBI plasmas has not been achieved, although an improved behaviour is observed with wall cleaning. (Author)

  10. Power supply for the Spanish stellarator TJ-II, design, construction, and tests

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Lucia, C.; Alberdi, B.; Del Rio, J.M. [JEMA SA, Lasarte-Oria (Spain); Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P. [Asociacion EURATOM-CIEMAT para Fusion, Madrid (Spain)

    1995-12-31

    Most of the components of the electrical power supply system of the new TJ-II stellarator, which is under construction in Madrid (Spain), are now constructed and tested. The flywheel synchronous generator is still under construction and its tests are planned for the end of 1995. The power plant is described in detail as well as the tests which have been carried out and their results.

  11. The role of stellar feedback in the dynamics of H II regions

    International Nuclear Information System (INIS)

    Lopez, Laura A.; Castro, Daniel; Krumholz, Mark R.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Bolatto, Alberto D.

    2014-01-01

    Stellar feedback is often cited as the biggest uncertainty in galaxy formation models today. This uncertainty stems from a dearth of observational constraints as well as the great dynamic range between the small scales (≲1 pc) where the feedback originates and the large scales of galaxies (≳1 kpc) that are shaped by this feedback. To bridge this divide, in this paper we aim to assess observationally the role of stellar feedback at the intermediate scales of H II regions (∼10-100 pc). In particular, we employ multiwavelength data to examine several stellar feedback mechanisms in a sample of 32 H II regions (with ages ∼3-10 Myr) in the Large and Small Magellanic Clouds, respectively. Using optical, infrared, radio, and X-ray images, we measure the pressures exerted on the shells from the direct stellar radiation, the dust-processed radiation, the warm ionized gas, and the hot X-ray-emitting gas. We find that the warm ionized gas dominates over the other terms in all of the sources, although two have comparable dust-processed radiation pressures to their warm gas pressures. The hot gas pressures are comparatively weak, while the direct radiation pressures are one to two orders of magnitude below the other terms. We discuss the implications of these results, particularly highlighting evidence for hot gas leakage from the H II shells and regarding the momentum deposition from the dust-processed radiation to the warm gas. Furthermore, we emphasize that similar observational work should be done on very young H II regions to test whether direct radiation pressure and hot gas can drive the dynamics at early times.

  12. Conditioning of TJ-II Stellarator during the ECRH Plasmas Period; Acondicionamiento del Stellarator TJ-II durante la Etapa de Plasmas ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tafalla, D.; Tabares, F.L.

    2001-07-01

    The TJ-II stellarator has been conditioned by glow discharge (GD) during the first campaigns of operation, working only with ECR heating and all metal walls. The application of a He GD during the overnight period before the operation has been required in order to obtain reproducible discharges. However, the density control of the ECRH discharges was not possible because of the He implanted on the wall during GS. An short Ar GD({<=}30 min) applied before the operation allows desorbes part of the implanted He. By applying this procedure (HeGD+ArGD), reproducible and density controlled plasmas have been achieved in H{sub 2} and He. (Author) 20 refs.

  13. Monte Carlo estimation of neoclassical transport for the TJ-II stellarator

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2001-01-01

    The neoclassical transport properties of TJ-II stellarator [C. Alejaldre et al., Fusion Technol. 13, 521 (1988)] are studied with the monoenergetic Monte Carlo technique. A compromise between the number of modes and particles and the required computing time to obtain reliable estimates, from the computational point of view, of the monoenergetic diffusion coefficients is shown to be of one thousand particles and one hundred harmonics, because of the rich magnetic-field structure of TJ-II. Although, these requirements are probably too demanding in making the transport estimations. The data base containing the normalized monoenergetic diffusion coefficient for several radial positions, radial electric fields and collisionalities have been fitted using a neural network. This fit reduces the number of points necessary in the data base and allows a smooth interpolation and extrapolation to perform the convolutions of the monoenergetic coefficients with the Maxwellian. For two different typical TJ-II discharges the ambipolar radial electric field, and the neoclassical particle and heat fluxes are presented both showing rather large positive radial electric fields at the plasma core and small negative fields at the edge. The neoclassical particle and energy confinement time are in surprisingly good agreement with the experimental energy balance analysis and the international stellarator scaling. Although no satisfactory explanation is available yet the large neoclassical diffusion caused by the complex ripple structure of TJ-II magnetic field may be an important ingredient

  14. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  15. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  16. Detecting stellar-wind bubbles through infrared arcs in H II regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  17. Current ripple in the coils of the TJ-II Spanish stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Acero, J.; Alberdi, B.; Del Rio, J.M. [JEMA SA, Lasarte-Oria (Spain); Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P. [Asociacion EURATOM-CIEMAT para Fusion, Madrid (Spain)

    1995-12-31

    High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER{reg_sign} and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented.

  18. Current ripple in the coils of the TJ-II Spanish stellarator

    International Nuclear Information System (INIS)

    Perez, A.; Acero, J.; Alberdi, B.; Del Rio, J.M.; Almoguera, L.; Blaumoser, M.; Kirpitchev, I.; Mendez, P.

    1995-01-01

    High precision coil current control, stability and ripple content are very important aspects for a stellarator design. The TJ-II coils will be supplied by network commutated current converters and therefore the coil currents will contain harmonics which have to be kept to a very low level. An analytical investigation as well as numerous simulations with EMTP, SABER reg-sign and other softwares, have been done in order to predict the harmonic currents and to verify the completion with the specified maximum levels. The calculations and the results are presented

  19. First Toroidal Rotation Measurements of Protons and Impurities in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Rapisarda, D.; Zurro, B.; Baciero, A.

    2006-01-01

    First absolute toroidal rotation measurements in the TJ-II stellarator, by using passive emission spectroscopy, are presented. The wavelength calibration is performed by using a spectral system which combines the spectra coming from the plasma and from a lamp in real time. Measurements have been made both for protons and some impurity ions (C4+, He+), in discharges created by electron cyclotron resonance heating, and in discharges with neutral beam injection heating. In addition, a description of the systems as well as the calibration procedures an data analysis is addressed. (Author) 10 refs

  20. Commissioning of the 28 GHz ECRH power transmission line for the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Fernández, J., E-mail: jose.martinez@ciemat.es [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Cappa, Á. [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Chirkov, A. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Ros, A.; Tolkachev, A.; Catalán, G.; Soleto, A.; Redondo, M. [Laboratorio Nacional de Fusión (LNF), Centro de Investigaciones Tecnológicas, Medioambientales y Tecnológicas (CIEMAT), Av/Complutense 40, 28040 Madrid (Spain); Doane, J.L.; Anderson, J.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2015-10-15

    Highlights: • The 28 GHz power transmission line of the TJ-II stellarator is described. • Mismatch and alignment problems are covered, presenting infrared measurements. • Beam distortion in the matching optics unit led to unwanted modes in the waveguide. • After a redesign distortion was eliminated and coupling maximized. • Final measurements suggest finer alignment must be performed. - Abstract: The commissioning of the 28 GHz power transmission line of the TJ-II stellarator, designed for the excitation of electron Bernstein waves (EBW) through the O-X-B mode conversion process, is presented in this paper. Based upon a comprehensive set of thermal measurements, its purpose is to go into details about the several problems that arouse during the whole process, namely higher order modes excitation because of the wider beam size and alignment mismatches at the waveguide mouth. All these drawbacks may have prevented the correct O-X mode conversion, thus providing a reasonable explanation for the unsuccessful EBW heating experiments.

  1. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  2. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  4. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    OpenAIRE

    Martin, NF; Nidever, DL; Besla, G; Olsen, K; Walker, AR; Vivas, AK; Gruendl, RA; Kaleida, CC; Muñoz, RR; Blum, RD; Saha, A; Conn, BC; Bell, EF; Chu, YH; Cioni, MRL

    2015-01-01

    © 2015. The American Astronomical Society. All rights reserved.We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact (rh = 68 ± 11 pc) and faint (MV = -4.8 ± 0.3), but well within the realm of dwarf galaxies. The stellar distribution of Hydra II in the color-magnitude diagram is well-described by a m...

  5. Conditioning of TJ-II Stellarator during the ECRH Plasmas Period

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F. L.

    2001-01-01

    The TJ-II stellarator has been conditioned by glow discharge (GD) during the first campaigns of operation, working only with ECR heating and all metal walls. The application of a He GD during the overnight period before the operation has been required in order to obtain reproducible discharges. However, the density control of the ECRH discharges was not possible because of the He implanted on the wall during GS. An short Ar GD(≤30 min) applied before the operation allows desorbes part of the implanted He. By applying this procedure (HeGD+ArGD), reproducible and density controlled plasmas have been achieved in H 2 and He. (Author) 20 refs

  6. Electron internal transport barriers and magnetic topology in the stellarator TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Lopez-Bruna, D.; Alosno, A.; Ascasibar, E.; Baciero, A.; Cappa, A.; Castejon, F.; Fernandez, A.; Herranz, J.; Hidalgo, C.; Pablos, J. L. de; Pastor, I.; Sanchez, E.; Sanchez, J.

    2005-07-01

    In most helical systems electron Internal Transport Barriers (e-ITB) are observed in Electron Cyclotron Heated (ECH) plasmas with high heating power density. In the stellarator TJ-II, e- ITBs are easily achievable by positioning a low order rational surface close to the plasma core, because this increases the density range in which the e-ITB can form. Experiments with different low order rationals show a dependence of the threshold density and barrier quality on the order of the rational (3/2, 4/2, 5/3, ...). In addition, during the formation of e-ITB quasicoherent modes are frequently observed in the plasma core region. The mode can exist before or after the e-ITB phenomenon at the radial location of the transport barrier foot but vanishes as the barrier is fully developed. (Author)

  7. Installation of the advanced heavy ion beam probing diagnostic on the TJ-II stellarator

    International Nuclear Information System (INIS)

    Bondarenko, I.S.; Chmyga, A.A.; Dreval, N.B.

    2000-01-01

    An advanced heavy ion beam diagnostic has been developed for the TJ-II stellarator based on the simultaneous utilisation of two different detection systems for the secondary ions: a multiple cell array detector and a 30 deg Proca-Green electrostatic energy analyser. This innovative design aims at enlarging the HIBD capabilities to allow the instantaneous measurements of electron density and plasma potential profiles together with their respective fluctuations. This paper presents the detailed description of the main parts of HIBD and their characteristics obtained during the first operation on TJ-II. Special attention is paid to the control and data acquisition system built on two VME controllers. The results of the diagnostic beam propagating through the magnetic structure of TJ-II into electrostatic energy analyser are presented and compared with the trajectory calculations. The operation and calibration of a 30 deg electrostatic energy analyser free of guard rings and with a new biased split detector are described. High intensities of the caesium and thallium ions were obtained from thermionic source using new stable and long-time special operation regimes. (author)

  8. Influence of Projection Operator on Oxygen Line Shapes and its effect on Rosseland-Mean Opacity in Stellar Interiors

    Science.gov (United States)

    Gomez, Thomas; Nagayama, Taisukue; Kilcrease, David; Hansen, Stephanie; Montgomery, Mike; Winget, Don

    2018-01-01

    The Rosseland-Mean opacity (RMO) is an important quantity in determining radiation transport through stars. The solar-convection-zone boundary predicted by the standard solar model disagrees with helioseismology measurements by many sigma; a 14% increase in the RMO would resolve this discrepancy. Experiments at Sandia National Laboratories are now measuring iron opacity at solar-interior conditions, and significant discrepancies are already observed. Highly-ionized oxygen is one of the dominant contributions to the RMO. The strongest line, Lyman alpha, is at the peak of the Rosseland weighting function. The accuracy of line-broadening calculations has been called into question due to various experimental results and comparisons between theory. We have developed an ab-initio calculation to explore different physical effects, our current focus is treating penetrating collisions explicitly. The equation of motion used to calculate line shapes within the relaxation and unified theories includes a projection operator, which performs an average over plasma electron states; this is neglected due to past calculations approximate treatment of penetrations. We now include this projection term explicitly, which results in a significant broadening of spectral lines from highly-charged ions (low-Z elements are not much affected). The additional broadening raises the O Ly-alpha wing opacity by a factor of 5; we examine the consequences of this additional broadening on the Rosseland mean.

  9. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: dallora@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  10. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    Science.gov (United States)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  11. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  12. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  13. Young stellar population and ongoing star formation in the H II complex Sh2-252

    Science.gov (United States)

    Jose, Jessy; Pandey, A. K.; Samal, M. R.; Ojha, D. K.; Ogura, K.; Kim, J. S.; Kobayashi, N.; Goyal, A.; Chauhan, N.; Eswaraiah, C.

    2013-07-01

    In this paper, an extensive survey of the star-forming complex Sh2-252 has been undertaken with an aim to explore its hidden young stellar population as well as to understand the structure and star formation history for the first time. This complex is composed of five prominent embedded clusters associated with the subregions A, C, E, NGC 2175s and Teu 136. We used Two Micron All Sky Survey-near-infrared and Spitzer-Infrared Array Camera, Multiband Imaging Photometer for Spitzer photometry to identify and classify the young stellar objects (YSOs) by their infrared (IR) excess emission. Using the IR colour-colour criteria, we identified 577 YSOs, of which, 163 are Class I, 400 are Class II and 14 are transition disc YSOs, suggesting a moderately rich number of YSOs in this complex. Spatial distribution of the candidate YSOs shows that they are mostly clustered around the subregions in the western half of the complex, suggesting enhanced star formation activity towards its west. Using the spectral energy distribution and optical colour-magnitude diagram-based age analyses, we derived probable evolutionary status of the subregions of Sh2-252. Our analysis shows that the region A is the youngest (˜0.5 Myr), the regions B, C and E are of similar evolutionary stage (˜1-2 Myr) and the clusters NGC 2175s and Teu 136 are slightly evolved (˜2-3 Myr). Morphology of the region in the 1.1 mm map shows a semicircular shaped molecular shell composed of several clumps and YSOs bordering the western ionization front of Sh2-252. Our analyses suggest that next generation star formation is currently under way along this border and that possibly fragmentation of the matter collected during the expansion of the H II region as one of the major processes is responsible for such stars. We observed the densest concentration of YSOs (mostly Class I, ˜0.5 Myr) at the western outskirts of the complex, within a molecular clump associated with water and methanol masers and we suggest that it

  14. Edge and Plasma -Wall Interaction Diagnostics in the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F. L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-07-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important , has implieda careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models use din the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs.

  15. Edge and Plasma-Wall Interaction Diagnostics in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-01-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important, has implied a careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models used in the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs

  16. Electron internal transport barriers and magnetic topology in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Alonso, A.; Castejon, F.; Hidalgo, C.; Pablos, J.L. de; Tereshin, V.; Krupnik, L.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Eliseev, L.; Melnikov, A.V.

    2005-01-01

    Electron Internal Transport Barriers (e-ITBs) are frequently observed in helical systems. e-ITBs are characterized by an increase in core electron temperature and plasma potential as well as an improvement in core electron heat confinement. A comparative study of transport barriers in different helical devices will be presented by Yokoyama et al at this conference. In most helical systems, and in particular in TJ-II stellarator, the formation of e-ITBs is observed in Electron Cyclotron Heated plasmas with high heating power density. In TJ-II, e-ITBs are also formed in magnetic configurations having a low order rational surface close to the plasma core where the ECH power is deposited. In such configurations the key element to improve heat confinement, i.e. the strong radial electric field, results from a synergistic effect between enhanced electron heat fluxes through the low order rational surface and pump-out mechanisms in the heat deposition zone. Recent experiments show a quasi-coherent mode associated with a rational surface that triggers the formation of the e-ITB. This quasi-coherent mode is observed by both ECE and HIBP diagnostics. The mode is found to be localized within the radial range ρ: 0.0 - 0.4, with a maximum amplitude around ρ: 0.25 - 0.35, close to the foot of the e- ITB. The quasi-coherent mode evolves during the formation/annihilation of the e-ITB and vanishes as the barrier is fully developed. These observations indicate that the quasi-coherent modes are modified by the radial electric fields that develop at the transitions, thereby showing the importance of ExB flows in the evolution of MHD instabilities linked to low-order rational surfaces. Further studies are in progress to investigate the influence of the order of the low rational surfaces (3/2, 5/3,...) in triggering core transitions. (author)

  17. Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters

    NARCIS (Netherlands)

    Cenarro, A. J.; Peletier, R. F.; Sanchez-Blazquez, P.; Selam, S. O.; Toloba, E.; Cardiel, N.; Falcon-Barroso, J.; Gorgas, J.; Jimenez-Vicente, J.; Vazdekis, A.

    2007-01-01

    We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric

  18. Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    García, L. [Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Ochando, M. A.; Hidalgo, C.; Milligen, B. Ph. van [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); Carralero, D. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, Garching (Germany)

    2016-06-15

    In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of the instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.

  19. The visible intensified cameras for plasma imaging in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Cal, E. de la; Carralero, D.; Pablos, J.L. de; Alonso, A.; Rios, L.; Garcia Sanchez, P.; Hidalgo, C.

    2011-01-01

    Visible cameras are widely used in fusion experiments for diagnosis and for machine safety issues. They are generally used to monitor the plasma emission, but are also sensible to surface Blackbody radiation and Bremsstrahlung. Fast or high speed cameras capable of operating in the 10 5 frames per second speed range are today commercially available and offer the opportunity to plasma fusion researchers of two-dimensional (2D) imaging of fast phenomena such as turbulence, ELMs, disruptions, dust, etc. The tracking of these fast phenomena requires short exposure times down to the μ s range and the light intensity can be often near the signal to noise ratio limit especially in low plasma emission regions such as the far SOL Additionally, when using interference filters to monitor, e.g. impurity line emission, the photon flux is strongly reduced and the emission cannot be imaged at high speed. Therefore, the use of image intensifiers that amplify the light intensity onto the camera sensor can be of great help. The present work describes the use of intensifiers in the visible fast cameras of TJ-II stellarator. We have achieved spectroscopic plasma imaging of filtered impurity atomic line emission at short exposure times down to the 10 μ s range depending on atomic line and concentration. Additionally, plasma movies at velocities of 2x10 5 frames per second near the camera operation limit can be recorded with exposure times well below 1 μ s with sufficient signal to noise ratio. Although an increasing degradation of the image quality appears when raising the light amplification, an effective gain of up to two orders of magnitude of the light intensity is feasible for many applications (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Experimental dependence of ECR plasma breakdown on wave polarization in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Cappa, A.; Castejon, F.; Tabares, F.; Fernandez, A.; Tafalla, D.; Cal, E. de la; Estrada, T.; Nagasaki, K.

    2005-01-01

    Recently, second harmonic ECRH plasma breakdown and its dependence on the initial conditions such as neutral gas pressure, injected power or beam polarization has been the subject of theoretical as well as experimental work. Although those studies have been carried out in the context of stellarators, they are particularly relevant in the case of large tokamaks, such as ITER, where conventional inductive breakdown is expected to be strongly improved if ECRH is used. A matter of interest is the dependence of breakdown time on wave polarization. In the existing theoretical models, wave polarization is not taken into account because it is assumed that the injected ECRH power is initially scrambled by the vessel walls and that the energy source for breakdown is only due to the non-linear wave-particle interaction between deeply trapped electrons and the averaged electric field. However, while this seems reasonable for the very beginning of the discharge, it may not be so as we progress towards breakdown. Actually, as experiments in Heliotron J have demonstrated, wave polarization must be taken into account in the description of the energy source. Breakdown experiments in TJ-II were performed in order to get a deep insight into this matter and part of the results of breakdown dependence on wave polarization were already discussed. In particular, it was demonstrated that the hypothesis about the energy source used in the models is failing long before full ionization is completed. But more information in relation with our understanding of the second harmonic ECRH breakdown, such as the toroidal and radial breakdown propagation, which is seen to be non-diffusive, can be extracted. Thus, the experiment results provide valuable data that can be used not only to improve the energy source but also to include spatial dimensions in the breakdown models. (author)

  1. The visible intensified cameras for plasma imaging in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E. de la; Carralero, D.; Pablos, J.L. de; Alonso, A.; Rios, L.; Garcia Sanchez, P.; Hidalgo, C. (Laboratorio Nacional de Fusion, Asociacion Euratom-Ciemat, Av. Complutense 22, E-28040 Madrid)

    2011-09-15

    Visible cameras are widely used in fusion experiments for diagnosis and for machine safety issues. They are generally used to monitor the plasma emission, but are also sensible to surface Blackbody radiation and Bremsstrahlung. Fast or high speed cameras capable of operating in the 10{sup 5} frames per second speed range are today commercially available and offer the opportunity to plasma fusion researchers of two-dimensional (2D) imaging of fast phenomena such as turbulence, ELMs, disruptions, dust, etc. The tracking of these fast phenomena requires short exposure times down to the {mu} s range and the light intensity can be often near the signal to noise ratio limit especially in low plasma emission regions such as the far SOL Additionally, when using interference filters to monitor, e.g. impurity line emission, the photon flux is strongly reduced and the emission cannot be imaged at high speed. Therefore, the use of image intensifiers that amplify the light intensity onto the camera sensor can be of great help. The present work describes the use of intensifiers in the visible fast cameras of TJ-II stellarator. We have achieved spectroscopic plasma imaging of filtered impurity atomic line emission at short exposure times down to the 10 {mu} s range depending on atomic line and concentration. Additionally, plasma movies at velocities of 2x10{sup 5} frames per second near the camera operation limit can be recorded with exposure times well below 1 {mu} s with sufficient signal to noise ratio. Although an increasing degradation of the image quality appears when raising the light amplification, an effective gain of up to two orders of magnitude of the light intensity is feasible for many applications (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  3. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    Science.gov (United States)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  4. TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Sesana, Alberto; Madau, Piero

    2011-01-01

    Tidal stellar disruptions have traditionally been discussed as a probe of the single, massive black holes (MBHs) that are dormant in the nuclei of galaxies. We have previously used numerical scattering experiments to show that three-body interactions between bound stars in a stellar cusp and a non-evolving 'hard' MBH binary will also produce a burst of tidal disruptions, caused by a combination of the secular 'Kozai effect' and by close resonant encounters with the secondary hole. Here, we derive basic analytical scalings of the stellar disruption rates with the system parameters, assess the relative importance of the Kozai and resonant encounter mechanisms as a function of time, discuss the impact of general relativistic (GR) and extended stellar cusp effects, and develop a hybrid model to self-consistently follow the shrinking of an MBH binary in a stellar background, including slingshot ejections and tidal disruptions. In the case of a fiducial binary with primary hole mass M 1 = 10 7 M sun and mass ratio q = M 2 /M 1 = 1/81, embedded in an isothermal cusp, we derive a stellar disruption rate N-dot * ∼ 0.2 yr -1 lasting ∼3 x 10 5 yr. This rate is three orders of magnitude larger than the corresponding value for a single MBH fed by two-body relaxation, confirming our previous findings. For q 10% of the tidal-disruption events may originate in MBH binaries.

  5. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, M. A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, R. O.; Pablos, J. L. de

    2005-07-01

    It is well known the importance of the shear as a stabilizing mechanism to control plasma fluctuations in magnetically confined plasmas [1]. It has been clearly established that Ex B shear stabilization mechanisms are an important piece for the improvement of confinement on fusion devices. In particular both edge and core transport barriers are related to a large increase in the Ex B sheared flow. As a consequence clarifying the driving mechanisms of sheared flow in fusion plasmas is a main issue. The existence of parallel and perpendicular sheared flows at the plasma edge, and the interplay between them in different plasma conditions has been studied in the TJ-II [2]. Recent experiments carried out by means of different approaches in the TJ-II stellarator have shown that the generation of spontaneous edge perpendicular sheared flow can be externally controlled by means of plasma density with good reproducibility and reliability [3, 4]. Although experimentally the plasma density has been used as an external control knob, it would be more appropriate to characterize experimental results in terms of edge plasma gradient (e.g. ion saturation current gradient) [3]. It has also been found that there exists a coupling between the onset of sheared flow development and an increase in the level of plasma edge turbulence; once sheared flow is fully developed the level of fluctuations and turbulent transport slightly decreases whereas edge gradients and plasma density increase. It has been experimentally established that the minimum plasma density (or/and minimum level of plasma turbulence) essential for the development of the shear layer depends on the plasma magnetic configuration [5, 6]. For some plasma magnetic configurations with high iota value a sheared flow-induced regime with characteristics resembling those of an improved confinement one has been found. The similarity in the structure of the velocity shear layer and in the turbulence characteristics [7] in different

  6. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  7. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Comerford, Julia M.; Gebhardt, Karl [Department of Astronomy, UT Austin, 1 University Station C1400, Austin, TX 71712 (United States)

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  8. Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models

    International Nuclear Information System (INIS)

    Hills, J.G.

    1975-01-01

    We use analytic models to compute the evolution of the core of a stellar system due simultaneously to stellar evaporation which causes the system (core) to contract and to its binaries which cause it to expand by progressively decreasing its binding energy. The evolution of the system is determined by two parameters: the initial number of stars in the system N 0 , and the fraction f/subb/ of its stars which are binaries. For a fixed f/subb/, stellar evaporation initially dominates the dynamical evolution if N 0 is sufficiently large due to the fact that the rate of evaporation is determined chiefly by long-range encounters which increase in importance as the number of stars in the system increases. If stellar evaporation initially dominates, the system first contracts, but as N/subc/, the number of remaining stars in the system, decreases by evaporation, the system reaches a minimum radius and a maximum density and then it expands monotonically as N/subc/ decreases further. Open clusters expand monotonically from the beginning if they have anything approaching average Population I binary frequencies. Globular clusters are highly deficient in binaries in order to have formed and retained the high-density stellar cores observed in most of them. We estimate that for these system f/subb/ < or = 0.15

  9. First Toroidal Rotation Measurements of Protons and Impurities in the TJ-II Stellarator; Primeras Medidas de Rotacion Toroidal de Protones e Impurezas en el Stellarator TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Rapisarda, D.; Zurro, B.; Baciero, A.

    2006-07-01

    First absolute toroidal rotation measurements in the TJ-II stellarator, by using passive emission spectroscopy, are presented. The wavelength calibration is performed by using a spectral system which combines the spectra coming from the plasma and from a lamp in real time. Measurements have been made both for protons and some impurity ions (C4+, He+), in discharges created by electron cyclotron resonance heating, and in discharges with neutral beam injection heating. In addition, a description of the systems as well as the calibration procedures an data analysis is addressed. (Author) 10 refs.

  10. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr [Center for Galaxy Evolution Research, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-06-20

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to the second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  11. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    International Nuclear Information System (INIS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook

    2017-01-01

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y ini ). We show that Y ini brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y ini . We discuss the implications and prospects for the helium-enhanced populations in relation to the second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  12. Magnetic Field Considerations for the Design and Location of a Diagnostic Neutral Beam Injector for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Lopez Fraguas, A.; Balbin, R.

    2004-01-01

    A diagnostic neutral beam injection system is being developed for the TJ-II stellarator. The principal goal is to increase the signal-to-noise ratio and to provide spatial resolution along the plasma minor radius in Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis diagnostics, while also opening up new opportunities for physics studies. After summarizing the compact diagnostic neutral beam injector system selected as well as the TJ-II vacuum vessel and coil geometry, we address the sensitivity of TJ-II magnetic configurations to the ferromagnetic materials that shield the ion source and neutralizer tubing of the neutral beam injection system using a popular approach in which the field is approximated via magnetic dipole moments, finally, the scientific and design trade-offs made to minimize the impact are discussed. (Author) 24 refs

  13. Transient behaviour in the plasma core of TJ-II stellarator and its relation with rational surfaces

    International Nuclear Information System (INIS)

    Estrada, T.; Luna, E. de la; Ascasibar, E; Jimenez, J.A.; Castejon, F.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Sanchez, J.; Tribaldos, V.

    2002-01-01

    A transient behaviour is observed in the plasma core of TJ-II stellarator with fast drops in the electron temperature. Changes in the line-averaged density are observed synchronized with temperature drops. This phenomenon appears in plasmas created and heated using 300 kW of electron cyclotron heating with high power density. The transient behaviour resembles both, the electric pulsation discovered in CHS and the 'electron root' feature reported by the W7-AS team. The flexibility and low magnetic shear of TJ-II have permitted the identification of the plasma current as the control parameter for the appearance of this phenomenon. The results obtained during the magnetic configuration scans carried out in TJ-II points to the hypothesis that the transient behaviour is connected with the presence of a rational surface close to the plasma centre. Equilibrium calculations performed with the VMEC code reinforce this hypothesis. (author)

  14. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L' Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally

  15. The Wilson-Bappu effect of the MgII k line - dependence on stellar temperature, activity and metallicity

    DEFF Research Database (Denmark)

    Elgaroy, O.; Engvold, O.; Lund, Niels

    1999-01-01

    widths around the regression lines. The sample contains slowly rotating stars of different activity levels and is suitable for investigations of a possible relation between line width and stellar activity. A difference in behavior between dwarfs and giants (and supergiants) of spectral class K seems......The Wilson-Bappu effect is investigated using accurate absolute magnitudes of 65 stars obtained through early release of data from the Hipparcos satellite together with MgII k fine widths determined from high resolution spectra observed with the International Ultraviolet Explorer (IUE) observatory....... Stars of spectral classes F, G, K and M and luminosity classes I-V are represented in the sample. Wilson-Bappu relations for the Mg II k line for stars of different temperatures i.e. spectral classes are determined. The relation varies with spectral class and there is a significant scatter of the line...

  16. Stellar Population and Star Formation History of the Distant Galactic H II Regions NGC 2282 and Sh2-149

    Science.gov (United States)

    Dutta, S.; Mondal, S.; Jose, J.; Das, R. K.

    2017-06-01

    We present here the recent results on two distant Galactic H II regions, namely NGC 2282 and Sh2-149, obtained with multiwavelength observations. Our optical spectroscopic analysis of the bright sources have been used to identify the massive members, and to derive the fundamental parameters such as age and distance of these regions. Using IR color-color criteria and Hα-emission properties, we have identified and classified the candidate young stellar objects (YSOs) in these regions. The 12CO(1-0) continuum maps along with the K-band extinction maps, and spatial distribution of YSOs are used to investigate the structure and morphology of the molecular cloud associated with these H II regions. Overall analysis of these regions suggests that the star formation occurs at the locations of the denser gas, and we also find possible evidences of the induced star formation due to the feedback from massive stars to its surrounding molecular medium.

  17. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    Energy Technology Data Exchange (ETDEWEB)

    Llama, J.; Shkolnik, E. L., E-mail: joe.llama@lowell.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-01-20

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R{sub p}/R{sub ⋆}). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R{sub p}/R{sub ⋆} is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R{sub p}/R{sub ⋆} we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails.

  18. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    International Nuclear Information System (INIS)

    Llama, J.; Shkolnik, E. L.

    2016-01-01

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R p /R ⋆ ). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R p /R ⋆ is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R p /R ⋆ we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails

  19. Photographic colorimetry of stellar flares in the Pleiades and Orion. II

    International Nuclear Information System (INIS)

    Mirzoian, L.V.; Chavushian, O.S.; Melikian, N.D.; Natsvlishvili, R.Sh.; Ambarian, V.V.; Brutian, G.A.

    1984-01-01

    Synchronous three-telescope UBV photographic colorimetry of Pleiades and Orion stellar flares obtained at Biurakan Astrophysical Observatory and Abastumani Astrophysical Observatory during 86 observing hours in 1980 and 1981 is presented. The data are compiled in tables and discussed in terms of color differences appearing at different stages of a flare. A total of 32 flares are observed (25 in the Pleiades and 7 in Orion), and four new flare stars are identified in each region. 12 references

  20. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  1. Good Abundances from Bad Spectra: II. Application and a New Stellar Color-Temperature Calibration

    Science.gov (United States)

    Jones, J. Bryn; Wyse, Rosemary F. G.; Gilmore, Gerard

    1995-07-01

    Stellar spectra derived from current multiple-object fiber-fed spectroscopic radial-velocity surveys, of the type feasible with, among other examples, AUTOFIB, 2dF, HYDRA, NESSIE, and the Sloan survey, differ significantly from those traditionally used for determination of stellar abundances. The spectra tend to be of moderate resolution (around 1 A) and signal-to-noise ratio (around 10-20 per resolution element), and cannot usually have reliable continuum shapes determined over wavelength ranges in excess of a few tens of Angstroms. Nonetheless, with care and a calibration of stellar effective temperature from photometry, independent of the spectroscopy, reliable iron abundances can be derived. We have developed techniques to extract true iron abundances and surface gravities from low signal-to-noise ratio, intermediate resolution spectra of G-type stars in the 4000-5000A wavelength region. The theoretical basis and calibration using synthetic spectra are described in detail in another paper (Jones, Gilmore and Wyse, 1995). The practical application of these techniques to observational data, which requires some modification from the ideal case of synthetic data, is given in the present paper. An externally-derived estimate of stellar effective temperature is required in order to constrain parameter space sufficiently; a new derivation of the V-I effective temperature relation is thus an integral part of the analysis presented here. We have derived this relationship from analysis of available relevant data for metal-poor G dwarfs, the first such calibration. We test and calibrate our techniques by analysis of spectra of the twilight sky, of member stars of the cluster M67, and of a set of field stars of known metallicity. We show that this method, combined with our new color-temperature calibration, can provide true iron abundances, with an uncertainty of less than 0.2 dex over the range of metallicty found in the Galactic thick and thin disks, from spectra

  2. Origins of ultra-diffuse galaxies in the Coma cluster - II. Constraints from their stellar populations

    Science.gov (United States)

    Ferré-Mateu, Anna; Alabi, Adebusola; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean; Pandya, Viraj; Martín-Navarro, Ignacio; Bellstedt, Sabine; Wasserman, Asher; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultra-diffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (˜ 7 Gyr), low metallicities ([Z/H]˜ - 0.7 dex) and mostly super-solar abundance patterns ([Mg/Fe] ˜ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs' star formation histories imply a relatively recent infall into the Coma cluster, consistent with the theoretical predictions for a dwarf-like origin. However, considering the scatter in the resulting properties and including other UDGs in Coma, together with the results from the velocity phase-space study of the Paper I in this series, a mixed-bag of origins is needed to explain the nature of all UDGs. Our results thus reinforce a scenario in which many UDGs are field dwarfs that become quenched through their later infall onto cluster environments, whereas some UDGs could be be genuine primordial galaxies that failed to develop due to an early quenching phase. The unknown proportion of dwarf-like to primordial-like UDGs leaves the enigma of the nature of UDGs still open.

  3. The first 62 AGN observed with SDSS-IV MaNGA - II: resolved stellar populations

    Science.gov (United States)

    Mallmann, Nícolas Dullius; Riffel, Rogério; Storchi-Bergmann, Thaisa; Barboza Rembold, Sandro; Riffel, Rogemar A.; Schimoia, Jaderson; da Costa, Luiz Nicolaci; Ávila-Reese, Vladimir; Sanchez, Sebastian F.; Machado, Alice D.; Cirolini, Rafael; Ilha, Gabriele S.; do Nascimento, Janaína C.

    2018-05-01

    We present spatially resolved stellar population age maps, average radial profiles and gradients for the first 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA to study the effects of the active nuclei on the star formation history of the host galaxies. These results, derived using the STARLIGHT code, are compared with a control sample of non-active galaxies matching the properties of the AGN hosts. We find that the fraction of young stellar populations (SP) in high-luminosity AGN is higher in the inner (R≤0.5 Re) regions when compared with the control sample; low-luminosity AGN, on the other hand, present very similar fractions of young stars to the control sample hosts for the entire studied range (1 Re). The fraction of intermediate age SP of the AGN hosts increases outwards, with a clear enhancement when compared with the control sample. The inner region of the galaxies (AGN and control galaxies) presents a dominant old SP, whose fraction decreases outwards. We also compare our results (differences between AGN and control galaxies) for the early and late-type hosts and find no significant differences. In summary, our results suggest that the most luminous AGN seems to have been triggered by a recent supply of gas that has also triggered recent star formation (t ≤ 40 Myrs) in the central region.

  4. Role of rational surfaces on fluctuations and transport in the plasma edge of the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Lopez-Fraguas, A.

    2000-01-01

    It has been shown that transport barriers in toroidal magnetically confined plasmas tend to be linked to regions of unique magnetic topology such as the location of a minimum in the safety factor, rational surfaces or the boundary between closed and open flux surfaces. In the absence of E x B sheared flows, fluctuations are expected to show maximum amplitude near rational surfaces, and plasma confinement might tend to deteriorate. On the other hand, if the generation of E x B sheared flows were linked to low order rational surfaces, these would be beneficial to confinement. Experimental evidence of E x B sheared flows linked to rational surfaces has been obtained in the plasma edge region of the TJ-II stellarator. (author)

  5. Web-based ground loop supervision system for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Pena, A. de la; Lapayese, F.; Pacios, L.; Carrasco, R.

    2005-01-01

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation

  6. Web-based ground loop supervision system for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A. de la [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)]. E-mail: a.delapena@ciemat.es; Lapayese, F. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain); Carrasco, R. [Asociacion EURATOM-CIEMAT Para Fusion, Avd. Complutense 22, 28040 Madrid (Spain)

    2005-11-15

    To minimize electromagnetic interferences in diagnostic and control signals, and to guarantee safe operation of TJ-II, ground loops must be avoided. In order to meet this goal, the whole grounding system of the TJ-II was split into multiple single branches that are connected at a single earth point located near the TJ-II structure in the torus hall. A real-time ground loop supervision system (GLSS) has been designed, manufactured and tested by the TJ-II control group for detecting unintentional short circuits between isolated grounded parts. A web server running on the real-time operating system OS-9 provides remote access to the real-time ground loops measurement. Ground loops monitoring and different operation modes can be configured via any web browser. This paper gives the detailed design of the whole TJ-II ground loop supervision system and its results during its operation.

  7. The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations

    Science.gov (United States)

    Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.

    2018-02-01

    We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.

  8. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  9. Superbanana orbits in stellarator geometries

    International Nuclear Information System (INIS)

    Derr, J.A.; Shohet, J.L.

    1979-04-01

    The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

  10. Parallel implementation of the PHOENIX generalized stellar atmosphere program. II. Wavelength parallelization

    International Nuclear Information System (INIS)

    Baron, E.; Hauschildt, Peter H.

    1998-01-01

    We describe an important addition to the parallel implementation of our generalized nonlocal thermodynamic equilibrium (NLTE) stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is, distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition, task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000 - 300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard message passing interface (MPI) library calls and is fully portable between serial and parallel computers. copyright 1998 The American Astronomical Society

  11. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    Science.gov (United States)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  12. Manufacturing of a high precision coil system for the Spanish Stellarator TJ-II

    International Nuclear Information System (INIS)

    Alonso, J.; Blaumoser, M.; Bieder, H.E.; Theisen, E.; Jeckle, A.; Brandl, M.; Mione, M.

    1995-01-01

    The flexible Heliac TJ-II is under construction at Ciemat in Madrid, Spain. This experimental device allows the investigation of plasmas in a wide range of magnetic field configurations. The rotational transform can be varied between 0.9 and 2.5. Shear variation is possible from -1% to 10%. The magnetic well ranges from 0 to 6%. The average major plasma radius is 1.5 m and the minor plasma dimensions are 0.4 m by 0.2 m. The average toroidal magnetic field is 1 T. The central part of TJ-II is a coil system called Hard Core. The manufacturing aspects of this component are described hereafter. The narrow range of tolerances of the different elements is consequence of the necessary precision of the coils that are located very close to the plasma. (orig.)

  13. Metallicities for old stellar systems from Ca II triplet strengths in member giants

    International Nuclear Information System (INIS)

    Armandroff, T.E.; Da costa, G.S.

    1991-01-01

    The spectra of giants in six well-studied Galactic globulars spanning a wide range of abundance are used to investigate the utility of the Ca II triplet as an abundance indicator. The calibration resulting from these clusters is used to derive metal abundances from the spectra of giants in Eridanus, Pal 12, and the Carina dwarf spheroidal galaxy. The results obtained are compared with earlier determinations based on giant branch photometry. 37 refs

  14. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    International Nuclear Information System (INIS)

    Alonso, J.; Liniers, M.; Martinez Laso, L.; Jauregi, E.; Lucia, C.; Valcarcel, F.

    2001-01-01

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H 0 beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies

  15. Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Dreval, N [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Khrebtov, S M [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Hidalgo, C [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Milligen, B van [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Castejon, F [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); AscasIbar, E [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion Euratom-CIEMAT, 28040 Madrid (Spain); Eliseev, L [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow, Russia (Russian Federation); Chmyga, A A [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Komarov, A D [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Kozachok, A S [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Tereshin, V [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine)

    2004-01-01

    The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.

  16. On the influence of the magnetic topology on transport and radial electric fields in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Castejon, F.; Ochando, M.; Estrada, T.; Pedrosa, M.A.; Lopez-Bruna, D.; Ascasibar, E.; Cappa, A.; Eguilior, S.; Fernandez-Curto, A.; Herranz, J.; Hidalgo, C.; Lopez-Fraguas, A.; Melnikov, A.V.; McCarthy, K.J.; Medina, F.; Pastor, I.; Chmyga, A.A.; Dreval, N.B.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Krupnik, L.; Eliseev, L.

    2005-01-01

    The influence of the magnetic topology on plasma profiles and turbulence has been investigated in ECH plasmas in the stellarator TJ-II, taking advantage of the flexibility of this almost shearless device. A wide range of edge rotational transform values can be attained, but the rotational transform profile can also be tailored by inducing currents using both ECCD and two sets of OH coils. In this way it is possible to introduce rational surfaces inside the plasma and to modify the magnetic shear to examine their effect on confinement. Kinetic effects and flux changes due to the presence of resonances and ECRH are responsible of the formation of barriers in the plasma core, while the shear flow is a key ingredient in the plasma edge. The results here shown offer wide and valuable information to assess multiple mechanisms based on neoclassical/turbulent bifurcations and kinetic effects as candidates to explain the impact of magnetic topology on radial electric fields and confinement. (author)

  17. Quasi-Optical Transmission Lines for ECRH on TJ-II Stellarator

    International Nuclear Information System (INIS)

    Fernandez, A.; Likin, K.; Martin, R.; Cappa, A.; Cepero, J.R.

    1999-01-01

    Two mirror lines are used to transmit ht microwave power from the powerful microwave generators to the TJ-II plasmas. Both lines have been tested at nominal power level and they are now in operation. This paper is devoted to the final design of the transmission lines and their testing. Before starting operation at high power level measurements of the wave beam parameters at low power level were made. Two horn antennae were designed to simulate the gyrotron output. Numerical simulations of the far field radiation pattern of the antennae were made, a computer code based on Huygens diffraction theory was developed to simulate the propagation of the beam along a mirror line. A comparison of the theoretical and the experimental results is also presented here. (Author)

  18. 3D effects on transport and plasma control in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  19. Design and testing of an electron Bernstein wave emission radiometer for the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Caughman, J.B.O.; Rasmussen, D.A.; Carter, M.C.; Wilgen, J.B.; Cappa, A.; Castejon, F.; Fernandez, A.

    2005-01-01

    Efficient Electron Bernstein wave (EBW) mode conversion is important for heating dense plasmas in TJ-II. The O-X-B mode conversion scenario is being considered for heating plasmas with densities over 1,3 x 10 19 m -3 , which will be very interesting to study high-density physics and for heating NBI plasmas. Measurement of the thermal EBW emission from the plasma allows the EBW mode conversion efficiency to be determined, and also has the potential to offer a diagnostic for measuring electron temperature profile evolution in overdense plasmas. A dual-polarized quad-ridged broadband horn with a focusing lens will be used to measure the EBW emission at 28 GHz on TJ-II. A focused beam is needed to achieve efficient coupling at the mode conversion layer. Emission from the plasma is reflected from a steerable internal mirror, propagates through a glass lens, and is focused on the horn. The field pattern from the horn-lens combination has been measured as a function of horn-lens spacing and lens focal length with a 3-D scanning system in an effort to minimize the beam waist at the plasma edge. Beam waist sizes have been measured at distances of up to 80 cm from the lens. Details of the experimental results and future plans will be presented. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. A part of this work is performed under support of Spanish 'Subdireccion General de Proyectos de Investigacion, Ministerio de Educacion y Ciencia' with reference ENE2004-06957]. (author)

  20. Magnetic fields, stellar feedback, and the geometry of H II regions

    Science.gov (United States)

    Ferland, Gary J.

    2009-04-01

    Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.

  1. Characterization of the quasi-coherent oscillations by HIBP diagnostic in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Krupnik, L.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Eliseev, L.; Melnikov, A.; Perfilov, S.V.; Alonso, A.; Pablos, J.L. de; Hidalgo, C.; Pedrosa, M.A.

    2005-01-01

    Quasicoherent oscillations have been observed in TJ-II plasma with different diagnostic. A recent improvement in the signal to noise ratio of the Heavy Ion Beam Probe (HIBP) diagnostic has allowed to observe the radial structure of these oscillations from the edge to the plasma core region. Edge quasi-coherent fluctuations (with frequencies near 20 kHz) have been observed in some configuration windows when plasma density / heating power are above a threshold. The amplitude of those modes tends to be larger in the low field side region. This result suggests the role of configuration (related to the presence of low order rationals in the plasma edge) and threshold gradients to trigger quasi-coherence modes. HIBP signals are strongly correlated with probe signals. When rationals move towards the plasma core (ρ ∼ 0.3), the modes are clearly seen in ECE emission and in HIBP secondary current and potential signals. These quasi-coherent oscillations (in range 20 kHz) have been connected with the development of electron internal transport barriers (e-ITB). Recent results show a decreasing in the mode amplitude as e-ITBs are fully developed. (author)

  2. Introduction to stellar structure

    CERN Document Server

    Maciel, Walter J

    2016-01-01

    In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations.  The second part of the text describes what happens to a star over time, and how to determine this by solving the same equations at different points during a star’s lifetime. The fate of various stars is quite different depending on their masses, and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.

  3. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  4. The sloan lens acs survey. II. Stellar populations and internal structure of early-type lens galaxies

    NARCIS (Netherlands)

    Treu, Tommaso; Koopmans, Léon V.; Bolton, Adam S.; Burles, Scott; Moustakas, Leonidas A.

    2006-01-01

    We use HST images to derive effective radii and effective surface brightnesses of 15 early-type (E+S0) lens galaxies identified by the SLACS Survey. Our measurements are combined with stellar velocity dispersions from the SDSS database to investigate for the first time the distribution of lens

  5. KINETyS II: Constraints on spatial variations of the stellar initial mass function from K-band spectroscopy

    Science.gov (United States)

    Alton, P. D.; Smith, R. J.; Lucey, J. R.

    2018-05-01

    We investigate the spatially resolved stellar populations of a sample of seven nearby massive Early-type galaxies (ETGs), using optical and near infrared data, including K-band spectroscopy. This data offers good prospects for mitigating the uncertainties inherent in stellar population modelling by making a wide variety of strong spectroscopic features available. We report new VLT-KMOS measurements of the average empirical radial gradients out to the effective radius in the strengths of the Ca I 1.98 μm and 2.26 μm features, the Na I 2.21 μm line, and the CO 2.30 μm bandhead. Following previous work, which has indicated an excess of dwarf stars in the cores of massive ETGs, we pay specific attention to radial variations in the stellar initial mass function (IMF) as well as modelling the chemical abundance patterns and stellar population ages in our sample. Using state-of-the-art stellar population models we infer an [Fe/H] gradient of -0.16±0.05 per dex in fractional radius and an average [Na/Fe] gradient of -0.35±0.09. We find a large but radially-constant enhancement to [Mg/Fe] of ˜ 0.4 and a much lower [Ca/Fe] enhancement of ˜ 0.1. Finally, we find no significant IMF radial gradient in our sample on average and find that most galaxies in our sample are consistent with having a Milky Way-like IMF, or at most a modestly bottom heavy IMF (e.g. less dwarf enriched than a single power law IMF with the Salpeter slope).

  6. Investigation of plasma turbulence and local electric field in the T-10 tokamak and TJ-II stellarator by HIBP diagnostic (Review)

    International Nuclear Information System (INIS)

    Krupnik, L.I.; Chmuga, A.A.; Komarov, A.D.; Kozachek, A.S.; Zhezhera, A.I.; Melnikov, A.V.; Eliseev, L.G.; Lysenko, S.E.; Mavrin, V.A.; Perfilov, S.V.; Hidalgo, C.; Ascasibar, E.; Estrada, T.; Ochando, M.A.; Pablos, J.L.; Pedrosa, M.A.; Tabares, F.

    2011-01-01

    Direct study of the electric potential and its fluctuations for comparable plasma conditions in the T-10 tokamak and TJ-II stellarator by HIBP diagnostics has been performed. The following similar features of potential were found: the scale of several hundred Volts; the negative sign for densities n e >1x10 19 m -3 and comparable values in spite of the different heating methods. When ne or τ E rises, the potential evolves to negative values. During ECR heating and associated T e rise, τ E degrades and the potential evolves to positive direction. Oscillations of potential and density in the range of Geodesic Acoustic Modes in T-10 and Alfven Eigenmodes in TJ-II were observed.

  7. An Impurity Emission Survey in the near UV and Visible Spectral Ranges of Electron Cyclotron Heated (ECH) Plasma in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Zurro, B.; Baciero, A.

    2001-01-01

    We report on a near-ultraviolet and visible spectroscopic survey (220-600 nm) of electron cyclotron resonance (ECR) heated plasmas created in the TJ-II stellarator, with central electron temperatures up to 2 keV and central electron densities up to 1.7 x 10 ''19 m''-3. Approximately 1200 lines from thirteen elements have been identified. The purpose of the work is to identify the principal impurities and spectral lines present in TJ-II plasmas, as well as their possible origin to search for transitions from highly ionised ions. This work will act as a base for identifying suitable transitions for following the evolution of impurities under different operating regimens and multiplet systems for line polarisation studies. It is intended to use the database creates as a spectral line reference for comparing spectra under different operating and plasma heating regimes. (Author)

  8. From neurotic guilt to existential guilt as grief: the road to interiority, agency, and compassion through mourning. Part II.

    Science.gov (United States)

    Kavaler-Adler, Susan

    2006-12-01

    This study is a continuation of an article that was published in the previous issue of The American Journal of Psychoanalysis (Volume 66, Number 3, September 2006). The case of Helen is illustrated in terms of the analysand's developmental mourning, countertransference, interiority, antilibidinal ego, and transformation of aggression into self-agency.

  9. Stellar magnetic activity

    International Nuclear Information System (INIS)

    Schrijver, C.J.

    1986-01-01

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  10. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  11. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  12. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    International Nuclear Information System (INIS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ( r adiative habitable zone ; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington

  13. Variations of the stellar initial mass function in semi-analytical models - II. The impact of cosmic ray regulation

    Science.gov (United States)

    Fontanot, Fabio; De Lucia, Gabriella; Xie, Lizhi; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane

    2018-04-01

    Recent studies proposed that cosmic rays (CRs) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the ultraviolet-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory. Both variable IMF models reproduce the observed increase of α-enhancement as a function of stellar mass and the measured z = 0 excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically derived (M^app_{\\star }) and intrinsic (M⋆) stellar masses, by analysing in detail the evolution of model galaxies with different values of M_{\\star }/M^app_{\\star }. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. In particular, the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF instead implies shorter star formation histories and higher peaks of star formation for objects more massive than 1010.5 M⊙. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

  14. Comparison of ATF and TJ-II stellarator equilibria as computed by the 3-D VMEC and PIES codes

    International Nuclear Information System (INIS)

    Johnson, J.L.; Monticello, D.A.; Reiman, A.H.; Hirshman, S.P.

    1992-01-01

    A comparison is made of results from the PIES code, which determines the equilibrium properties of three-dimensional toroidal configurations by direct integration along the magnetic field lines, with those from the VMEC code, which uses an energy minimization in a flux representation to determine the equilibrium configuration, for two devices: the ATF stellarator at Oak Ridge and the TJ-11 heliac which is being built in Madrid. The results obtained from the two codes are in good agreement, providing additional validation for the codes

  15. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  16. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., Universitaria, D.F., México (Mexico); Martínez-Medina, Luis A., E-mail: barbara@astro.unam.mx, E-mail: octavio@astro.unam.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México (Mexico)

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  17. Interior Design.

    Science.gov (United States)

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for an eight-unit secondary education vocational home economics course on interior design. The units cover period styles of interiors, furniture and accessories, surface treatments and lighting, appliances and equipment, design and space planning in home and business settings, occupant needs, acquisition…

  18. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. II. Determination of stellar parameters and abundances

    Science.gov (United States)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2018-03-01

    Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular

  19. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  20. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    Science.gov (United States)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  1. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    Science.gov (United States)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  2. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  3. [Fe II] 1.64 μm FEATURES OF JETS AND OUTFLOWS FROM YOUNG STELLAR OBJECTS IN THE CARINA NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, Jong-Ho; Lee, Jae-Joon; Chun, Moo-Young; Lyo, A.-Ran; Moon, Dae-Sik; Kyeong, Jaemann; Park, Byeong-Gon [Korea Astronomy and Space Science Institute, 776 Daeduk-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Pyo, Tae-Soo [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohōkū Place, Hilo, HI 96720 (United States); Lee, Ho-Gyu [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kim, Hyun-Jeong; Koo, Bon-Chul; Lee, Yong-Hyun [Department of Physics and Astronomy, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747 (Korea, Republic of); Sung, Hwankyung; Hur, Hyeonoh, E-mail: jhshinn@kasi.re.kr [Department of Astronomy and Space Science, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2013-11-01

    We present [Fe II] 1.64 μm imaging observations for jets and outflows from young stellar objects (YSOs) over the northern part (∼24' × 45') of the Carina Nebula, a massive star-forming region. The observations were performed with IRIS2 of the Anglo-Australian Telescope and the seeing was ∼1.''5 ± 0.''5. Eleven jet and outflow features are detected at eight different regions and are termed ionized Fe objects (IFOs). One Herbig-Haro candidate that was missed in Hubble Space Telescope Hα observations is newly identified as HHc-16, referring to our [Fe II] images. IFOs have knotty or longish shapes, and the detection rate of IFOs against previously identified YSOs is 1.4%, which should be treated as a lower limit. Four IFOs show anti-correlated peak intensities in [Fe II] and Hα, where the ratio I([Fe II])/I(Hα) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux using two different methods. The jet-driving objects are identified for three IFOs (IFO-2, -4, and -7) for which we study the relations between the outflow mass loss rate and the YSO physical parameters from the radiative transfer model fitting. The ratios of the outflow mass loss rate over the disk accretion rate for IFO-4 and -7 are consistent with the previously reported values (10{sup –2}-10{sup +1}), while the ratio is higher for IFO-2. This excess may result from underestimating the disk accretion rate. The jet-driving objects are likely to be low- or intermediate-mass stars. Other YSO physical parameters, such as luminosity and age, show reasonable relations or trends.

  4. Stellar Metamorphosis:

    Science.gov (United States)

    2002-01-01

    edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects

  5. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  6. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan

    2015-01-01

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s –1 . For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s –1 . Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes

  7. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan, E-mail: hhwang@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, ROC (China)

    2015-02-20

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s{sup –1}. For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s{sup –1}. Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes.

  8. Stellar remnants

    CERN Document Server

    Kawaler, S D; Srinivasan, G

    1997-01-01

    This volume examines the internal structure, origin and evolution of white dwarfs, neutron stars and black holes, all objects at the final stage of stellar evolution. It covers topics such as: pulsation of white dwarfs; millisecond pulsars; and the dynamics around black holes.

  9. Heavy ion beam probe investigations of plasma potential in ECRH and NBI in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Melnikov, A.V.; Eliseev, L.; Perfilov, S.V.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Krupnik, L.; Alonso, A.; Pablos, J.L. de; Cappa, A.; Fernandez, A.; Fuentes, C.; Hidalgo, C.; Liniers, M.; Pedrosa, M.A.

    2005-01-01

    Direct measurements of electric potential and its fluctuations are of a primary importance in magnetic confinement systems. The Heavy Ion Beam Probe (HIBP) diagnostic is used in TJ-2 stellarator to study directly plasma electric potential profiles with spatial (up to 1cm) and temporal (up to 10 ∝s) resolution. The singly charged heavy ions Cs + with energies up to 125 keV are used to probe the plasma column from the edge to the core. Both ECRH and NBI heated plasmas (P ECRH = 200 - 400kW, P NBI = 400kW, E NBI = 28 kV) were studied. The significant improvement in the HIBP beam control system and the acquisition electronics leads us to increase the possibilities of the diagnostic. The most crucial one is the extension of the signal dynamic range, which allows us to have the reliable profiles from the plasma center to the plasma edge both in the high and low field side regions. Low density ECRH (n = 0.5-1.1.10 13 cm -3 ) plasmas in TJ-2 are characterised by core positive plasma potential of order of 500 - 1000 V and positive electric fields up to 50 V/cm. Edge radial electric fields remain positive at low densities and became negative at the threshold density that depends of plasma configuration. NBI plasmas are characterized by negative electric potential in the full plasma column and negative radial electric fields (in the range of 10 - 40 V/cm). The density rise during the NBI phase is accompanied by the decay of core plasma potential. When density is getting the level of n ∼ 2.0.10 13 cm -3 , the potential stops its evolution and remains constant. The evolution of plasma potential near density limit is under investigation. These observations, reported in different magnetic configurations, show the clear link between plasma potential and plasma density. (author)

  10. Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Lopez-Bruna, D.; AscasIbar, E.; BalbIn, R.; Cappa, A.; Castejon, F.; Eguilior, S.; Fernandez, A.; Guasp, J.; Hidalgo, C.; Petrov, S.

    2007-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II electron cyclotron heated (ECH) plasmas. Experiments are performed changing the magnetic shear around the rational surface n = 3/m = 2 to study its influence on the transition; ECH power modulation is used to look at transport properties. The improvement in the electron heat confinement shows no obvious dependence on the magnetic shear. Transitions triggered by the rational surface n = 4/m = 2 show, in addition, an increase in the ion temperature synchronized with the increase in the electron temperature. Ion temperature changes had not been previously observed either in TJ-II or in any other helical device. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition

  11. A Foreground Masking Strategy for [C II] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Science.gov (United States)

    Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.

    2018-04-01

    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z cost of a moderate ≲8% loss of total survey volume.

  12. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  13. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    International Nuclear Information System (INIS)

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.

    2014-01-01

    We present a revised measurement of the mass of the central black hole (M BH ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ 2 is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M BH ∼ 3.76 ± 1.15 × 10 7 M ☉ (1σ error) and Y H ∼ 0.34 ± 0.03 M ☉ /L ☉ (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57 −0.37 +0.45 ×10 7 M ⊙ ) and gas kinematics (3.0 −2.2 +0.75 ×10 7 M ⊙ ; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y H = 0.4 ± 0.2 M ☉ /L ☉ . The NIFS kinematics give a central bulge velocity dispersion σ c = 116 ± 3 km s –1 , bringing this object slightly closer to the M BH -σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  14. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  15. The VISTA Carina Nebula Survey. II. Spatial distribution of the infrared-excess-selected young stellar population

    Science.gov (United States)

    Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2016-01-01

    We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a

  16. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  17. Stellarator physics

    International Nuclear Information System (INIS)

    1990-07-01

    This document consists of the proceedings of the Seventh International Workshop on Stellarators, held in Oak Ridge, Tennessee, USA, 10-14 April, 1989. The document consists of a summary of presentations, an overview of experimental results, and papers presented at the workshop on transport, impurities and divertors, diagnostics, ECH confinement experiments, equilibrium and stability studies, RF heating, confinement, magnetic configurations, and new experiments. Refs, figs and tabs

  18. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  19. Stellar model chromospheres. X. High-resolution, absolute flux profiles of the Ca II H and K lines in stars of sepctral types FO--M2

    International Nuclear Information System (INIS)

    Linsky, J.L.; Worden, S.P.; McClintock, V.; Robertson, R.M.

    1979-01-01

    We present 120 mA resolution spectra of the cores and wings of the Ca II H and K lines in 43 stars covering a wide range of spectral type and luminosity class. These spectra were obtained with the KPNO 4 m echelle spectrograph and blue image tube, and are calibrated in absolute suface flux units using Willstrop's narrow-band photometry and the Barnes and Evans relations for stellar angular diameters. We estimate an uncertainty of +- 15% in our flux scales. We derive chromospheric radiative loss rates in H and K lines, and discuss trenfs in these loss rates with effective temperature for dwarfs, giants and supergiants. We compare these loss rates with similar rates for the Mg II h and k lines, and discuss the doublet line ratios for H and K. The monochromatic surface fluxes for different features in the H and K lines are presented. From the surface fluxes at K 1 we derived the radiation temperature T/sub R/(K 1 ). The T/sub R/(K 1 )/T/sub eff/ ratio is lower in giants than in dwarfs, as predicted by partial redistribution calculations, and this ratio appears to be an empirical age indicator among dwarfs. Asymmetries in the K line profile provide evidence for a solar-type supergranulation flow pattern in F5--K5 dwarfs and perhaps aslo in G and early K supergiants. Measurements of line widths at H 1 , K 1 , and K 2 are presented, together with FWHM data for the H and K lines. We find rough agreement between the measured K 1 widths and the gravity and chromospheric heating rate dependences in the scaling law proposed by Ayeres. Finally, we present data on emission lines in the wings of H and K, and discuss chromospheric radiative loss rates in the Hepsilon line compared with loss rates in the H and K lines

  20. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  1. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)

    2016-12-20

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because of the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.

  2. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  3. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations...

  4. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  5. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES

    International Nuclear Information System (INIS)

    Barro, G.; Perez-Gonzalez, P. G.; Gallego, J.; Villar, V.; Zamorano, J.; Ashby, M. L. N.; Kajisawa, M.; Yamada, T.; Miyazaki, S.

    2011-01-01

    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Paper I), we present a detailed spectral energy distribution (SED) analysis of nearly 80,000 IRAC 3.6 + 4.5 μm selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates (SFRs) separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] ≤ 23.75 (85% completeness level of the IRAC survey) over 0.48 deg 2 . The typical photometric redshift accuracy is Δz/(1 + z) = 0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and initial mass functions in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 μm data available in the Extended Groth Strip. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z ∼> 1.5 observed when only MIPS 24 μm data are available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the Web interface utility Rainbow-navigator.

  6. Advanced stellarator power plants

    International Nuclear Information System (INIS)

    Miller, R.L.

    1994-01-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies

  7. Stellar CME candidates: towards a stellar CME-flare relation

    Science.gov (United States)

    Paraskevi Moschou, Sofia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    For decades the Sun has been the only star that allowed for direct CME observations. Recently, with the discovery of multiple extrasolar systems, it has become imperative that the role of stellar CMEs be assessed in the context of exoplanetary habitability. Solar CMEs and flares show a higher association with increasing flaring energy, with strong flares corresponding to large and fast CMEs. As argued in earlier studies, extrasolar environments around active stars are potentially dominated by CMEs, as a result of their extreme flaring activity. This has strong implications for the energy budget of the system and the atmospheric erosion of orbiting planets.Nevertheless, with current instrumentation we are unable to directly observe CMEs in even the closest stars, and thus we have to look for indirect techniques and observational evidence and signatures for the eruption of stellar CMEs. There are three major observational techniques for tracing CME signatures in other stellar systems, namely measuring Type II radio bursts, Doppler shifts in UV/optical lines or transient absorption in the X-ray spectrum. We present observations of the most probable stellar CME candidates captured so far and examine the different observational techniques used together with their levels of uncertainty. Assuming that they were CMEs, we try to asses their kinematic and energetic characteristics and place them in an extension of the well-established solar CME-flare energy scaling law. We finish by discussing future observations for direct measurements.

  8. Stellar Dynamics

    Science.gov (United States)

    Binney, James

    Gröninger was dissatisfied with his approximate treatment of (141) since it gave poor estimates of the fundamental lines in the waterstuff spectrum. We have even less reason to be satisfied with the Lin-Shu-Kalnajs analysis of (140) which, unaided, is unable to give an adequate account of even the high-frequency normal modes; Personne's programme turns out to involve loosely-wound waves for which the LsK-dispersion relation is not really valid. Obviously more powerful techniques need to be developed for the solution of (140). Meanwhile, is the TWA theory of spiral structure worth bothering with? Quantitatively the TWA theory is not a success. Yet it has played an important role in the study of galaxies by introducing a widely employed conceptual framework. Only after effective machinery for the evaluation of normal modes of disks is available will we know for certain whether this role has been beneficial. In any event one must not underestimate the con- and de-structuve influence on progress in science of the conceptual frameworks that simple models introduce. Two examples will illustrate this point: (i) High-energy physicists think always in terms of particles and interactions and yet these are really just elements (propagators and vertices) introduced during the iterative solution of a set of coupled non-linear integro-differential equations. (ii) Isaac Newton spent vastly more time, thought and experimental effort on chemistry than on either physics or mathematics. Yet his incomparable mind, which both before and after his period as a chemist revolutionized mathematics and first demonstrated the possibility of exact science, achieved nothing of lasting value in Chemistry, whose foundations were to be laid by men of much smaller stature in the mid 18thc. Why did he fail so miserably? Because his conceptual framework was pre-Newtonian; brought up in the mystical, pre-Enlightenment mid 17thc. he thought in terms of the ancient alchemical concepts of corruption and

  9. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    Science.gov (United States)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  10. Multiple stellar populations of globular clusters from homogeneous Ca-Cn photometry. II. M5 (NGC 5904) and a new filter system

    OpenAIRE

    Lee, Jae-Woo

    2017-01-01

    Using our ingeniously designed new filter systems, we investigate the multiple stellar populations of the RGB and AGB in the GC M5. Our results are the following. (1) Our cn_jwl index accurately traces the nitrogen abundances in M5, while other color indices fail to do so. (2) We find bimodal CN distributions both in the RGB and the AGB sequences, with the number ratios between the CN-weak (CN-w) and the CN-strong (CN-s) of n(CN-w):n(CN-s) = 29:71(+/- 2) and 21:79(+/- 7), respectively. (3) We...

  11. Feeling the Pull: A Study of Natural Galactic Accelerometers. II. Kinematics and Mass of the Delicate Stellar Stream of the Palomar 5 Globular Cluster

    Science.gov (United States)

    Ibata, Rodrigo A.; Lewis, Geraint F.; Thomas, Guillaume; Martin, Nicolas F.; Chapman, Scott

    2017-06-01

    We present two spectroscopic surveys of the tidal stellar stream of the Palomar 5 globular cluster undertaken with the VLT/FLAMES and AAT/AAOmega instruments. We use these data in conjunction with photometric data presented in the previous contribution in this series to classify the survey stars in terms of their probability of belonging to the Palomar 5 stellar stream. We find that high-probability candidates are only found in a very narrow spatial interval surrounding the locus of the stream on the sky. PanSTARRS RR Lyrae stars in this region of the sky are also distributed in a similar manner. The absence of significant “fanning” of this stellar stream confirms that Palomar 5 does not follow a chaotic orbit. Previous studies have found that Palomar 5 is largely devoid of low-mass stars, and we show that this is true also of the stellar populations along the trailing arm out to 6^\\circ . Within this region, which contains 73% of the detected stars, the population is statistically identical to the core, implying that the ejection of the low-mass stars occurred before the formation of the stream. We also present an updated structural model fit to the bound remnant, which yields a total mass of 4297+/- 98{M}ȯ and a tidal radius 0.145+/- 0.009 {kpc}. We estimate the mass of the observed system including the stream to be 12,200 ± 400 M⊙, and the initial mass to have been ~47,000 ± 1500 M⊙. These observational constraints will be employed in our next study to model the dynamics of the system in detail. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 081

  12. First Solar and Stellar Paintings in the Epipaleolithic and Neolithic Rock Art of the Iberian Peninsula (II): new Shelters and Ceramic Pieces decorated with Astral Paintings

    Science.gov (United States)

    Quintano, J. F.

    2009-08-01

    This paper is a continuation of the research into the astronomical reasons behind prehistoric rock and mobiliary art in the Iberian Peninsula, the first part of which was presented in the previous SEAC Congress celebrated in 2007 in Klaipeda (Lithuania). It proposes that all heavenly objects painted as rock art and on ceramic pieces be given the name of astraliformes [=solar and stellar paintings]. The six astraliformes from the two shelters visited, and the ceramic pieces on which astraliformes appear in the Prehistoric Museum of Granada are presented. Astraliformes appear in schematic art in a sudden manner and on a large scale, and are included in the panel because of their function as a means of regulating and promoting the agrarian cycle.

  13. Models for stellar flares

    International Nuclear Information System (INIS)

    Cram, L.E.; Woods, D.T.

    1982-01-01

    We study the response of certain spectral signatures of stellar flares (such as Balmer line profiles and the broad-band continuum) to changes in atmospheric structure which might result from physical processes akin to those thought to occur in solar flares. While each physical process does not have a unique signature, we can show that some of the observed properties of stellar flares can be explained by a model which involves increased pressures and temperatures in the flaring stellar chromosphere. We suggest that changes in stellar flare area, both with time and with depth in the atmosphere, may play an important role in producing the observed flare spectrum

  14. Development of code PRETOR for stellarator simulation

    International Nuclear Information System (INIS)

    Dies, J.; Fontanet, J.; Fontdecaba, J.M.; Castejon, F.; Alejandre, C.

    1998-01-01

    The Department de Fisica i Enginyeria Nuclear (DFEN) of the UPC has some experience in the development of the transport code PRETOR. This code has been validated with shots of DIII-D, JET and TFTR, it has also been used in the simulation of operational scenarios of ITER fast burnt termination. Recently, the association EURATOM-CIEMAT has started the operation of the TJ-II stellarator. Due to the need of validating the results given by others transport codes applied to stellarators and because all of them made some approximations, as a averaging magnitudes in each magnetic surface, it was thought suitable to adapt the PRETOR code to devices without axial symmetry, like stellarators, which is very suitable for the specific needs of the study of TJ-II. Several modifications are required in PRETOR; the main concerns to the models of: magnetic equilibrium, geometry and transport of energy and particles. In order to solve the complex magnetic equilibrium geometry the powerful numerical code VMEC has been used. This code gives the magnetic surface shape as a Fourier series in terms of the harmonics (m,n). Most of the geometric magnitudes are also obtained from the VMEC results file. The energy and particle transport models will be replaced by other phenomenological models that are better adapted to stellarator simulation. Using the proposed models, it is pretended to reproduce experimental data available from present stellarators, given especial attention to the TJ-II of the association EURATOM-CIEMAT. (Author)

  15. Stellar Physics 2: Stellar Evolution and Stability

    CERN Document Server

    Bisnovatyi-Kogan, Gennady S

    2011-01-01

    "Stellar Physics" is a an outstanding book in the growing body of literature on star formation and evolution. Not only does the author, a leading expert in the field, very thoroughly present the current state of knowledge on stellar physics, but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 1000 entries makes this book an unparalleled reference source. "Stellar Evolution and Stability" is the second of two volumes and can be read, as can the first volume "Fundamental Concepts and Stellar Equilibrium," as a largely independent work. It traces in great detail the evolution of protostars towards the main sequence and beyond this to the last stage of stellar evolution, with the corresponding vast range from white dwarfs to supernovae explosions, gamma-ray bursts and black hole formation. The book concludes with special chapters on the dynamical, thermal and pulsing stability of stars. This second edition is carefully updated in the areas of pre...

  16. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  17. Stellar photometry and polarimetry

    International Nuclear Information System (INIS)

    Golay, M.; Serkowski, K.

    1976-01-01

    A critical review of progress made in stellar photometry and polarimetry over the period 1973-1975 is presented. Reports of photometric measurements from various observatories throughout the world are summarized. The summary of work on stellar polarimetry lists the review papers, the catalogues and lists of standard stars, and descriptions of new observing techniques. (B.R.H.)

  18. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  19. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  20. On stellar collapse: continual or oscillatory. A short comment

    International Nuclear Information System (INIS)

    Leung, P.T.

    1980-01-01

    We comment on a previously published paper on the oscillatory dynamics of stellar collapse and conclude that the Schwarzschild interior solution applied to the 'inflection points' can never give rise to a 'turning back' motion, in spite of the fact that the geodesic equation really does not always describe an attractive gravitational acceleration

  1. Multiple Stellar Populations of Globular Clusters from Homogeneous Ca-CN Photometry. II. M5 (NGC 5904) and a New Filter System

    Science.gov (United States)

    Lee, Jae-Woo

    2017-07-01

    Using our ingeniously designed new filter systems, we investigate multiple stellar populations of the red giant branch (RGB) and the asymptotic giant branch (AGB) in the globular cluster (GC) M5. Our results are the following. (1) Our {{cn}}{JWL} index accurately traces nitrogen abundances in M5, while other color indices fail to do so. (2) We find bimodal CN distributions in both RGB and AGB sequences, with number ratios between CN-weak (CN-w) and CN-strong (CN-s) of n(CN-w):n(CN-s) = 29:71 (±2) and 21:79 (±7), respectively. (3) We also find a bimodal photometric [N/Fe] distribution for M5 RGB stars. (4) Our {{cn}}{JWL}-[O/Fe] and {{cn}}{JWL}-[Na/Fe] relations show clear discontinuities between the two RGB populations. (5) Although small, the RGB bump of CN-s is slightly brighter, {{Δ }}{V}{bump} = 0.07 ± 0.04 mag. If real, the difference in the helium abundance becomes {{Δ }}Y = 0.028 ± 0.016, in the sense that CN-s is more helium enhanced. (6) Very similar radial but different spatial distributions with comparable center positions are found for the two RGB populations. The CN-s RGB and AGB stars are more elongated along the NW-SE direction. (7) The CN-s population shows a substantial net projected rotation, while that of the CN-w population is nil. (8) Our results confirm the deficiency of CN-w AGB stars previously noted by others. We show that it is most likely due to stochastic truncation in the outer part of the cluster. Finally, we discuss the formation scenario of M5. Based on observations made with the Cerro Tololo Inter-American Observatory (CTIO) 1 m telescope, which is operated by the SMARTS consortium.

  2. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Myers, P. C.; Fazio, G. G.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Pipher, J. L.; Stauffer, J.; Young, E. T.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc −2 to over 10,000 pc −2 , with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc −2 , we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions

  3. THE HIGH A{sub V} Quasar Survey: Reddened Quasi-Stellar Objects selected from optical/near-infrared photometry. II

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Fynbo, J. P. U.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Kangas, T.; Pursimo, T.; Smirnova, O. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Saturni, F. G. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland)

    2015-03-15

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  4. Stellarator-Spheromak

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high β (pressure/magnetic pressure) of the confined plasma

  5. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  6. Sustainable Commercial Interior Design

    OpenAIRE

    Keane, Órla

    2009-01-01

    This dissertation looks at the environmental benefits of 3 key areas in relation to interior design: Energy, Water and Air; energy efficient lighting, water efficient plumbing fixtures and the effects of interior materials and finishes on indoor air quality. Qualitative research methodology: Extensive literature review of texts available on these topics, and also of the relevant building codes and environmental legislation applicable to Irish interior designers and the built environment. ...

  7. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  8. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  9. 176Lu: Cosmic clock or stellar thermometer

    International Nuclear Information System (INIS)

    Ward, R.A.; Beer, H.; Kaeppeler, F.; Wisshak, K.

    1980-12-01

    We quantitatively examine the various experimental and theoretical aspects of the stellar synthesis of the long-lived ground state of 176 Lu (3.6 x 10 10 y). We discuss the various regimes of stellar temperature and free-neutron density in which either: (i) the internal electromagnetic couplings between 176 Lusup(o) and 176 Lusup(m) (3.68 hours) are sufficiently slow that they may be treated as separate nuclei, or (ii) the internal couplings are rapidly able to establish thermal equilibrium between 176 Lusup(o) and 176 Lusup(m). (orig.)

  10. Compact stellar object: the formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)

  11. Wimps and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.; Salati, P.

    1988-01-01

    We present the results of an analytic approximation to compute the effects of WIMPs on stellar structures in a self-consistent way. We examine in particular the case of the Sun and of horizontal branch stars

  12. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  13. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  14. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  15. A LIBS method for simultaneous monitoring of the impurities and the hydrogenic composition present in the wall of the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    López-Miranda, B., E-mail: belen.lopez@ciemat.es; Zurro, B.; Baciero, A. [Laboratorio Nacional de Fusión, CIEMAT, Av. Complutense, 40, 28040 Madrid (Spain); Martínez, M. [Universidad Carlos III de Madrid, Av de la Universidad, 30, 28911 Leganés, Madrid (Spain)

    2016-11-15

    The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrum from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.

  16. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  17. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  18. PREFACE: A Stellar Journey A Stellar Journey

    Science.gov (United States)

    Asplund, M.

    2008-10-01

    The conference A Stellar Journey was held in Uppsala, Sweden, 23 27June 2008, in honour of Professor Bengt Gustafsson's 65th birthday. The choice of Uppsala as the location for this event was obvious given Bengt's long-standing association with the city stemming back to his school days. With the exception of a two-year postdoc stint in Copenhagen, five years as professor at Stockholm University and two years as director of the Sigtuna foundation, Bengt has forged his illustrious professional career at Uppsala University. The symposium venue was Museum Gustavianum, once the main building of the oldest university in Scandinavia. The title of the symposium is a paraphrasing of Bengt's popular astronomy book Kosmisk Resa (in English: Cosmic Journey) written in the early eighties. I think this aptly symbolizes his career that has been an astronomical voyage from near to far, from the distant past to the present. The original book title was modified slightly to reflect that most of his work to date has dealt with stars in one way or another. In addition it also gives credit to Bengt's important role as a guiding light for a very large number of students, colleagues and collaborators, indeed for several generations of astronomers. For me personally, the book Kosmisk Resa bears particular significance as it has shaped my life rather profoundly. Although I had already decided to become an astronomer, when I first read the book as a 14-year-old I made up my mind then and there that I would study under Bengt Gustafsson and work on stars. Indeed I have remained true to this somewhat audacious resolution. I suspect that a great number of us have similar stories how Bengt has had a major influence on our lives, whether on the professional or personal level. Perhaps Bengt's most outstanding characteristic is his enthralling enthusiasm. This is equally true whether he is pondering some scientific conundrum, supervising students or performing in front of an audience, be it an

  19. Neoclassical transport simulations for stellarators

    International Nuclear Information System (INIS)

    Turkin, Y.; Beidler, C. D.; Maassberg, H.; Murakami, S.; Wakasa, A.; Tribaldos, V.

    2011-01-01

    The benchmarking of the thermal neoclassical transport coefficients is described using examples of the Large Helical Device (LHD) and TJ-II stellarators. The thermal coefficients are evaluated by energy convolution of the monoenergetic coefficients obtained by direct interpolation or neural network techniques from the databases precalculated by different codes. The temperature profiles are calculated by a predictive transport code from the energy balance equations with the ambipolar radial electric field estimated from a diffusion equation to guarantee a unique and smooth solution, although several solutions of the ambipolarity condition may exist when root-finding is invoked; the density profiles are fixed. The thermal transport coefficients as well as the ambipolar radial electric field are compared and very reasonable agreement is found for both configurations. Together with an additional W7-X case, these configurations represent very different degrees of neoclassical confinement at low collisionalities. The impact of the neoclassical optimization on the energy confinement time is evaluated and the confinement times for different devices predicted by transport modeling are compared with the standard scaling for stellarators. Finally, all configurations are scaled to the same volume for a direct comparison of the volume-averaged pressure and the neoclassical degree of optimization.

  20. Interior Space: Representation, Occupation, Well-Being and Interiority

    OpenAIRE

    Power, Jacqueline

    2014-01-01

    This article will provide an overview of space as it is understood and engaged with from within the discipline of interior design/interior architecture. Firstly, the term interior will be described. Secondly, the paper will discuss space as a general concept, before exploring what space is speifically for the interior design/interior architecture discipline. How is space understood? What does space "look" like for interuior designers/interior architects?.

  1. Perancangan InteriorInterior World Center” di Surabaya

    OpenAIRE

    Handojo, Renita Olivia

    2014-01-01

    Interior World Center is a place that contain all needs and matters related to world of interior. The main purpose of Interior World Center is to give access and facilitate people in fulfill their needs that concern and correspond with interior world, that is to say with combine and integrate several interior activity into one in corporated place. Inside of this building there are several commercial space related with the interior world. The commercial spaces will support each other in order ...

  2. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  3. Studies in Interior Design

    Science.gov (United States)

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  4. Transport in stellarators

    International Nuclear Information System (INIS)

    Maassberg, H.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Kick, M.; Kuehner, G.; Ringler, H.; Sardei, F.; Stroth, U.; Weller, A.

    1993-01-01

    The local electron and ion heat transport as well as the particle and impurity transport properties in stellarators are reviewed. In this context, neoclassical theory is used as a guideline for the comparison of the experimental results of the quite different confinement concepts. At sufficiently high temperatures depending on the specific magnetic configuration, neoclassical predictions are confirmed by experimental findings. The confinement properties in the LMFP collisionality regime are discussed with respect to the next stellarator generation, for which at higher temperatures the neoclassical transport is expected to become more important. (orig.)

  5. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  6. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Science.gov (United States)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  7. Color in interior spaces

    OpenAIRE

    Demirörs, Müge Bozbeyli

    1992-01-01

    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent University, 1992. Thesis (Master's) -- -Bilkent University, 1992. Includes bibliographical references leaves 95-99. Color can be approached from different perspectives and disciplines such as, biology, theory, technology, and psychology. This thesis discusses color, from the stand point of interior spaces, which to some extent involves most of these discipli...

  8. Kajian Estetika Interior Restoran Boncafe Di Jalan Pregolan Surabaya

    OpenAIRE

    Fanuel W., Yemima

    2014-01-01

    Boncafe Pregolan restaurant is a restaurant in Surabaya located at Pregolan Street 2, Tegal sari, Central Surabaya. Boncafe Pregolan restaurant built in 2007. The interior of Boncafe Pregolan restaurant is divided into several rooms, main entrance area, main dining area I, main dining area II, smoking dining area, and terrace dining. The aesthetic of interior Boncafe Pregolan restaurant is interesting to be analyzed, because of the interior's plays inside. The design principles implemented t...

  9. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  10. Progress Toward Attractive Stellarators

    International Nuclear Information System (INIS)

    Neilson, G.H.; Bromberg, L.; Brown, T.G.; Gates, D.A.; Ku, L.P.; Zarnstorff, M.C.; Boozer, A.H.; Harris, J.H.; Meneghini, O.; Mynick, H.E.; Pomphrey, N.; Reiman, A.H.; Xanthopoulos, P.

    2011-01-01

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  11. Stellar population synthesis

    International Nuclear Information System (INIS)

    Pickles, A.J.

    1989-01-01

    The techniques used to derive astrophysically useful information from observations of the integrated light of composite stellar systems are briefly reviewed. A synthesis technique, designed to separate and describe on a standard system the competing effects of age and metallicity variations is introduced, and illustrated by its application to the study of the history of star formation in bright elliptical galaxies in clusters. (author)

  12. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  13. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  14. 8. stellarator workshop

    International Nuclear Information System (INIS)

    1991-07-01

    The technical reports in this collection of papers were presented at the 8th International Workshop on Stellarators, and International Atomic Energy Agency Technical Committee Meeting. They include presentations on transport, magnetic configurations, fluctuations, equilibrium, stability, edge plasma and wall aspects, heating, diagnostics, new concepts and reactor studies. Refs, figs and tabs

  15. Stellar and interstellar K lines - Gamma Pegasi and iota Herculis.

    Science.gov (United States)

    Hobbs, L. M.

    1973-01-01

    High-resolution scans show that the relatively strong (about 90 mA) K lines of Ca II in the early B stars gamma-Peg and iota-Her are almost entirely stellar in origin, although the latter case includes a small interstellar contribution. Such stellar lines can be of great importance in augmenting the interstellar absorption, up through the earliest of the B stars.

  16. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  17. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  18. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  19. Interior Design in Architectural Education

    Science.gov (United States)

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  20. Tunable Interior Rotorcraft Noise Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG has recently developed a new class of shape memory polymers (SMP) that are electrically activated, as opposed to the more mature thermally activated SMPs....

  1. Stellar Echo Imaging of Exoplanets, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All stars exhibit intensity fluctuations over several time scales, from nanoseconds to days; these intensity fluctuations echo off planetary bodies in the star...

  2. INTUITION IN INTERIOR DESIGN

    Directory of Open Access Journals (Sweden)

    Irina Solovyova

    2008-11-01

    Full Text Available Intuition enables individuals to develop an understanding of the structure of complex systems. In interior design many decisions are reached intuitively even though the process of formulating solutions may be argued rationally. Intuition is intrinsically intertwined with our collateral experiences, memories, and implicit thought. Design intuition draws on our entire experience, not only on what we consciously isolate as relevant information. In education we prohibit students from relying on their intuition and require solutions based on pure reason. The author of this paper argues for bringing intuitive decision making back into interior design as a legitimate design tactic.

  3. Prefab-Interiority

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning

    2010-01-01

    qualities is significantly dependent on our constructive ability to economically and production-technically join building elements. Consequently this paper explores the potential for developing interiority as a theory and design principle for transforming constructive challenges within prefab practice....../S. As a research result the paper suggests a positioning of interiority as a theory and design principle for developing a sensuous prefab practice......., and practical realm of prefabrication, leaving the produced houses as monotonous box-like constructions rather than inhabitable homes. But what are the sensuous qualities actually spatially defining a home, and how to formulate design principles for developing and revealing these qualities within prefab...

  4. Interior design for dentistry.

    Science.gov (United States)

    Unthank, M; True, G

    1999-11-01

    In the increasingly complex, competitive and stressful field of dentistry, effectively designed dental offices can offer significant benefits. Esthetic, functional and life-cycle cost issues to be considered when developing your interior design scheme include color, finishes, lighting, furnishings, art and accessories. An appropriately designed dental office serves as a valuable marketing tool for your practice, as well as a safe and enjoyable work environment. Qualified interior design professionals can help you make design decisions that can yield optimum results within your budget.

  5. Meaning of Interior Tomography

    Science.gov (United States)

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  6. Ion transport in stellarators

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived

  7. Status of stellarator research

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-01-01

    In recent years main activities in stellarator research were focussed on production and investigation of currentless plasmas. Several heating methods have been applied: electron cyclotron heating, ion cyclotron heating and neutral beam injection. The parameters achieved in HELIOTRON E and W VII-A are: antin 20 m 3 , Tsub(i) <= 1 keV. The confinement is improved as compared with ohmically heated discharges. By ECRH (P = 200 kW) it is possible to heat electrons up to 1.4 keV, confinement in this regime is dominated already by trapped particle effects. Toroidal currents up to 2 kA - either bootstrap currents or externally driven currents - were observed. High β-values (antiβ = 2%) have been obtained in HELIOTRON E, in this regime already pressure driven MHD-modes were observed. Future experiments (ATF-1 and W VII-AS) will extend the parameter regime to temperatures of several keV. These experiments will give important information about critical problems of the stellarator line (β-limit, neoclassical confinement impurity transport). A few reactor studies of stellarators exist, attention is mainly concentrated on technical problems of the modular coil system

  8. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General ... Author Affiliations. Ashok Ambastha1. Joint In-Charge Udaipur Solar Observatory Physical Research laboratory P.O. Box No. 198 Udaipur 313 001, India ...

  9. The Resolved Stellar Population of Leo A

    Science.gov (United States)

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  10. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  11. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  12. Interior intrusion alarm systems

    International Nuclear Information System (INIS)

    Prell, J.A.

    1978-01-01

    In meeting the requirements for the safeguarding of special nuclear material and the physical protection of licensed facilities, the licensee is required to design a physical security system that will meet minimum performance requirements. An integral part of any physical security system is the interior intrusion alarm system. The purpose of this report is to provide the potential user of an interior intrusion alarm system with information on the various types, components, and performance capabilities available so that he can design and install the optimum alarm system for his particular environment. In addition, maintenance and testing procedures are discussed and recommended which, if followed, will help the user obtain the optimum results from his system

  13. THE ADVANCED STELLAR COMPASS

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1997-01-01

    The science objective of the Danish Geomagnetic Research Satellite "Ørsted" is to map the magnetic field of the Earth, with a vector precision of a fraction of a nanotesla. This necessitates an attitude reference instrument with a precision of a few arcseconds onboard the satellite. To meet...... this demand the Advanced Stellar Compass (ASC), a fully autonomous miniature star tracker, was developed. This ASC is capable of both solving the "lost in space" problem and determine the attitude with arcseconds precision. The development, principles of operation and instrument autonomy of the ASC...

  14. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  15. INTUITION IN INTERIOR DESIGN

    OpenAIRE

    Irina Solovyova

    2008-01-01

    Intuition enables individuals to develop an understanding of the structure of complex systems. In interior design many decisions are reached intuitively even though the process of formulating solutions may be argued rationally. Intuition is intrinsically intertwined with our collateral experiences, memories, and implicit thought. Design intuition draws on our entire experience, not only on what we consciously isolate as relevant information. In education we prohibit students from relying on t...

  16. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  17. Stellar axion models

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel; Kuster, Markus; Meister, Claudia V.; Fuelbert, Florian; Hoffmann, Dieter H.H. [TU Darmstadt (Germany). Institut fuer Kernphysik; Weiss, Achim [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    2010-07-01

    An axion helioscope is typically operated to observe the sun as an axion source. Additional pointings at celestial sources, e.g. stars in other galaxies, result in possible detections of axions from distant galactic objects. For the observation of supplementary axion sources we therefore calculate the thereotical axion flux from distant stars by extending axionic flux models for the axion Primakoff effect in the sun to other main sequence stars. The main sequence star models used for our calculations are based on full stellar structure calculations. To deduce the effective axion flux of stellar objects incident on the Earth the All-Sky catalogue was used to obtain the spectral class and distance of the stars treated. Our calculations of the axion flux in the galactic plane show that for a zero age main sequence star an maximum axion flux of {phi}{sub a}=303.43 cm{sup -2}s{sup -1} could be expected. Furthermore we present estimates of axion fluxes from time-evolved stars.

  18. The DEMO Quasisymmetric Stellarator

    Directory of Open Access Journals (Sweden)

    Geoffrey B. McFadden

    2010-02-01

    Full Text Available The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neoclassical tearing modes (NTMs and edge localized modes (ELMs occurring in the International Thermonuclear Experimental Reactor (ITER, which does not pass the NSTAB simulation test for nonlinear stability. So we have designed a quasiaxially symmetric (QAS stellarator with similar proportions as a candidate for the demonstration (DEMO fusion reactor that does pass the test [1]. The configuration has two field periods and an exceptionally accurate 2D symmetry that furnishes excellent thermal confinement and good control of the prompt loss of alpha particles. Robust coils are found from a filtered form of the Biot-Savart law based on a distribution of current over a control surface for the coils and the current in the plasma defined by the equilibrium calculation. Computational science has addressed the issues of equilibrium, stability, and transport, so it remains to develop an effective plan to construct the coils and build a diverter.

  19. Stellar core collapse and supernova

    International Nuclear Information System (INIS)

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab

  20. A catalog of stellar spectrophotometry

    Science.gov (United States)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  1. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  2. Nucleosynthesis in stellar explosions

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  3. Nucleosynthesis in stellar explosions

    International Nuclear Information System (INIS)

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10 6 M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints

  4. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  5. L = ± 1 stellarator

    International Nuclear Information System (INIS)

    Kikuchi, T.; Shiina, S.; Saito, K.; Gesso, H.; Aizawa, M.; Kawakami, I.

    1985-01-01

    We report the magnetic field configuration of helical magnetic axis stellarator. The magnetic field configuration is composed of large l=1 field and small l=-1 and l=0(bumpy) fields. The large l=1 field (combined with the small l=-1 field) is used to form helical magnetic axis with the helical curvature much larger than the toroidal curvature, which provides the high limiting values of β. The small l=-1 field, furthermore, as well as the large l=1 field reduces the Pfirsch-Schlueter currents by combining with l=0 field. Therefore, the large l=1 field and the combination of three field components may be favourable for the increase of limiting β value

  6. SMASH: Survey of the MAgellanic Stellar History

    Science.gov (United States)

    Nidever, David L.; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Blum, Robert D.; Kaleida, Catherine; Choi, Yumi; Conn, Blair C.; Gruendl, Robert A.; Bell, Eric F.; Besla, Gurtina; Muñoz, Ricardo R.; Gallart, Carme; Martin, Nicolas F.; Olszewski, Edward W.; Saha, Abhijit; Monachesi, Antonela; Monelli, Matteo; de Boer, Thomas J. L.; Johnson, L. Clifton; Zaritsky, Dennis; Stringfellow, Guy S.; van der Marel, Roeland P.; Cioni, Maria-Rosa L.; Jin, Shoko; Majewski, Steven R.; Martinez-Delgado, David; Monteagudo, Lara; Noël, Noelia E. D.; Bernard, Edouard J.; Kunder, Andrea; Chu, You-Hua; Bell, Cameron P. M.; Santana, Felipe; Frechem, Joshua; Medina, Gustavo E.; Parkash, Vaishali; Serón Navarrete, J. C.; Hayes, Christian

    2017-11-01

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over ˜2400 square degrees at ˜20% filling factor) to ˜24th mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ˜15 mas and the accuracy is ˜2 mas with respect to the Gaia reference frame. The photometric precision is ˜0.5%-0.7% in griz and ˜1% in u with a calibration accuracy of ˜1.3% in all bands. The median 5σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R ˜ 18.4 kpc. SMASH DR1 contains measurements of ˜100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.

  7. SMASH: Survey of the MAgellanic Stellar History

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L.; Olsen, Knut; Blum, Robert D.; Saha, Abhijit [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Walker, Alistair R.; Vivas, A. Katherina [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Kaleida, Catherine [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Choi, Yumi; Besla, Gurtina; Olszewski, Edward W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ, 85721 (United States); Conn, Blair C. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gruendl, Robert A. [National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107 (United States); Muñoz, Ricardo R. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Gallart, Carme; Monelli, Matteo [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Martin, Nicolas F. [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France); Monachesi, Antonela [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); De Boer, Thomas J. L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Johnson, L. Clifton, E-mail: dnidever@noao.edu [Center for Astrophysics and Space Sciences, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0424 (United States); and others

    2017-11-01

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg{sup 2} (distributed over ∼2400 square degrees at ∼20% filling factor) to ∼24th mag in ugriz . The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ∼15 mas and the accuracy is ∼2 mas with respect to the Gaia reference frame. The photometric precision is ∼0.5%–0.7% in griz and ∼1% in u with a calibration accuracy of ∼1.3% in all bands. The median 5 σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R  ∼ 18.4 kpc. SMASH DR1 contains measurements of ∼100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.

  8. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Energy Technology Data Exchange (ETDEWEB)

    Byler, Nell; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Conroy, Charlie; Johnson, Benjamin D., E-mail: ebyler@astro.washington.edu [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  9. Design, construction and validation of the UST-1 modular stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es

    2016-11-15

    Highlights: • A small and simple low cost two period modular stellarator is reviewed. • It is defined as a monolithic circular surface torus with carved grooves. • The grooves are accurately mechanised by a new toroidal milling machine. • A very simple e-beam field mapping system has been built and utilized. - Abstract: Stellarator advancement is hindered, among others, by the requirement of geometric complexity at high accuracy and the still scarce universities and research centres following the stellarator line. In this framework, the objectives of the small UST-1 stellarator development were to: (i) explore and test the performance of one possible accurate construction method for stellarators (ii) encourage universities and small fusion research centres to build simple and economical stellarators (iii) educative purpose. Therefore, UST-1 was properly designed to be easily built by a milling machine working on toroidal coordinates, being the winding surface circular poloidally and toroidally. The coil frame is a sole monolithic toroidal thick surface equipped with grooves mechanised by the toroidal milling machine. Only one double pancake is wound in each groove so as to compress the conductor on the laterals of the groove in order to speed up and simplify the winding process. The physics design, the conceptual engineering design and the construction process of UST-1 is presented. The toroidal milling machine is described. The e-beam field line mapping experiments carried out to validate the resulting magnetic configuration are reported. The developed construction method has been proved for the small UST-1 stellarator. Small stellarators are valuable for quick tests of diagnostics, educative purposes, assessment of new confinement concepts, turbulence studies and other applications.

  10. Design, construction and validation of the UST-1 modular stellarator

    International Nuclear Information System (INIS)

    Queral, V.

    2016-01-01

    Highlights: • A small and simple low cost two period modular stellarator is reviewed. • It is defined as a monolithic circular surface torus with carved grooves. • The grooves are accurately mechanised by a new toroidal milling machine. • A very simple e-beam field mapping system has been built and utilized. - Abstract: Stellarator advancement is hindered, among others, by the requirement of geometric complexity at high accuracy and the still scarce universities and research centres following the stellarator line. In this framework, the objectives of the small UST-1 stellarator development were to: (i) explore and test the performance of one possible accurate construction method for stellarators (ii) encourage universities and small fusion research centres to build simple and economical stellarators (iii) educative purpose. Therefore, UST-1 was properly designed to be easily built by a milling machine working on toroidal coordinates, being the winding surface circular poloidally and toroidally. The coil frame is a sole monolithic toroidal thick surface equipped with grooves mechanised by the toroidal milling machine. Only one double pancake is wound in each groove so as to compress the conductor on the laterals of the groove in order to speed up and simplify the winding process. The physics design, the conceptual engineering design and the construction process of UST-1 is presented. The toroidal milling machine is described. The e-beam field line mapping experiments carried out to validate the resulting magnetic configuration are reported. The developed construction method has been proved for the small UST-1 stellarator. Small stellarators are valuable for quick tests of diagnostics, educative purposes, assessment of new confinement concepts, turbulence studies and other applications.

  11. Hyperfine Structure and Isotope Shifts in Dy II

    Directory of Open Access Journals (Sweden)

    Dylan F. Del Papa

    2017-01-01

    Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.

  12. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  13. Neutrino energy loss rate in a stellar plasma

    International Nuclear Information System (INIS)

    Esposito, S.; Mangano, G.; Miele, G.; Picardi, I.; Pisanti, O.

    2003-01-01

    We review the purely leptonic neutrino emission processes, contributing to the energy loss rate of the stellar plasma. We perform a complete analysis up to the first order in the electromagnetic coupling constant. In particular the radiative electromagnetic corrections, at order α, to the process e + e - →νν-bar at finite density and temperature have been computed. This process gives one of the main contributions to the cooling of stellar interior in the late stages of star evolution. As a result of the analysis we find that the corrections affect the energy loss rate, computed at tree level, by a factor (-4-1)% in the temperature and density region where the pair annihilation is the most efficient cooling mechanism

  14. The Value of Change: Surprises and Insights in Stellar Evolution

    Science.gov (United States)

    Bildsten, Lars

    2018-01-01

    Astronomers with large-format cameras regularly scan the sky many times per night to detect what's changing, and telescopes in space such as Kepler and, soon, TESS obtain very accurate brightness measurements of nearly a million stars over time periods of years. These capabilities, in conjunction with theoretical and computational efforts, have yielded surprises and remarkable new insights into the internal properties of stars and how they end their lives. I will show how asteroseismology reveals the properties of the deep interiors of red giants, and highlight how astrophysical transients may be revealing unusual thermonuclear outcomes from exploding white dwarfs and the births of highly magnetic neutron stars. All the while, stellar science has been accelerated by the availability of open source tools, such as Modules for Experiments in Stellar Astrophysics (MESA), and the nearly immediate availability of observational results.

  15. Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)

    Science.gov (United States)

    De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda

    2017-06-01

    The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.

  16. Evolution of stellar systems

    International Nuclear Information System (INIS)

    Vader, P.

    1981-01-01

    The stellar systems of which the evolution will be considered in this thesis, are either galaxies, which contain about 10 11 stars, or binary systems, which consist of only two stars. It is seen that binary systems can give us some insight into the relative age of the nucleus of M31. The positive correlation between the metal content of a galaxy and its mass, first noted for elliptical galaxies, seems to be a general property of galaxies of all types. The observed increase of metallicity with galaxy mass is too large to be accounted for by differences in the evolutionary stage of galaxies. To explain the observed correlation it is proposed that a relatively larger proportion of massive stars is formed in more massive galaxies. The physical basis is that the formation of massive stars seems to be tied to the enhanced gas-dynamical activity in more massive galaxies. A specific aspect of the production of heavy elements by massive stars is investigated in some detail. In 1979 a cluster of 18 point X-ray sources within 400 pc of the centre of M31 was detected with the Einstein satellite. This is a remarkable result since no equivalent of this cluster has been observed in the nucleus of our own Galaxy, which otherwise is very similar to that of M31. An explanation for this phenomenon is proposed, suggesting that X-ray binaries are the products of the long-term evolution of nova systems. (Auth.)

  17. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  18. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  19. SI: The Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  20. Stellar Presentations (Abstract)

    Science.gov (United States)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  1. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  2. Optimizing Stellarators for Turbulent Transport

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Xanthopoulos, P.

    2010-01-01

    Up to now, the term 'transport-optimized' stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  3. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  4. On origin of stellar clusters

    International Nuclear Information System (INIS)

    Tovmasyan, G.M.

    1977-01-01

    The ratios of the gas component of the mass of young stellar clusters to their stellar mass are considered. They change by more than four orders from one cluster to another. The results are in direct contradiction with the hypothesis of formation of cluster stars from a preliminarily existing gas cloud by its condensation, and they favour the Ambartsumian hypothesis of the joint origin of stars and gas clouds from superdense protostellar matter

  5. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  6. Interior design and healing architecture

    DEFF Research Database (Denmark)

    Mogensen, Jeppe; Poulsen, Søren Bolvig; Hansen, Allan Grutt

    2015-01-01

    . Through a mixed-method study, 43 patients from the outpatient-lung department at Hospital Vendsyssel, Denmark were presented with different types of furniture and materials and were asked about their preferences. Additional questions on their experience of the hospital interior were asked to guide......Hospital design is today influenced by the design concept healing architecture, stating that the patients’ healing process is promoted through accommodating physical surroundings. However, despite the increasing amount of research in the field of healing architecture, research on interior design...... and materials are rather limited. To compliment research in hospital interior design with particular focus on the use of interior textiles, this pilot study explores if the patients’ preferences for more home-like hospital interiors can be linked to a preference for textile-based furniture and materials...

  7. Designing fire safe interiors.

    Science.gov (United States)

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. BOOK REVIEW: Stellarator and Heliotron Devices

    Science.gov (United States)

    Johnson, John L.

    1999-02-01

    Stellarators and tokamaks are the most advanced devices that have been developed for magnetic fusion applications. The two approaches have much in common; tokamaks have received the most attention because their axisymmetry justifies the use of simpler models and provides a more forgiving geometry. However, recent advances in treating more complicated three dimensional systems have made it possible to design stellarators that are not susceptible to disruptions and do not need plasma current control. This has excited interest recently. The two largest new magnetic experiments in the world are the LHD device, which commenced operation in Toki, Japan, in 1998 and W7-X, which should become operational in Greifswald, Germany, in 2004. Other recently commissioned stellarators, including H-1 in Canberra, Australia, TJ-II in Madrid, Spain, and IMS in Madison, Wisconsin, have joined these in rejuvenating the stellarator programme. Thus, it is most appropriate that the author has made the lecture material that he presents to his students in the Graduate School of Energy Science at Kyoto University available to everyone. Stellarator and Heliotron Devices provides an excellent treatment of stellarator theory. It is aimed at graduate students who have a good understanding of classical mechanics and mathematical techniques. It contains good descriptions and derivations of essentially every aspect of fusion theory. The author provides an excellent qualitative introduction to each subject, pointing out the strengths and weaknesses of the models that are being used and describing our present understanding. He judiciously uses simple models which illustrate the similarities and differences between stellarators and tokamaks. To some extent the treatment is uneven, rigorous derivations starting with basic principles being given in some cases and relations and equations taken from the original papers being used as a starting point in others. This technique provides an excellent training

  9. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  10. Graviatoms with de Sitter Interior

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2013-01-01

    Full Text Available We present a graviatom with de Sitter interior as a new candidate to atomic dark matter generically related to a vacuum dark energy through its de Sitter vacuum interior. It is a gravitationally bound quantum system consisting of a nucleus represented by a regular primordial black hole (RPBH, its remnant or gravitational vacuum soliton G-lump, and a charged particle. We estimate probability of formation of RPBHs and G-lumps in the early Universe and evaluate energy spectrum and electromagnetic radiation of graviatom which can in principle bear information about a fundamental symmetry scale responsible for de Sitter interior and serve as its observational signatures.

  11. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Petigura, Erik A.; Howard, Andrew W. [California Institute of Technology, Pasadena, CA, 91125 (United States); Fulton, Benjamin J.; Hirsch, Lea A. [Institute for Astronomy, University of Hawai‘i at Mānoa, Honolulu, HI 96822 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Hebb, Leslie [Hobart and William Smith Colleges, Geneva, NY 14456 (United States); Morton, Timothy D.; Winn, Joshua N. [Department of Astrophysical Sciences, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08540 (United States); Weiss, Lauren M. [Institut de Recherche sur les Exoplanètes, Université de Montréal, Montréal, QC (Canada); Rogers, Leslie A., E-mail: petigura@caltech.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-09-01

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.

  12. A Stellar Ripple

    Science.gov (United States)

    2006-01-01

    This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be

  13. Desain Interior Gedung Kesenian Jakarta

    Directory of Open Access Journals (Sweden)

    Sri Rachmayanti

    2011-04-01

    Full Text Available The purpose of this study was to examine the interior design of Gedung Kesenian Jakarta in detail. Another thing is to obtain complete data and analyze the interior design development of GKJ.  This study will described in terms of design style and different designs since the early period of this building, the arrival of the Dutch until the present era. Besides aesthetic of interior design, it will review technical factors in the building that related to its interior design, such as acoustic, air conditioning, lighting system, sound system. This research is based on data literartures and interviews with the GKJ. In conclusion, it will discuss the existence of GKJ in relation to local identity, culture and heritage.   

  14. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  15. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  16. Dynamic screening in solar and stellar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Daeppen, W. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States); Mussack, K. [Los Alamos National Laboratory, XTD-2, Los Alamos, NM (United States)

    2012-02-15

    In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions was revisited in the 1990s. In particular the issue of dynamic effects was raised by Shaviv and Shaviv, who applied the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In the last few years, the USC group has first reproduced Shaviv and Shaviv's numerical analysis of the screening energy, showing an effect of dynamic screening. When the consequence for the reaction-rate was computed, a rather surprising resulted, which is contrary to that from static screening theory. Our calculations showed that dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential. If this can be independently confirmed, then the effects of dynamic screening are highly relevant and should be included in stellar nuclear reaction rates (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Magnetism, dynamo action and the solar-stellar connection

    Directory of Open Access Journals (Sweden)

    Allan Sacha Brun

    2017-09-01

    Full Text Available Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.

  18. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  19. Massive star populations in I Zw 18: A probe of stellar evolution in the early universe

    OpenAIRE

    Schaerer, Daniel; de Mello, Duilia; Leitherer, Claus; Heldmann, Jennifer

    1998-01-01

    We present a study of the gaseous and stellar emission in I Zw18, the most metal-poor star-forming galaxy known. Archival HST WFPC2 and FOS data have been used to analyze the spatial distribution of [OIII], Halpha, and HeII 4686. The latter is used to identify Wolf-Rayet stars found by ground-based spectroscopy and to locate nebular HeII emission. Most of the HeII emission is associated with the NW stellar cluster, displaced from the surrounding shell-like [OIII] and Halpha emission. We found...

  20. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  1. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  2. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  3. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  4. Stellar dynamics and black holes

    Indian Academy of Sciences (India)

    Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar's theory of gravitational encounters for motion in galactic nuclei. Author Affiliations. David Merritt1. Department of Physics, Rochester Institute ...

  5. TEM turbulence optimisation in stellarators

    Science.gov (United States)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  6. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  7. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  8. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  9. Stellar model chromospheres. VI - Empirical estimates of the chromospheric radiative losses of late-type stars

    Science.gov (United States)

    Linsky, J. L.; Ayres, T. R.

    1978-01-01

    A method is developed for estimating the nonradiative heating of stellar chromospheres by measuring the net radiative losses in strong Fraunhofer line cores. This method is applied to observations of the Mg II resonance lines in a sample of 32 stars including the sun. At most a small dependence of chromospheric nonradiative heating on stellar surface gravity is found, which is contrary to the large effect predicted by recent calculations based on acoustic-heating theories.

  10. Stellar Parameters for Trappist-1

    Science.gov (United States)

    Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.

    2018-01-01

    TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.

  11. Targeted Optimization of Quasi-Symmetric Stellarators

    International Nuclear Information System (INIS)

    Hegna, Chris C.; Talmadge, J. N.

    2016-01-01

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  12. Targeted Optimization of Quasi-Symmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, Chris C. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, D. T. [Univ. of Wisconsin, Madison, WI (United States); Talmadge, J. N. [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  13. A Dream of a Mission: Stellar Imager and Seismic Probe

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Stellar Imager and Seismic Probe (SISP) is a mission to understand the various effects of magnetic fields of stars, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best-possible forecasting of solar activity on times scales ranging up to decades, and an understanding of the impact of stellar magnetic activity on astrobiology and life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. SISP will zoom in on what today - with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool to astrophysics as fundamental as the microscope is to the study of life on Earth. SISP is an ultraviolet aperture-synthesis imager with 8-10 telescopes with meter-class apertures, and a central hub with focal-plane instrumentation that allows spectrophotometry in passbands as narrow as a few Angstroms up to hundreds of Angstroms. SISP will image stars and binaries with one hundred to one thousand resolution elements on their surface, and sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations; this will provide accurate knowledge of stellar structure and evolution and complex transport processes, and will impact numerous branches of (astro)physics ranging from the Big Bang to the future of the Universe. Fitting naturally within the NASA long-term time line, SISP complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets.

  14. Stellar laboratories. II. New Zn iv and Zn v oscillator strengths and their validation in the hot white dwarfs G191-B2B and RE 0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-04-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance. Aims: Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191-B2B and the DO-type white dwarf RE 0503-289. Methods: We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv - v spectrum exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: In the UV spectrum of G191-B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn = -5.52 ± 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv / Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined and log g = 7.60 ± 0.05. In the spectrum of RE 0503-289, we identified 128 Zn v lines for the first time and determined log Zn = -3.57 ± 0.2 (155 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to

  15. EARLY-TYPE GALAXIES AT z ∼ 1.3. II. MASSES AND AGES OF EARLY-TYPE GALAXIES IN DIFFERENT ENVIRONMENTS AND THEIR DEPENDENCE ON STELLAR POPULATION MODEL ASSUMPTIONS

    International Nuclear Information System (INIS)

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Nakata, F.; Kodama, T.; Stanford, S. A.; Rettura, A.; Jee, M. J.; Holden, B. P.; Illingworth, G.; Postman, M.; White, R. L.; Rosati, P.; Blakeslee, J. P.; Demarco, R.; Eisenhardt, P.; Tanaka, M.

    2011-01-01

    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ∼ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot and Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual and Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot and Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ∼> 10 11 M sun ) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses.

  16. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. II. The role of convection across the H-R diagram

    Science.gov (United States)

    Kučinskas, A.; Klevas, J.; Ludwig, H.-G.; Bonifacio, P.; Steffen, M.; Caffau, E.

    2018-05-01

    Aims: We studied the influence of convection on the spectral energy distributions (SEDs), photometric magnitudes, and colour indices of different types of stars across the H-R diagram. Methods: The 3D hydrodynamical CO5BOLD, averaged ⟨3D⟩, and 1D hydrostatic LHD model atmospheres were used to compute SEDs of stars on the main sequence (MS), main sequence turn-off (TO), subgiant branch (SGB), and red giant branch (RGB), in each case at two different effective temperatures and two metallicities, [M/H] = 0.0 and - 2.0. Using the obtained SEDs, we calculated photometric magnitudes and colour indices in the broad-band Johnson-Cousins UBVRI and 2MASS JHKs, and the medium-band Strömgren uvby photometric systems. Results: The 3D-1D differences in photometric magnitudes and colour indices are small in both photometric systems and typically do not exceed ± 0.03 mag. Only in the case of the coolest giants located on the upper RGB are the differences in the U and u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H] = -2.0. Generally, the 3D-1D differences are largest in the blue-UV part of the spectrum and decrease towards longer wavelengths. They are also sensitive to the effective temperature and are significantly smaller in hotter stars. Metallicity also plays a role and leads to slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are caused by a complex interplay between the radiation field, opacities, and horizontal temperature fluctuations that occur due to convective motions in stellar atmospheres. Although small, the 3D-1D differences in the magnitudes and colour indices are nevertheless comparable to or larger than typical photometric uncertainties and may therefore cause non-negligible systematic differences in the estimated effective temperatures.

  17. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  18. Young Stellar Variability of GM Cephei by Circumstellar Dust Clumps

    Science.gov (United States)

    Huang, Po-Chieh; Chen, Wen-Ping; Hu, Chia-Ling; Burkhonov, Otabek; Ehgamberdiev, Shuhrat; Liu, Jinzhong; Naito, Hiroyuki; Pakstiene, Erika; Qvam, Jan Kare Trandem; Rätz, Stefanie; Semkov, Evgeni

    2018-04-01

    UX Orionis stars are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such an UX Orionis star in the young (∼ 4 Myr) open cluster Trumpler 37 at ∼ 900 pc, showing a prominent infrared access, H-alpha emission, and flare activity. Our multi-color photometric monitoring from 2009 to 2016 showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) cyclic, but not strictly periodical, occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual "blueing" phenomena near the brightness minima, during which the star appeared bluer when dimmer, and (v) a noticeable polarization, from 3 to 9 percent in g', r', and i' -bands. The occultation events may be caused by dust clumps, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. The level of polarization was anti-correlated with the brightness in the bright state, when the dust clump backscattered stellar light. We discussed two potential hypotheses: orbiting dust clumps versus dust clumps along a spiral arm structure.

  19. Interior Design Factors in Library Facilities.

    Science.gov (United States)

    Jackson, Patricia Ann

    When planning the interior of a library facility, the planning team of librarian, library consultant, architect, and interior design consultant must focus attention on the basic principles of interior design and the psychological needs of the user. Colors for an interior should be selected with careful regard to space, light, and emotional and…

  20. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  1. Functional textiles in hospital interiors

    DEFF Research Database (Denmark)

    Mogensen, Jeppe

    This PhD thesis explores the possibilities and design qualities of using functional textiles in the interior of hospital environments, and is the result of a three years collaboration between Aalborg University, Department of Civil Engineering, and VIA University College, VIA Design. The project...... that the physical environments affect the patients’ level of stress and influence their process of recovery and healing. However, although research in this field of hospital design has increased substantially in recent years, knowledge on the use of new materials and textiles in hospital interiors is still rather...... limited. Concerned with the design potentials of using textiles in hospital interiors, the purpose of the PhD project has been to explore the possibilities and design qualities of using these materials in hospital design. Relating to both technical and aesthetic aspects of using functional textiles...

  2. Interior design for passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems has brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building form incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitability of various interior elements.

  3. Interior design for passive solar homes

    Science.gov (United States)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  4. Dewatering tailings impoundments : interior drains

    International Nuclear Information System (INIS)

    Charlie, W.A.; Doehring, D.O.; Durnford, D.S.

    1984-01-01

    For the design of a new uranium tailings impoundment in the western United States, it was proposed that an interior drainage system be considered to economically and reliably minimize potential short- and long-term environmental impacts. The objectives were to decrease the effective hydraulic head on the clay liner, to dewater and stabilize the tailings, and to increase the amount of water recycled to the mill. In addition, desaturation of the impoundment would induce capillary pressure (negative porewater pressure), further reducing the potential movement of dissolved pollutants. This paper presents saturated and unsaturated seepage principles and reviews the concept, criteria and design of the various interior drainage systems considered

  5. Integrating sustainability in interior design studio

    OpenAIRE

    Karslı, Umut Tuğlu

    2013-01-01

    Teaching methods on concept of sustainability are frequently searched in the interior architecture education. The purpose of this study is to propose a model for integrating sustainability in interior design studio. In this context, the first part of the research defines relationship between sustainability and interior architecture and determines sustainable interior design principles. In the second part, an interior design studio model is proposed and principles determined in the first part ...

  6. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  7. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  8. Hydromagnetic instability in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kruskal, M D; Gottlieb, M B; Johnson, J L; Goldman, L M [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    It was noted that when there is a uniform externally imposed longitudinal field much larger than the field of the discharge current, one should expect instabilities in the form of a lateral displacement of the plasma column into a helix of large pitch. At the wavelength of fastest growth the e-folding time approximates the time it takes a sound wave in the plasma to traverse the radius of the plasma column. This problem has been re-examines under the conditions which might be expected to occur in the stellarator during ohmic heating, including the presence of external conductors. The theory is applied to the stellarator; and it is shown that the external conductors are in fact unimportant. The important effects due to the finite length of the Machine are discussed and the effects of more general current distributions are considered. The results from the experiments are given.

  9. ACCELERATED FITTING OF STELLAR SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yuan-Sen; Conroy, Charlie [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rix, Hans-Walter [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  10. Grigori Kuzmin and Stellar Dynamics

    Directory of Open Access Journals (Sweden)

    Zeeuw P. Tim de

    2011-06-01

    Full Text Available Grigori Kuzmin was a very gifted dynamicist and one of the towering figures in the distinguished history of the Tartu Observatory. He obtained a number of important results in relative isolation which were later rediscovered in the West. This work laid the foundation for further advances in the theory of stellar systems in dynamical equilibrium, thereby substantially increasing our understanding of galaxy dynamics.

  11. Geometry Dependence of Stellarator Turbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.

    2009-01-01

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes

  12. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  13. Crash simulations for interior design

    NARCIS (Netherlands)

    Poeze, E.; Slaats, P.M.A.

    1996-01-01

    With the increasing number of compact cars, safety aspects becomes increasingly important for interior designs. The smaller dimensions of these cars do not only decrease the car mass, but also the energy absorption length, resulting in a more severe crash pulse. As a consequence, the inertia loading

  14. Interior Design Trends in Libraries.

    Science.gov (United States)

    Sager, Don, Ed.

    2000-01-01

    Four contributing authors discuss perspectives on current trends in library interior design. Articles include: "Trends in Library Furnishings: A Manufacturer's Perspective" (Andrea Johnson); "Libraries, Architecture, and Light: The Architect's Perspective" (Rick McCarthy); "The Library Administrator's Perspective" (Chadwick Raymond); and "The…

  15. Interior Design: Teacher's Instructional Guide.

    Science.gov (United States)

    Hays, Tricia

    This teacher's instructional guide, which is part of a family and consumer sciences education series focusing on a broad range of employment opportunities, is intended to assist teachers responsible for teaching one- and two-year interior design programs for Texas high school students. The following are among the items included: (1) introductory…

  16. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, Tom; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study

  17. Results of Compact Stellarator Engineering Trade Studies

    International Nuclear Information System (INIS)

    Brown, T.; Bromberg, L.; Cole, M.

    2009-01-01

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  18. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  19. Modification of PRETOR Code to Be Applied to Transport Simulation in Stellarators

    International Nuclear Information System (INIS)

    Fontanet, J.; Castejon, F.; Dies, J.; Fontdecaba, J.; Alejaldre, C.

    2001-01-01

    The 1.5 D transport code PRETOR, that has been previously used to simulate tokamak plasmas, has been modified to perform transport analysis in stellarator geometry. The main modifications that have been introduced in the code are related with the magnetic equilibrium and with the modelling of energy and particle transport. Therefore, PRETOR- Stellarator version has been achieved and the code is suitable to perform simulations on stellarator plasmas. As an example, PRETOR- Stellarator has been used in the transport analysis of several Heliac Flexible TJ-II shots, and the results are compared with those obtained using PROCTR code. These results are also compared with the obtained using the tokamak version of PRETOR to show the importance of the introduced changes. (Author) 18 refs

  20. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    Science.gov (United States)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  1. ASTEROSEISMOLOGY OF EVOLVED STARS WITH KEPLER: A NEW WAY TO CONSTRAIN STELLAR INTERIORS USING MODE INERTIAS

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, O.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Belkacem, K. [LESIA, Observatoire de Paris, CNRS UMR 8109, Université Paris Diderot, 5 place J. Janssen, F-92195 Meudon (France); Di Mauro, M. P. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Ventura, R. [INAF-Astrophyscial Observatory of Catania, Via S. Sofia 78, I-95123 Catania (Italy); Mosser, B.; Goupil, M. J.; Samadi, R. [Department of Astronomy, The University of Tokyo, Tokyo 113-0033 (Japan); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2014-02-01

    The asteroseismology of evolved solar-like stars is experiencing growing interest due to the wealth of observational data from space-borne instruments such as the CoRoT and Kepler spacecraft. In particular, the recent detection of mixed modes, which probe both the innermost and uppermost layers of stars, paves the way for inferring the internal structure of stars along their evolution through the subgiant and red giant phases. Mixed modes can also place stringent constraints on the physics of such stars and on their global properties (mass, age, etc.). Here, using two Kepler stars (KIC 4351319 and KIC 6442183), we demonstrate that measurements of mixed mode characteristics allow us to estimate the mode inertias, providing a new and additional diagnostics on the mode trapping and subsequently on the internal structure of evolved stars. We however stress that the accuracy may be sensitive to non-adiabatic effects.

  2. Buchdahl-Vaidya-Tikekar model for stellar interior in pure Lovelock gravity

    Science.gov (United States)

    Molina, Alfred; Dadhich, Naresh; Khugaev, Avas

    2017-07-01

    In the paper (Khugaev et al. in Phys Rev D94:064065. arXiv: 1603.07118, 2016), we have shown that for perfect fluid spheres the pressure isotropy equation for Buchdahl-Vaidya-Tikekar metric ansatz continues to have the same Gauss form in higher dimensions, and hence higher dimensional solutions could be obtained by redefining the space geometry characterizing Vaidya-Tikekar parameter K. In this paper we extend this analysis to pure Lovelock gravity; i.e. a (2N+2)-dimensional solution with a given K_{2N+2} can be taken over to higher n-dimensional pure Lovelock solution with K_n=(K_{2N+2}-n+2N+2)/(n-2N-1) where N is degree of Lovelock action. This ansatz includes the uniform density Schwarzshild and the Finch-Skea models, and it is interesting that the two define the two ends of compactness, the former being the densest and while the latter rarest. All other models with this ansatz lie in between these two limiting distributions.

  3. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  4. On the universal stellar law

    Science.gov (United States)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  5. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  6. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  7. INTERIORITY - a prefab case study

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier

    Dealing with the general theme of domestic architectural quality, the PhD thesis ‘INTERIORITY’ takes its point of departure in the continuous and increasing need to improve our capability as architects to theoretically articulate the intangible concept of quality, and to reveal it through an active...... been motivated by the particular hypothesis that an introduction of the notion of interiority, as an ability of the spatial envelope itself to address the sensuous scale of furniture, unfolds a particular dual critical potential signifying our experience of domestic architectural quality: On the one......, tectonically. Hence, it has been a particular idea of the study to explore the relation between furniture, the spatial envelope itself, and its construct by using furniture as an architectural concept. Consequently, the thesis has specifically investigated whether this notion of interiority, describing...

  8. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  9. Drift waves in a stellarator

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Sedlak, J.E.; Similon, P.L.; Rosenbluth, M.N.; Ross, D.W.

    1982-11-01

    We investigate the eigenmode structure of drift waves in a straight stellarator using the ballooning mode formalism. The electrons are assumed to be adiabatic and the ions constitute a cold, magnetized fluid. The effective potential has an overall parabolic envelope but is modulated strongly by helical ripples along B. We have found two classes of solutions: those that are strongly localized in local helical wells, and those that are weakly localized and have broad spatial extent. The weakly localized modes decay spatially due to the existence of Mathieu resonances between the periods of the eigenfunction and the effective potential

  10. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  11. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  12. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  13. Stellar orbits around Sgr A*

    International Nuclear Information System (INIS)

    Trippe, S; Gillessen, S; Ott, T; Eisenhauer, F; Paumard, T; Martins, F; Genzel, R; Schoedel, R; Eckart, A; Alexander, T

    2006-01-01

    In this article we present and discuss the latest results from the observations of stars (''S-stars'') orbiting Sgr A* . With improving data quality the number of observed S-stars has increased substantially in the last years. The combination of radial velocity and proper motion information allows an ever more precise determination of orbital parameters and of the mass of and the distance to the supermassive black hole in the centre of the Milky Way. Additionally, the orbital solutions allow us to verify an agreement between the NIR source Sgr A* and the dynamical centre of the stellar orbits to within 2 mas

  14. Recent advances in stellarator optimization

    Science.gov (United States)

    Gates, D. A.; Boozer, A. H.; Brown, T.; Breslau, J.; Curreli, D.; Landreman, M.; Lazerson, S. A.; Lore, J.; Mynick, H.; Neilson, G. H.; Pomphrey, N.; Xanthopoulos, P.; Zolfaghari, A.

    2017-12-01

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. The purpose of this paper is to outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also

  15. COLOR PERCEPTION IN INTERIOR DESIGN

    OpenAIRE

    ÖZSAVAŞ, Nilay

    2016-01-01

    In this study, it is mentioned about color that is a keyfactor of interior architecture profession. Firstly, space perception, colorand space interaction, effects of space, color and user relationship is explainedexcept color theories and definitions. Within this scope these are scrutinizingboth perception of color in the space and material and lighting issues thathave a big role in perception. Recent searches, practice methods and evaluationwith examples play a part in this article. It is ai...

  16. Introduction to stellar astrophysics. V. 1

    International Nuclear Information System (INIS)

    Boehm-Vitense, E.

    1989-01-01

    This textbook introduces basic elements of fundamental astronomy and astrophysics which serve as a foundation for understanding the structure, evolution, and observed properties of stars. The first half of the book explains how stellar motions, distances, luminosities, colours, radii, masses and temperatures are measured or derived. The author then shows how data of these sorts can be arranged to classify stars through their spectra. Stellar rotation and stellar magnetic fields are introduced. Stars with peculiar spectra and pulsating stars also merit special attention. The endpoints of stellar evolutions are briefly described. There is a separate chapter on the Sun and a final one on interstellar absorption. (author)

  17. Creating Library Interiors: Planning and Design Considerations.

    Science.gov (United States)

    Jones, Plummer Alston, Jr.; Barton, Phillip K.

    1997-01-01

    Examines design considerations for public library interiors: access; acoustical treatment; assignable and nonassignable space; building interiors: ceilings, clocks, color, control, drinking fountains; exhibit space: slotwall display, floor coverings, floor loading, furniture, lighting, mechanical systems, public address, copying machines,…

  18. Overview video diagnostics for the W7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Kocsis, G., E-mail: kocsis.gabor@wigner.mta.hu [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Baross, T. [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Biedermann, C. [Max-Planck-Institute for Plasma Physics, 17491 Greifswald (Germany); Bodnár, G.; Cseh, G.; Ilkei, T. [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); König, R.; Otte, M. [Max-Planck-Institute for Plasma Physics, 17491 Greifswald (Germany); Szabolics, T.; Szepesi, T.; Zoletnik, S. [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary)

    2015-10-15

    Considering the requirements of the newly built Wendelstein 7-X stellarator a ten-channel overview video diagnostic system was developed and is presently under installation. The system covering the whole torus interior can be used not only to observe the plasma but also to detect irregular operational events which are dangerous for the stellarator itself and to send automatic warning for the machine safety. The ten tangential AEQ ports used by the diagnostic remain under atmospheric pressure, the vacuum/air interface is at the front window located at the plasma side of the AEQ port. The optical vacuum window is protected by a cooled pinhole. The Sensor Module (SM) of the intelligent camera (EDICAM) – developed especially for this purpose – is located directly behind the vacuum window. EDICAM is designed to simultaneously record several regions of interest of its CMOS sensor with different frame rate and to detect various predefined events in real time. The air cooled SM is fixed by a docking mechanism which can preserve the pointing of the view. EDICAM can withstand the magnetic field (∼3 T), the neutron and gamma fluxes expected in the AEQ port. In order to adopt the new features of the video diagnostics system both control and data acquisition and visualization and data processing softwares are developed.

  19. Overview video diagnostics for the W7-X stellarator

    International Nuclear Information System (INIS)

    Kocsis, G.; Baross, T.; Biedermann, C.; Bodnár, G.; Cseh, G.; Ilkei, T.; König, R.; Otte, M.; Szabolics, T.; Szepesi, T.; Zoletnik, S.

    2015-01-01

    Considering the requirements of the newly built Wendelstein 7-X stellarator a ten-channel overview video diagnostic system was developed and is presently under installation. The system covering the whole torus interior can be used not only to observe the plasma but also to detect irregular operational events which are dangerous for the stellarator itself and to send automatic warning for the machine safety. The ten tangential AEQ ports used by the diagnostic remain under atmospheric pressure, the vacuum/air interface is at the front window located at the plasma side of the AEQ port. The optical vacuum window is protected by a cooled pinhole. The Sensor Module (SM) of the intelligent camera (EDICAM) – developed especially for this purpose – is located directly behind the vacuum window. EDICAM is designed to simultaneously record several regions of interest of its CMOS sensor with different frame rate and to detect various predefined events in real time. The air cooled SM is fixed by a docking mechanism which can preserve the pointing of the view. EDICAM can withstand the magnetic field (∼3 T), the neutron and gamma fluxes expected in the AEQ port. In order to adopt the new features of the video diagnostics system both control and data acquisition and visualization and data processing softwares are developed.

  20. Three aspects of stellar evolution near the main sequence

    International Nuclear Information System (INIS)

    Morgan, J.C.

    1979-05-01

    Three problems of stellar evolution are considered: the gap in the HR diagram of M67, the evolutionary status of RS CVn binaries and the solar neutrino problem. The physical basis of the Eggleton stellar evolution computer program is described. The program was used to calculate a grid of evolutionary tracks for models with masses between 0.7 and 1.29 solar masses. The more massive stars considered here have expanding convective cores during their main sequence evolution. The isochrone of the old galactic cluster M67 has a gap at the top of its main sequence because of the rapid evolution of stars at hydrogen exhaustion. RS CVn binaries present a complex collection of observational phenomena although they appear to be detached binaries. Their evolutionary status has remained controversial because of their high space density. Here it is shown that a post main sequence interpretation is satisfactory. Models of the Sun with metal poor interiors have been proposed in an attempt to resolve the solar neutrino problem. Here the evolution of two such models is calculated in detail, including a gradual contamination of the surface convection zone to produce the observed metal abundance, giving fully consistent models of the Sun as it is observed. (author)

  1. The metastable dynamo model of stellar rotational evolution

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2014-01-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  2. Colour terms in the interior design process

    OpenAIRE

    Attiah, DY; Cheung, TLV; Westland, S; Bromilow, D

    2015-01-01

    Colour is a very important topic that interior designers need to consider. Considerable research has been conducted in the area of colour application in interior design; in this study we are concerned with colour terms in interior design, mainly the terms designers use and know about. Fifteen interior designers with varied professional backgrounds, but based in the Middle East (Saudi Arabia, Dubai, Bahrain, Lebanon, Egypt, and Turkey), were interviewed. Previously we reported that fourteen ou...

  3. Magnetohydrodynamic instabilities in a stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.; Ohasa, K.; Wakatani, M.

    1977-05-01

    Numerical studies of stability on kink and resistive tearing modes in a linear stellarator are presented for various current profiles and helical fields. In the case of an l = 2 helical field, a magnetic shear vanishes and the stability diagram is given by the straight lines with iota sup(σ) + iota sup(delta) = const., where iota sup(σ) is a rotational transform due to the plasma current and iota sup(delta) is due to the helical field. In the l = 2 stellarator with chi sup(delta) > 0.5, the m.h.d. stability against kink and tearing modes is improved compared with that in tokamaks. While an l = 3 helical component exists, the magnetic shear plays an important role in the stability properties. The stability diagrams become fairly complex; however, they can be explained by properties of the Euler equation. It should be noted that the internal kink modes become more unstable than in tokamaks by the l = 3 helical field. (auth.)

  4. State Skill Standards: Housing and Interior Design

    Science.gov (United States)

    Nevada Department of Education, 2008

    2008-01-01

    Meeting the Housing and Interior Design Standards will provide students with skills for personal family life and towards becoming a professional in the interior design field. The mission of Housing and Interior Design education is to prepare students for family life, work life, and careers in the fashion industry by creating opportunities to…

  5. Market Aspects of an Interior Design Program.

    Science.gov (United States)

    Gold, Judy E.

    A project was conducted to evaluate a proposed interior design program in order to determine the marketability (job availability in the field of interior design and home furnishings merchandising) and the feasibility (educational requirements for entrance into the interior design and home furnishings merchandising job market) of the program. To…

  6. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  7. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  8. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  9. Influence of magnetic topology on transport and stability in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Fujisawa, A [National Institute for Fusion Science Oroshi-cho, Toki-shi, Gifu, 509-5292 (Japan); Ida, K [National Institute for Fusion Science Oroshi-cho, Toki-shi, Gifu, 509-5292 (Japan); Talmadge, J N [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Estrada, T [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Lopez-Bruna, D [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Hidalgo, C [Laboratorio Nacional de Fusion. Asociacion Euratom/Ciemat, 28040-Madrid (Spain); Krupnik, L [Institute of Plasma Physics, NSC ' KIPT' , Kharkov (Ukraine); Melnikov, A [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow (Russian Federation)

    2005-12-15

    The influence of the magnetic topology on transport and stability has been investigated in four stellarators: an almost shearless medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasihelically symmetric device (HSX) with moderate shear. All of these have variable rotational transform profiles and magnetic ripples. Using these capabilities, bifurcated states can appear and plasma can jump from one to another with subsequent changes in the transport properties. Low rational values of {iota}/2{pi} can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. The key ingredient for transport barriers is a positive and sheared electric field. Internal transport barriers also appear in CHS, but the role of rationals is not clear yet in this device. The time evolution of the electric field shows the onset of a bifurcation triggered either by the rational or by the presence of the ion and electron roots. The electric potential inside ITBs follows the ECE-temperature profile in a fast time scale. The plasma stability properties and its effect on the viscosity are also studied in the HSX, and the influence of the dynamics of rational surface is studied in the LHD and TJ-II stellarators.

  10. Influence of magnetic topology on transport and stability in stellarators

    International Nuclear Information System (INIS)

    Castejon, F; Fujisawa, A; Ida, K; Talmadge, J N; Estrada, T; Lopez-Bruna, D; Hidalgo, C; Krupnik, L; Melnikov, A

    2005-01-01

    The influence of the magnetic topology on transport and stability has been investigated in four stellarators: an almost shearless medium size flexible heliac (TJ-II), a medium size and a large heliotron (CHS and LHD) with shear, and a quasihelically symmetric device (HSX) with moderate shear. All of these have variable rotational transform profiles and magnetic ripples. Using these capabilities, bifurcated states can appear and plasma can jump from one to another with subsequent changes in the transport properties. Low rational values of ι/2π can create transport barriers in LHD and TJ-II when they are located close to the plasma core or at the edge. The key ingredient for transport barriers is a positive and sheared electric field. Internal transport barriers also appear in CHS, but the role of rationals is not clear yet in this device. The time evolution of the electric field shows the onset of a bifurcation triggered either by the rational or by the presence of the ion and electron roots. The electric potential inside ITBs follows the ECE-temperature profile in a fast time scale. The plasma stability properties and its effect on the viscosity are also studied in the HSX, and the influence of the dynamics of rational surface is studied in the LHD and TJ-II stellarators

  11. YOUNG STELLAR OBJECTS IN THE GOULD BELT

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Cieza, Lucas A. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Di Francesco, James; Johnstone, Doug; Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics Programs, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hatchell, Jennifer [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Heiderman, Amanda [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Huard, Tracy L. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Miller, Jennifer F. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Young, Kaisa E., E-mail: mdunham@cfa.harvard.edu [Department of Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, LA 70310 (United States)

    2015-09-15

    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope “cores to disks” (c2d) and “Gould Belt” (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the GB. We compile extinction corrected spectral energy distributions for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0 + I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background Asymptotic Giant Branch stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40–0.78 Myr for Class 0 + I YSOs and 0.26–0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0 + I sample is classified as Class 0, leading to durations of 0.13–0.26 Myr (Class 0) and 0.27–0.52 Myr (Class I). We revisit infrared color–color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs.

  12. YOUNG STELLAR OBJECTS IN THE GOULD BELT

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Allen, Lori E.; Evans II, Neal J.; Harvey, Paul M.; Broekhoven-Fiene, Hannah; Cieza, Lucas A.; Di Francesco, James; Johnstone, Doug; Matthews, Brenda C.; Gutermuth, Robert A.; Hatchell, Jennifer; Heiderman, Amanda; Huard, Tracy L.; Kirk, Jason M.; Miller, Jennifer F.; Peterson, Dawn E.; Young, Kaisa E.

    2015-01-01

    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope “cores to disks” (c2d) and “Gould Belt” (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the GB. We compile extinction corrected spectral energy distributions for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0 + I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background Asymptotic Giant Branch stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40–0.78 Myr for Class 0 + I YSOs and 0.26–0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0 + I sample is classified as Class 0, leading to durations of 0.13–0.26 Myr (Class 0) and 0.27–0.52 Myr (Class I). We revisit infrared color–color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs

  13. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    International Nuclear Information System (INIS)

    Kun, M.; Moór, A.; Wolf-Chase, G.; Apai, D.; Balog, Z.; O’Linger-Luscusk, J.; Moriarty-Schieven, G. H.

    2016-01-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  14. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  15. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Wolf-Chase, G. [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Apai, D. [Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85719 (United States); Balog, Z. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); O’Linger-Luscusk, J. [On leave from California Institute of Technology, 1200 E. California Avenue, Pasadena, CA 91125 (United States); Moriarty-Schieven, G. H., E-mail: kun@konkoly.hu [National Research Council—Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-06-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  16. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...

  17. Enhanced-confinement class of stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.; Chu, T.K.; Boozer, A.H.

    1981-08-01

    A class of stellarators has been found in which the transport is reduced by an order of magnitude from transport in conventional stellarators, by localizing the helical ripple to the inside of the torus. The reduction is observed in numerical experiments and explained theoretically

  18. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  19. Structure of stellar hydroxyl masers

    International Nuclear Information System (INIS)

    Reid, M.J.; Muhleman, D.O.; Moran, J.M.; Johnston, K.J.; Schwartz, P.R.

    1977-01-01

    This paper presents the results of two spectral-line very long baseline (VLB) interferometric experiments on stellar OH masers. These masers are usually associated with long-period variable stars, and exhibit a characteristic double-peaked 1612 MHz OH spectrum. The sources IRC +10011, R Aql, and U Ori were carefully studied in order to determine the spatial structure of their masers. Maser components in these sources exhibited a complex structure which can be interpreted in terms of ''core-halo'' models. For these sources, the emission at any velocity appears to originate from a small (approximately-less-than0.''03) region of brightness approximately-greater-than10 9 K, and from a large (approximately-greater-than0.''5) region of brightness approximately-less-than10 8 K. In IRC+10011, ''core'' components in the two OH peaks probably are separated by less than the apparent size of the ''halos.'' A map of the low-velocity emission of U Ori with a resolution of 0.''01 indicates that the ''cores'' are distributed over a region of only 0.''2. This region is smaller than the apparent sizes of the ''halos.'' Other sources surveyed to determine apparent maser sizes include IRC+50137, OH 1821--12, OH 1837--05, OH 26.5+0.6, W43 A, and VX Sgr at 1612 MHz; and W Hya, R Aql, and IRC--10529 at 1667 MHz. The results of all VLB observations of 1612 MHz stellar OH masers are summarized.The apparent sizes of the strongest components (''halos'') of stellar OH masers typically are approximately-greater-than0.''5, corresponding to linear dimensions of approximately-greater-than3 x 10 15 cm. These surprisingly large sizes imply brightness temperatures much lower than those observed in most other types of astronomical masers. The large sizes rule out models of the 1612 MHz OH masers that require contracting or rotating circumstellar envelopes to explain the double-peaked OH spectra, or that try to explain the apparent maser sizes in terms of interstellar or interplanetary scattering

  20. Physics of neutron star interiors

    International Nuclear Information System (INIS)

    Blaschke, D.

    2001-01-01

    Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strength of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It adresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature

  1. Magnetohydrodynamics of neutron star interiors

    International Nuclear Information System (INIS)

    Easson, I.; Pethick, C.J.

    1979-01-01

    Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law

  2. Wisconsin torsatron/stellarator program, FY 1989

    International Nuclear Information System (INIS)

    Shohet, J.L.; Anderson, D.T.; Anderson, F.S.B.; Talmadge, J.N.

    1988-07-01

    This proposal documents recent activities within the University of Wisconsin-Madison Torsatron/Stellarator Laboratory and presents plans for future research activities for a three year period. Research efforts have focused on fundamental stellarator physics issues through experimental investigations on the Interchangeable Module Stellarator (IMS) and the Proto-Cleo Stellarator. Theoretical activities and studies of new configurations are being undertaken to support and broaden the experimental program. Experimental research at the Torsatron Stellarator Laboratory has been primarily concerned with effects induced through electron-cyclotron resonant frequency plasma production and heating in the IMS device. Plasma electric fields have been shown to play a major role in particle transport and confinement in IMS. ECRF heating at 6 kG has produced electron tail populations in agreement with Monte-Carlo models. Electric and magnetic fields have been shown to alter the particle flows to the IMS modular divertors. 48 refs

  3. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  4. Stellarmak a hybrid stellarator: Spheromak

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1980-01-01

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting β, and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams

  5. Stellar Equilibrium in Semiclassical Gravity.

    Science.gov (United States)

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  6. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  7. Magnetohydodynamics stability of compact stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-01

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 minus k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta (approximately 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current

  8. NEMO: A Stellar Dynamics Toolbox

    Science.gov (United States)

    Barnes, Joshua; Hut, Piet; Teuben, Peter

    2010-10-01

    NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

  9. Exoplanet's Figure and Its Interior

    Science.gov (United States)

    Mian, Zhang; Cheng-li, Huang

    2018-01-01

    Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.

  10. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  11. INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES

    International Nuclear Information System (INIS)

    Valsecchi, F.; Farr, W. M.; Willems, B.; Rasio, F. A.; Kalogera, V.

    2013-01-01

    Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries. We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the β Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution

  12. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  13. Neoclassical transport in stellarators - a comparison of conventional stellarator/torsatrons with the advanced stellarator, Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C D [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    A general expression for the magnitude of a stellarator's magnetic field, in terms of a Fourier decomposition, is too complicated to lend itself easily to analytic transport calculations. The great majority of stellarator-type devices, however, may be accurately described if one retains only those harmonics with m=0 and m=1. In the long-mean-free-path regime an analytical approximation to the particle's bounce-averaged kinetic equation can then be found. Using a numerical solution of this equation, it is possible to calculate the particle and heat fluxes due to helical-ripple transport in stellarators throughout the entire long-mean-free-path regime. 3 figs.

  14. The origin of stellar winds: Subatmospheric nonthermal storage modes versus radiation pressure

    International Nuclear Information System (INIS)

    Cannon, C.J.; Thomas, R.N.

    1977-01-01

    Most current models of matter-flux in hot stars place its origin in radiation pressure, and then model the flow explicitly to produce no chromosphere-corona. Our model of the stellar atmosphere as a transition zone between stellar interior and interstellar medium places the origin of matter-flux, chromosphere-corona, and spectral ''emission classes'' in subatmospheric nonthermal kinetic energy storage, equally for all stars, hot or cold. Current observations of both hot and cold stars suggest chromospheres to be a universal phenomenon, correlated with matter-fluxes, and enhanced in ''emission-class'' stars. To clarify the difference between the two kinds of models above, we reformulate the wind-tunnel analogy to stellar winds, suggesting that stars satisfy and ''imperfect,'' such model;i.e., transsonic shocks occur before the throat, corresponding to an imposed outward velocity in the storage section, or subatmosphere. We then investigate the stability of an arbitrary stellar atmosphere, hot or cold, to suggest a cause for such an outward subatmospheric velocity

  15. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  16. Ultraviolet photometry of stellar populations in galaxies

    International Nuclear Information System (INIS)

    Deharveng, J.M.

    1981-01-01

    The UV flux of stellar populations, which is essentially emitted by young stars, conveys information on the process of star formation and its recent history. However, the evaluation of the flux arising from the young stellar component may be difficult. In the case of late type galaxies it is hampered by the extinction and the effect of scattered stellar radiation. In the case of early type galaxies, the star formation, if any, has to be disentangled from the contribution of hot evolved stars and of a possible 'active' phenomenon. A review of observations and results relevant two cases is presented [fr

  17. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  18. Testing the Universality of the Stellar IMF with Chandra and HST

    OpenAIRE

    Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; Zepf, S. E.

    2016-01-01

    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be "bottom-heavy" for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g. Na I and Ca II) in their near-IR spectra implies an excess of low-mass ($m = 8$ $M_\\odot$) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near...

  19. Hybrid Prediction Method for Aircraft Interior Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is research and development of methods for application of the Hybrid FE-SEA method to aircraft vibro-acoustic problems. This proposal...

  20. Stellar Death in the Nearby Universe

    Science.gov (United States)

    Holoien, Thomas Warren-Son

    The night sky is replete with transient and variable events that help shape our universe. The violent, explosive deaths of stars represent some of the most energetic of these events, as a single star is able to outshine billions during its final moments. Aside from imparting significant energy into their host environments, stellar deaths are also responsible for seeding heavy elements into the universe, regulating star formation in their host galaxies, and affecting the evolution of supermassive black holes at the centers of their host galaxies. The large amount of energy output during these events allows them to be seen from billions of lightyears away, making them useful observational probes of physical processes important to many fields of astronomy. In this dissertation I present a series of observational studies of two classes of transients associated with the deaths of stars in the nearby universe: tidal disruption events (TDEs) and supernovae (SNe). Discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN), the objects I discuss were all bright and nearby, and were subject to extensive follow-up observational campaigns. In the first three studies, I present observational data and theoretical models of ASASSN-14ae, ASASSN-14li, and ASASSN-15oi, three TDEs discovered by ASAS-SN and three of the most well-studied TDEs ever discovered. Next I present the discovery of ASASSN-13co, an SN that does not conform to the traditional model of Type II SNe. Finally, I discuss the full sample of bright SNe discovered from 2014 May 1 through 2016 December 31, which is significantly less biased than previous nearby SN samples due to the ASAS-SN survey approach, and perform statistical analyses on this population that will be used for future studies of nearby SNe and their hosts.

  1. Advanced Stellar Compass - Adeos II - Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    of Automation of the Technical University of Denmark.The document is structured as follows. First we present the ASC - heritage, system description, performance - then we address more specifically the environmental properties, like the EMC compatibility and thermal characteristics, and the design...... and reliability issues. Section 6 deals with the testing and the calibration procedures and in section 7 the mechanical and electrical interfaces are given. In section 8 and 9 we address issues like manufacturing, transportation and storage, in section 10 the requirements imposed by the ASC on the system...

  2. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  3. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161 (United States); Irastorza, Igor G.; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Ringwald, Andreas; Saikawa, Ken' ichi, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de, E-mail: kenichi.saikawa@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-10-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion—the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments—the fifth force experiment ARIADNE and the helioscope IAXO—can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  4. Stellar recipes for axion hunters

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor G. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas; Saikawa, Ken' ichi [DESY, Hamburg (Germany). Theory Group

    2017-08-15

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  5. Stellar recipes for axion hunters

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Ringwald, Andreas; Saikawa, Ken'ichi

    2017-08-01

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion - the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fit to the data, prefering an axion mass around 10 meV. We show that future axion experiments - the fifth force experiment ARIADNE and the helioscope IAXO - can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.

  6. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  7. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  8. Diagnostics for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Stratton, B.C.; Johnson, D.; Feder, R.; Fredrickson, E.; Neilson, H.; Takahashi, H.; Zarnstorf, M.; Cole, M.; Goranson, P.; Lazarus, E.; Nelson, B.

    2003-01-01

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation

  9. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    School of Computer and Control Engineering, North University of China,. Taiyuan 030051 ... (2013) was used to mine the association rules of a stellar ... of the graph, we then compute a transformation matrix which maps the data points to.

  10. The relation between stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    Observations of star clusters combined with the theory of stellar evolution enable us to estimate the ages of stars while cosmological observations and theories give us a value for the age of the Universe. This is the most important interaction between cosmology and stellar evolution because it is clearly necessary that stars are younger than the Universe. Stellar evolution also plays an important role in relating the present chemical composition of the Universe to its original composition. The author restricts the review to a discussion of the relation between stellar evolution and the big bang cosmological theory because there is such a good qualitative agreement between the hot big bang theory and observations. (Auth.)

  11. Evaluating Stellarator Divertor Designs with EMC3

    Science.gov (United States)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  12. Development of the stellarator/heliotron research

    International Nuclear Information System (INIS)

    Iiyoshi, A.

    1991-05-01

    The author reviewed the history of the development of the stellarator/heliotron system, and pointed out the important role of the radial electric field in plasma transport in helical devices. (J.P.N.)

  13. Radiative otacity tables for 40 stellar mixtures

    International Nuclear Information System (INIS)

    Cox, A.N.; Tabor, J.E.

    1976-01-01

    Using improved methods, radiative opacities for 40 mixtures of elements are given for use in calculations of stellar structure, stellar evolution, and stellar pulsation. The major improvements over previous Los Alamos data are increased iron abundance in the composition, better allowance for the continuum depression for bound electrons, and corrections in some bound-electron energy levels. These opacities have already been widely used, and represent a relatively homogeneous set of data for stellar structures. Further improvements to include more bound-bound (line) transitions by a smearing technique and to include molecular absorptions are becoming available, and in a few years these tables, as well as all previous tables, will be outdated. At high densities the conduction of energy will dominate radiation flow, and this effect must be added separately

  14. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive

  15. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  16. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  17. Violations of the Pauli principle and the interior of the sun

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.

    1989-08-01

    The consequences of a violation of the Pauli principle for the physics of the solar interior are explored. It is found that a bound state of two protons becomes possible. This leads to an increase in the rate of hydrogen burning in the sun. Because a very large cross section for this reaction is in clear contradiction with the theory of stellar structure when compared with observations of solar luminosity, radius and mechanical oscillations, stringent limits on a violation of the Pauli principle in the two nucleon system can be given. However, a very small violation of the Pauli principle in the two nucleon system might solve the longstanding solar neutrino problem. (orig.).

  18. The WEGA Stellarator: Results and Prospects

    International Nuclear Information System (INIS)

    Otte, M.; Andruczyk, D.; Koenig, R.; Laqua, H. P.; Lischtschenko, O.; Marsen, S.; Schacht, J.; Podoba, Y. Y.; Wagner, F.; Warr, G. B.; Holzhauer, E.; Howard, J.; Krupnik, L.; Zhezhera, A.; Urban, J.; Preinhalter, J.

    2008-01-01

    In this article an overview is given on results from magnetic flux surface measurements, applied ECR heating scenarios for 2.45 GHz and 28 GHz, fluctuation and transport studies and plasma edge biasing experiments performed in the WEGA stellarator. Examples for the development of new diagnostics and the machine control system are given that will be used at Wendelstein 7-X stellarator, which is currently under construction in Greifswald

  19. Cosmic abundances: The impact of stellar duplicity

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    2004-01-01

    The mass-transfer scenario links chemical peculiarities with stellar duplicity for an increasing number of stellar classes (classical and dwarf barium stars, subgiant and giant CH stars, S stars without technetium, yellow symbiotic stars, WIRRING stars, Abell-35-like nuclei of planetary nebulae...). Despite these successes, the mass-transfer scenario still faces several problems: What is the mass-transfer mode? Why orbital elements of dwarf barium stars do not fully match those of the classic...

  20. The Stellar-Dynamical Oeuvre James Binney

    Indian Academy of Sciences (India)

    tribpo

    of the eigenvalues of M. The variation of the stellar density from point to point .... of Σ,(ΔΕ)2 , where ∆ Ε is the change in energy that a star suffers during a binary ... could use these results to calculate the relaxation time in a stellar system if he .... the region of enhanced density that tails behind it like a wake behind a ship. By.

  1. Weakly interacting massive particles and stellar structure

    International Nuclear Information System (INIS)

    Bouquet, A.

    1988-01-01

    The existence of weakly interacting massive particles (WIMPs) may solve both the dark matter problem and the solar neutrino problem. Such particles affect the energy transport in the stellar cores and change the stellar structure. We present the results of an analytic approximation to compute these effects in a self-consistent way. These results can be applied to many different stars, but we focus on the decrease of the 8 B neutrino flux in the case of the Sun

  2. Close stellar encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1989-01-01

    Stellar encounters are expected to produce a variety of interesting objects in the cores of globular clusters, either through the formation of binaries by tidal capture, or direct collisions. Here, I describe several attempts to observe the products of stellar encounters. In particular, the use of color maps has demonstrated the existence of a color gradient in the core of M15, which seems to be caused by a population of faint blue objects concentrated towards the cluster center. (author)

  3. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  4. Comparative studies of stellarator and tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Burhenn, R; Geiger, J; Giannone, L.; Hartfuss, H J; Kuehner, G; Ledl, L; Simmet, E E; Walter, H [Max-Planck-Inst. fuer Plasmaphysik, IPP-Euratom Association, Garching (Germany); ECRH Team; W7-AS Team

    1997-09-01

    Transport properties in the W7-AS stellarator and in tokamaks are compared. The parameter dependences and the absolute values of the energy confinement time are similar. Indications are found that the density dependence, which is usually observed in stellarator confinement, can vanish above a critical density. The density dependence in stellarators seems to be similar to that in the linear ohmic confinement regime, which, in small tokamaks, extends to high density values, too. Because of the similarity in the gross confinement properties, transport in stellarators and tokamaks should not be dominated by the parameters which are very different in the two concepts, i.e. magnetic shear, major rational values of the rotational transform and plasma current. A difference in confinement is that there exists evidence for pinches in the particle and, possibly, energy transport channels in tokamaks whereas in stellarators no pinches have been observed, so far. In order to study the effect of plasma current and toroidal electric fields, stellarator discharges were carried out with an increasing amount of plasma current. From these experiments, no clear evidence of a connection of pinches with these parameters is found. The transient response in W7-AS plasmas can be described in terms of a non-local model. As in tokamaks, also cold pulse experiments in W7-AS indicate the importance of non-local transport. (author). 8 refs, 5 figs.

  5. Surface and interior of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Masursky, H [U.S. Geological Survey, Flagstaff, Arizona, USA; Kaula, W M [California Univ., Los Angeles (USA); McGill, G E [Massachusetts Univ., Amherst (USA); Pettengill, G H; Shapiro, I I [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences; Phillips, R J [Jet Propulsion Lab., Pasadena, Calif. (USA); Russell, C T [California Univ., Los Angeles (USA). Inst. of Geophysics and Planetary Physics; Schubert, G [California Univ., Los Angeles (USA)

    1977-06-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50/sup 0/S and 75/sup 0/N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained.

  6. Interior operators and topological connectedness | Castellini ...

    African Journals Online (AJOL)

    A categorical notion of interior operator is used in topology to define connectedness and disconnectedness with respect to an interior operator. A commutative diagram of Galois connections is used to show a relationship between these notions and Arhangelskii and Wiegandt's notions of connectedness and ...

  7. Black Hole Interior in Quantum Gravity.

    Science.gov (United States)

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J

    2015-05-22

    We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.

  8. Interior Design Students Perceptions of Sustainability

    Science.gov (United States)

    Stark, Johnnie; Park, Jin Gyu

    2016-01-01

    Purpose: This longitudinal study assessed student perceptions of sustainable design issues in the context of an accredited interior design program. Although literature exists documenting the integration of sustainable strategies into interior design curriculum, more analysis is needed to determine the impact of program experiences on students'…

  9. Stellar winds and molecular clouds: a search for ionized stellar winds

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Canto, J

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKH..cap alpha.. 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10/sup 3/ km s/sup -1/). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H/sub 2/O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A.

  10. Stellar winds and molecular clouds: a search for ionized stellar winds

    International Nuclear Information System (INIS)

    Rodriguez, L.F.; Canto, J.

    1983-01-01

    We observed with the VLA several regions of mass outflow at 20.6 and 2 cm: LKHα 198, GL 490, HH 7-11, T Tau, GGD 12-15, GL 961, GGD 27-28, V645 CyG, Cep A, and MWC 1080. In most of the regions no continuum source was detected, down to the mJy level, at 6 cm that could be identified as the energy source of the outflow. This result suggests that in these cases the stellar winds powering the outflows are either neutral or, if ionized, have a large terminal velocity (approx. 10 3 km s -1 ). T Tauri and most of the other sources detected show spectra characteristic of an optically-thin H II region and not that of simple ionized winds. We measured the positions of several H 2 O masers associated with mass outflow regions: GL 490, OMC(2)1, Mon R2, GGD 12-15, S106, GL 2591, NGC 7129(2), S140 and Cep A. (author)

  11. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    Science.gov (United States)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt

  12. A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-Stars within 30 pc

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Somers, Garrett [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Mamajek, Eric E. [Jet Propulsion Laboratory, California Institute of Technology, M/S 321-100, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Turnbull, Margaret C. [Global Science Institute, P.O. Box 252, Antigo, WI 54409 (United States); Osby, Ella; Shkolnik, Evgenya L.; Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, Graeme H. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz CA 95064 (United States); Klimasewski, Alexis, E-mail: natalie.hinkel@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2017-10-10

    Almost every star in our Galaxy is likely to harbor a terrestrial planet, but accurate measurements of an exoplanet’s mass and radius demand accurate knowledge of the properties of its host star. The imminent TESS and CHEOPS missions are slated to discover thousands of new exoplanets. Along with WFIRST, which will directly image nearby planets, these surveys make urgent the need to better characterize stars in the nearby solar neighborhood (<30 pc). We have compiled the CATalog of Stellar Unified Properties (CATSUP) for 951 stars, including such data as: Gaia astrometry; multiplicity within stellar systems; stellar elemental abundance measurements; standardized spectral types; Ca ii H and K stellar activity indices; GALEX NUV and FUV photometry; and X-ray fluxes and luminosities from ROSAT , XMM, and Chandra . We use this data-rich catalog to find correlations, especially between stellar emission indices, colors, and galactic velocity. Additionally, we demonstrate that thick-disk stars in the sample are generally older, have lower activity, and have higher velocities normal to the galactic plane. We anticipate that CATSUP will be useful for discerning other trends among stars within the nearby solar neighborhood, for comparing thin-disk versus thick-disk stars, for comparing stars with and without planets, and for finding correlations between chemical and kinematic properties.

  13. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Montmerle, Thierry.

    1982-08-01

    Massive stars release a considerable amount of mechanical energy in the form of strong stellar winds. A fraction of this energy may be transferred to relativistic cosmic rays by diffusive shock acceleration at the wind boundary, and/or in the expanding, turbulent wind itself. Massive stars are most frequently found in OB associations, surrounded by H II regions lying at the edge of dense molecular clouds. The interaction of the freshly accelerated particles with matter gives rise to #betta#-ray emission. In this paper, we first briefly review the current knowledge on the energetics of strong stellar winds from O and Wolf-Rayet stars, as well as from T Tauri stars. Taking into account the finite lifetime of these stars, we then proceed to show that stellar winds dominate the energetics of OB associations during the first 4 to 6 million years, after which supernovae take over. In the solar neighborhood, the star formation rate is constant, and a steady-state situation prevails, in which the supernova contribution is found to be dominant. A small, but meaningful fraction of the CO S-B #betta#-ray sources may be fueled by WR and O stellar winds in OB associations, while the power released by T Tauri stars alone is perhaps insufficient to account for the #betta#-ray emission of nearby dark clouds. Finally, we discuss some controversial aspects of the physics of particle acceleration by stellar winds

  14. A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-Stars within 30 pc

    International Nuclear Information System (INIS)

    Hinkel, Natalie R.; Somers, Garrett; Mamajek, Eric E.; Turnbull, Margaret C.; Osby, Ella; Shkolnik, Evgenya L.; Desch, Steven J.; Smith, Graeme H.; Klimasewski, Alexis

    2017-01-01

    Almost every star in our Galaxy is likely to harbor a terrestrial planet, but accurate measurements of an exoplanet’s mass and radius demand accurate knowledge of the properties of its host star. The imminent TESS and CHEOPS missions are slated to discover thousands of new exoplanets. Along with WFIRST, which will directly image nearby planets, these surveys make urgent the need to better characterize stars in the nearby solar neighborhood (<30 pc). We have compiled the CATalog of Stellar Unified Properties (CATSUP) for 951 stars, including such data as: Gaia astrometry; multiplicity within stellar systems; stellar elemental abundance measurements; standardized spectral types; Ca ii H and K stellar activity indices; GALEX NUV and FUV photometry; and X-ray fluxes and luminosities from ROSAT , XMM, and Chandra . We use this data-rich catalog to find correlations, especially between stellar emission indices, colors, and galactic velocity. Additionally, we demonstrate that thick-disk stars in the sample are generally older, have lower activity, and have higher velocities normal to the galactic plane. We anticipate that CATSUP will be useful for discerning other trends among stars within the nearby solar neighborhood, for comparing thin-disk versus thick-disk stars, for comparing stars with and without planets, and for finding correlations between chemical and kinematic properties.

  15. The Dependence of Convective Core Overshooting on Stellar Mass: Additional Binary Systems and Improved Calibration

    Science.gov (United States)

    Claret, Antonio; Torres, Guillermo

    2018-06-01

    Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1–1.2 M ⊙, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work, we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter f ov rises sharply up to about 2 M ⊙, and remains largely constant thereafter. Here, we analyze a new sample of eight binaries selected to be in the critical mass range below 2 M ⊙ where f ov is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which f ov changes determines the shape of isochrones in the turnoff region of ∼1–5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived f ov values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.

  16. Use of the stellarator expansion to investigate plasma equilibrium in modular stellarators

    International Nuclear Information System (INIS)

    Anania, G.; Johnson, J.L.; Weimer, K.E.

    1982-11-01

    A numerical code utilizing a large-aspect ratio, small-helical-distortion expansion is developed and used to investigate the effect of plasma currents on stellarator equilibrium. Application to modular stellarator configurations shows that a large rotational transform, and hence large coil deformation, is needed to achieve high-beta equilibria

  17. Stellar Firework in a Whirlwind

    Science.gov (United States)

    2007-09-01

    VLT Image of Supernova in Beautiful Spiral Galaxy NGC 1288 Stars do not like to be alone. Indeed, most stars are members of a binary system, in which two stars circle around each other in an apparently never-ending cosmic ballet. But sometimes, things can go wrong. When the dancing stars are too close to each other, one of them can start devouring its partner. If the vampire star is a white dwarf - a burned-out star that was once like our Sun - this greed can lead to a cosmic catastrophe: the white dwarf explodes as a Type Ia supernova. In July 2006, ESO's Very Large Telescope took images of such a stellar firework in the galaxy NGC 1288. The supernova - designated SN 2006dr - was at its peak brightness, shining as bright as the entire galaxy itself, bearing witness to the amount of energy released. ESO PR Photo 39/07 ESO PR Photo 39/07 SN 2006dr in NGC 1288 NGC 1288 is a rather spectacular spiral galaxy, seen almost face-on and showing multiple spiral arms pirouetting around the centre. Bearing a strong resemblance to the beautiful spiral galaxy NGC 1232, it is located 200 million light-years away from our home Galaxy, the Milky Way. Two main arms emerge from the central regions and then progressively split into other arms when moving further away. A small bar of stars and gas runs across the centre of the galaxy. The first images of NGC 1288, obtained during the commissioning period of the FORS instrument on ESO's VLT in 1998, were of such high quality that they have allowed astronomers [1] to carry out a quantitative analysis of the morphology of the galaxy. They found that NGC 1288 is most probably surrounded by a large dark matter halo. The appearance and number of spiral arms are indeed directly related to the amount of dark matter in the galaxy's halo. The supernova was first spotted by amateur astronomer Berto Monard. On the night of 17 July 2006, Monard used his 30-cm telescope in the suburbs of Pretoria in South Africa and discovered the supernova as an

  18. TJ-II project

    International Nuclear Information System (INIS)

    Alejaldre, C.; Gozalo, J.J.A.; Perez, J.B.; Magaria, F.C.; Diaz, J.R.C.; Perez, J.G.; Lopez-Fraguas, A.; Garcia, L.; Krivenski, V.I.; Martin, R.; Navarro, A.P.; Perea, A.; Rodriguez-Yunta, A.; Ayza, M.S.; Varias, A.

    1990-01-01

    The TJ-II device is a medium-size helical-axis stellarator to be built in Madrid. Its main characteristics are potential for high-beta operation; flexibility, i.e., its rotational transform can be varied over a wide range and its shear to some extent; and bean-shaped plasma cross section. The latest understanding of TJ-II physics in the fields of electron cyclotron resonance heating, transport, and magneto-hydrodynamics, and the engineering solutions introduced in its final design are discussed

  19. sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection

    Science.gov (United States)

    Egeland, Ricky

    2018-05-01

    The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.

  20. The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations

    Science.gov (United States)

    Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom

    2012-01-01

    By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10-6-10-3.5 Z ⊙. We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 107 M ⊙. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10-3 Z ⊙ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.

  1. THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS

    International Nuclear Information System (INIS)

    Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom

    2012-01-01

    By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10 –6 -10 –3.5 Z ☉ . We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 10 7 M ☉ . A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10 –3 Z ☉ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t–Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.

  2. Indicators of Mass in Spherical Stellar Atmospheres

    Science.gov (United States)

    Lester, John B.; Dinshaw, Rayomond; Neilson, Hilding R.

    2013-04-01

    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity ( L⋆), mass ( M⋆), and radius ( R⋆), and observations can now determine directly L⋆ and R⋆. We computed spherical model atmospheres for red giants and for red supergiants holding L⋆ and R⋆ constant at characteristic values for each type of star but varying M⋆, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the stars’ mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log 10(g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine a star’s mass from currently achievable spectroscopy. The surface-brightness variations of mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.

  3. Stellarator Coil Design and Plasma Sensitivity

    International Nuclear Information System (INIS)

    Ku, Long-Poe; Boozer, Allen H.

    2010-01-01

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  4. ON THE ORIGIN OF STELLAR MASSES

    International Nuclear Information System (INIS)

    Krumholz, Mark R.

    2011-01-01

    It has been a longstanding problem to determine, as far as possible, the characteristic masses of stars in terms of fundamental constants; the almost complete invariance of this mass as a function of the star-forming environment suggests that this should be possible. Here I provide such a calculation. The typical stellar mass is set by the characteristic fragment mass in a star-forming cloud, which depends on the cloud's density and temperature structure. Except in the very early universe, the latter is determined mainly by the radiation released as matter falls onto seed protostars. The energy yield from this process is ultimately set by the properties of deuterium burning in protostellar cores, which determines the stars' radii. I show that it is possible to combine these considerations to compute a characteristic stellar mass almost entirely in terms of fundamental constants, with an extremely weak residual dependence on the interstellar pressure and metallicity. This result not only explains the invariance of stellar masses, it resolves a second mystery: why fragmentation of a cold, low-density interstellar cloud, a process with no obvious dependence on the properties of nuclear reactions, happens to select a stellar mass scale such that stellar cores can ignite hydrogen. Finally, the weak residual dependence on the interstellar pressure and metallicity may explain recent observational hints of a smaller characteristic mass in the high-pressure, high-metallicity cores of giant elliptical galaxies.

  5. Review of stellarator research world wide

    International Nuclear Information System (INIS)

    Shonet, J.L.

    1987-01-01

    The world-wide effort in stellarators has evolved considerably during the past few years. Stellarator facilities are located in the Australia, Federal Republic of Germany, Japan, the Soviet Union, Spain, the United Kingdom and the United States. Dimensions of stellarators range from less than 20 centimeters in major radius to more than 2 meters, and magnetic field values between 0.2 Tesla to more than 3.0 Tesla. Stellarators are made in a variety of magnetic configurations with wide ranges of toroidal aspect ratios and methods of generating the stellarator magnetic surfaces. In particular, continuous helical coils, twisted modular coils, or twisted vacuum chambers all provide different means to generate nested toroidal magnetic surfaces without the need for currents flowing in the plasma. The goal of present day experiments is to accumulate a physics data base. This is being done by increasing electron and ion temperatures with non-ohmic heating, by transport and scaling studies considering neoclassical scaling, global scaling, effects of electric fields, the bootstrap current and magnetic islands. Higher betas are being attempted by designing suitable magnetic configurations, pellet injection and/or minimizing transport losses. Plasma-wall interactions and particle control are being examined by divertor, pumped-limiter and carbonization experiments

  6. The Stellar Imager (SI)"Vision Mission"

    Science.gov (United States)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  7. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  8. VizieR Online Data Catalog: CATalog of Stellar Unified Properties (Hinkel+, 2017)

    Science.gov (United States)

    Hinkel, N. R.; Mamajek, E. E.; Turnbull, M. C.; Osby, E.; Shkolnik, E. L.; Smith, G. H.; Klimasewski, A.; Somers, G.; Desch, S. J.

    2017-11-01

    We have assembled a data set of stellar properties for 951 FGK-type stars within 30pc of the Sun. Beginning with the Gaia (Cat. I/337) TGAS subset of astrometric data, we have combined information regarding multiplicity within stellar systems (ExoCat, Gray et al., 2003, Cat. J/AJ/126/2048; 2006, Cat. J/AJ/132/161; Valenti & Fischer 2005, Cat. J/ApJS/159/141; Takeda et al. 2007, Cat. J/PASJ/59/1127), stellar abundance measurements (Hypatia, Hinkel et al. 2014, Cat. J/AJ/148/54; 2016ApJS..226....4H), standardized spectral types, Ca II H and K stellar activity indices, NUV and FUV photometry from GALEX (Cat. II/312), and X-ray fluxes and luminosities from ROSAT (Cat. IX/10), XMM (Cat. IX/50), and Chandra (Cat. IX/45). The aim of this project was to collate a wide variety of data for nearby stars such that they could be more easily characterized. The information available in CATSUP can be utilized for the direct sample or act as a proxy for similar stars, in order to better understand the overall trends within solar neighborhood stars, as well as stars that host exoplanets. CATSUP was compiled in anticipation of upcoming exoplanet surveys such as TESS, CHEOPS, and WFIRST. (1 data file).

  9. Digital Interior Design by Stailia Design Oy

    OpenAIRE

    Lindroos, Jaana

    2017-01-01

    The objective of the thesis work is to research and create a web based service in a field of interior design. With my project, I am hoping to find out whether this kind of web service in the field of interior design can work in general and that the process together with the actual order form on internet is smooth from both customer and company point of view. The company has interior design related services but none entirely executed on the web. The target is to create a totally new service/pr...

  10. Computer vision based room interior design

    Science.gov (United States)

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  11. Stellar Wakes from Dark Matter Subhalos.

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  12. Stellar Wakes from Dark Matter Subhalos

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  13. Effect of finite β on stellarator transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1984-04-01

    A theory of the modification of stellarator transport due to the presence of finite plasma pressure is developed, and applied to a range of stellarator configurations. For many configurations of interest, plasma transport can change by more than an order of magnitude in the progression from zero pressure to the equilibrium β limit of the device. Thus, a stellarator with transport-optimized vacuum fields can have poor confinement at the desired operating β. Without an external compensating field, increasing β tends to degrade confinement, unless the initial field structure is very carefully chosen. The theory permits one to correctly determine this vacuum structure, in terms of the desired structure of the field at a prescribed operating β. With a compensating external field, the deleterious effect of finite β on transport can be partially eliminated

  14. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  15. Equilibrium reconstruction in stellarators: V3FIT

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.D.; Knowlton, S.F. [Physics Department, Auburn University, Auburn, AL (United States); Hirshman, S.P.; Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Lao, L.L. [General Atomics, San Diego, CA (United States)

    2003-07-01

    The first section describes a general response function formalism for computing stellarator magnetic diagnostic signals, which is the first step in developing a reconstruction capability. The approach parallels that used in the EFIT two-dimensional (2-D) equilibrium reconstruction code. The second section describes the two codes we have written, V3RFUN and V3POST. V3RFUN computes the response functions for a specified magnetic diagnostic coil, and V3POST uses the response functions calculated by V3RFUN, along with the plasma current information supplied by the equilibrium code VMEC, to compute the expected magnetic diagnostic signals. These two codes are currently being used to design magnetic diagnostic for the NCSX stellarator (at PPPL) and the CTH toroidal hybrid stellarator (at Auburn University). The last section of the paper describes plans for the V3FIT code. (orig.)

  16. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  17. Young and Exotic Stellar Zoo

    Science.gov (United States)

    2005-03-01

    Summary Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy. PR Photo 09a/05: The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) PR Photo 09b/05: Properties of Young Massive Clusters Super Star Clusters Stars are generally born in small groups, mostly in so-called "open clusters" that typically contain a few hundred stars. From a wide range of

  18. The Stellar IMF from Isothermal MHD Turbulence

    Science.gov (United States)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  19. Students Excited by Stellar Discovery

    Science.gov (United States)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  20. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  1. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.; Leneva, A.E.; Mikhailov, M.; Shafranov, V.D.; Subbotin, A.A.

    2001-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  2. Optimisation of stellarator systems: Possible ways

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.Yu.; Leneva, A.E.; Mikhailov, M.I.; Sharfranov, V.D.; Subbotin, A.A.

    1999-01-01

    The results of our search for advanced helical (stellarator) systems with a small number of field periods over the last five years are presented. The comparison of stellarator systems with toroidal (helical or axial) and poloidal directions of the contours with B = constant on the magnetic surface as well as systems with Helias and Heliac-like orientation of the magnetic surfaces cross-sections with respect to the principal normal to the magnetic axis is undertaken. Particular attention is paid to some attractive features of the systems with constant B-lines in the poloidal direction. (author)

  3. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  4. Stellar compass for the Clementine Mission

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A CCD sensor with 42 x 28 degrees FOV and 576 x 384 pixels was built by the Advanced Technology Program (ATP) in the Physics Department at LLNL. That sensor, called the StarTracker camera, is used on the Clementine Lunar Mapping mission between January and May, 1994. Together with the Stellar Compass software, the StarTracker camera provided a way of identifying its orientation to within about 150 microradians in camera body pitch and yaw. This presentation will be an overview of basically how the Stellar Compass software works, along with showing some of its performance results.

  5. Overdense Plasma Operation in the WEGA Stellarator

    Czech Academy of Sciences Publication Activity Database

    Otte, M.; Laqua, H.P.; Marsen, S.; Podoba, Y.; Preinhaelter, Josef; Stange, T.; Urban, Jakub; Wagner, F.; Zhang, D.

    2010-01-01

    Roč. 50, č. 8 (2010), s. 785-789 ISSN 0863-1042. [International Stellarator/Heliotron Workshop/17th./. Princeton, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : Stellarator * Bernstein waves * overdense plasma * supra -thermal electrons Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://dx.doi.org/10.1002/ctpp.200900053

  6. STELLAR POPULATIONS AND RADIAL MIGRATIONS IN VIRGO DISK GALAXIES

    International Nuclear Information System (INIS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-01-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ( U -shapes ) in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (≤36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (∼11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (≥50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field

  7. Interior Design's Role in Educational Specifications.

    Science.gov (United States)

    Keller, Mary Ann

    1986-01-01

    An experienced interior designer, equipped with a well-written educational specification, will specify the best materials and coordinate colors, materials, and furnishings in line with the district's budget. (MLF)

  8. Following the Interstellar History of Carbon: From the Interiors of Stars to the Surfaces of Planets.

    Science.gov (United States)

    Ziurys, L M; Halfen, D T; Geppert, W; Aikawa, Y

    2016-12-01

    The chemical history of carbon is traced from its origin in stellar nucleosynthesis to its delivery to planet surfaces. The molecular carriers of this element are examined at each stage in the cycling of interstellar organic material and their eventual incorporation into solar system bodies. The connection between the various interstellar carbon reservoirs is also examined. Carbon has two stellar sources: supernova explosions and mass loss from evolved stars. In the latter case, the carbon is dredged up from the interior and then ejected into a circumstellar envelope, where a rich and unusual C-based chemistry occurs. This molecular material is eventually released into the general interstellar medium through planetary nebulae. It is first incorporated into diffuse clouds, where carbon is found in polyatomic molecules such as H 2 CO, HCN, HNC, c-C 3 H 2 , and even C 60 + . These objects then collapse into dense clouds, the sites of star and planet formation. Such clouds foster an active organic chemistry, producing compounds with a wide range of functional groups with both gas-phase and surface mechanisms. As stars and planets form, the chemical composition is altered by increasing stellar radiation, as well as possibly by reactions in the presolar nebula. Some molecular, carbon-rich material remains pristine, however, encapsulated in comets, meteorites, and interplanetary dust particles, and is delivered to planet surfaces. Key Words: Carbon isotopes-Prebiotic evolution-Interstellar molecules-Comets-Meteorites. Astrobiology 16, 997-1012.

  9. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    2010-01-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  10. IRAS 20050+2720: ANATOMY OF A YOUNG STELLAR CLUSTER

    International Nuclear Information System (INIS)

    Günther, H. M.; Wolk, S. J.; Spitzbart, B.; Forbrich, J.; Wright, N. J.; Bourke, T. L.; Gutermuth, R. A.; Allen, L.; Megeath, S. T.; Pipher, J. L.

    2012-01-01

    IRAS 20050+2720 is young star-forming region at a distance of 700 pc without apparent high-mass stars. We present results of our multi-wavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and Two Micron All Sky Survey and UBVRI photometry. In total, about 300 young stellar objects (YSOs) in different evolutionary stages are found. We characterize the distribution of YSOs in this region using a minimum spanning tree analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10' from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion Nebula complex. IRAS 20050+2720 shows a lower N H /A K ratio compared with the diffuse interstellar medium.

  11. Penerapan Interior Branding pada Hotel Yello

    OpenAIRE

    Gunawan, Astri Indrawati

    2017-01-01

    The development of entertainment and tourism in Surabaya has lead to increasing of tourist arrival. This condition makes hotel businesses flourishing. The 3 star hotel is currently the best-selling hotel due to adequate facilities at current economic level. To cope with the competition, many 3 star hotels applied branding in the interior. Interior branding is formed not only from the visual beauty, but rather to the room's atmosphere that contains stories and unique messages to influence the ...

  12. Discovering the interior of black holes

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-12-01

    The detection of gravitational waves (GWs) from black hole (BH) mergers provides an inroad toward probing the interior of astrophysical BHs. The general-relativistic description of the BH interior is that of empty spacetime with a (possibly) singular core. Recently, however, the hypothesis that the BH interior does not exist has been gaining traction, as it provides a means for resolving the BH information-loss problem. Here, we propose a simple method for answering the following question: Does the BH interior exist and, if so, does it contain some distribution of matter or is it mostly empty? Our proposal is premised on the idea that, similar to the case of relativistic, ultracompact stars, any BH-like object whose interior has some matter distribution should support fluid modes in addition to the conventional spacetime modes. In particular, the Coriolis-induced Rossby (r-) modes, whose spectrum is mostly insensitive to the composition of the interior matter, should be a universal feature of such BH-like objects. In fact, the frequency and damping time of these modes are determined by only the object's mass and speed of rotation. The r-modes oscillate at a lower frequency, decay at a slower rate, and produce weaker GWs than do the spacetime modes. Hence, they imprint a model-insensitive signature of a nonempty interior in the GW spectrum resulting from a BH merger. We find that future GW detectors, such as Advanced LIGO with its design sensitivity, have the potential of detecting such r-modes if the amount of GWs leaking out quantum mechanically from the interior of a BH-like object is sufficiently large.

  13. Project management in interior design services

    OpenAIRE

    Şahinoglu, Alp

    1997-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1997. Thesis (Master's) -- Bilkent University, 1997. Includes bibliographical references. In this study, the concept of project management is analyzed within the framework of interior design services. Project management has been defined as the managing and coordination of all human and physical resources, in order to accomplish the predetermined goals (aim of the proj...

  14. Interior transmission eigenvalues of a rectangle

    International Nuclear Information System (INIS)

    Sleeman, B D; Stocks, D C

    2016-01-01

    The problem of scattering of acoustic waves by an inhomogeneous medium is intimately connected with so called inside–outside duality, in which the interior transmission eigenvalue problem plays a fundamental role. Here a study of the interior transmission eigenvalues for rectangular domains of constant refractive index is made. By making a nonstandard use of the classical separation of variables technique both real and complex eigenvalues are determined. (paper)

  15. The Stellar Origins of Supernovae

    Science.gov (United States)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.

  16. The State of Environmentally Sustainable Interior Design Practice

    OpenAIRE

    Mihyun Kang; Denise A. Guerin

    2009-01-01

    Problem statement: Research that investigates how interior designers use environmentally sustainable interior design criteria in their design solutions has not been done. To provide a base to develop education strategies for sustainable interior design, this study examined the state of environmentally sustainable interior design practice. Approach: A national, Internet-based survey of interior design practitioners was conducted. To collect data, the random sample of US interior design practit...

  17. Determining building interior structures using compressive sensing

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  18. Constraining Stellar Coronal Mass Ejections through Multi-wavelength Analysis of the Active M Dwarf EQ Peg

    Science.gov (United States)

    Crosley, M. K.; Osten, R. A.

    2018-03-01

    Stellar coronal mass ejections remain experimentally unconstrained, unlike their stellar flare counterparts, which are observed ubiquitously across the electromagnetic spectrum. Low-frequency radio bursts in the form of a type II burst offer the best means of identifying and constraining the rate and properties of stellar CMEs. CME properties can be further improved through the use of proposed solar-stellar scaling relations and multi-wavelength observations of CMEs through the use of type II bursts and the associated flares expected to occur alongside them. We report on 20 hr of observation of the nearby, magnetically active, and well-characterized M dwarf star EQ Peg. The observations are simultaneously observed with the Jansky Very Large Array at their P-band (230–470 MHz) and at the Apache Point observatory in the SDSS u‧ filter (λ = 3557 Å). Dynamic spectra of the P-band data, constructed to search for signals in the frequency-time domains, did not reveal evidence of drifting radio bursts that could be ascribed to type II bursts. Given the sensitivity of our observations, we are able to place limits on the brightness temperature and source size of any bursts that may have occurred. Using solar scaling rations on four observed stellar flares, we predict CME parameters. Given the constraints on coronal density and photospheric field strength, our models suggest that the observed flares would have been insufficient to produce detectable type II bursts at our observed frequencies. We consider the implications of these results, and other recent findings, on stellar mass loss.

  19. Ambitious Survey Spots Stellar Nurseries

    Science.gov (United States)

    2010-08-01

    -dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries

  20. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  1. Deriving stellar parameters with the SME software package

    Science.gov (United States)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  2. Stellar chemical signatures and hierarchical galaxy formation

    NARCIS (Netherlands)

    Venn, KA; Irwin, M; Shetrone, MD; Tout, CA; Hill, [No Value; Tolstoy, E

    To compare the chemistries of stars in the Milky Way dwarf spheroidal (dSph) satellite galaxies with stars in the Galaxy, we have compiled a large sample of Galactic stellar abundances from the literature. When kinematic information is available, we have assigned the stars to standard Galactic

  3. Equilibrium 𝛽-limits in classical stellarators

    Science.gov (United States)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  4. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  5. Microlensing and the physics of stellar atmospheres

    NARCIS (Netherlands)

    Sackett, PD; Menzies, JW; Sackett, PD

    2001-01-01

    The simple physics of microlensing provides a well understood tool with which to probe the atmospheres of distant stars in the Galaxy and Local Group with high magnification and resolution. Recent results in measuring stellar surface structure through broad band photometry and spectroscopy of high

  6. Evolution and seismic tools for stellar astrophysics

    CERN Document Server

    Monteiro, Mario JPFG

    2008-01-01

    A collection of articles published by the journal "Astrophysics and Space Science, Volume 316, Number 1-4", August 2008. This work covers 10 evolution codes and 9 oscillation codes. It is suitable for researchers and research students working on the modeling of stars and on the implementation of seismic test of stellar models.

  7. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  8. Robust Modeling of Stellar Triples in PHOEBE

    Science.gov (United States)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  9. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  10. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  11. Summary of the Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1997-01-01

    The current version of the Advanced Stellar Compass (ASC) is an improved implementation of the instrument developed for the Danish Geomagnetic Research Satellite Ørsted. The Ørsted version was successfully tested in space on the NASA sounding rocket "Thunderstorm III", that was launched September 2...

  12. Neutrino confinement in collapsing stellar cores

    International Nuclear Information System (INIS)

    Chung, K.C.

    1987-01-01

    Neutrino confinement is expected to occur in the core of highly evolved stars, leading to the formation of a degenerate neutrino gas. The main neutrino sources are briefly reviewed and the neutrino processes relevant to the neutrino opacity in the stellar matter are discussed. Implications for the equation of state of neutrino-trapped matter are examined. (author) [pt

  13. Survey of the MAgellanic Stellar History -- SMASH

    NARCIS (Netherlands)

    Nidever, David; Olsen, Knut; Besla, Gurtina; Gruendl, Robert; Saha, Abhijit; Gallart, Carme; Olszewski, Edward W.; Munoz, Ricardo; Monelli, Matteo; Kunder, Andrea; Kaleida, Catherine; Walker, Alistair; Stringfellow, Guy; Zaritsky, Dennis; van der Marel, Roeland; Blum, Robert; Vivas, Kathy; Chu, You-Hua; Martin, Nicolas; Conn, Blair; Noel, Noelia; Majewski, Steven; Jin, Shoko; Kim, Hwihyun; Cioni, Maria-Rosa; Bell, Eric; Monachesi, Antonela; de Boer, Thomas

    Over the last several years, various discoveries have drastically altered our view of the iconic Magellanic Clouds (MCs), the nearest interacting galaxy system. The best evidence is now that they are on first infall into the Milky Way, that their stellar populations extend much further than

  14. The evolution of stellar exponential discs

    NARCIS (Netherlands)

    Ferguson, AMN; Clarke, CJ

    2001-01-01

    Models of disc galaxies which invoke viscosity-driven radial flows have long been known to provide a natural explanation for the origin of stellar exponential discs, under the assumption that the star formation and viscous time-scales are comparable. We present models which invoke simultaneous star

  15. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  16. The Stellar Imager (SI) Mission Concept

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; hide

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  17. The Space Stellar Photometry Mission COROT: Asteroseismology ...

    Indian Academy of Sciences (India)

    tribpo

    detect giant extra solar planets (detectable by spectroscopy from the ground) and determine their albedo. As COROT is devoted to stellar photometry, aiming at both a high precision and a long observation time, the search for exoplanets by the transit method can easily be integrated in the payload and in the mission profile.

  18. Teaching stellar interferometry with polymer optical fibers

    Science.gov (United States)

    Illarramendi, M. A.; Arregui, L.; Zubia, J.; Hueso, R.; Sanchez-Lavega, A.

    2017-08-01

    In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.

  19. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  20. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    Science.gov (United States)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  1. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  2. The Quasi-Toroidal Stellarator: An Innovative Confinement Experiment

    International Nuclear Information System (INIS)

    Knowlton, S. F.

    2001-01-01

    To develop a new class of stellarators that exhibit improved confinement compared to conventional stellarators. This approach generally makes use of a designed symmetry of the magnetic field strength along a particular coordinate axis in the toroidal geometry of the stellarator, and is referred to as quasi-symmetry

  3. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  4. The Prefabricated Interior Design Studio: An Exploration into the History and Sustainability of Interior Prefabrication

    Science.gov (United States)

    Schneiderman, Deborah; Freihoefer, Kara

    2013-01-01

    This article examines the integration of prefabrication into an interior design studio. A review of the literature revealed that while there is a paucity of categorical research focused on this subject, the subject is historically significant with an abundance of evidence regarding the prefabrication of the interior environment dating back…

  5. Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package

    Science.gov (United States)

    Tsantaki, M.; Andreasen, D. T.; Teixeira, G. D. C.; Sousa, S. G.; Santos, N. C.; Delgado-Mena, E.; Bruzual, G.

    2018-02-01

    In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In this work, we developed a new spectral package, FASMA, to estimate the stellar atmospheric parameters (namely effective temperature, surface gravity and metallicity) in a fast and robust way. This method is suitable for spectra of FGK-type stars in medium and high resolution. The spectroscopic analysis is based on the spectral synthesis technique using the radiative transfer code, MOOG. The line list is comprised of mainly iron lines in the optical spectrum. The atomic data are calibrated after the Sun and Arcturus. We use two comparison samples to test our method, (i) a sample of 451 FGK-type dwarfs from the high-resolution HARPS spectrograph; and (ii) the Gaia-ESO benchmark stars using both high and medium resolution spectra. We explore biases in our method from the analysis of synthetic spectra covering the parameter space of our interest. We show that our spectral package is able to provide reliable results for a wide range of stellar parameters, different rotational velocities, different instrumental resolutions and for different spectral regions of the VLT-GIRAFFE spectrographs, used amongst others for the Gaia-ESO survey. FASMA estimates stellar parameters in less than 15 m for high-resolution and 3 m for medium-resolution spectra. The complete package is publicly available to the community.

  6. Interior design. Mastering the master plan.

    Science.gov (United States)

    Mesbah, C E

    1995-10-01

    Reflecting on the results of the survey, this proposed interior design master planning process addresses the concerns and issues of both CEOs and facility managers in ways that focus on problem-solving strategies and methods. Use of the interior design master plan process further promotes the goals and outcomes expressed in the survey by both groups. These include enhanced facility image, the efficient selection of finishes and furnishings, continuity despite staff changes, and overall savings in both costs and time. The interior design master plan allows administrators and facility managers to anticipate changes resulting from the restructuring of health care delivery. The administrators and facility managers are then able to respond in ways that manage those changes in the flexible and cost-effective manner they are striving for. This framework permits staff members to concentrate their time and energy on the care of their patients--which is, after all, what it's all about.

  7. Inequivalence of interior and exterior dynamical problems

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    We begin a series of notes with the review of the historical distinction by Lagrange, Hamilton, Jacobi and other Founding Fathers of analytic dynamics, between the exteriordynamical problem, consisting of motion in vacuum under action-at-a-distance interactions, and the interior dynamical problem, consisting of motion within a resistive medium with the additional presence of contact, nonlinear, nonlocal and nonhamiltonian internal forces. After recalling some of the historical reasons that led to the contemporary, virtually complete restriction of research to the exterior problem, we show that the interior dynamical problem cannot be reduced to the exterior one. This establishes the open character of the central objective of these notes: the identification of the space-time symmetries and relativities that are applicable to interior, nonlinear, nonlocal and nonhamiltonian systems. (author). 29 refs

  8. Penerapan Psikologi Desain pada Elemen Desain Interior

    Directory of Open Access Journals (Sweden)

    Budi Setiawan

    2014-10-01

    Full Text Available One of main interior designer’s assignments is to solve the problem within the facility. Problems may occur because the activities of design decision had done or will be done on the facility are not maximized. This problem can be reduced by rethinking the design through psychology design. Utilizing psychology design will help designer decide a better judgment of objects that affects the person using it in routine. The example of interior objects is wall, door, floor, color, and other elements of interior. Desk research method was used to support this article trough data collection from books and other professional institution websites. At the end, the conclusion of this article does not directly impact the result since it took time to persuade judgment of the user, but positively it will construct designer to rethink the design object.  

  9. Interior point algorithms theory and analysis

    CERN Document Server

    Ye, Yinyu

    2011-01-01

    The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject.

  10. Perancangan Interior Museum Film Indonesia Di Surabaya

    OpenAIRE

    Limantoro, Lim Renawati

    2013-01-01

    Surabaya is a city with a thriving cultural variety with a pluralistic society where people in Surabaya is more modern that easy to accept new things that developed in the community. Museum is a public place so that the necessary interior educative and informative and can be used as a sports-themed Indonesian films. The purpose of designing the interior of the film museum in Surabaya this is a venue to preserve Indonesian films and give knowledge to the people of Surabaya on the world of cine...

  11. Stellar Streams Discovered in the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Shipp, N.; et al.

    2018-01-09

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $\\sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $< 1 \\%$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $\\sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.

  12. Modular Stellarator Fusion Reactor (MSR) concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-01-01

    A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment

  13. Time variations of stellar water masers

    International Nuclear Information System (INIS)

    Cox, G.G.; Parker, E.A.

    1979-01-01

    The 22-GHz H 2 O spectra of the stars RS Vir, RT Vir, R Aql, W Hya, U Her, S Cr B, Rx Boo, R Crt and VY CMa have been observed at intervals during the period 1974 September -1977 May. Optical and infrared measurements have also been made. New components have been observed in the H 2 O spectra of most of the stars, and the flux density of W Hya reached 2000 Jy near Jd 2442700. The intensities of the three main groups of components in VY CMa varied in phase consistent with a central pump source. In several stars the intensities were very different from those found by earlier observers, showing that stellar H 2 O masers are often not stable for more than a few cycles of the stellar luminosity. For part of the time the H 2 O and infrared intensities of R Aql and RS Vir were anticorrelated. (author)

  14. A Compact Quasi-axisymmetric Stellarator Reactor

    International Nuclear Information System (INIS)

    Ku, L.P.

    2003-01-01

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils

  15. Excitation of solar and stellar oscillations

    International Nuclear Information System (INIS)

    Baudin, Frederic

    2009-01-01

    In this report for an Accreditation to Supervise Research (HDR), and after an introduction which outlines the potential of helio-seismology, the author addresses the problem of excitation and amplitude of stellar oscillations with respect to their most important aspects, i.e. the theoretical framework of the present understanding of excitation mechanisms, and instrumental influences on measurements which are used to assess excitation rates, the difficulty to perform these measurements, and their analysis in some various cases. Thus, the author addresses excitation mechanisms of stellar oscillation (stochastic excitation, opacity- related excitation, and other excitation mechanisms), the excitation of solar modes (observation and theoretical predictions, influence of magnetic phenomena, solar g modes), and the excitation of modes in other stars (solar-type pulsators, red giants, and not so conventional pulsators such as HD180642 and Be stars like HD49330)

  16. Stellar evolution as seen by mixed modes

    Directory of Open Access Journals (Sweden)

    Mosser Benoît

    2015-01-01

    Full Text Available The detection of mixed modes in subgiants and red giants allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. Quantified asteroseismic definitions that characterize the change in the evolutionary stages have been defined. This seismic information can now be used for stellar modelling, especially for studying the energy transport in the helium burning core or for specifying the inner properties of stars all along their evolution. Modelling will also allow us to study stars identified in the helium subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.

  17. Physics of stellar evolution and cosmology

    International Nuclear Information System (INIS)

    Goldberg, H.S.; Scadron, M.D.

    1981-01-01

    Astrophysical phenomena are examined on a fundamental level, stressing basic physical laws, in a textbook suitable for a one-semester intermediate course. The ideal gas law, the meaning of temperature, black-body radiation, discrete spectra, and the Doppler effect are introduced and used to study such features of the interstellar medium as 21-cm radiation, nebulae and dust, and the galactic magnetic field. The phases of stellar evolution are discussed, including stellar collapse, quasi-hydrostatic equilibrium, the main sequence, red giants, white dwarves, neutron stars, supernovae, pulsars, and black holes. Among the cosmological topics covered are the implications of Hubble's constant, the red-shift curve, the steady-state universe, the evolution of the big bang (thermal equilibrium, hadron era, lepton era, primordial nucleosynthesis, hydrogen recombination, galaxy formation, and the cosmic fireball), and the future (cold end or big crunch). 72 references

  18. Stellar physics with the ALHAMBRA photometric system

    International Nuclear Information System (INIS)

    Villegas, T Aparicio; Alfaro, E J; Moles, M; Benítez, N; Perea, J; Olmo, A del; Cristóbal-Hornillos, D; Cervio, M; Delgado, R M González; Márquez, I; Masegosa, J; Prada, F; Cabrera-Caño, J; Fernández-Soto, A; Aguerri, J A L; Cepa, J; Broadhurst, T; Castander, F J; Infante, L; Martínez, V J

    2011-01-01

    The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (T eff , log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.

  19. Isotope ratio in stellar atmospheres and nucleosynthesis

    International Nuclear Information System (INIS)

    Barbuy, B.L.S.

    1987-01-01

    The determination of isotopic ratios in stellar atmospheres is studied. The isotopic shift of atomic and molecular lines of different species of a certain element is examined. CH and MgH lines are observed in order to obtain the 12 C: 13 C and 24 Mg: 25 Mg: 26 Mg isotpic ratios. The formation of lines in stellar atmospheres is computed and the resulting synthetic spectra are employed to determine the isotopic abundances. The results obtained for the isotopic ratios are compared to predictions of nucleosynthesis theories. Finally, the concept of primary and secondary element is discussed, and these definitions are applied to the observed variations in the abundance of elements as a function of metallicity. (author) [pt

  20. STELLTRANS: A Transport Analysis Suite for Stellarators

    Science.gov (United States)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  1. Energetic Particle Estimates for Stellar Flares

    Science.gov (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom

    2018-01-01

    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  2. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  3. Stellar clusters in the Gaia era

    Science.gov (United States)

    Bragaglia, Angela

    2018-04-01

    Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.

  4. Time-Domain Studies as a Probe of Stellar Evolution

    Science.gov (United States)

    Miller, Adam Andrew

    This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present

  5. Stellar abundances in the solar neighborhood: The Hypatia Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Timmes, F.X.; Young, Patrick A.; Pagano, Michael D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Turnbull, Margaret C. [Global Science Institute, P.O. Box 252, Antigo, WI 54409 (United States)

    2014-09-01

    We compile spectroscopic abundance data from 84 literature sources for 50 elements across 3058 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. We evaluate the variability of the spread in abundance measurements reported for the same star by different surveys. We also explore the likely association of the star within the Galactic disk, the corresponding observation and abundance determination methods for all catalogs in Hypatia, the influence of specific catalogs on the overall abundance trends, and the effect of normalizing all abundances to the same solar scale. The resulting stellar abundance determinations in the Hypatia Catalog are analyzed only for thin-disk stars with observations that are consistent between literature sources. As a result of our large data set, we find that the stars in the solar neighborhood may reveal an asymmetric abundance distribution, such that a [Fe/H]-rich group near the midplane is deficient in Mg, Si, S, Ca, Sc II, Cr II, and Ni as compared to stars farther from the plane. The Hypatia Catalog has a wide number of applications, including exoplanet hosts, thick- and thin-disk stars, and stars with different kinematic properties.

  6. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  7. Future prospects for stellar intensity interferometry

    International Nuclear Information System (INIS)

    Lake, R.J.W.

    2002-01-01

    Full text: The technique of Stellar Intensity lnterferometry (SII) was first successfully demonstrated by Hanbury-Brown in 1956 at Jodrell Bank. SII uses the correlation in intensity fluctuations of starlight as a function of observational baseline to determine angular diameters and other gross features of main sequence stars. In 1962 an observatory was established by Hanbury-Brown in Narrabri NSW. Between 1965 and 1972 the angular diameters of 32 stars covering the spectral range O to F were measured. Orbital parameters of several unresolved binary stars were also determined and attempts were made by the author to directly measure the limb darkening of Sirius and the rotational distortion of Altair. Following the success of the Narrabri SII the Australian Federal Government provided a grant to Sydney University to develop a Very Large SII capable of making observational measurements on about a thousand stars. The development of this VLSII was however shelved in preference to the development of a potentially more sensitive long baseline Michelson Stellar Interferometer. This latter instrument known as SUSI (Sydney University Stellar Interferometer) has been in operation at Narrabri since 1995. Encouraged by the early results of SUSI and their own efforts in the use of active optics to reduce the effects of atmospheric scintillation a number of international observatories are now active in the development of long baseline or large aperture Michelson Stellar Interferometers. However SII while sacrificing sensitivity has a number of technical advantages over MSI as SII is far less sensitive to atmospheric effects and can be readily developed to work over very long baselines. This paper through technical review and theoretical modeling examines how a modern VLSII could be constructed and operated and addresses the limitations to its sensitivity. In particular it examines how existing Australian industry could contribute to the development of a VLSII with sufficient

  8. Detection of stellar oscillations in HWVir

    Directory of Open Access Journals (Sweden)

    Baran Andrzej S.

    2016-08-01

    Full Text Available We present our analysis of K2 observations of the binary system, HWVir. We processed the raw Kepler data and used Fourier analysis to search for periodic signals that could be associated with pulsations. We detect the binary frequency and its harmonic and discovered tens of peaks at both low and high frequencies. We interpreted those to be caused by stellar pulsations. Our discovery means we can apply the tools of asteroseismology to the HWVir system.

  9. Stellarator approach to toroidal plasma confinement

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  10. Rate of stellar collapses in the Galaxy

    International Nuclear Information System (INIS)

    Lande, K.; Stephens, W.E.

    1977-01-01

    From an analysis of pulsar spatial and luminosity distributions, the number density of observed pulsars in the local region is determined to be 1.1+-0.4x10 -7 pulsar pc -3 . Multiplication by the detection factor and by the ratio of Galaxy mass to local matter density and division by a mean lifetime of pulsars of 3x10 6 yr suggests a pulsar birth every 4 yr. A stellar collapse might occur even more often. (Auth.)

  11. Stellar Atmospheric Modelling for the ACCESS Program

    Science.gov (United States)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  12. The formation of stellar black holes

    Science.gov (United States)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  13. The doubling of stellar black hole nuclei

    Science.gov (United States)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  14. Intrinsic Turbulence Stabilization in a Stellarator

    Directory of Open Access Journals (Sweden)

    P. Xanthopoulos

    2016-06-01

    Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].

  15. Solar and Stellar X-ray Cycles

    Science.gov (United States)

    Martens, P. C. H.; SADE Team

    2004-05-01

    Stern et al. have shown that Yohkoh-SXT full disk X-ray irradiance shows an 11 year cycle with an max/min amplitude ratio of a factor 30. Similar cyclic X-ray variation in Sun-like stars observed by ROSAT and its predecessors is observed in only a few cases and limited to a factor two or three. We will show, by means of detailed bandpass comparisons, that this discrepancy cannot be ascribed to the differences in energy response between SXT and the stellar soft X-ray detectors. Is the Sun exceptional? After centuries of geocentric and heliocentric worldviews we find this a difficult proposition to entertain. But perhaps the Sun is a member of a small class of late-type stars with large amplitudes in their X-ray cycles. The stellar X-ray observations listed in the HEASARC catalog are too sparse to verify this hypothesis. To resolve these and related questions we have proposed a small low-cost stellar X-ray spectroscopic imager originally called SADE to obtain regular time series from late and early-type stars and accretion disks. This instrument is complimentary to the much more advanced Chandra and XMM-Newton observatories, and allows them to focus on those sources that require their full spatial and spectral resolution. We will describe the basic design and spectroscopic capability of SADE and show it meets the mission requirements.

  16. STELLAR: fast and exact local alignments

    Directory of Open Access Journals (Sweden)

    Weese David

    2011-10-01

    Full Text Available Abstract Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de.

  17. Plasma equilibrium and stability in stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.; Shafranov, V.D.

    1987-01-01

    A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived

  18. An Evaluation of Automotive Interior Packages Based on Human Ocular and Joint Motor Properties

    Science.gov (United States)

    Tanaka, Yoshiyuki; Rakumatsu, Takeshi; Horiue, Masayoshi; Miyazaki, Tooru; Nishikawa, Kazuo; Nouzawa, Takahide; Tsuji, Toshio

    This paper proposes a new evaluation method of an automotive interior package based on human oculomotor and joint-motor properties. Assuming the long-term driving situation in the express high way, the three evaluation indices were designed on i) the ratio of head motion at gazing the driving items; ii) the load torque for maintaining the standard driving posture; and iii) the human force manipulability at the end-point of human extremities. Experiments were carried out for two different interior packages with four subjects who have the special knowledge on the automobile development. Evaluation results demonstrate that the proposed method can quantitatively analyze the driving interior in good agreement with the generally accepted subjective opinion in the automobile industry.

  19. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Beidler, C.D.; Hitchon, W.N.G.

    1993-08-01

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν -1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  20. Climatology of the interior Columbia River basin.

    Science.gov (United States)

    Sue A. Ferguson

    1999-01-01

    This work describes climate means and trends in each of three major ecological zones and 13 ecological reporting units in the interior Columbia River basin. Widely differing climates help define each major zone and reporting unit, the pattern of which is controlled by three competing air masses: marine, continental, and arctic. Paleoclimatic evidence and historical...