Energy Technology Data Exchange (ETDEWEB)
Deslouis, C. (LP15 du CNRS, Physique des Liquides et Electrochimie, Lab. de l' Univ. Pierre et Marie Curie, 75252 Paris Cedex 05 (FR)); Musiani, M.M.; Pagura, C.; Tribollet, C. (Inst. di Polarografia de Elettrochimica Preparativa del CNR, Corso Stati Uniti, 4, 35020 Camin, Padova (IT))
1991-09-01
This paper discusses the Fe{sup 3+} reduction reaction studied at Pt and polyaniline rotating disk electrodes by steady-state and impedance methods with the aim of testing the possibility of achieving the charge transfer resistance (R{sub ts}) of a redox reaction mediated by a conducting polymer film by ac impedance R{sub ts} was obtained as a function of electrode potential and rotation rate by nonlinear least squares fitting of a previously developed kinetic equation to the experimental data. These R{sub ts} values were combined with steady-state ones to calculate b{sub c} and k{sup 0}.
Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain
International Nuclear Information System (INIS)
Ilievski, Enej; Prosen, Tomaž
2014-01-01
We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl 2 and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure
Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain
Energy Technology Data Exchange (ETDEWEB)
Ilievski, Enej; Prosen, Tomaž
2014-05-15
We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl{sub 2} and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure.
Directory of Open Access Journals (Sweden)
Shoubin Wang
2017-01-01
Full Text Available Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient method and social particle swarm optimization (CGM-SPSO algorithm is proposed. The global search ability of particle swarm optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in solving the problem of two-dimensional steady-state thermal boundary shape.
Selection of steady states in planar Darcy convection
International Nuclear Information System (INIS)
Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.
2006-01-01
The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented
DEFF Research Database (Denmark)
Andersen, Lars; Nielsen, Søren R. K.
2003-01-01
The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source...... is approximated, but the error which is introduced in this way is insignificant. Numerical examples are given for a moving rectangular load on an elastic half-space. The result from a boundary element code based on the derived Green's function are compared with a semi-analytic solution....
Energy Technology Data Exchange (ETDEWEB)
Erkut, M. Hakan [Physics Engineering Department, Faculty of Science and Letters, Istanbul Technical University, 34469, Istanbul (Turkey); Çatmabacak, Onur, E-mail: mherkut@gmail.com [Institute for Computational Sciences Y11 F74, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)
2017-11-01
The neutron stars in low-mass X-ray binaries (LMXBs) are usually thought to be weakly magnetized objects accreting matter from their low-mass companions in the form of a disk. Albeit weak compared to those in young neutron-star systems, the neutron-star magnetospheres in LMXBs can play an important role in determining the correlations between spectral and temporal properties. Parallel tracks appearing in the kilohertz (kHz) quasi-periodic oscillation (QPO) frequency versus X-ray flux plane can be used as a tool to study the magnetosphere–disk interaction in neutron-star LMXBs. For dynamically important weak fields, the formation of a non-Keplerian magnetic boundary layer at the innermost disk truncated near the surface of the neutron star is highly likely. Such a boundary region may harbor oscillatory modes of frequencies in the kHz range. We generate parallel tracks using the boundary region model of kHz QPOs. We also present the direct application of our model to the reproduction of the observed parallel tracks of individual sources such as 4U 1608–52, 4U 1636–53, and Aql X-1. We reveal how the radial width of the boundary layer must vary in the long-term flux evolution of each source to regenerate the parallel tracks. The run of the radial width looks similar for different sources and can be fitted by a generic model function describing the average steady behavior of the boundary region over the long term. The parallel tracks then correspond to the possible quasi-steady states the source can occupy around the average trend.
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
A asymptotic numerical method for the steady-state convection diffusion equation
International Nuclear Information System (INIS)
Wu Qiguang
1988-01-01
In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size
Toroidal visco-resistive magnetohydrodynamic steady states contain vortices
International Nuclear Information System (INIS)
Bates, J.W.; Montgomery, D.C.
1998-01-01
Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics
Scattering of wedges and cones with impedance boundary conditions
Lyalinov, Mikhail
2012-01-01
This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
International Nuclear Information System (INIS)
Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.
2004-01-01
Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward
2018-01-01
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.
Energy Technology Data Exchange (ETDEWEB)
Petracca, S [Salerno Univ. (Italy)
1996-08-01
Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)
The steady-state tokamak program
International Nuclear Information System (INIS)
Politzer, D.A.; Nevins, W.M.
1992-01-01
This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER
Analysis on the steady-state coherent synchrotron radiation with strong shielding
International Nuclear Information System (INIS)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-01-01
There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges
Second-mode control in hypersonic boundary layers over assigned complex wall impedance
Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo
2017-11-01
The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R workers at DLR-Göttingen.
Quasi-steady state natural convection in a tilted porous layer
Energy Technology Data Exchange (ETDEWEB)
Robillard, L.; Vasseur, P. (Ecole Polytechnique, Montreal, PQ (Canada))
1992-12-01
Natural convection in an inclined porous layer heated or cooled on one side, when its other walls are insulated, has several important engineering applications. These include solar power collection, regenerative heat exchangers, and high performance insulation for buildings and cold storage. Although the problem is basically an unsteady state one, it is known that if the heating (or cooling) process is maintained for a sufficiently long time, a quasi-steady state is approached. Quasi-steady state laminar natural convection in an inclined porous layer is studied analytically and numerically. On the basis of the Darcy-Oberbeck-Boussinesq equations, the problem is solved analytically in the limit of a thin porous layer heated on one side by a heat flux while the other boundaries are maintained adiabatic. For quasi-steady state, the flow and temperature fields overall heat transfer rates are obtained in terms of the controlling parameters and the onset of convection in a bottom heated horizantal system is predicted. It is also demonstrated for the case of a bottom-heated layer that for sufficiently small inclinations, multiple unicellular quasi-steady states exist, some of which are unstable. A numerical study of the same phenomenon, obtained by solving the complete set of governing equations, is conducted. Good agreement is found between the analytical predictions and the numerical simulation. 22 refs., 6 figs.
Theory of minimum dissipation of energy for the steady state
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede
2014-01-01
This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...
Simulations of KSTAR high performance steady state operation scenarios
International Nuclear Information System (INIS)
Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.
2009-01-01
We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of
Steady State Stokes Flow Interpolation for Fluid Control
DEFF Research Database (Denmark)
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
— suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...
Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate
Guo, Yan; Nguyen, Toan T.
2014-01-01
This paper concerns the validity of the Prandtl boundary layer theory in the inviscid limit for steady incompressible Navier-Stokes flows. The stationary flows, with small viscosity, are considered on $[0,L]\\times \\mathbb{R}_{+}$, assuming a no-slip boundary condition over a moving plate at $y=0$. We establish the validity of the Prandtl boundary layer expansion and its error estimates.
An implicit steady-state initialization package for the RELAP5 computer code
International Nuclear Information System (INIS)
Paulsen, M.P.; Peterson, C.E.; Odar, F.
1995-08-01
A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model
Transient and steady-state flows in shock tunnels
Energy Technology Data Exchange (ETDEWEB)
Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics
1999-12-01
Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)
Transient and steady-state flows in shock tunnels
Energy Technology Data Exchange (ETDEWEB)
Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)
1999-01-01
Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)
Directory of Open Access Journals (Sweden)
Zhong Chen
2017-08-01
Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.
Steady-state capabilities for hydroturbines with OpenFOAM
Page, M.; Beaudoin, M.; Giroux, A. M.
2010-08-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Steady-state capabilities for hydroturbines with OpenFOAM
Energy Technology Data Exchange (ETDEWEB)
Page, M; Beaudoin, M; Giroux, A M, E-mail: page.maryse@ireq.c [Hydro-Quebec, Institut de recherche 1800 Lionel-Boulet, Varennes, Quebec J3X 1S1 (Canada)
2010-08-15
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
Steady-state capabilities for hydroturbines with OpenFOAM
International Nuclear Information System (INIS)
Page, M; Beaudoin, M; Giroux, A M
2010-01-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
steady – state performance of induction and transfer state
African Journals Online (AJOL)
eobe
This paper presents paper presents paper presents the steady the steady the steady–state performance state performance state performance comparison comparison comparison between polyphase induction motor and polyphase between polyphase induction motor and polyphase. TF motor operating in. TF motor ...
Hyvö nen, Nuutti
2016-01-01
The simultaneous retrieval of the exterior boundary shape and the interior admittivity distribution of an examined body in electrical impedance tomography is considered. The reconstruction method is built for the complete electrode model
High-power and steady-state operation of ICRF heating in the large helical device
Energy Technology Data Exchange (ETDEWEB)
Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)
2015-12-10
Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.
The stably stratified internal boundary layer for steady and diurnally varying offshore flow
Garratt, J. R.
1987-03-01
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and
Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB
2003-01-01
Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the
Analysis of steady-state creep of Fe-Mo alloys from the viewpoint of recovery
International Nuclear Information System (INIS)
Maruyama, K.; Karashima, S.; Oikawa, H.
1979-01-01
A theoretical equation to d evaluate the steady-state creep-rates, d epsilon/dtsub(s), based on a recovery creep model is derived: epsilonsub(s)/dt proportional to r/sigma 2 sub(a) x lambda 2 , where r is the recovery rate, which can be determined from results of stress-reduction tests, deltasub(a) the applied stress, and lambda the dislocation link-length. Two cases of recovery are considered, i.e., recovery of dislocation networks at sub-boundaries and that of three-dimensional networks within subgrains. The high-temperature steady-state creep of Fe-Mo solid solutions, creep characteristics of which have been reported to be well rationalized as viscous glide creep, is analyzed using this equation. It is shown that stress dependence of d epsilon/dtsub(s) is well explained from the viewpoint of recovery, in which the activation and the annihilation of dislocations at sub-boundaries are considered to take place. (orig.) [de
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Energy Technology Data Exchange (ETDEWEB)
Chang, H C; Calo, J M
1979-01-01
A simple, generalized technique for the exact determination of the boundaries between regions of unique and of multiple solutions to certain nonlinear equations was developed by applying catastrophe theory to the mapping of implicit and explicit functions. Its application to an nth order reaction in continuous stirred tank reactor (CSTR) yields exact, explicit expressions for the boundaries between regions of single and multiple steady states, expressed in terms of the dimensionless heat transfer coefficient and activation energy. An exact implicit expression for the boundaries between regions of uniqueness and multiplicity was also derived for an nth order reaction in a catalyst particle with an intraparticle concentration gradient and uniform temperature and is fully demonstrated for the first-order reaction. In addition, explicit criteria were developed by assuming the limits on d ln g/d ln q, where g is the effectiveness factor and q the Thiele modulus, proposed by van den Bosch and Luss.
Steady-State Creep of Asphalt Concrete
Directory of Open Access Journals (Sweden)
Alibai Iskakbayev
2017-02-01
Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.
Langley, Robin S; Cotoni, Vincent
2010-04-01
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection
Directory of Open Access Journals (Sweden)
Stuart Bartlett
2016-12-01
Full Text Available Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP. However, almost all such investigations were limited to fixed temperature boundary conditions (BCs. It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport. This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of
Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.
A theoretical treatment for the potential dependence of the faradaic impedance, in the case that the electrode reaction behaves irreversibly with respect to the direct current, using the steady-state concept, is presented. An analysis of the expressions obtained in the complex impedance plane is
Active ideal sedimentation: exact two-dimensional steady states.
Hermann, Sophie; Schmidt, Matthias
2018-02-28
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Steady-State Performance of Kalman Filter for DPLL
Institute of Scientific and Technical Information of China (English)
QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming
2009-01-01
For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.
Bubble boundary estimation in an annulus two-phase flow using electrical impedance tomography
International Nuclear Information System (INIS)
Lee, Jeong Seong
2008-02-01
For the visualization of the phase boundary in an annulus two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with EIT in an annulus two-phase flows. And in many industrial cases there are a priori known internal structures inside the vessels which could be used as internal electrodes in tomographical imaging. In this paper internal electrodes were considered in electrical impedance tomography. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. The UKF algorithm was formulated to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF
New Tore Supra steady state operating scenario
International Nuclear Information System (INIS)
Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.
1995-01-01
This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs
The acoustic field of a point source in a uniform boundary layer over an impedance plane
Zorumski, W. E.; Willshire, W. L., Jr.
1986-01-01
The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.
Hyvönen, Nuutti
2016-01-05
The simultaneous retrieval of the exterior boundary shape and the interior admittivity distribution of an examined body in electrical impedance tomography is considered. The reconstruction method is built for the complete electrode model and it is based on the Frechet derivative of the corresponding current-to-voltage map with respect to the body shape. The reconstruction problem is cast into the Bayesian framework, and maximum a posteriori estimates for the admittivity and the boundary geometry are computed. The feasibility of the approach is evaluated by experimental data from water tank measurements.
Steady state neutral beam injector
International Nuclear Information System (INIS)
Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.
2000-01-01
Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)
Measurement of non-steady-state free fatty acid turnover
International Nuclear Information System (INIS)
Jensen, M.D.; Heiling, V.; Miles, J.M.
1990-01-01
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra
Plane wave diffraction by a finite plate with impedance boundary conditions.
Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal
2014-01-01
In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.
Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems
Directory of Open Access Journals (Sweden)
Jiasen Jin
2016-07-01
Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
Plane wave diffraction by a finite plate with impedance boundary conditions.
Directory of Open Access Journals (Sweden)
Rab Nawaz
Full Text Available In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.
Implications of steady-state operation on divertor design
International Nuclear Information System (INIS)
Sevier, D.L.; Reis, E.E.; Baxi, C.B.; Silke, G.W.; Wong, C.P.C.; Hill, D.N.
1996-01-01
As fusion experiments progress towards long pulse or steady state operation, plasma facing components are undergoing a significant change in their design. This change represents the transition from inertially cooled pulsed systems to steady state designs of significant power handling capacity. A limited number of Plasma Facing Component (PFC) systems are in operation or planning to address this steady state challenge at low heat flux. However in most divertor designs components are required to operate at heat fluxes at 5 MW/m 2 or above. The need for data in this area has resulted in a significant amount of thermal/hydraulic and thermal fatigue testing being done on prototypical elements. Short pulse design solutions are not adequate for longer pulse experiments and the areas of thermal design, structural design, material selection, maintainability, and lifetime prediction are undergoing significant changes. A prudent engineering approach will guide us through the transitional phase of divertor design to steady-state power plant components. This paper reviews the design implications in this transition to steady state machines and the status of the community efforts to meet evolving design requirements. 54 refs., 5 figs., 2 tabs
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Pellet injectors for steady state plasma fuelling
International Nuclear Information System (INIS)
Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.
2005-01-01
Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Circular resistor networks for electrical impedance tomography with partial boundary measurements
International Nuclear Information System (INIS)
Borcea, L; Mamonov, A V; Druskin, V
2010-01-01
We introduce an algorithm for the numerical solution of electrical impedance tomography (EIT) in two dimensions, with partial boundary measurements. The algorithm is an extension of the one in Borcea et al (2008 Inverse Problems 24 035013 (31pp)) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) for EIT with full boundary measurements. It is based on resistor networks that arise in finite volume discretizations of the elliptic partial differential equation for the potential on so-called optimal grids that are computed as part of the problem. The grids are adaptively refined near the boundary, where we measure and expect better resolution of the images. They can be used very efficiently in inversion, by defining a reconstruction mapping that is an approximate inverse of the forward map, and acts therefore as a preconditioner in any iterative scheme that solves the inverse problem via optimization. The main result in this paper is the construction of optimal grids for EIT with partial measurements by extremal quasiconformal (Teichmüller) transformations of the optimal grids for EIT with full boundary measurements. We present the algorithm for computing the reconstruction mapping on such grids, and we illustrate its performance with numerical simulations. The results show an interesting trade-off between the resolution of the reconstruction in the domain of the solution and distortions due to artificial anisotropy induced by the distribution of the measurement points on the accessible boundary
Steady State Shift Damage Localization
DEFF Research Database (Denmark)
Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk
2017-01-01
The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...
Control, data acquisition and remote participation for steady-state operation in LHD
International Nuclear Information System (INIS)
Sudo, S.; Nagayama, Y.; Emoto, M.; Nakanishi, H.; Chikaraishi, H.; Imazu, S.; Iwata, C.; Kogi, Y.; Kojima, M.; Komada, S.; Kubo, S.; Kumazawa, R.; Mase, A.; Miyazawa, J.; Mutoh, T.; Nakamura, Y.; Nonomura, M.; Ohsuna, M.; Saito, K.; Sakamoto, R.; Seki, T.; Shoji, M.; Tsuda, K.; Yoshida, M.
2006-01-01
Control, data acquisition, plasma monitoring and remote participation for steady state operation in the large helical device (LHD) are reviewed. By controlling the impedance matching of ICH, the plasma position and the electron density, high temperature plasma is confined for 1905s. The plasma parameters are monitored in real time. Data are continuously sampled by the YOKOGAWA WE7000 system and by the NATIONAL INSTRUMENTS CompactPCI system. Those data are managed by the object-oriented database system based on ObjectStore in distributed servers with mass storage. By using the multi protocol label switching-virtual private network (MPLS-VPN) technology, the local area network of LHD is expanded to the Japanese fusion community. This provides the remote participants with the same environment of the LHD control room
Control, data acquisition and remote participation for steady-state operation in LHD
Energy Technology Data Exchange (ETDEWEB)
Sudo, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)]. E-mail: sudo@nifs.ac.jp; Nagayama, Y. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Emoto, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nakanishi, H. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Chikaraishi, H. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Imazu, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Iwata, C. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kogi, Y. [KASTEC, Kyushu University, Kasuga 816-8580 (Japan); Kojima, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Komada, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kubo, S. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Kumazawa, R. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga 816-8580 (Japan); Miyazawa, J. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Mutoh, T. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nakamura, Y. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nonomura, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Ohsuna, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Saito, K. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Sakamoto, R.; Seki, T.; Shoji, M.; Tsuda, K.; Yoshida, M. [National Institute of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)
2006-07-15
Control, data acquisition, plasma monitoring and remote participation for steady state operation in the large helical device (LHD) are reviewed. By controlling the impedance matching of ICH, the plasma position and the electron density, high temperature plasma is confined for 1905s. The plasma parameters are monitored in real time. Data are continuously sampled by the YOKOGAWA WE7000 system and by the NATIONAL INSTRUMENTS CompactPCI system. Those data are managed by the object-oriented database system based on ObjectStore in distributed servers with mass storage. By using the multi protocol label switching-virtual private network (MPLS-VPN) technology, the local area network of LHD is expanded to the Japanese fusion community. This provides the remote participants with the same environment of the LHD control room.
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms
Tower, Leonard K.; Geng, Steven M.
2016-01-01
A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.
The quasi-steady state of all-vanadium redox flow batteries: A scale analysis
International Nuclear Information System (INIS)
Sharma, A.K.; Vynnycky, M.; Ling, C.Y.; Birgersson, E.; Han, M.
2014-01-01
Highlights: • We present a transient 2D model for a VRFB (conservation of species and charge); • Carry out scale analysis of the species conservation equation; • Derive the condition characterizing the quasi-steadiness of VRFB operation; • Verify it by comparing charge-discharge curve with transient simulations. - Abstract: In general, mathematical models for all-vanadium redox flow batteries (VRFB) that seek to capture the transport phenomena are transient in nature. In this paper, we carry out scale analysis of VRFB operation and derive the conditions when it can be assumed to be quasi-steady state in nature, i.e., time-dependence only through a boundary condition. We find that it is true for typical tank volume and flow rate employed for VRFBs. The proposed analysis is generic and can also be employed for other types of redox flow batteries
Differences between automatically detected and steady-state fractional flow reserve.
Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht
2016-02-01
Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.
Mass transport and the bootstrap current from Ohm's law in steady-state tokamaks
International Nuclear Information System (INIS)
Kim, J.-S.; Greene, J.M.
1989-01-01
The consequences of mass conservation and Ohm's law are examined for steady state Tokamaks. In a Tokamak, magnetofluid-dynamic waves rapidly equilibrate pressure and toroidal field along magnetic surfaces. As a result, the detailed current distribution is determined by the flux surface averaged poloidal and toroidal currents. The electrons that carry the plasma current are impeded in their motion by interactions with ions, which is resistivity and its generalizations, and by interactions with electrons, which is viscosity and its generalizations. The important viscous terms arise from the interaction between trapped and untrapped electrons, and so viscosity acts by impeding poloidal current. properly chosen, the results of neoclassical theory are The neoclassical viscous coefficient is here regarded as less likely than Spitzer conductivity to be experimentally relevant in a turbulent Tokamak. Thus, the toroidal Ohm's law is regarded as being more reliable than the poloidal Ohm's law. A combination of toroidal and poloidal Ohm's law, namely the component parallel to the magnetic field, eliminates the influence of plasma fueling, and directly relates the bootstrap current and the pressure gradient. The latter is the usual relation, but, since i
Steady State versus Pulsed Tokamak DEMO
Energy Technology Data Exchange (ETDEWEB)
Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)
2012-09-15
Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)
Effects of intermediary reservoir in a two-stage impedance pump
Directory of Open Access Journals (Sweden)
Lee V. C.-C.
2017-01-01
Full Text Available Impedance pump is a simple valve-less pumping mechanism, which transport fluid through the mismatch of impedance in the system. A typical open-loop impedance pump consists of an elastic tube, connected to rigid tubing, where the rigid section is connected to a reservoir. Mismatch in impedance occurs when an asymmetrical periodic excitation is exerted on the elastic tube. Studies showed that sequential excitations on the elastic tube infers higher volumetric efficiency than a single excitation. This work studies the effects of an intermediary reservoir between two excitation points on an elastic tube. This study aims to shed some light on the steady state response and fluid motion within the intermediary reservoir; in which increased volumetric efficiency is demonstrated.
LANSCE steady state unperturbed thermal neutron fluxes at 100 μA
International Nuclear Information System (INIS)
Russell, G.J.
1989-01-01
The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs
Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances
Boukamp, Bernard A.
2004-01-01
Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another
Calculation analysis on steady state natural circulation characteristics
International Nuclear Information System (INIS)
Wang Fei; Nie Changhua; Huang Yanping
2005-01-01
The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)
Steady-state oxygen-solubility in niobium
International Nuclear Information System (INIS)
Schulze, K.; Jehn, H.
1977-01-01
During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de
Directory of Open Access Journals (Sweden)
Ruben Perez-Carrasco
2016-10-01
Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can
Page, Karen M.
2016-01-01
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively
Steady-state entanglement activation in optomechanical cavities
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
Broadband impedance of the NESTOR storage ring
International Nuclear Information System (INIS)
Androsov, V.P.; Gladkikh, P.I.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.
2011-01-01
The contributions from lossy and inductive vacuum chamber components to the broadband impedance of the NESTOR storage ring are obtained by using both low-frequency analytical approaches and computer simulations. As was expected considering the small ring circumference (15.44m), the main contributions both to the longitudinal impedance Z || /n and the loss factor k loss come from the RF-cavity. Cavity impedance was also estimated with CST Microwave Studio (CST Studio Suite TM 2006) by simulating coaxial wire method commonly used for impedance measurements. Both estimates agree well. Finally, we performed the simulations of a number of inductive elements with CST Particle Studio 2010 by using wake field solver. We have also evaluated the bunch length in NESTOR taking the conservative estimate of 3 Ohm for the ring broadband impedance and have found that the bunch length s z = 0.5 cm could be obtained in steady state operation mode for the designed bunch current of 10 mA and RF-voltage of 250 kV.
NASA Lewis Steady-State Heat Pipe Code Architecture
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements
International Nuclear Information System (INIS)
Borcea, L; Mamonov, A V; Druskin, V; Vasquez, F Guevara
2010-01-01
We introduce an inversion algorithm for electrical impedance tomography (EIT) with partial boundary measurements in two dimensions. It gives stable and fast reconstructions using sparse parameterizations of the unknown conductivity on optimal grids that are computed as part of the inversion. We follow the approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse discrete problems for resistor networks to continuum EIT problems, using optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) is based on circular resistor networks, and solves the EIT problem with full boundary measurements. It is extended in Borcea et al (2010 Inverse Problems 26 045010) to EIT with partial boundary measurements, using extremal quasi-conformal mappings that transform the problem to one with full boundary measurements. Here we introduce a different class of optimal grids, based on resistor networks with pyramidal topology, that is better suited for the partial measurements setup. We prove the unique solvability of the discrete inverse problem for these networks and develop an algorithm for finding them from the measurements of the Dirichlet to Neumann map. Then, we show how to use the networks to define the optimal grids and to approximate the unknown conductivity. We assess the performance of our approach with numerical simulations and compare the results with those in Borcea et al (2010)
Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin
2018-04-01
In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
Development of synchronous generator saturation model from steady-state operating data
Energy Technology Data Exchange (ETDEWEB)
Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)
2010-11-15
A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)
Steady state and transient critical heat flux examinations
International Nuclear Information System (INIS)
Szabados, L.
1978-02-01
In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)
Dynamic Phase Boundary Estimation in Two-phase Flows Based on Electrical Impedance Tomography
International Nuclear Information System (INIS)
Lee, Jeong Seong; Muhammada, Nauman Malik; Kim, Kyung Youn; Kim, Sin
2008-01-01
For the dynamic visualization of the phase boundary in two-phase flows, the electrical impedance tomography (EIT) technique is introduced. In EIT, a set of predetermined electrical currents is injected through the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrodes. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm where the conductivity distribution corresponds to the phase distribution. In the application of EIT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers phase boundary estimation with EIT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. For the present problem, the formulation of UKF algorithm involved its incorporation in the adopted image reconstruction algorithm. Also, phantom experiments have been conducted to evaluate the improvement reported by UKF
The Markov process admits a consistent steady-state thermodynamic formalism
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Contour analysis of steady state tokamak reactor performance
International Nuclear Information System (INIS)
Devoto, R.S.; Fenstermacher, M.E.
1990-01-01
A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab
International Nuclear Information System (INIS)
Poe, C.H.; Owocki, S.P.; Castor, J.I.
1990-01-01
The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs
Steady and perturbed motion of a point vortex along a boundary with a circular cavity
Energy Technology Data Exchange (ETDEWEB)
Ryzhov, E.A., E-mail: ryzhovea@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok, 690041 (Russian Federation); Koshel, K.V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok, 690041 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok, 690950 (Russian Federation)
2016-02-22
The dynamics of a point vortex moving along a straight boundary with a circular cavity subjected to a background flow is investigated. Given the constant background flow, this configuration produces regular phase portraits of the vortex motion. These phase portraits are discriminated depending on the cavity's circular shape, and then the transition to chaos of the vortex motion is investigated given an oscillating perturbation superimposed on the background flow. Based on the steady-state vortex rotation, the forcing parameters that lead to effective destabilization of vortex trajectories are distinguished. We show that, provided the cavity aperture is relatively narrow, the periodic forcing superimposed on the background flow destabilizes the vortex trajectories very slightly. On the other hand, if the cavity aperture is relatively wide, the forcing can significantly destabilize vortex trajectories causing the majority of the trajectories, which would be closed without the forcing, to move towards infinity. - Highlights: • The dynamics of a point vortex moving along a straight boundary with a circular cavity is addressed. • Three phase portrait structures depending on the cavity's circular shape are singled out. • Forcing parameters that lead to effective destabilization of vortex trajectories are found.
Solution of generalized control system equations at steady state
International Nuclear Information System (INIS)
Vilim, R.B.
1987-01-01
Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it
Steady-state spheromak reactor studies
International Nuclear Information System (INIS)
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported
Fission gas behaviour in UO2 under steady state and transient conditions
International Nuclear Information System (INIS)
Zimmermann, H.
1980-01-01
Fission gas behaviour in UO 2 is determined by the limited capacity of the fuel to retain fission gas. This capacity depends primarily on temperature, but also on fission rate, pressure loading, and fuel microstructure. Under steady state irradiation conditions fission gas behaviour can be described qualitatively as follows: At the beginning of the irradiation most of the fission gas remains in the grains in irradiation-induced solution. With increasing gas content in the grains the gas transport to the grain boundaries increases, too. The fission gas release from the grain boundaries occurs primarily by interlinkage of inter-granular bubbles. The fission gas release without noticeable fuel swelling during the short-term heating in the LOCA tests and the powdering of the high burnup UO 2 in the annealing tests can only be accounted for by formation of inter-granular separations, which are caused by the fission gas accumulated in the grain boundaries. Besides this short-term effect there are diffusion-controlled long-term effects, such as growth and coalescence of bubbles and formation of inter-connected porosity, which result in time-dependent fission gas release and fuel swelling
Liu, Ping; Shi, Junping
2018-01-01
The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.
A steady-state axisymmetric toroidal system
International Nuclear Information System (INIS)
Hirano, K.
1984-01-01
Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)
Steady state of tapped granular polygons
International Nuclear Information System (INIS)
Carlevaro, Carlos M; Pugnaloni, Luis A
2011-01-01
The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares
Jang, Hae-Won; Ih, Jeong-Guon
2012-04-01
The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.
Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field
Energy Technology Data Exchange (ETDEWEB)
Low, B. C., E-mail: low@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80301 (United States); Egan, A. K., E-mail: andrea.egan@colorado.edu [Barnard College, New York, New York 10027, USA and Department of Physics, Colorado University, Boulder, Colorado 80309 (United States)
2014-06-15
This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset
Steady-state propagation of interface corner crack
DEFF Research Database (Denmark)
Veluri, Badrinath; Jensen, Henrik Myhre
2013-01-01
Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....
Steady-state leaching of tritiated water from silica gel
DEFF Research Database (Denmark)
Das, H.A.; Hou, Xiaolin
2009-01-01
Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....
Quasi steady-state aerodynamic model development for race vehicle simulations
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Realizing steady-state tokamak operation for fusion energy
International Nuclear Information System (INIS)
Luce, T. C.
2011-01-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Steady State Advanced Tokamak (SSAT): The mission and the machine
International Nuclear Information System (INIS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO
Steady state toroidal magnetic field at earth's core-mantle boundary
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search
Newby, Jay M.
2010-02-19
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.
Czech Academy of Sciences Publication Activity Database
Akyildiz, F.T.; Neustupa, Jiří; Siginer, D.
2012-01-01
Roč. 119, č. 1 (2012), s. 23-42 ISSN 0167-8019 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z10190503 Keywords : flows in porous media * steady-state problems * inhomogeneous boundary data Subject RIV: BA - General Mathematics Impact factor: 0.985, year: 2012 http://www.springerlink.com/content/t8n71p67w2282t96/
Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models
Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris
2017-11-01
The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.
Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas
2016-09-01
A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.
Approach to the energetic coaxial gun of the steady-state mode operation
International Nuclear Information System (INIS)
Hirano, Kei-ichi
1993-01-01
Behaviors of a coaxial plasma gun operated in a steady-state mode have been studied. It is shown that the gun has potentialities to yield an energetic plasma beam, if a supersonic plasma flow is supplied instead of a neutral gas and if shorting out of the Hall potential is minimized on the surfaces of the electrodes. The former is necessary because a electromagnetic force chokes the subsonic flow appearing in the ionizing zone of the inlet gas. The latter is achieved if the electrodes are segmented into many insulated short elements along the axis. The required minimum number of the segmentation is estimated by the newly developed model based on the boundary layer concept. (author)
Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system
Energy Technology Data Exchange (ETDEWEB)
Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)
2015-10-15
Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.
DEFF Research Database (Denmark)
Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.
2002-01-01
A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...
Steady state theta pinch concept for slow formation of FRC
International Nuclear Information System (INIS)
Hirano, K.
1987-05-01
A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)
A new perspective on steady-state cosmology: from Einstein to Hoyle
O'Raifeartaigh, Cormac; Mitton, Simon
2015-01-01
We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein’s steady-state cosmology with that of Hoyle, Bondi...
Energy Technology Data Exchange (ETDEWEB)
Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru
2008-06-27
The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.
International Nuclear Information System (INIS)
Aleksenko, A I; Cruz, J P; Lakshtanov, E L
2008-01-01
The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus
Transient and steady-state currents in epoxy resin
International Nuclear Information System (INIS)
Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W
2006-01-01
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured
Transient and steady-state currents in epoxy resin
Energy Technology Data Exchange (ETDEWEB)
Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)
2006-02-07
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.
Efficient steady-state solver for hierarchical quantum master equations
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Steady state flow evaluations for passive auxiliary feedwater system of APR
International Nuclear Information System (INIS)
Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho
2012-01-01
This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results
Einstein's steady-state theory: an abandoned model of the cosmos
O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon
2014-09-01
We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.
Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1
International Nuclear Information System (INIS)
Saxena, Y.C.
2000-01-01
SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)
Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method
Tsutsui, H
2002-01-01
In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.
Angular momentum transfer in steady disk accretion
International Nuclear Information System (INIS)
Gorbatskij, V.G.
1977-01-01
The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
Steady-state models in electrophoresis: from isotachophoresis to capillary zone electrophoresis
Beckers, J.L.
1995-01-01
Although all electrophoretic techniques are closely allied and controlled by the same rules, we often distinguish between steady-state and dynamic models in the modeling of electrophoretic processes, whereby steady-state models are applied for isotachophoresis (ITP) and dynamic models are applied
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
X-Ray Spectral Analysis of the Steady States of GRS1915+105
Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-05-01
We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.
International Nuclear Information System (INIS)
Tsampas, M.N.; Brosda, S.; Vayenas, C.G.
2011-01-01
The proton transport mechanism in fully hydrated Nafion 117 membranes was examined via electrochemical impedance spectroscopy (EIS) and steady-state current–potential measurements both in a symmetric H 2 , Pt|Nafion|Pt, H 2 cell and in a H 2 , Pt|Nafion|Pt, air PEM fuel cell with hydrogen partial pressure values, P H 2 , varied between 0.5 kPa and 100 kPa. In agreement with recent studies it is found that for low P H 2 values the steady-state current–potential curves exhibit bistability and regions of positive slope. In these regions the Nyquist plots are found to exhibit negative real part impedance with a large imaginary component, while the Bode plots show a pronounced negative phase shift. These observations are consistent with the mechanism involving two parallel routes of proton conduction in fully hydrated Nafion membranes, one due to proton migration in the aqueous phase, the other due to proton transfer, probably involving tunneling, between adjacent sulfonate groups in narrow pores. The former mechanism dominates at high P H 2 values and the latter dominates in the low P H 2 region where the real part of the impedance is negative.
Physical design of MW-class steady-state spherical tokamak, QUEST
International Nuclear Information System (INIS)
Hanada, K.; Sato, K.N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Higashizono, Y.; Yoshida, N.; Takase, Y.; Ejiri, A.; Ogawa, Y.; Ono, Y.; Yoshida, Z.; Mitarai, O.; Maekawa, T.; Kishimoto, Y.; Ishiguro, M.; Yoshinaga, T.; Igami, H.; Hirooka, Y.; Komori, A.; Motojima, O.; Sudo, S.; Yamada, H.; Ando, A.; Asakura, Nobuyuki; Matsukawa, Makoto; Ishida, A.; Ohno, N.; Peng, M.
2008-10-01
QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, I p =20-30 kA on open divertor configuration and phase II: steady state operation with I p = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)
Steady State Investigations of DPF Soot Burn Rates and DPF Modeling
DEFF Research Database (Denmark)
Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper
2011-01-01
and soot mass concentrations are used as model boundary conditions. An in-house developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate. The soot concentration is measured basically by filtering the soot...... characteristics are used to fit model constants of soot and filter properties. Measured DPF gas conversions and soot burn rates are used to fit model activation energies of four DPF regeneration reactions using O2 and NO2 as reactants. Modeled DPF pressure drops and soot burn rates are compared to the steady...... state DPF experiments in the temperature range between 260 and 480 °C. The model widely reproduces the experimental results. Especially the exponential soot burn rate versus temperature is accurately reproduced by the model....
Basin stability measure of different steady states in coupled oscillators
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
Molecular control of steady-state dendritic cell maturation and immune homeostasis.
Hammer, Gianna Elena; Ma, Averil
2013-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
International Nuclear Information System (INIS)
Ihle, Christian F.; Nino, Yarko
2011-01-01
Stability conditions of a quiescent, horizontally infinite fluid layer with adiabatic bottom subject to sudden cooling from above are studied. Here, at difference from Rayleigh-Benard convection, the temperature base state is never steady. Instability limits are studied using linear analysis while stability is analyzed using the energy method. Critical stability curves in terms of Rayleigh numbers and convection onset times were obtained for several kinematic boundary conditions. Stability curves resulting from energy and linear approaches exhibit the same temporal growth rate for large values of time, suggesting a bound for the temporal asymptotic behavior of the energy method. - Highlights: → Non-penetrative convection appears after a time-evolving temperature base state. → Global stability and instability limits were analyzed. → Critical Rayleigh numbers were computed for different kinematic boundary conditions. → Adiabatic, bottom boundary was found to have a de-stabilizing effect. → System is less stable than in Benard convection.
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
Barkeshli, Kasra; Volakis, John L.
1991-01-01
The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ
U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...
A design of steady state fusion burner
International Nuclear Information System (INIS)
Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.
1975-01-01
We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)
Computation of tokamak equilibria with steady flow
International Nuclear Information System (INIS)
Kerner, W.; Tokuda, Shinji
1987-08-01
The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)
Adjoint sensitivity theory for steady-state ground-water flow
International Nuclear Information System (INIS)
1983-11-01
In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady-state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah and the Wolcamp carbonate/sandstone aquifer of the Palo Duro Basin in the Texas Panhandle. Two performance measures are evaluated, local heads and velocity in the vicinity of potential high-level nuclear waste repositories. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Local velocity-related performance measures are more sensitive to hydraulic conductivities. The uncertainty in the performance measure is a function of the parameter sensitivity, parameter variance and the correlation between parameters. Given a parameter covariance matrix, the uncertainty of the performance measure can be calculated. Although no results are presented here, the implications of uncertainty calculations for the two studies are discussed. 18 references, 25 figures
State Park Statutory Boundaries
Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators
Sykes, J. F.; Wilson, J. L.; Andrews, R. W.
1985-03-01
Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.
On Steady-State Tropical Cyclones
2014-01-01
Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum
STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE
Energy Technology Data Exchange (ETDEWEB)
Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)
2016-04-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.
Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin
2018-03-01
Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...
Analysis of steady state creep of southeastern New Mexico bedded salt
International Nuclear Information System (INIS)
Herrmann, W.; Wawersik, W.R.; Lauson, H.S.
1980-03-01
Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations
Chlorine decay under steady and unsteady-state hydraulic conditions
DEFF Research Database (Denmark)
Stoianov, Ivan; Aisopou, Angeliki
2014-01-01
This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....
Steady-state heat transfer in an inverted U-tube steam generator
International Nuclear Information System (INIS)
Boucher, T.J.
1986-01-01
Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...
Emergence of advance waves in a steady-state universe
Energy Technology Data Exchange (ETDEWEB)
Hobart, R.H.
1979-10-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.
Emergence of advance waves in a steady-state universe
International Nuclear Information System (INIS)
Hobart, R.H.
1979-01-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Steady-state Operational Characteristics of Ghana Research ...
African Journals Online (AJOL)
Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...
Iowa State University GIS Support and Research Facility — This coverage contains polygons representing the Iowa Boundary, it was derived from a coverage of county boundaries, called COUNTIES, of the state of Iowa. COUNTIES...
Evidence for forcing-dependent steady states in a turbulent swirling flow.
Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F
2013-12-06
We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.
Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging
International Nuclear Information System (INIS)
Kulkami, Makarand
2011-01-01
Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.
Optimal control of transitions between nonequilibrium steady states.
Directory of Open Access Journals (Sweden)
Patrick R Zulkowski
Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
Current drive efficiency requirements for an attractive steady-state reactor
Energy Technology Data Exchange (ETDEWEB)
Tonon, G
1994-12-31
The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.
Current drive efficiency requirements for an attractive steady-state reactor
International Nuclear Information System (INIS)
Tonon, G.
1994-01-01
The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs
Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment
Energy Technology Data Exchange (ETDEWEB)
Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, Haishan [The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)
2014-12-15
For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.
Zhu, Jun; Shu, Chi-Wang
2017-11-01
A new class of high order weighted essentially non-oscillatory (WENO) schemes (Zhu and Qiu, 2016, [50]) is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes (Jiang and Shu, 1996, [23]) might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in Jiang and Shu (1996) [23] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.
Steady-state operation requirements of tokamak fusion reactor concepts
International Nuclear Information System (INIS)
Knobloch, A.F.
1991-06-01
In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)
Burn cycle requirements comparison of pulsed and steady-state tokamak reactors
International Nuclear Information System (INIS)
Brooks, J.N.; Ehst, D.A.
1983-12-01
Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question
An Irrotational Flow Field That Approximates Flat Plate Boundary Conditions
Ruffa, Anthony A.
2004-01-01
An irrotational solution is derived for the steady-state Navier-Stokes equations that approximately satisfies the boundary conditions for flow over a finite flat plate. The nature of the flow differs substantially from boundary layer flow, with severe numerical difficulties in some regions.
40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...
Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H
2017-11-01
Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.
Conformal boundary state for the rectangular geometry
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@cea.fr [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Dubail, J. [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Jacobsen, J.L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, H. [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2012-09-11
We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that involves a conformal boundary state for the 1+1d open system. We focus on the case of homogeneous boundary conditions (no insertion of a boundary condition changing operator), for which we derive an explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity of our solution, comparing it with known results for partition functions, numerical simulations of lattice discretizations, and coherent state expressions for free theories.
Progress and prospect of true steady state operation with RF
Directory of Open Access Journals (Sweden)
Jacquinot Jean
2017-01-01
Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
The behavior of surface tension on steady-state rotating fluids in the low gravity environments
Hung, R. J.; Leslie, Fred W.
1987-01-01
The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.
International Nuclear Information System (INIS)
Jarboe, T.R.
1982-01-01
A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally
The Steady State Calculation for SMART with MIDAS/SMR
International Nuclear Information System (INIS)
Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won
2010-01-01
KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values
On the optimization of a steady-state bootstrap-reactor
International Nuclear Information System (INIS)
Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.
1993-01-01
A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab
The launching and propagation of drift waves in a steady-state plasma
International Nuclear Information System (INIS)
Sandeman, J.; Elliott, J.A.; Sutcliffe, M.; Rusbridge, M.G.
1992-01-01
The UMIST linear quadrupole GOLUX is a steady-state device in which hydrogen plasma is continuously injected axially, at one end, from an external duoplasmatron source. The electron temperature in the drift wave region is about 1 eV, and the density about 10 15 m -3 . Self-excited intrinsic drift modes are observed in the shared flux region of GOLUX, forming a broad band between 30 and 50 kHz. Drift waves may also be launched into the system, by passing an AC current through the plasma between the two flag antennae. These coherent launched waves present a powerful means of studying drift wave phenomena. We obtain information about the launched wave by detecting both density and potential fluctuations, using a small cylindrical Langmuir probe and lock-in amplifier techniques. Scanning the probe in the longitudinal (z) direction yields the spatial variation of amplitude and phase with respect to the launching signal; the ratio of the wave potential, extrapolated back to the probe, to the launching current gives the launching impedance, a measure of the effectiveness of the launching process. (author) 5 refs., 6 figs
Steady-state creep of discontinuous fibre composites
International Nuclear Information System (INIS)
Boecker Pedersen, O.
1975-07-01
A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-28
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Understanding void fraction in steady state and dynamic environments
International Nuclear Information System (INIS)
Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.
1997-01-01
Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables
Extracting Steady State Components from Synchrophasor Data Using Kalman Filters
Directory of Open Access Journals (Sweden)
Farhan Mahmood
2016-04-01
Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1993-10-01
A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs
Full transmission modes and steady states in defect gratings,
van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R
2003-01-01
For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any
International Nuclear Information System (INIS)
Brus, V V
2013-01-01
A quantitative analysis of the impedance spectroscopy of semiconductor heterojunctions was carried out in the presence of interface state continuum at the heterojunction interface. A comparison of the impedance spectroscopy of semiconductor heterojunctions simulated in the context of the interface state continuum model with that simulated in the scope of the single-level state model was carried and possible misinterpretations were considered. The previously proposed approaches for the determination of the interface-state-related parameters and for the calculation of the actual barrier capacitance (the single-level state model) were modified in order to take into account the effect of interface state continuum. (paper)
Steady states of a diode with counterstreaming electron and positron beams
Energy Technology Data Exchange (ETDEWEB)
Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)
2016-10-15
Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.
Feasibility study for improved steady-state initialization algorithms for the RELAP5 computer code
International Nuclear Information System (INIS)
Paulsen, M.P.; Peterson, C.E.; Katsma, K.R.
1993-04-01
A design for a new steady-state initialization method is presented that represents an improvement over the current method used in RELAP5. Current initialization methods for RELAP5 solve the transient fluidflow balance equations simulating a transient to achieve steady-state conditions. Because the transient solution is used, the initial conditions may change from the desired values requiring the use of controllers and long transient running times to obtain steady-state conditions for system problems. The new initialization method allows the user to fix thermal-hydraulic values in volumes and junctions where the conditions are best known and have the code compute the initial conditions in other areas of the system. The steady-state balance equations and solution methods are presented. The constitutive, component, and specialpurpose models are reviewed with respect to modifications required for the new steady-state initialization method. The requirements for user input are defined and the feasibility of the method is demonstrated with a testbed code by initializing some simple channel problems. The initialization of the sample problems using, the old and the new methods are compared
Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation
Directory of Open Access Journals (Sweden)
Denis J. Evans
2013-04-01
Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.
TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution
International Nuclear Information System (INIS)
Elrod, D.C.; Turner, W.D.
1981-01-01
1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)
Efficient decoding with steady-state Kalman filter in neural interface systems.
Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R
2011-02-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.
The quasi-steady state of the valley wind system
Directory of Open Access Journals (Sweden)
Juerg eSchmidli
2015-12-01
Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.
A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
Directory of Open Access Journals (Sweden)
Mitsuru Kikuchi
2010-11-01
Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.
Simulation of steady-state natural convection using CFD
Energy Technology Data Exchange (ETDEWEB)
Zitzmann, T.; Pfrommer, P. [Univ. of Applied Sciences, Coberg (Germany); Cook, M.; Rees, S.; Marjanovic, L. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development
2005-07-01
Building materials play an important role in the creation of comfortable indoor environments and can reduce dependence on high energy use mechanical systems. Correct predictions between building structure and heat transfer are needed in order to achieve optimal conditions. Heat transfer is dependent on the velocity and temperature distribution in a room, particularly in the wall boundary layer. This paper discussed the modeling of air flow and heat transfer over a heated vertical plate in a differentially-heated cavity using Computational Fluid Dynamics (CFD). Guidelines on the use of CFD with unstructured meshes to model buoyancy-driven flow in a cavity were presented. Benchmark CFD results were compared with published analytical data. The finite volume method was employed using an unstructured mesh containing tetrahedral and prism elements, so that local numerical diffusion was reduced and therefore suitable for complex flows. The code was based on a couple solver for solving the differential equations using the fully implicit discretization method. Hydrodynamic equations were treated as one single system. A false time stepping method was used to reduce the number of iterations required for convergence, which also guided the solutions to a steady-state solution. It was concluded that the methodology achieves accurate predictions, and is suitable for the modeling of heat transfer optimizations. 13 refs., 7 figs.
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard
2014-06-01
Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.
Multiple solutions of steady-state Poisson–Nernst–Planck equations with steric effects
International Nuclear Information System (INIS)
Lin, Tai-Chia; Eisenberg, Bob
2015-01-01
Experiments measuring currents through single protein channels show unstable currents. Channels switch between ‘open’ or ‘closed’ states in a spontaneous stochastic process called gating. Currents are either (nearly) zero or at a definite level, characteristic of each type of protein, independent of time, once the channel is open. The steady state Poisson–Nernst–Planck equations with steric effects (PNP-steric equations) describe steady current through the open channel quite well, in a wide variety of conditions. Here we study the existence of multiple solutions of steady state PNP-steric equations to see if they themselves, without modification or augmentation, can describe two levels of current. We prove that there are two steady state solutions of PNP-steric equations for (a) three types of ion species (two types of cations and one type of anion) with a positive constant permanent charge, and (b) four types of ion species (two types of cations and their counter-ions) with a constant permanent charge but no sign condition. The excess currents (due to steric effects) associated with these two steady state solutions are derived and expressed as two distinct formulas. Our results indicate that PNP-steric equations may become a useful model to study spontaneous gating of ion channels. Spontaneous gating is thought to involve small structural changes in the channel protein that perhaps produce large changes in the profiles of free energy that determine ion flow. Gating is known to be modulated by external structures. Both can be included in future extensions of our present analysis. (paper)
Dissipative dark matter halos: The steady state solution. II.
Foot, R.
2018-05-01
Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...
Herd-Level Modeling and Steady-State Livestock Productivity ...
African Journals Online (AJOL)
... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.
Principle of Entropy Maximization for Nonequilibrium Steady States
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
2002-01-01
The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...
Steady-state operation of spheromaks by inductive techniques
International Nuclear Information System (INIS)
Janos, A.
1984-04-01
A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation
Steady-state solidification of aqueous ammonium chloride
Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae
We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.
Statistical steady states in turbulent droplet condensation
Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph
2017-11-01
We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.
ATC calculation with steady-state security constraints using Benders decomposition
International Nuclear Information System (INIS)
Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.
2003-01-01
Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)
Louisiana Territorial Boundary, Geographic NAD83, LDOTD (1999) [state_boundary_la_LDOTD_1999
Louisiana Geographic Information Center — The dataset defines the state 'territorial' boundary of Louisiana. The state boundary extends 3 miles out into the Gulf of Mexico from the coastline. This data set...
How should we understand non-equilibrium many-body steady states?
Maghrebi, Mohammad; Gorshkov, Alexey
: Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.
Applications of an implicit HLLC-based Godunov solver for steady state hypersonic problems
International Nuclear Information System (INIS)
Link, R.A.; Sharman, B.
2005-01-01
Over the past few years, there has been considerable activity developing research vehicles for studying hypersonic propulsion. Successful launches of the Australian Hyshot and the US Hyper-X vehicles have added a significant amount of flight test data to a field that had previously been limited to numerical simulation. A number of approaches have been proposed for hypersonics propulsion, including attached detonation wave, supersonics combustion, and shock induced combustion. Due to the high cost of developing flight hardware, CFD simulations will continue to be a key tool for investigating the feasibility of these concepts. Capturing the interactions of the vehicle body with the boundary layer and chemical reactions pushes the limits of available modelling tools and computer hardware. Explicit formulations are extremely slow in converging to a steady state; therefore, the use of implicit methods are warranted. An implicit LLC-based Godunov solver has been developed at Martec in collaboration with DRDC Valcartier to solve hypersonic problems with a minimum of CPU time and RAM storage. The solver, Chinook Implicit, is based upon the implicit formulation adopted by Batten et. al. The solver is based on a point implicit Gauss-Seidel method for unstructured grids, and includes fully implicit boundary conditions. Preliminary results for small and large scale inviscid hypersonics problems will be presented. (author)
Stabilizing local boundary conditions for two-dimensional shallow water equations
Dia, Ben Mansour
2018-03-27
In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.
Cal State Park Boundaries 2011/2012
California Natural Resource Agency — This is a GIS version of California State Park (CSP) operational boundaries and does not represent official property boundary determinations. This GIS version is...
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A
2015-01-01
Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the
Steady state ion acceleration by a circularly polarized laser pulse
International Nuclear Information System (INIS)
Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao
2007-01-01
The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Estimating surface acoustic impedance with the inverse method.
Piechowicz, Janusz
2011-01-01
Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.
Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.
Chaudhuri, Pinaki; Horbach, Jürgen
2014-10-01
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
Steady-state bifurcations of the three-dimensional Kolmogorov problem
Directory of Open Access Journals (Sweden)
Zhi-Min Chen
2000-08-01
Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
State-dependent impulses boundary value problems on compact interval
Rachůnková, Irena
2015-01-01
This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary...
Steady-state heat transfer in an inverted U-tube steam generator
International Nuclear Information System (INIS)
Boucher, T.J.
1987-01-01
Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří
2015-01-01
Roč. 35, č. 3 (2015), s. 201-212 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : steady Navier-Stokes problem * slip boundary conditions Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1304/anly-2014-1304. xml
An accelerator based steady state neutron source
International Nuclear Information System (INIS)
Burke, R.J.; Johnson, D.L.
1985-01-01
Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs
Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems
Directory of Open Access Journals (Sweden)
J. Dobes
2012-04-01
Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.
A variable K - planetary boundary layer model
International Nuclear Information System (INIS)
Misra, P.K.
1976-07-01
The steady-state, homogeneous and barotropic equations of motion within the planetary boundary layer are solved with the assumption that the coefficient of eddy viscosity varies as K(Z) = K 0 (1-Z/h)sup(p), where h is the height of the boundary layer and p a parameter which depends on the atmospheric stability. The solutions are compared with the observed velocity profiles based on the Wangara data. They compare favourably. (author)
State of charge classification for lithium-ion batteries using impedance based features
Directory of Open Access Journals (Sweden)
M. P. Felder
2017-09-01
Full Text Available Currently, the electrification of the drive train of passenger cars takes place, and the task of obtaining precise knowledge about the condition of the on board batteries gains importance. Due to a flat open circuit voltage (OCV to state of charge (SoC characteristic of lithium ion batteries, methods employed in applications with other cell chemistries cannot be adapted. Exploiting the higher significance of the impedance for state estimation for that chemistry, new impedance based features are proposed by this work. To evaluate the suitability of these features, simulations have been conducted using a simplified on-board power supply net as excitation source. The simulation outcome has been investigated regarding the cross correlation factor rxy and in a polynomial regression scenario. The results of the simulations show a best case error below 1 % SoC, which is 3 percentage points lower than using terminal voltage and impedance. When increasing the measurement uncertainty, the difference remains around 2 percent points.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
Culver, Adrian; Andrei, Natan
We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.
Large impedances and Majorana bound states in superconducting circuits
International Nuclear Information System (INIS)
Ulrich, Jascha
2017-01-01
Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes
Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2012-01-01
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....
Dust remobilization in fusion plasmas under steady state conditions
Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-01-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Steady-state equations of even flux and scattering
International Nuclear Information System (INIS)
Verwaerde, D.
1985-11-01
Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J
2013-01-01
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.
Existence of non-unique steady state solutions to the RMF current drive equations
Energy Technology Data Exchange (ETDEWEB)
Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences
1985-05-04
It is shown that the value of the d.c. current driven in a plasma cylinder by means of a rotating magnetic field (RMF) is not unique for R/delta >= 6 and eBsub(..omega..)/..nu..sub(ei)m approx.R/delta, where R is the radius of the plasma cylinder, delta is the classical skin depth, ..nu..sub(ei) is the electron-ion momentum transfer collision frequency, Bsub(..omega..) is the magnitude of the rotating magnetic field, e is the electron charge and m is the electron mass. This effect is predicted using three distinct approaches: (i) a steady state anaysis which ignores the second and higher harmonics of the fields and currents; (ii) a qualitative model which utilizes the analogy between the RMF current drive technique and the operation of the induction motor; (iii) a solution of the initial boundary value equations describing the RMF current drive in cylindrical plasmas.
Yamaguchi, Tohru F; Okamoto, Yoshiwo
2018-01-01
Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device. Copyright © 2017 John Wiley & Sons, Ltd.
Impedance spectroscopy study of Na{sub 1/2}Sm{sub 1/2}TiO{sub 3} ceramic
Energy Technology Data Exchange (ETDEWEB)
Barik, S K; Choudhary, R N.P. [I.I.T., Department of Physics and Meteorology, Kharagpur (India); Mahapatra, P K [Vidyasagar University, Department of Physics and Technophysics, Midnapur, West Bengal (India)
2007-07-15
Complex impedance analysis of a valence-compensated perovskite ceramic oxide Na{sub 1/2}Sm{sub 1/2}TiO{sub 3}, prepared by a mixed oxide (solid-state reaction) method, has been carried out. The formation of single-phase material was confirmed by X-ray diffraction studies, and it was found to be an orthorhombic phase at room temperature. In a scanning electron microscope, grains separated by well-defined boundaries are visible, which is in good agreement with that of impedance analysis. Alternating current impedance measurements were made over a wide temperature range (31-400 C) in an air atmosphere. Complex impedance and modulus plots helped to separate out the contributions of grain and grain boundaries to the overall polarization or electrical behavior. The physical structure of the samples was visualized most prominently at higher temperatures (275 C) from the Nyquist plots showing inter- and intragranular impedance present in the material. The frequency dependence of electrical data is also analyzed in the framework of the conductivity and modulus formalisms. The bulk resistance, evaluated from the impedance spectrum, was observed to decrease with rise in temperature, showing a typical negative temperature coefficient of resistance-type behavior like that of semiconductors. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the materials, which is supported by the impedance data. (orig.)
Concentric artificial impedance surface for directional sound beamforming
Directory of Open Access Journals (Sweden)
Kyungjun Song
2017-03-01
Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.
Some problems in steady-state thermal conductivity with variable heat transfer rate
International Nuclear Information System (INIS)
Malov, Yu.I.; Martinson, L.K.; Pavlov, K.B.
1975-01-01
Some boundary-value problems of steady heat conductivity with an alternating heat exchange coefficient have been solved for a cylindrical region. The solutions have been performed as expansion in series with respect to eigenfunctions with the coefficients consistent with infinite systems of linear algebraic equations. A reduction method has been substantiated for those systems. The paper presents results of calculation of the temperature distribution inside the infinite cylinder with concrete tasks of heat exchange coefficient variations on the cylinder surface
Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K
2009-03-01
Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.
International Nuclear Information System (INIS)
Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K
2009-01-01
Bi 2 O 3 -doped barium zirconate titanate ceramics, Ba 1-x Bi x (Zr 0.05 Ti 0.95 )O 3 , have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi 3+ substitutes A-site ion, and thereafter with higher Bi 3+ content, it enters the B-site sub lattice. Substitution of Bi 3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.
Algorithm for determining two-periodic steady-states in AC machines directly in time domain
Directory of Open Access Journals (Sweden)
Sobczyk Tadeusz J.
2016-09-01
Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Y.P.; Liu, X.Y.; He, Y.B.; Li, C.L. [School of Materials Science and Engineering, Central South University, Changsha (China); Pan, Q.L. [School of Materials Science and Engineering, Central South University, Changsha (China); The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Changsha (China); Li, W.B. [School of Materials Science and Engineering, Central South University, Changsha (China); School of Civil Engineering, Hunan City University, Yiyang (China)
2012-02-15
The exfoliation corrosion behavior of an Al-Zn-Mg-Cu-Zr alloy containing Sc artificially aged at 120 C for 24 h is studied by macroscopic observation techniques and electrochemical impedance spectroscopy (EIS) measurements. After 48 h immersion, the blisters start bursting and delamination initiates, along with the appearance of two time constants in the impedance diagrams. According to the simulation by equivalent circuit, the corrosion rate decreases sharply and then reaches a steady state, which is due to the change of the solution pH and oxide layer thickness, as well as the accumulation of corrosion products. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
The technology and science of steady-state operation in magnetically confined plasmas
International Nuclear Information System (INIS)
Becoulet, A; Hoang, G T
2008-01-01
The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a
A displacement based FE formulation for steady state problems
Yu, Y.
2005-01-01
In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a
Importance sampling large deviations in nonequilibrium steady states. I
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2018-03-01
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
Importance sampling large deviations in nonequilibrium steady states. I.
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T
2018-03-28
Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
A novel multivariate STeady-state index during general ANesthesia (STAN).
Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S
2017-08-01
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for
Superconducting fault current-limiter with variable shunt impedance
Llambes, Juan Carlos H; Xiong, Xuming
2013-11-19
A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.
Diffusion-driven steady states of the Z-pinch
International Nuclear Information System (INIS)
Lehnert, B.
1988-01-01
Steady states of a Z-pinch where no electric field is imposed along the pinch axis by external means are investigated. In this case, diffusion-driven states become possible when imposed volume sources of particles and heat drive a radial diffusion velocity that, in its turn, generates the electric plasma current. The particle sources can be from pellet injection or a neutral gas blanket, and the heat sources provided by thermonuclear reactions or auxiliary heating. The present analysis and associated kinetic considerations indicate that steady diffusion-driven operation should become possible for certain classes of plasma profiles, without running into singularity problems at the pinch axis. Such operation leads to higher axial currents in a Z-pinch without an axial magnetic field than in a tokamaklike case under similar plasma conditions. The technical difficulty in realizing a volume distribution of particle sinks introduces certain constraints on the plasma and current profiles. This fact has to be taken into account in a stability analysis. Neoclassical or anomalous diffusion will increase the diffusion velocity of the plasma but is not expected to affect the main physical features of the present results
Steady state behaviour of gaseous fission products in UO2 nuclear fuel at low temperature
International Nuclear Information System (INIS)
Rao, C.B.; Raj, Baldev
1980-01-01
Theoretical modelling studies have been performed on steady state fission gas behaviour in UO 2 fuels at temperatures in the range 1073deg K to 1473deg K. The concentrations of gas atoms in the matrix and in the bubbles are determined. Fraction of total generated gas atoms migrating to and forming bubbles at grain boundaries is calculated. Contributions of intragranular and intergranular bubbles to the swelling are also computed. The various assumptions made to simplify computer calculations and their validity are discussed at length. Effects of changes in the fission rate, the resolution parameter, bubble concentration, gas atom diffusivity and grain radius on swelling and gas release are studied. The results of this model are compared to other theoretical models and experimental results available in literature. Possibility of extending the present model to advanced carbide and nitride fuels is discussed. (auth.)
Twisted boundary states in c=1 coset conformal field theories
International Nuclear Information System (INIS)
Ishikawa, Hiroshi; Yamaguchi, Atsushi
2003-01-01
We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
Khlebnikov, Vitaly; Geades, Nicolas; Klomp, DWJ; Hoogduin, Hans; Gowland, Penny; Mougin, Olivier
PURPOSE: To compare two pulsed, volumetric chemical exchange saturation transfer (CEST) acquisition schemes: steady state (SS) and pseudosteady state (PS) for the same brain coverage, spatial/spectral resolution and scan time. METHODS: Both schemes were optimized for maximum sensitivity to amide
Steady-state and dynamic models for particle engulfment during solidification
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Tore-Supra infrared thermography system, a real steady-state diagnostic
International Nuclear Information System (INIS)
Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.
2005-01-01
Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each
NLIE of Dirichlet sine-Gordon model for boundary bound states
International Nuclear Information System (INIS)
Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco
2008-01-01
We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory
Three-dimensional stellarator equilibrium as an ohmic steady state
International Nuclear Information System (INIS)
Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.
1985-07-01
A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations
Comparison of Steady-State SVC Models in Load Flow Calculations
DEFF Research Database (Denmark)
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...
Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano
Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone
2018-06-01
Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.
Directory of Open Access Journals (Sweden)
Juwairia Obaid
2017-02-01
Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
A steady-state fluid model of the coaxial plasma gun
International Nuclear Information System (INIS)
Herziger, G.; Krompholz, H.; Schneider, W.; Schoenbach, K.
1979-01-01
The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)
Development of repetitive railgun pellet accelerator and steady-state pellet supply system
International Nuclear Information System (INIS)
Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.
1995-01-01
A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament
Development of repetitive railgun pellet accelerator and steady-state pellet supply system
Energy Technology Data Exchange (ETDEWEB)
Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)
1995-12-31
A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
An equation oriented approach to steady state flowsheeting of methanol synthesis loop
International Nuclear Information System (INIS)
Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.
2008-01-01
An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model
Coagulation profile of children with sickle cell anemia in steady state ...
African Journals Online (AJOL)
Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...
Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics
International Nuclear Information System (INIS)
Qian, Hong
2005-01-01
An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells
Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films
Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.
steady and dynamic states analysis of induction motor: fea approach
African Journals Online (AJOL)
HOD
The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...
Post-CHF heat transfer during steady-state and transient conditions
International Nuclear Information System (INIS)
Fung, K.K.
1978-06-01
This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu
DEFF Research Database (Denmark)
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen
2016-01-01
AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...
DEFF Research Database (Denmark)
Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis
2011-01-01
To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....
Preparation of edge states by shaking boundaries
Energy Technology Data Exchange (ETDEWEB)
Shi, Z.C. [Department of Physics, Fuzhou University, Fuzhou 350002 (China); Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China); Hou, S.C. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); Wang, L.C. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Yi, X.X., E-mail: yixx@nenu.edu.cn [Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China)
2016-10-15
Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry–André–Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.
Steady state solution of the Poisson-Nernst-Planck equations
International Nuclear Information System (INIS)
Golovnev, A.; Trimper, S.
2010-01-01
The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
MARS input data for steady-state calculation of ATLAS
International Nuclear Information System (INIS)
Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.
2004-12-01
An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Kyung Youn; Ijaz, Umer Zeeshan; Lee, Jeong Seong; Kim, Sin
2010-01-01
In industrial processes, monitoring of heterogeneous phases is crucial to the safety and operation of the engineering structures. Particularly, the visualization of voids and air bubbles is advantageous. As a result many studies have appeared in the literature that offer varying degrees of functionality. Electrical impedance tomography (EIT) has already been proved to be a hallmark for process monitoring and offers not only the visualization of the resistivity profile for a given flow mixture but is also used for detection of phase boundaries. Iterative image reconstruction algorithms, such as the modified Newton–Raphson (mNR) method, are commonly used as inverse solvers. However, their utility is problematic in a sense that they require the initial solution in close proximity of the ground truth. Furthermore, they also rely on the gradient information of the objective function to be minimized. Therefore, in this paper, we address all these issues by employing a direct search algorithm, namely the Hooke and Jeeves pattern search method, to estimate the phase boundaries that directly minimizes the cost function and does not require the gradient information. It is assumed that the resistivity profile is known a priori and therefore the unknown information will be the size and location of the object. The boundary coefficients are parameterized using truncated Fourier series and are estimated using the relationship between the measured voltages and injected currents. Through extensive simulation and experimental result and by comparison with mNR, we show that the Hooke and Jeeves pattern search method offers a promising prospect for process monitoring
Array of piezoelectric energy harvesting by the equivalent impedance approach
International Nuclear Information System (INIS)
Lien, I C; Shu, Y C
2012-01-01
This article proposes to use the idea of equivalent impedance to investigate the electrical response of an array of piezoelectric oscillators endowed with distinct energy harvesting circuits. Three interface electronics systems are considered including standard AC/DC and parallel/series-SSHI (synchronized switch harvesting on inductor) circuits. Various forms of equivalent load impedance are analytically obtained for different interfaces. The steady-state response of an array system is then shown to be determined by the matrix formulation of generalized Ohm’s law whose impedance matrix is explicitly expressed in terms of the load impedance. A model problem is proposed for evaluating the ability of power harvesting under various conditions. It is shown first that harvested power is increased dramatically for the case of small deviation in the system parameters. On the other hand, if the deviation in mass is relatively large, the result is changed from the power-boosting mode to wideband mode. In particular, the parallel-SSHI array system exhibits much more significant bandwidth improvement than the other two cases. Surprisingly, the series-SSHI array system shows the worst electrical response. Such an observation is opposed to our previous finding that an SSHI technique avails against the standard technique in the case based on a single piezoelectric energy harvester and the explanation is under investigation. (fast track communication)
Steady-state pharmacokinetics of pravastatin in children with familial hypercholesterolaemia
Wiersma, Heleen E.; Wiegman, Albert; Koopmans, Richard P.; Bakker, Henk D.; Kastelein, John J. P.; van Boxtel, Chris J.
2004-01-01
Objective: To determine pharmacokinetic data for pravastatin in children, since current data are insufficient in this age group. Subjects and methods: A 2-week, multiple-dose, steady-state pharmacokinetic study was carried out with pravastatin 20mg daily in 24 children with familial
Optimising performance in steady state for a supermarket refrigeration system
DEFF Research Database (Denmark)
Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh
2012-01-01
Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...
Progress towards Steady State on NSTX
International Nuclear Information System (INIS)
Gates, D.A.; Kessel, C.; Menard, J.; Taylor, G.; Wilson, J.R.
2005-01-01
In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from κ ∼ 2.1 to κ ∼ 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal β for long-pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher β t with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ((delta) ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented
Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf
2014-04-01
Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state
Theoretical analysis of steady state operating forces in control valves
Directory of Open Access Journals (Sweden)
Basavaraj Hubballi
2018-01-01
Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.
Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.
Lawn, Philip
2011-02-01
Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.
Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy
Directory of Open Access Journals (Sweden)
Chien-Yie Tsay
2016-05-01
Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.
Stabilizing the border steady-state solution of two interacting ...
African Journals Online (AJOL)
In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...
Ideal MHD stability and performance of ITER steady-state scenarios with ITBs
Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.
2012-06-01
Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.
Coherent control of long-distance steady-state entanglement in lossy resonator arrays
Angelakis, D. G.; Dai, L.; Kwek, L. C.
2010-07-01
We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.
Producing a steady-state population inversion
International Nuclear Information System (INIS)
Richards, R.K.; Griffin, D.C.
1986-03-01
An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced
Steady-State Ion Beam Modeling with MICHELLE
Petillo, John
2003-10-01
There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.
Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube
Gurta, R. N.; Trimpi, R. L.
1974-01-01
An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.
Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P
2015-12-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p Tabata protocol was significantly less enjoyable (p HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
Analysis of steady state and transient two-phase flows in downwardly inclined lines
International Nuclear Information System (INIS)
Crawford, T.J.
1983-01-01
A study of steady-state and transient two-phase flows in downwardly inclined lines is described. Steady-state flow patterns maps are presented using Freon-113 as the working fluid to provide new high density vapors. These flow maps with high density vapor serve to significantly extend the investigations of steady-state downward two-phase flow patterns. Physical models developed which successfully predicted the onset or location of various flow pattern transitions. A new simplified criterion that would be useful to designers and experimenters is offered for the onset of dispersed flow. A new empirical holdup correlation and a new bubble diameter/flow rate correlation are also proposed. Flow transients in vertical downward lines were studied to investigate the possible formation of intermediate or spurious flow patterns that would not be seen at steady-state conditions. Void fraction behavior during the transients was modeled by using the dynamic slip equation from the transient analysis code RETRAN. Physical models of interfacial area were developed and compared with models and data from literature. There was satisfactory agreement between the models of the present study and the literature models and data. The concentration parameter of the drift flux model was evaluated for vertical downward flow. These new values of the flow dependent parameter were different from those previously proposed in the literature for use in upward flows, and made the drift flux model suitable for use in upward or downward flow lines
Analytical solutions of steady-state conjugate heat transfer in ducts with turbulent flow
International Nuclear Information System (INIS)
Cerqueira, Djane R.; Jian Su
2007-01-01
In this work, we present an approximate analytical solution of the steady-state conjugate heat transfer of turbulent forced convection in a circular pipe with wall axial heat conduction and external convective boundary conditions. Improved lumped differential approach based on two points Hermite approximation for integrals was applied to reduce the heat conduction equation in the solid into a second-order ordinary differential equation for the radially averaged solid temperature. The energy equation in the fluid was solved by applying the generalized integral transform technique (GITT). The Sturm-Lioville eigenproblem for fluid energy equation in the cylindrical coordinate system was solved by the sign-count method. The truncated system of N ordinary differential equations for transformed potentials of the fluid temperature and the second-order ordinary differential equation for radially averaged solid temperature formed a homogeneous system of N+2 ordinary differential equations, which was solved analytically. The effects of the fluid-solid thermal conductivity ratio on the Nusselt number, the average fluid and solid temperatures, and the fluid-solid interface temperature were investigated. (author)
DEFF Research Database (Denmark)
Zhou, Leming; Chen, Yandong; Luo, An
2016-01-01
-of-freedom single-current control (RTDOF-SCC) strategy is proposed, which mainly includes the synchronous reference frame quasi-proportional-integral (SRFQPI) control and robust grid-current-feedback active damping (RGCFAD) control. The proposed SRFQPI control can compensate the local-loads reactive power......, and regulate the instantaneous grid current without steady-state error regardless of the fundamental frequency fluctuation. Simultaneously, the proposed RGCFAD control effectively damps the LCL-resonance peak regardless of the grid-impedance variation, and further improves both transient and steady...
S3C: EBT Steady-State Shooting code description and user's guide
International Nuclear Information System (INIS)
Downum, W.B.
1983-09-01
The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code
Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges
International Nuclear Information System (INIS)
Elsayed-Ali, H.E.; Miley, G.H.
1985-01-01
Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges
Boundary states in c=-2 logarithmic conformal field theory
International Nuclear Information System (INIS)
Bredthauer, Andreas; Flohr, Michael
2002-01-01
Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Capitalist Diversity and De-growth Trajectories to Steady-state Economies
DEFF Research Database (Denmark)
Buch-Hansen, Hubert
2014-01-01
Growth-critical scholarship has done much to both expose the environmentally unsustainable nature of the capitalist growth-economies of the overdeveloped part of the world and to develop an alternative vision of a degrowth transition leading to a steady-state economy. However, this scholarship fa...
Restitution slope is principally determined by steady-state action potential duration.
Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James
2017-06-01
The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on
Preliminary design study of a steady state tokamak device
International Nuclear Information System (INIS)
Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)
1992-09-01
Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Steady state operation of tokamaks. Proceedings of a technical committee meeting
International Nuclear Information System (INIS)
2000-10-01
The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition
Steady State and Transient Analysis of Induction Motor Driving a ...
African Journals Online (AJOL)
The importance of using a digital computer in studying the performance of Induction machine under steady and transient states is presented with computer results which show the transient behaviour of 3-phase machine during balanced and unbalanced conditions. The computer simulation for these operating conditions is ...
Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates
McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.
2011-01-01
Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.
Data system design considerations for a pseudo-steady-state device
International Nuclear Information System (INIS)
Wing, W.R.
1981-01-01
The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis
International Nuclear Information System (INIS)
Feng Chaojun; Zhang Xin
2009-01-01
In the holographic Ricci dark energy (RDE) model, the parameter α plays an important role in determining the evolutionary behavior of the dark energy. When α<1/2, the RDE will exhibit a quintom feature, i.e., the equation of state of dark energy will evolve across the cosmological constant boundary w=-1. Observations show that the parameter α is indeed smaller than 1/2, so the late-time evolution of RDE will be really like a phantom energy. Therefore, it seems that the big rip is inevitable in this model. On the other hand, the big rip is actually inconsistent with the theoretical framework of the holographic model of dark energy. To avoid the big rip, we appeal to the extra dimension physics. In this Letter, we investigate the cosmological evolution of the RDE in the braneworld cosmology. It is of interest to find that for the far future evolution of RDE in a Randall-Sundrum braneworld, there is an attractor solution where the steady state (de Sitter) finale occurs, in stead of the big rip.
Steady-state evoked potentials possibilities for mental-state estimation
Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.
1988-01-01
The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.
Energy Technology Data Exchange (ETDEWEB)
Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)
2010-10-15
This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer
Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX
Energy Technology Data Exchange (ETDEWEB)
Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)
2006-12-15
Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.
The total quasi-steady-state approximation for complex enzyme reactions
DEFF Research Database (Denmark)
Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.
2008-01-01
) approximation (or standard quasi-steady-state approximation (sQSSA)), which is valid when the enzyme concentration is sufficiently small. This condition is usually fulfilled for in vitro experiments, but often breaks down in vivo. The total QSSA (tQSSA), which is valid for a broader range of parameters covering...
Comparing Interval Management Control Laws for Steady-State Errors and String Stability
Weitz, Lesley A.; Swieringa, Kurt A.
2018-01-01
Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.
Magnetic sensor for steady state tokamak
Energy Technology Data Exchange (ETDEWEB)
Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-06-01
A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).
DEFF Research Database (Denmark)
Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp
2017-01-01
Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
Concept study of the Steady State Tokamak Reactor (SSTR)
International Nuclear Information System (INIS)
1991-06-01
The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)
Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V
2018-01-01
This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold.
Zwanenburg, Jaco J M; Kuijer, Joost P A; Marcus, J Tim; Heethaar, Robert M
2003-04-01
A method is presented that combines steady-state free precession (SSFP) cine imaging with myocardial tagging. Before the tagging preparation at each ECG-R wave, the steady-state magnetization is stored as longitudinal magnetization by an alpha/2 flip-back pulse. Imaging is continued immediately after tagging preparation, using linearly increasing startup angles (LISA) with a rampup over 10 pulses. Interleaved segmented k-space ordering is used to prevent artifacts from the increasing signal during the LISA rampup. First, this LISA-SSFP method was evaluated regarding ghost artifacts from the steady-state interruption by comparing LISA with an alpha/2 startup method. Next, LISA-SSFP was compared with spoiled gradient echo (SGRE) imaging, regarding tag contrast-to-noise ratio and tag persistence. The measurements were performed in phantoms and in six subjects applying breathhold cine imaging with tagging (temporal resolution 51 ms). The results show that ghost artifacts are negligible for the LISA method. Compared to the SGRE reference, LISA-SSFP was two times faster, with a slightly better tag contrast-to-noise. Additionally, the tags persisted 126 ms longer with LISA-SSFP than with SGRE imaging. The high efficiency of LISA-SSFP enables the acquisition of complementary tagged (CSPAMM) images in a single breathhold. Copyright 2003 Wiley-Liss, Inc.
Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle
Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)
1999-01-01
An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.
Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers
de S. Teixeira, Renan; S. de B. Alves, Leonardo
2017-12-01
Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases
Czech Academy of Sciences Publication Activity Database
Silver, Barry Richard; Holub, Karel; Mareček, Vladimír
2014-01-01
Roč. 731, OCT 2014 (2014), s. 107-111 ISSN 1572-6657 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : Liquid/liquid interfaces * Ion transport * AC impedance Subject RIV: CG - Electrochemistry Impact factor: 2.729, year: 2014
Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers
International Nuclear Information System (INIS)
Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.
1975-01-01
The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist
Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging
International Nuclear Information System (INIS)
Cakoni, Fioralba; Hu, Yuqing; Kress, Rainer
2014-01-01
Determining the geometry and the physical nature of an inclusion within a conducting medium from voltage and current measurements on the accessible boundary of the medium can be modeled as an inverse boundary value problem for the Laplace equation subject to appropriate boundary conditions on the inclusion. We continue the investigations on the particular inverse problem with a generalized impedance condition started in Cakoni and Kress (2013 Inverse Problems 29 015005) by presenting an inverse algorithm for the simultaneous reconstruction of both the shape of the inclusion and the two impedance functions via a boundary integral equation approach. In addition to describing the reconstruction algorithm and illustrating its feasibility by numerical examples we also provide some extensions to the uniqueness results in Cakoni and Kress (2013 Inverse Problems 29 015005). (paper)
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods
National Research Council Canada - National Science Library
DeSpirito, James; Silton, Sidra I; Weinacht, Paul
2008-01-01
The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...
Energy Technology Data Exchange (ETDEWEB)
Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi-110054 (India); Sreenivas, K, E-mail: omprakasht@hotmail.co [Department of Physics and Astrophysics, University of Delhi- 110007 (India)
2009-03-21
Bi{sub 2}O{sub 3}-doped barium zirconate titanate ceramics, Ba{sub 1-x}Bi{sub x}(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi{sup 3+} substitutes A-site ion, and thereafter with higher Bi{sup 3+} content, it enters the B-site sub lattice. Substitution of Bi{sup 3+} ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.
International Nuclear Information System (INIS)
1988-05-01
The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs
Evolution of passive movement in advective environments: General boundary condition
Zhou, Peng; Zhao, Xiao-Qiang
2018-03-01
In a previous work [16], Lou et al. studied a Lotka-Volterra competition-diffusion-advection system, where two species are supposed to differ only in their advection rates and the environment is assumed to be spatially homogeneous and closed (no-flux boundary condition), and showed that weaker advective movements are more beneficial for species to win the competition. In this paper, we aim to extend this result to a more general situation, where the environmental heterogeneity is taken into account and the boundary condition at the downstream end becomes very flexible including the standard Dirichlet, Neumann and Robin type conditions as special cases. Our main approaches are to exclude the existence of co-existence (positive) steady state and to provide a clear picture on the stability of semi-trivial steady states, where we introduced new ideas and techniques to overcome the emerging difficulties. Based on these two aspects and the theory of abstract competitive systems, we achieve a complete understanding on the global dynamics.
Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L
2004-01-01
Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Bers, A.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma
International Nuclear Information System (INIS)
Place, A.R.; Eccleston, J.F.
1987-01-01
The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s -1 ) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD + is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d 6 -deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur
Boundary Layer Ducting of Low-elevation GNSS Ocean Reflected Signals
DEFF Research Database (Denmark)
Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor
for the data retrievals and the precision and the accuracy, are of interest for assessing the observational data content.Simulations of the low-elevation ocean reflected GNSS signal reveal a ducting of the signalwhen applying a model of the boundary layer. This effect is presented during varying conditions...... of the sea surface roughness, ocean wind and temperature, density and gradient of the water vapor profile in the boundary layer.The model for the sea surface roughness impedance, wind speed, and rms ocean wave-heightshow a stronger signal damping for a smoother ocean surfaces (sea state 0) compared...... to a rough sea (sea state 4). While the real part of the signal shows the reverse effect. At the same time the reflection zone enhances for rough sea states. Simulations, including a standard atmosphere and a boundary layer, give a significant ducting of the received signal, leading to a much larger...
Exact solution of nonsteady thermal boundary layer equation
International Nuclear Information System (INIS)
Dorfman, A.S.
1995-01-01
There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs
Differential equation methods for simulation of GFP kinetics in non-steady state experiments.
Phair, Robert D
2018-03-15
Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
2010-07-01
...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...
Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR
International Nuclear Information System (INIS)
Moriya, Shoichi
2001-01-01
Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)
Modeling of the blood rheology in steady-state shear flows
International Nuclear Information System (INIS)
Apostolidis, Alex J.; Beris, Antony N.
2014-01-01
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling
Steady-State Diffusion of Water through Soft-Contact LensMaterials
Energy Technology Data Exchange (ETDEWEB)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.
Steady state magnetic field configurations for the earth's magnetotail
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Radioactivity computation of steady-state and pulsed fusion reactors operation
International Nuclear Information System (INIS)
Attaya, H.
1994-06-01
Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices
A steady state model for anaerobic digestion of sewage sludges ...
African Journals Online (AJOL)
A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong
2014-02-01
We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.
Natural equilibria in steady-state neutron diffusion with temperature feedback
International Nuclear Information System (INIS)
Pounders, J. M.; Ingram, R.
2013-01-01
The critical diffusion equation with feedback is investigated within the context of steady-state multiphysics. It is proposed that for critical configurations there is no need to include the multiplication factor k in the formulation of the diffusion equation. This is notable because exclusion of k from the coupled system of equations precludes the mathematically tenuous notion of a nonlinear eigenvalue problem. On the other hand, it is shown that if the factor k is retained in the diffusion equation, as is currently common practice, then the resulting problem is equivalent to the constrained minimization of a functional representing the critical equilibrium of neutron and temperature distributions. The unconstrained solution corresponding to k = 1 represents the natural equilibrium of a critical system at steady-state. Computational methods for solving the constrained problem (with k) are briefly reviewed from the literature and a method for the unconstrained problem (without k) is outlined. A numerical example is studied to examine the effects of the constraint in the nonlinear system. (authors)
Adaptively locating unknown steady states: Formalism and basin of attraction
International Nuclear Information System (INIS)
Wu, Yu; Lin, Wei
2011-01-01
The adaptive technique, which includes both dynamical estimators and coupling gains, has been recently verified to be practical for locating the unknown steady states numerically. This Letter, in the light of the center manifold theory for dynamical systems and the matrix spectrum principle, establishes an analytical formalism of this adaptive technique and reveals a connection between this technique and the original adaptive controller which includes only the dynamical estimator. More interestingly, in study of the well-known Lorenz system, the selections of the estimator parameters and initial values are found to be crucial to the successful application of the adaptive technique. Some Milnor-like basins of attraction with fractal structures are found quantitatively. All the results obtained in the Letter can be further extended to more general dynamical systems of higher dimensions. -- Highlights: → Establishing a new and rigorous formalism for the adaptive stabilization technique. → Showing a close connection between the adaptive technique and the original controller. → Providing feasible algorithms for simultaneous stabilization of multiple steady states. → Finding Milnor-like basins of attraction with fractal structures in adaptive control.
Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell
International Nuclear Information System (INIS)
Fadaei, M.; Mohammadi, R.; Ghassemi, M.
2014-01-01
Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Steady-state and transient heat transfer through fins of complex geometry
Directory of Open Access Journals (Sweden)
Taler Dawid
2014-06-01
Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element
International Nuclear Information System (INIS)
El-Genk, M.S.; Xue, H.
1992-01-01
Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
2010-07-01
...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...
GRASS-SST, Fission Products Gas Release and Fuel Swelling in Steady-State and Transients
International Nuclear Information System (INIS)
Zawadzki, S.
2001-01-01
1 - Description of program or function: GRASS-SST is a comprehensive, mechanistic model for the prediction of fission-gas behaviour in UO 2 -base fuels during steady-state and transient conditions. GRASS-SST treats fission-gas release and fuel swelling on an equal basis and simultaneously treats all major mechanisms that influence fission-gas behaviour. Models are included for intra- and inter-granular fission-gas bubble behaviour as well as a mechanistic description of the role of grain-edge inter-linked porosity on fission-gas release and swelling. GRASS-SST calculations include the effects of gas production from fissioning uranium atoms, bubble nucleation, a realistic equation of state for xenon, lattice bubble diffusivities based on experimental observations, bubble migration, bubble coalescence, re-solution, temperature and temperature gradients, inter-linked porosity, and fission-gas interaction with structural defects (dislocations and grain boundaries) on both the distribution of fission-gas within the fuel and on the amount of fission-gas released from the fuel. GRASS-SST includes the effects of the degree of nonequilibrium in the UO 2 lattice on fission-gas bubble mobility and bubble coalescence and also accounts for the observed formation of grain-surface channels. GRASS-SST also includes mechanistic models for grain-growth/grain boundary sweeping and for the behaviour of fission gas during liquefaction/dissolution and fuel melting conditions. 2 - Method of solution: A system of coupled equations for the evolution of the fission-gas bubble-size distributions in the lattice, on dislocations, on grain faces, and grain edges is derived based on the GRASS-SST models. Given a set of operating conditions, GRASS-SST calculates the bubble radii for the size classes of bubbles under consideration using a realistic equation of state for xenon as well as a generalised capillary relation. 3 - Restrictions on the complexity of the problem: Maxima of : 1 axial section
Dissipative dark matter halos: The steady state solution
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Astumian, R D
2018-01-11
In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.
Steady and dynamic states analysis of induction motor: FEA approach
African Journals Online (AJOL)
This paper deals with the steady and dynamic states analysis of induction motor using finite element analysis (FEA) approach. The motor has aluminum rotor bars and is designed for direct-on-line operation at 50 Hz. A study of the losses occurring in the motor performed at operating frequency of 50Hz showed that stator ...
Steady state magnetic field configurations for the earth's magnetotail
International Nuclear Information System (INIS)
Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.
1989-01-01
The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
International Nuclear Information System (INIS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-01-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more
Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.
Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin
2011-10-01
This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.
Method of interior boundaries in a mixed problem of acoustic scattering
Directory of Open Access Journals (Sweden)
P. A. Krutitskii
1999-01-01
Full Text Available The mixed problem for the Helmholtz equation in the exterior of several bodies (obstacles is studied in 2 and 3 dimensions. The Dirichlet boundary condition is given on some obstacles and the impedance boundary condition is specified on the rest. The problem is investigated by a special modification of the boundary integral equation method. This modification can be called ‘Method of interior boundaries’, because additional boundaries are introduced inside scattering bodies, where impedance boundary condition is given. The solution of the problem is obtained in the form of potentials on the whole boundary. The density in the potentials satisfies the uniquely solvable Fredholm equation of the second kind and can be computed by standard codes. In fact our method holds for any positive wave numbers. The Neumann, Dirichlet, impedance problems and mixed Dirichlet–Neumann problem are particular cases of our problem.
Steady-state response of periodically supported structures to a moving load
Metrikine, A.V.; Wolfert, A.R.M.; Vrouwenvelder, A.C.W.M.
1999-01-01
Steady-state vibrations of periodically supported structures under a moving load are analytically investigated. The following three structures are considered: an overhead power line for a train, a long suspended bridge and a railway track. The study is based on the application of so-called
International Nuclear Information System (INIS)
Leinonen, Matti; Hakula, Harri; Hyvönen, Nuutti
2014-01-01
The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations
Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science
International Nuclear Information System (INIS)
Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.
2012-01-01
Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system
Dielectric and impedance spectroscopic studies of neodymium gallate
Energy Technology Data Exchange (ETDEWEB)
Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)
2016-05-01
The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.
An expression of excess work during the transition between nonequilibrium steady states
International Nuclear Information System (INIS)
Yuge, Tatsuro
2014-01-01
Excess work is a nondiverging part of the work during the transition between nonequilibrium steady states (NESSs). It is a central quantity in steady-state thermodynamics (SST), which is a candidate for nonequilibrium thermodynamics theory. We derive an expression of excess work during quasistatic transitions between NESSs by using the macroscopic linear response relation of the NESS. This expression is a line integral of a vector potential in the space of control parameters. We show a relationship between the vector potential and the response function of the NESS, and thus obtain a relationship between the SST and a macroscopic quantity. We also connect the macroscopic formulation to microscopic physics through a microscopic expression of the nonequilibrium response function, which gives a result that is consistent with previous studies. (paper)
Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder
International Nuclear Information System (INIS)
Oda, Y.; Azuma, K.; Onozuka, M.; Kasai, S.; Hasegawa, K.
1995-01-01
Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.)
Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder
Energy Technology Data Exchange (ETDEWEB)
Oda, Y. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Azuma, K. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Kasai, S. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Hasegawa, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)
1995-12-31
Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.).
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Directory of Open Access Journals (Sweden)
Jorge Fernandez-de-Cossio-Diaz
2017-11-01
Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Gravity currents in rotating channels. Part 1. Steady-state theory
Hacker, J. N.; Linden, P. F.
2002-04-01
A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Fisch, N.J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma
Reactor kinetics - pulse and steady state
Energy Technology Data Exchange (ETDEWEB)
Estes, B F; Morris, F M [Sandia Laboratories (United States)
1974-07-01
An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)
Rheological behavior of semi-solid 7075 aluminum alloy at steady state
Directory of Open Access Journals (Sweden)
Li Yageng
2014-03-01
Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.
Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings
Directory of Open Access Journals (Sweden)
C. Bhagat
2014-12-01
Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
International Nuclear Information System (INIS)
Faiz, J.; Shafagh, E.
1999-01-01
In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching angle. The static test characteristics of the motor are carefully measured and measured flux-linkage data are then used to predict the steady-state performance
Development of steady-state scenarios compatible with ITER-like wall conditions
Energy Technology Data Exchange (ETDEWEB)
Litaudon, X [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Arnoux, G [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Beurskens, M [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)] (and others)
2007-12-15
A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q{sub 95} {approx} 5 and high triangularity, {delta} (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching {beta}{sub N} {approx} 2 at B{sub o} {approx} 3.1 T. Operating at higher {delta} has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
DEFF Research Database (Denmark)
Olsen, M H; Andersen, U B; Wachtell, K
1999-01-01
We wanted to investigate whether time to steady state was reached within 2 h of insulin infusion during isoglycemic hyperinsulinemic clamp, comparing the glucose uptake index (M/IG) with Bergman's insulin sensitivity index (Sip). We performed a 2-h oral glucose tolerance test and a 3-h isoglycemic....... Because the 2-h M/IG correlated strongly with the 3-h Sip with relatively narrow limits of agreement, it is a good measure of insulin sensitivity. However, a 2-h clamp results in lower insulin sensitivity values in elderly, hypertensive patients due to the fact that steady state is not reached...
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-11-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
Electrical impedance tomography imaging using a priori ultrasound data
Directory of Open Access Journals (Sweden)
Soleimani Manuchehr
2006-02-01
Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.
Do's and don'ts in Fourier analysis of steady-state potentials.
Bach, M; Meigen, T
1999-01-01
Fourier analysis is a powerful tool in signal analysis that can be very fruitfully applied to steady-state evoked potentials (flicker ERG, pattern ERG, VEP, etc.). However, there are some inherent assumptions in the underlying discrete Fourier transform (DFT) that are not necessarily fulfilled in typical electrophysiological recording and analysis conditions. Furthermore, engineering software-packages may be ill-suited and/or may not fully exploit the information of steady-state recordings. Specifically: * In the case of steady-state stimulation we know more about the stimulus than in standard textbook situations (exact frequency, phase stability), so 'windowing' and calculation of the 'periodogram' are not necessary. * It is mandatory to choose an integer relationship between sampling rate and frame rate when employing a raster-based CRT stimulator. * The analysis interval must comprise an exact integer number (e.g., 10) of stimulus periods. * The choice of the number of stimulus periods per analysis interval needs a wise compromise: A high number increases the frequency resolution, but makes artifact removal difficult; a low number 'spills' noise into the response frequency. * There is no need to feel tied to a power-of-two number of data points as required by standard FFT, 'resampling' is an easy and efficient alternative. * Proper estimates of noise-corrected Fourier magnitude and statistical significance can be calculated that take into account the non-linear superposition of signal and noise. These aspects are developed in an intuitive approach with examples using both simulations and recordings. Proper use of Fourier analysis of our electrophysiological records will reduce recording time and/or increase the reliability of physiologic or pathologic interpretations.
Accuracy of the calculations of the ionization-state densities in a steady-state plasma
International Nuclear Information System (INIS)
Salzmann, D.
1980-01-01
A quantitative definition is given to the accuracy of the computation of the partial densities of the ionization states in a steady-state plasma when there is an inaccuracy in the rate coefficients used in the rate equation. It is found that the partial density of the most abundant ion species is almost independent of the exact form of the rate coefficients, but large errors may occur for the rare species. The effect of the variation of the total ion density on the partial densities is also calculated. For low-ion densities the partial ionization-state densities grow proportionally to the change of the total density, but at high densities there is an alteration of the charge-state distribution as well
Entanglement spectrum and boundary theories with projected entangled-pair states
Energy Technology Data Exchange (ETDEWEB)
Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)
2012-07-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
Moreau, D.
2001-01-01
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
Moreau, D.; Voitsekhovitch, I.
1999-01-01
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it
Directory of Open Access Journals (Sweden)
B. I. McNeil
2013-04-01
Full Text Available The role of the ocean has been pivotal in modulating rising atmospheric CO2 levels since the industrial revolution, sequestering nearly half of all fossil-fuel derived CO2 emissions. Net oceanic uptake of CO2 has roughly doubled between the 1960s (~1 Pg C yr−1 and 2000s (~2 Pg C yr−1, with expectations that it will continue to absorb even more CO2 with rising future atmospheric CO2 levels. However, recent CO2 observational analyses along with numerous model predictions suggest the rate of oceanic CO2 uptake is already slowing, largely as a result of a natural decadal-scale outgassing signal. This recent CO2 outgassing signal represents a significant shift in our understanding of the oceans role in modulating atmospheric CO2. Current tracer-based estimates for the ocean storage of anthropogenic CO2 assume the ocean circulation and biology is in steady state, thereby missing the new and potentially important "non-steady state" CO2 outgassing signal. By combining data-based techniques that assume the ocean is in a steady state, with techniques that constrain the net oceanic CO2 uptake signal, we show how to extract the non-steady state CO2 signal from observations. Over the entire industrial era, the non-steady state CO2 outgassing signal (~13 ± 10 Pg C is estimated to represent about 9% of the total net CO2 inventory change (~142 Pg C. However, between 1989 and 2007, the non-steady state CO2 outgassing signal (~6.3 Pg C has likely increased to be ~18% of net oceanic CO2 storage over that period (~36 Pg C. The present uncertainty of our data-based techniques for oceanic CO2 uptake limit our capacity to quantify the non-steady state CO2 signal, however with more data and better certainty estimates across a range of diverse methods, this important and growing CO2 signal could be better constrained in the future.
Steady state drift vortices in plasmas with shear flow in equilibrium
DEFF Research Database (Denmark)
Chakrabarti, N.
1999-01-01
The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...
Quasi-steady state thermal performances of a solar air heater with ...
African Journals Online (AJOL)
Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...
Steady-state transport equation resolution by particle methods, and numerical results
International Nuclear Information System (INIS)
Mercier, B.
1985-10-01
A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr
Steady-State-Preserving Simulation of Genetic Regulatory Systems
Directory of Open Access Journals (Sweden)
Ruqiang Zhang
2017-01-01
Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.
Transient and steady-state selection in the striatal microcircuit
Directory of Open Access Journals (Sweden)
Adam eTomkins
2014-01-01
Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.
MHD stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-02-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed
Magnetohydrodynamic stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-01-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))
Theory of steady state plasma flow and confinement in a periodic magnetic field
International Nuclear Information System (INIS)
Brown, M.G.
1981-02-01
The steady flow of plasmas through spatially periodic magnetic fields is examined, and a theoretical model is developed for the case of axisymmetric geometry. The externally applied magnetic fields can be cusps or mirrors joined end to end; electrons are then localised by these fields because of their small Larmor radius, while the ions can traverse the magnetic mirrors. The properties of the model equations are studied and dimensionless parameters which appear are interpreted. Numerical methods used in steady flow applications are reviewed, and some techniques of solution for the model equations are discussed. A solution method involving numerical integration of time-dependent equations is described, which approaches the steady state asymptotically; results from this method are presented and compared with the results from perturbation theory. (author)
Recent results on steady state and confinement improvement research on JT-60U
International Nuclear Information System (INIS)
Ide, Shunsuke
2000-01-01
On the JT-60U tokamak, fusion plasma research for realization of a steady state tokamak reactor has been pursued. Towards that goal, confinement improved plasmas such as H-mode, high β p , reversed magnetic shear (RS) and latter two combined with H-mode edge pedestal have been developed and investigated intensively. A key issue to achieve non-inductive current drive relevant to a steady state fusion reactor is to increase the fraction of the bootstrap current and match the spatial profile to the optimum. In 1999, as the result of the optimization, the equivalent deuterium-tritium (D-T) fusion gain (Q DT eq ) of 0.5 was sustained for 0.8 s, which is roughly equal to the energy confinement time, in a RS plasma. In order to achieve a RS plasma in steady state two approach have been explored. One is to use external current driver such as lower hybrid current drive (LHCD), and by optimizing LHCD a quasi-steady RS discharge was obtained. The other approach is to utilize bootstrap current as much as possible, and with highly increased fraction of the bootstrap current, a confinement enhancement factor of 3.6 was maintained for 2.7 s in a RS plasma with H-mode edge. A heating and current drive system in the electron cyclotron range of frequency for localized heating and current drive has been installed on JT-60U, and in initial experiments a clear increase of the central electron temperature in a RS high density central region was confirmed only with injected power of 0.75 MW. (author)
Martin, Catherine; Naidoo, Nicolette P; Venter, W D Francois; Jaffer, Ambereen; Barker, Pierre M
2014-05-12
Target setting is useful in planning, assessing and improving antiretroviral treatment (ART) programmes. In the past 4 years, the ART initiation environment has been transformed due to the change in eligibility criteria (starting ART at a CD4+ count ART. To describe and illustrate the use of a target-setting model for estimating district-based targets in the era of an expanding ART programme and changing CD4+ count thresholds for ART initiation. Using previously described models and data for annual new HIV infections, we estimated both steady-state need for ART initiation and backlog in a North West Province district, accounting for the shift in eligibility. Comparison of actual v. targeted ART initiations was undertaken. The change in CD4+ count threshold adds a once-off group of newly eligible patients to the pool requiring ART - the backlog. The steady-state remains unchanged as it is determined by the annual rate of new HIV infections in previous years. The steady-state need for the district was 639 initiations/month, and the backlog was ~15,388 patients. After the shift in eligibility in September 2011, the steady-state target was exceeded over several months with some backlog addressed. Of the total backlog for this district, 72% remains to be cleared. South Africa has two pools of patients who need ART: the steady-state of HIV-infected patients entering the programme each year, determined by historical infection rates; and the backlog created by the shift in eligibility. The healthcare system needs to build long- term capacity to meet the steady-state need for ART and additional capacity to address the backlog.
International Nuclear Information System (INIS)
Malloy, C.R.; Jeffrey, F.M.H.; Thompson, J.R.; Sherry, A.D.
1990-01-01
A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13 C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13 C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13 C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2- 13 C]acetate, [3- 13 C]lactate, and unlabeled glucose. 13 C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. The time resolution of these measurements may not be limited by technical contraints but by the rate of carbon flux in the citric acid cycle. Although this technique is demonstrated for the heart, it is applicable to all tissues
International Nuclear Information System (INIS)
Pryor, R.J.; Maloney, K.J.
1990-10-01
This document contains the steady-state and loss-of-pumping accident analysis of the representative design for the Savannah River heavy water new production reactor. A description of the reactor system and computer input model, the results of the steady-state analysis, and the results of four loss-of-pumping accident calculations are presented. 5 refs., 37 figs., 4 tabs
Steady-State Operation in Tore Supra
Hoang, G. T.; Tore Supra, Equipe
1999-11-01
The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.
Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics
Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.
2017-01-01
We describe a framework to significantly reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponenti...
Steady-state tokamak reactor with non-divertor impurity control: STARFIRE
International Nuclear Information System (INIS)
Baker, C.C.
1980-01-01
STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
Variational constraints for electrical-impedance tomography
International Nuclear Information System (INIS)
Berryman, J.G.; Kohn, R.V.
1990-01-01
The task of electrical-impedance tomography is to invert boundary measurements for the conductivity distribution of a body. This inverse problem can be formulated so the primary data are the measured powers dissipated across injection electrodes. Then, since these powers are minima of the pertinent (dual) variational principles, feasibility constraints can be found for the nonlinear inversion problem. When power may be measured accurately, the existence of these dual variational principles implies that any exact solution must lie at a point of intersection of the two feasibility boundaries
Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides
Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois
2017-04-01
Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.
International Nuclear Information System (INIS)
Ikuma, Y.; Gordon, R.S.
1981-01-01
It is generally assumed in the diffusional creep of a polycrystalline solid that grain boundaries act as perfect sources and sinks for lattice defects. However, if this assumption is not valid, then diffusional creep can become rate limited by interfacial defect reactions at grain boundaries. Steady state diffusional creep data will be presented at 1450 to 1500 0 C for polycrystalline alumina doped with Ti and a Mg-Ti co-dopant, which are consistent with interfacial controlled kinetics over an intermediate grain size range. A new type of creep deformation map will be presented which reveals the range of grain sizes and impurity concentrations over which interfacial defect creation and/or annihilation processes are important in the steady state creep of polycrystalline alumina
Non-steady state modeling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza González, Luis Miguel; Giménez, J.G.
2013-01-01
Among all the algorithms to solve the wheel–rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it pre...
Tal'nov, A N; Cherkassky, V L; Kostyukov, A I
1997-08-01
The electromyograms were recorded in healthy human subjects by surface electrodes from the mm. biceps brachii (caput longum et. brevis), brachioradialis, and triceps brachii (caput longum) during slow transition movements in elbow joint against a weak extending torque. The test movements (flexion transitions between two steady-states) were fulfilled under visual control through combining on a monitor screen a signal from a joint angle sensor with a corresponding command generated by a computer. Movement velocities ranged between 5 and 80 degrees/s, subjects were asked to move forearm without activation of elbow extensors. Surface electromyograms were full-wave rectified, filtered and averaged within sets of 10 identical tests. Amplitudes of dynamic and steady-state components of the electromyograms were determined in dependence on a final value of joint angle, slow and fast movements were compared. An exponential-like increase of dynamic component was observed in electromyograms recorded from m. biceps brachii, the component had been increased with movement velocity and with load increment. In many experiments a statistically significant decrease of static component could be noticed within middle range of joint angles (40-60 degrees) followed by a well expressed increment for larger movements. This pattern of the static component in electromyograms could vary in different experiments even in the same subjects. A steady discharge in m. brachioradialis at ramp phase has usually been recorded only under a notable load. Variable and quite often unpredictable character of the static components of the electromyograms recorded from elbow flexors in the transition movements makes it difficult to use the equilibrium point hypothesis to describe the central processes of movement. It has been assumed that during active muscle shortening the dynamic components in arriving efferent activity should play a predominant role. A simple scheme could be proposed for transition to a
Steady-state optimization of ore-dressing plants
International Nuclear Information System (INIS)
Niemi, A.J.
1989-01-01
The ore-dressing plant consists of the steps of grinding and flotation. Its optimization is based on steady state simulation of the mass balances with a plant model. The model data are obtained by tracer tests and analysis. An evaluation of performance of the plant has to observe the recovery of the valuable mineral, the throughput of the system and the grade of the concentrate which are outputs of the flotation plant. Simulation with the flotation plant model yields that combination of values of controllable inputs to flotation which corresponds to an optimal operation of the conditioning an flotation system, for a specified feed and its fractional composition. Simulations for other feeds and compositions advise how they should be chosen, for a better overall performance. (author)
Determining "small parameters" for quasi-steady state
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2015-08-01
For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.
Solid state opto-impedance of LiNiVO4 and LiMn2O4
International Nuclear Information System (INIS)
Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R
2005-01-01
Spinel type LiMn 2 O 4 and inverse spinel LiNiVO 4 systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy ∼5 eV, the LiNiVO 4 system shows significant modification in the solid state impedance pattern while the LiMn 2 O 4 system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO 4 with respect to LiMn 2 O 4 , which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint
Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru
2011-02-01
We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.
Dauvergne, Duncan; Edelstein-Keshet, Leah
2015-08-21
We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parallel shooting methods for finding steady state solutions to engine simulation models
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2007-01-01
Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...
Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ...
International Nuclear Information System (INIS)
Payne, M. G.; Deng, L.; Jiang, K. J.
2006-01-01
We consider a two-state system driven by an on-resonance, continuous wave pump laser and a much weaker pulsed probe laser that is slightly detuned from the pump laser frequency (usually this detuning is about ω p -ω P =Δ≅1 kHz). The upper state population is assumed to be slowly decaying, but the off-diagonal element of the density matrix decays rapidly due to homogeneous broadening. This model has been solved by others in rare-earth-element-doped fibers and crystals in a usual steady state approximation for slow optical wave propagation. We show that in general the usual steady state approximation does not apply unless either Δτ>>1 or (2S+1)γ 2 τ>>1 where γ 2 is the decay rate of the excited state population, τ is the pulse length of the probe field, and 2S is the saturation parameter. Both conditions, however, are not satisfied in many population-oscillation- and corresponding group-velocity-reduction-related studies. Our theory and corresponding numerical simulations have indicated that for probe pulses that are much shorter than the lifetime of the upper state, there is no analytical theory for the amplitude, pulse shape, and group velocity of the probe field. In addition, there is no reason to assume that the group velocity remains small when γ 2 τ<<1 and there is no reason to believe that many pulse length decays can be obtained for such short pulses
Directory of Open Access Journals (Sweden)
Bizon Katarzyna
2017-09-01
Full Text Available Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.
Steady Particle States of Revised Electromagnetics
Directory of Open Access Journals (Sweden)
Lehnert B.
2006-07-01
Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell's equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from "exploding" under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Non-equilibrium steady state of a driven levitated particle with feedback cooling
International Nuclear Information System (INIS)
Gieseler, Jan; Novotny, Lukas; Moritz, Clemens; Dellago, Christoph
2015-01-01
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyze the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning. (paper)
Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q
2015-02-06
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.
Quasi-steady-state analysis of two-dimensional random intermittent search processes
Bressloff, Paul C.
2011-06-01
We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.
Quasi-steady-state analysis of two-dimensional random intermittent search processes
Bressloff, Paul C.; Newby, Jay M.
2011-01-01
We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.
Stochastic theory of nonequilibrium steady states and its applications. Part I
International Nuclear Information System (INIS)
Zhang Xuejuan; Qian Hong; Qian Min
2012-01-01
The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker–Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
In nucleoli, the steady state of nucleolar proteins is leptomycin B-sensitive.
Muro, Eleonora; Hoang, Thang Q; Jobart-Malfait, Aude; Hernandez-Verdun, Danièle
2008-05-01
The nucleolus is a dynamic structure. It has been demonstrated that nucleolar proteins rapidly associate with and dissociate from nucleolar components in continuous exchanges with the nucleoplasm using GFP (green fluorescent protein)-tagged proteins. However, how the exchanges within one nucleolus and between nucleoli within the nuclear volume occurred is still poorly understood. The movement of PAGFP (photoactivatable GFP)-tagged proteins that become visible after photoactivation can be followed. In the present study, we establish the protocol allowing quantification of the traffic of PAGFP-tagged nucleolar proteins in nuclei containing two nucleoli. The traffic in the activated area, at the periphery of the activated area and to the neighbouring nucleolus is measured. Protein B23 is rapidly replaced in the activated area, and at the periphery of the activated area the steady state suggests intranucleolar recycling of B23; this recycling is LMB (leptomycin B)-sensitive. The pool of activated B23 is equally distributed in the volume of the two nucleoli within 2 min. The three-dimensional distribution of the proteins Nop52 and fibrillarin is less rapid than that of B23 but is also LMB-sensitive. In contrast, traffic of fibrillarin from the nucleoli to the CB (Cajal body) was not modified by LMB. We propose that the steady state of nucleolar proteins in nucleoli depends on the affinity of the proteins for their partners and on intranucleolar recycling. This steady state can be impaired by LMB but not the uptake in the neighbouring nucleolus or the CB.
Internal transport barrier physics for steady state operation in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Wakatani, Masahiro [Kyoto Univ., Graduate School of Engineering, Uji, Kyoto (Japan); Fukuda, Takeshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Connor, Jack W. [Culham Science Centre, EURATOM/UKAEA Association (United Kingdom); Garbet, Xavier [Culham Science Centre, EFDA-JET CSU (United Kingdom); Gormezano, Claude [Associazone EURATOM-ENEA sulla Fusione C.R. Frascati (Italy); Mukhovatov, Vladimir [ITER Naka Joint Work Site, ITER Physics Unit, Naka, Ibaraki (Japan)
2003-07-01
Experimental results for the ITB (Internal Transport Barrier) formation and sustainment are compiled in a unified manner to find common features of ITBs in tokamaks. Global scaling laws for threshold power to obtain the ITBs are discussed. Theoretical models for plasmas with ITBs are summarized from stability and transport point of view. Finally possibility to obtain steady-state ITBs will be discussed in addition to extrapolation to ITER. (author)
Energy Technology Data Exchange (ETDEWEB)
Ranjan, Rajiv [Department of Physics, J. Co-operative College, Kolhan University, Jharkhand 831036 (India); Kumar, Rajiv [Department of Physics, J. Worker' s College, Kolhan University, Jharkhand 831012 (India); Kumar, Nawnit [Department of Physics and Meteorology, IIT Kharagpur, West Bengal 721302 (India); Behera, Banarji [School of Physics, Sambalpur University, Jyoti Vihar, Bula 768019, Orissa (India); Choudhary, R.N.P., E-mail: crnpfl@gmail.com [Department of Physics, ITER, S.O.A. University, Bhubaneswar 751 013, Orissa (India)
2011-06-02
Highlights: > The PSZT ceramics with samarium were prepared by solid-state reaction technique. > Bulk resistive contribution is found to decrease with the increase in temperature. > PSZT ceramics exhibit NTCR type behavior usually found in semiconductors. > Modulus plots show the presence of grain boundary along with bulk contributions. > Impedance analysis has confirmed the presence of non-Debye type of relaxation. - Abstract: The polycrystalline ceramic samples of Pb{sub 1-x}Sm{sub x}(Zr{sub 0.55}Ti{sub 0.45}){sub 1-x/4}O{sub 3} (x = 0.00, 0.03, 0.06 and 0.09) were prepared by solid-state reaction technique at high temperature. Electric impedance (Z) and modulus (M) properties of the materials have been investigated within a wide range of temperature and frequency using complex impedance spectroscopy (CIS) technique. The complex impedance analysis has suggested the presence of mostly bulk resistive (grain) contributions in the materials. This bulk resistance is found to decrease with the increase in temperature. It indicates that the PSZT compounds exhibit a typical negative temperature coefficient of resistance (NTCR) behavior. The bulk contribution also exhibits an increasing trend with the increase in Sm{sup 3+} substitution to PZT. The complex modulus plots have confirmed the presence of grain (bulk) as well as grain boundary contributions in the materials. Both the complex impedance and modulus studies have suggested the presence of non-Debye type of relaxation in the materials.
Directory of Open Access Journals (Sweden)
Rojas Donald C
2011-07-01
Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.
Directory of Open Access Journals (Sweden)
Ling Feng
2016-01-01
Full Text Available This study aims at developing a simulation system that predicts the optimal study design for attaining tracer steady-state conditions in brain and blood rapidly. Tracer kinetics was determined from bolus studies and used to construct the system. Subsequently, the system was used to design inputs for bolus infusion (BI or programmed infusion (PI experiments. Steady-state quantitative measurements can be made with one short scan and venous blood samples. The GABAA receptor ligand [C11]Flumazenil (FMZ was chosen for this purpose, as it lacks a suitable reference region. Methods. Five bolus [C11]FMZ-PET scans were conducted, based on which population-based PI and BI schemes were designed and tested in five additional healthy subjects. The design of a PI was assisted by an offline feedback controller. Results. The system could reproduce the measurements in blood and brain. With PI, [C11]FMZ steady state was attained within 40 min, which was 8 min earlier than the optimal BI (B/I ratio = 55 min. Conclusions. The system can design both BI and PI schemes to attain steady state rapidly. For example, subjects can be [C11]FMZ-PET scanned after 40 min of tracer infusion for 40 min with venous sampling and a straight-forward quantification. This simulation toolbox is available for other PET-tracers.
International Nuclear Information System (INIS)
Wernsman, Bernard
1997-01-01
A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution
Steady-state ozone concentration in radiation induced noble gas-oxygen discharges
International Nuclear Information System (INIS)
Elsayed-Ali, H.E.; Miley, G.H.
1985-01-01
Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges
System studies for quasi-steady-state advanced physics tokamak
International Nuclear Information System (INIS)
Reid, R.L.; Peng, Y.K.M.
1983-11-01
Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated
Identification of Critical Transmission Limits in Injection Impedance Plane
DEFF Research Database (Denmark)
Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde
2012-01-01
In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...
Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour
DEFF Research Database (Denmark)
Nielsen, Kim Lau
2012-01-01
The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
A Physics-Based Rock Friction Constitutive Law: Steady State Friction
Aharonov, Einat; Scholz, Christopher H.
2018-02-01
Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.
Variable and space steps solution of a two phase moving boundary ...
African Journals Online (AJOL)
Equations of a two phase moving boundary problem in cylindrical coordinates are obtained from the formulation of a transient shrinking core model of whole tree combustion in a one dimensional steady state fixed-bed reactor. An hybrid Variable Grid Method is developed to solve the non linear equations and the results are ...
Establishment, maintenance, and re-establishment of the safe and efficient steady-following state
International Nuclear Information System (INIS)
Pan Deng; Zheng Ying-Ping
2015-01-01
We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety, efficiency, and smoothness (comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth (comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance. (paper)
New Modeling of Steady-State Modes of Complex Electrical Grids of Power Systems
Directory of Open Access Journals (Sweden)
Akhmetbayev Arman
2018-01-01
Full Text Available Classical methods for modeling the steady-state modes of complex electrical networks and systems are based on the application of nonlinear node equations. Nonlinear equations are solved by iterative methods, which are connected by known difficulties. To a certain extent, these difficulties can be weakened by applying topological methods. In this paper, we outline the theoretical foundations for the formation of the inverse form of nodal stress equations based on the topology of electrical networks and systems. A new topological method for calculating the distribution coefficients of node currents is proposed based on all possible trees of a directed graph of a complex electrical network. A complex program for calculating current distribution coefficients and forming steady-state parameters in the MATLAB environment has been developed.
Full steady state LH scenarios in Tore Supra
International Nuclear Information System (INIS)
Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y.
1995-01-01
Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs
Feasibility study of steady state magnetic field measurement
International Nuclear Information System (INIS)
Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.
1995-08-01
A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)
Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.
2017-08-01
An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.
Steady state operation of the superconducting tokamak TRIAM-1M
International Nuclear Information System (INIS)
Hanada, K.; Itoh, S.; Sato, K.; Nakamura, K.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Makino, K.
2000-01-01
A 2-hour limiter discharge in circular configuration was successfully maintained using both Hall generators to be free from the drift of integrator and position control by TV image to avoid the concentration of heat load. The property of wall saturation is discussed as the serious issue for steady state operation, which strongly depends on electron density. In the high density region, the discharges sometimes terminate due to uncontrollable increase in electron density caused by wall saturation. The plasmas with high k ∼1.5 can be demonstrated for longer than 1 min. The duration of discharge is limited by vertical displacement event (VDE). The avoidance of VDE is a crucial point to achieve long discharges with high k. A new technique to monitor the accurate magnetic field with high time resolution for a long time is required to achieve the longer discharge with high k. A high ion temperature (HIT) discharge characterized by high ion temperature up to 5 keV and by steep temperature gradient up to 85 keV/m is successfully sustained for longer than 30 sec by 2.45 GHz LHCD on single null divertor configuration. This indicates that the transport barrier of ion temperature can be maintained in steady state. (author)
Directory of Open Access Journals (Sweden)
Kamal Raslan
2018-05-01
Full Text Available This work provides a mathematical model for the cooling process of a moving surface, in the presence of a uniform external magnetic field and thermal radiation, through a porous medium by using a weak concentration micropolar nanofluid. The model—based on the conservation equations of the unsteady case in the momentum and thermal boundary layer—takes into consideration the effect of the suction process. The conservation equations were transformed into ordinary differential equations using similar transformation techniques. The equations were solved numerically for the general case and analytically for the steady case. The rate of heat transfer, couple shear stress, and surface shear stress are deduced. We discuss the impact of these physical characteristics on the mechanical properties of the surface that will be cooled.
The steady-state ECRH-system at Wendelstein7-X
International Nuclear Information System (INIS)
Laqua, H.P.; Erckmann, V.; Brakel, R.; Braune, H.; Maassberg, H.; Marushchenko, N.; Michel, G.; Turkin, Y.; Ullrich, S.; Dammertz, G.; Thumm, M.; Brand, P.; Gantenbein, G.; Kasparek, W.
2005-01-01
Electron Cyclotron Resonance Heating (ECRH) is the main heating system for the Wendelstein7-X (W7-X) stellarator and the only one for CW-operation in the first stage. The mission of W7-X, which is presently under construction at IPP-Greifswald, is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH plant at 140 GHz with 1 MW CW-capability power for each module is under construction to meet the scientific objectives. Simulations of different ECRH scenarios, which are foreseen for W7-X operation and base on ray- tracing calculations and confinement studies, will be presented. A steady state ECRH has specific requirements on the stellarator machine itself, on the ECRH-sources, transmissions elements and on the experimental environment. In particular all elements have to be sufficiently cooled, screened and armoured against microwaves. The commissioning of the ECRH plant is well under way, the strategy and status of the project will be reported. First full power, CW integral tests of one ECRH module have been performed. A large microwave stray radiation chamber for integrated in-vessel component tests had been brought into operation. A bi-axially movable, motor driven ECRH antenna mock-up was build and is tested for reliability now. A strategy for the commissioning and the first experimental campaign at W7-X has been developed. (author)
Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport
International Nuclear Information System (INIS)
Webb, G.M.; Gleeson, L.J.
1977-01-01
Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)
International Nuclear Information System (INIS)
Ayazuddin, S.K.; Qureshi, A.A.; Hayat, T.
1997-11-01
The Primary Water Inlet Pipeline (PW-IPL) is of stainless steel conveying demineralized water from hold-up tank to the reactor pool of Pakistan Research Reactor-1 (PARR-1). The section of the pipeline from heat exchangers to the valve pit is hanger supported in the pump room and the rest of the section from valve pit to the reactor pool is embedded. The PW-IPL is subjected to steady state and transient vibrations. The reactor pumps, which drive the coolant through various circuits mainly contribute the steady state vibrations, while transient vibrations arise due to instant closure of the check valve (water hammer). The ASME Boiler and Pressure Vessel code provides data about the acceptable limits of stresses related to the primary static stress due to steady state vibrations. However, due to complexity in the pipe structure, stresses related to the transient vibrations are neglected in the code. In this report attempt has been made to analyzed both steady state and transient vibrations of PW-IPL of PARR-1. Since, both the steady state and transient vibrations affect the hanger-supported section of the PW-IPL, therefore, it was selected for vibration test measurements. In the analysis vibration data was compared with the allowable limits and estimations of maximum pressure build-up, eflection, natural frequency, tensile and shear load on hanger support, and the ratio of maximum combine stress to the allowable load were made. (author)
International Nuclear Information System (INIS)
Schönleber, M.; Uhlmann, C.; Braun, P.; Weber, A.; Ivers-Tiffée, E.
2017-01-01
Highlights: •A derivation of the impedance model of a Lithium-Ion battery electrode is given. •The dependency of all partial impedances on the State-of-Charge is revealed. •The lasting disagreement in how to model solid-state diffusion is settled. •A solid starting point to derive models of any complexity is provided. •The connection between differential capacity and solid-state diffusion is revealed. -- Abstract: A derivation of the fundamental impedance of a Lithium-Ion battery electrode is given, exemplarily conducted for a solid thin-film electrode. The focus of this derivation is not on developing a model which is able to reproduce the exact behaviour of a given electrode, but rather on deriving its fundamental characteristics from few and intuitive assumptions in a simple and transparent way. It is thus shown, that the fundamental impedance of a solid thin-film electrode consists of an RC-element for charge-transfer, a Finite-Length Warburg element for diffusion in the electrolyte and a Finite-Space Warburg element for diffusion in the solid-state. The use of a Finite-Length Warburg element with a serially connected capacitor for modelling diffusion in the solid-state is thus indicated to be physically questionable. In addition, the theoretically expected behaviour of charge-transfer and solid-state diffusion on the degree of lithiation (State-of-Charge) is derived and discussed.
On non-equilibrium states in QFT model with boundary interaction
International Nuclear Information System (INIS)
Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.
1999-01-01
We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed
A twin study of the trough plasma steady-state concentration of metformin
DEFF Research Database (Denmark)
Stage, Tore B; Damkier, Per; Pedersen, Rasmus S
2015-01-01
OBJECTIVE: The aim of this study was to determine the intrapair similarity in trough steady-state plasma concentrations of metformin in monozygotic and dizygotic twin pairs. METHODS: We included 16 twin pairs (eight monozygotic and eight dizygotic twin pairs) for this study after contacting 524 t...
On the minimum circulating power of steady state tokamaks
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.
1995-07-01
Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)
International Nuclear Information System (INIS)
Gormezano, C.
1999-01-01
The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects
International Nuclear Information System (INIS)
Shiina, S.; Yagi, Y.; Sugimoto, H.; Ashida, H.; Hirano, Y.; Koguchi, H.; Sakakita, H.; Taguchi, M.; Nagamine, Y.; Osanai, Y.; Saito, K.; Watanabe, M.; Aizawa, M.
2005-01-01
Dominant plasma self-induced current equilibrium is achieved together with the high β for the steady-state neoclassical reversed field pinch (RFP) equilibrium with low aspect ratio by broadening the plasma pressure profile. The RF-driven current, when the safety factor is smaller than unity, is much less than the self-induced current, which dominates (96%) the toroidal current. This neoclassical RFP equilibrium has strong magnetic shear or a high-stability beta (β t = 63%) due to its hollow current profile. It is shown that the obtained equilibrium is close to the relaxed-equilibrium state with a minimum energy, and is also robust against microinstabilities. These attractive features allow the economical design of compact steady-state fusion power plants with low cost of electricity (COE). (author)
Impedance Source Power Electronic Converters
DEFF Research Database (Denmark)
Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...
Krishnamurthy, Rajesh; Pednekar, Amol; Atweh, Lamya A; Vogelius, Esben; Chu, Zili David; Zhang, Wei; Maskatia, Shiraz; Masand, Prakash; Morris, Shaine A; Krishnamurthy, Ramkumar; Muthupillai, Raja
2015-01-01
Background Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population. Metho...
Steady-State and Transient Analysis for Design Validation of SMART-ITL Secondary System
Energy Technology Data Exchange (ETDEWEB)
Yun, Eunkoo; Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
SMART can prevent large-break loss of coolant accident (LBLOCA) inherently. SMART-ITL is an experimental simulation facility designed to perform integral effect tests for the SMART plant. In terms of the secondary system of SMART-ITL, the design has been simplified from that of reference plant by replacing several components, such as expansion device and condenser, with an appropriate device to be functional as the alternatives. In this paper, in order to understand the operational characteristics as well as design concept, the secondary system of SMRAT-ITL is analyzed in steady-state and transient aspects, and the results are compared with relevant experimental results. This study focuses on the understanding of thermal-hydraulic behavior of SMART-ITL secondary system, which is simplified from that of reference plant. To identify the behaviors of the secondary system, the steady-state and transient analysis were conducted based on experimental results. In steady-state analysis, the results clearly showed that the system pressure is related to the temperature of condensation tank which varies depending on mixture enthalpy. In transient analysis, the dynamic behavior during heat-up process has been investigated. The results reveal that we can reasonably assume the fluid filled in TK-CD-01 be in a saturated condition. The results showed that the design of SMART-ITL secondary system is appropriate, and the system is being properly operated to match the design intent.
Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes
International Nuclear Information System (INIS)
Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.
2013-01-01
The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)
Directory of Open Access Journals (Sweden)
Franklin D. Rincón
2015-04-01
Full Text Available This paper introduces a novel steady-state identification (SSI method based on the auto-regressive model with exogenous inputs (ARX. This method allows the SSI with reduced tuning by analyzing the identifiability properties of the system. In particular, the singularity of the model matrices is used as an index for steady-state determination. In this contribution, the novel SSI method is compared to other available techniques, namely the F-like test, wavelet transform and a polynomial-based approach. These methods are implemented for SSI of three different case studies. In the first case, a simulated dataset is used for calibrating the output-based SSI methods. The second case corresponds to a literature nonlinear continuous stirred-tank reactor (CSTR example running at different steady states in which the ARX-based approach is tuned with the available input-output data. Finally, an industrial case with real data of a depropanizer column from PETROBRAS S.A. considering different pieces of equipment is analyzed. The results for a reflux drum case indicate that the wavelet and the F-like test can satisfactorily detect the steady-state periods after careful tuning and when respecting their hypothesis, i.e., smooth data for the wavelet method and the presence of variance in the data for the F-like test. Through a heat exchanger case with different measurement frequencies, we demonstrate the advantages of using the ARX-based method over the other techniques, which include the aspect of online implementation.
Steady Particle States of Revised Electromagnetics
Directory of Open Access Journals (Sweden)
Lehnert B.
2006-07-01
Full Text Available A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s equations, and to a form of extended quantum electrodynamics, has been elaborated on the basis of a nonzero electric charge density and a nonzero electric field divergence in the vacuum state. Among the applications of this theory, there are steady electromagnetic states having no counterpart in conventional theory and resulting in models of electrically charged and neutral leptons, such as the electron and the neutrino. The analysis of the electron model debouches into a point-charge-like geometry with a very small characteristic radius but having finite self-energy. This provides an alternative to the conventional renormalization procedure. In contrast to conventional theory, an integrated radial force balance can further be established in which the electron is prevented from “exploding” under the action of its net self-charge. Through a combination of variational analysis and an investigation of the radial force balance, a value of the electronic charge has been deduced which deviates by only one percent from that obtained in experiments. This deviation requires further investigation. A model of the neutrino finally reproduces some of the basic features, such as a small but nonzero rest mass, an angular momentum but no magnetic moment, and long mean free paths in solid matter.
State Wildlife Management Area Boundaries - Publicly Accessible
Minnesota Department of Natural Resources — This polygon theme contains boundaries for approximately 1392 Wildlife Management Areas (WMAs) across the state covering nearly 1,288,000 acres. WMAs are part of the...
Mahdavi, Ali; Seyyedian, Hamid
2014-05-01
This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.
Directory of Open Access Journals (Sweden)
Pankaj Thakur
2014-01-01
Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie
2016-01-01
The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.
Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues
Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.
2011-01-01
In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector
Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues
Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.; Michielsen, B.; Poirier, J.R.
2012-01-01
In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector
Theory of life time measurements with the scanning electron microscope: steady state
Berz, F.; Kuiken, H.K.
1976-01-01
A theoretical steady state analysis is given of the scanning electron microscope method of measuring bulk life time in diodes, where the plane of the junction is perpendicular to the surface. The current in the junction is obtained as a function of the beam power, the beam penetration into the
Effect of stacking fault energy on steady-state creep rate of face ...
African Journals Online (AJOL)
Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...
Description of a stable scheme for steady-state coupled Monte Carlo–thermal–hydraulic calculations
International Nuclear Information System (INIS)
Dufek, Jan; Eduard Hoogenboom, J.
2014-01-01
Highlights: • A stable coupling scheme for steady-state MC–TH calculations is described. • The coupling scheme is based on the stochastic approximation method. • The neutron flux (or power) distribution is relaxed using a variable step-size. - Abstract: We provide a detailed description of a numerically stable and efficient coupling scheme for steady-state Monte Carlo neutronic calculations with thermal–hydraulic feedback. While we have previously derived and published the stochastic approximation based method for coupling the Monte Carlo criticality and thermal–hydraulic calculations, its possible implementation has not been described in a step-by-step manner. As the simple description of the coupling scheme was repeatedly requested from us, we have decided to make it available via this note
International Nuclear Information System (INIS)
Matsuda, Shinzaburo
2000-01-01
This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future
Energy Technology Data Exchange (ETDEWEB)
Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)
2014-11-15
In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.
Steady-State Clozapine and Norclozapine Pharmacokinetics in Maori and European Patients.
Menkes, David B; Glue, Paul; Gale, Christopher; Lam, Frederic; Hung, Cheung-Tak; Hung, Noelyn
2018-01-01
Clozapine is the most effective drug for treatment-resistant schizophrenia, but its use is limited by toxicity. Because ethnicity has been reported to affect clozapine metabolism, we compared its steady state pharmacokinetics in New Zealand Maori and European patients. Clozapine and norclozapine steady state bioavailability was assessed over 24h under fasting and fed conditions in 12 Maori and 16 European patients treated for chronic psychotic illnesses with stable once-daily clozapine doses. Plasma clozapine and norclozapine concentrations were assessed using liquid chromatography with tandem mass spectrometry; pharmacokinetic parameters were calculated using standard non-compartmental methods, and compared using unpaired t-tests. Mean pharmacokinetic parameters (AUC, C max and C min ) for clozapine and norclozapine were virtually identical in Maori and European subjects, under both fed and fasted conditions. Clozapine bioavailability does not vary between Maori and European patients, and thus does not need to be considered in prescribing decisions. Additional studies are needed to identify if there are differences between Maori and European populations for drugs metabolized by other enzyme pathways. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Modular first wall concept for steady state operation
International Nuclear Information System (INIS)
Kotzlowski, H.E.
1981-01-01
On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place
International Nuclear Information System (INIS)
2015-01-01
This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts
A study on calculation method for mechanical impedance of air spring
International Nuclear Information System (INIS)
Changgeng, Shuai; Penghui, Li; Rustighi, Emiliano
2016-01-01
This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result. (paper)
Most analytical solutions available for the equations governing the advective-dispersive transport of multiple solutes undergoing sequential first-order decay reactions have been developed for infinite or semi-infinite spatial domains and steady-state boundary conditions. In this work we present an ...
Edge states in a ferromagnetic honeycomb lattice with armchair boundaries
Pantaleón, Pierre A.; Xian, Y.
2018-02-01
We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair boundaries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the boundary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge states are topologically protected and also tunable. Our results may explain the origin of the novel edge states recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental confirmations.
Analysis of steady-state ductile crack growth
DEFF Research Database (Denmark)
Niordson, Christian
1999-01-01
The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....
Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers
International Nuclear Information System (INIS)
Fei, Wang; Xiang-Ming, Hu; Wen-Xing, Shi
2009-01-01
It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime. (general)
Energy Technology Data Exchange (ETDEWEB)
Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.
1981-01-01
FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.
Data acquisition system for steady state experiments at multi-sites
International Nuclear Information System (INIS)
Nakanishi, H.; Emoto, M.; Nagayama, Y.
2010-11-01
A high-performance data acquisition system (LABCOM system) has been developed for steady state fusion experiments in Large Helical Device (LHD). The most important characteristics of this system are the 110 MB/s high-speed real-time data acquisition capability and also the scalability on its performance by using unlimited number of data acquisition (DAQ) units. It can also acquire experimental data from multiple remote sites through the 1 Gbps fusion-dedicated virtual private network (SNET) in Japan. In LHD steady-state experiments, the DAQ cluster has established the world record of acquired data amount of 90 GB/shot which almost reaches the ITER data estimate. Since all the DAQ, storage, and data clients of LABCOM system are distributed on the local area network (LAN), remote experimental data can be also acquired simply by extending the LAN to the wide-area SNET. The speed lowering problem in long-distance TCP/IP data transfer has been improved by using an optimized congestion control and packet pacing method. Japan-France and Japan-US network bandwidth tests have revealed that this method actually utilize 90% of ideal throughput in both cases. Toward the fusion goal, a common data access platform is indispensable so that detailed physics data can be easily compared between multiple large and small experiments. The demonstrated bilateral collaboration scheme will be analogous to that of ITER and the supporting machines. (author)
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Estuarine-ocean exchange in a North Pacific estuary: comparison of steady state and dynamic model
International Nuclear Information System (INIS)
Frick, W. E.; Khangaonkar, Tarang P.; Sigleo, A. C.; Yang, Zhaoqing
2007-01-01
The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes plume models and larger-sized grid scales for regional circulation models like FVCOM. A potential advantage of these plume models is that they use entrainment theory to simulate the growth of plumes, a technique proven useful in simulating turbulent plume discharges from various sources, some approaching the dimensions of rivers. Important advantages of models like FVCOM are that they are dynamic and include the effects of the earth's rotation. The results based on limited verification data showed that the simple steady state model simulates observed velocity and concentration data fairly well during times that its governing assumptions were most valid, namely during periods of weak or absent ambient current and strong discharge velocity. FVCOM was judged to give better estimates under all other ambient current conditions, although the data cannot be used to prove this assertion when the plume was deflected from the path of the instruments. It was found that plume models can be used to help establish appropriate boundary limits and conditions when setting up hydrodynamic models
Steady state quantum discord for circularly accelerated atoms
Energy Technology Data Exchange (ETDEWEB)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T
2008-09-01
A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.
International Nuclear Information System (INIS)
Kumazawa, R.; Saito, K.; Kasahara, H.; Seki, T.; Mutoh, T.; Shimpo, F.; Nomura, G.; Kato, A.; Okada, H.; Zhao, Y.; Kwak, J.G.; Yoon, J.S.
2008-01-01
Ion cyclotron range of frequency (ICRF) heating has been a reliable tool for steady-state plasma heating with high RF power of several tens of megawatts. However, a sudden increase in the reflected RF power during ICRF heating experiments with ELMy H-mode plasmas is an issue which must be solved for future fusion experimental devices or fusion reactors. This paper describes an innovative ICRF heating system using a frequency feedback control to reduce the reflected power in response to the rapid change in the plasma impedance in the ELMy H-mode plasma. A twin stub tuner has been newly invented for this purpose. The feasibility of keeping the reflected RF power fraction at a low level, e.g. 1%, is demonstrated even with a large change in plasma resistance, e.g. 2 ∼ 8Ω. Calculated and experimental results are presented for the conventional double stub tuner impedance matching system equipped with the twin stub tuner.
State space approach to mixed boundary value problems.
Chen, C. F.; Chen, M. M.
1973-01-01
A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Steady state heat transfer of helium cooled cable bundles
International Nuclear Information System (INIS)
Khalil, A.
1982-01-01
In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)
Robust random number generation using steady-state emission of gain-switched laser diodes
International Nuclear Information System (INIS)
Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-01-01
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.
Steady-state and transient fission gas release and swelling model for LIFE-4
International Nuclear Information System (INIS)
Villalobos, A.; Liu, Y.Y.; Rest, J.
1984-06-01
The fuel-pin modeling code LIFE-4 and the mechanistic fission gas behavior model FASTGRASS have been coupled and verified against gas release data from mixed-oxide fuels which were transient tested in the TREAT reactor. Design of the interface between LIFE-4 and FASTGRASS is based on an earlier coupling between an LWR version of LIFE and the GRASS-SST code. Fission gas behavior can significantly affect steady-state and transient fuel performance. FASTGRASS treats fission gas release and swelling in an internally consistent manner and simultaneously includes all major mechanisms thought to influence fission gas behavior. The FASTGRASS steady-state and transient analysis has evolved through comparisons of code predictions with fission-gas release and swelling data from both in- and ex-reactor experiments. FASTGRASS was chosen over other fission-gas behavior models because of its availability, its compatibility with the LIFE-4 calculational framework, and its predictive capability
Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions
Jin, Xiao; Ge, Hao
2018-04-01
The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.