WorldWideScience

Sample records for steady indoor-outdoor pressure

  1. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  2. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  3. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  4. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  5. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    Directory of Open Access Journals (Sweden)

    Charles Owens

    2015-12-01

    Full Text Available We report on the degradation of organic photovoltaic (OPV cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due to the minimal oxidation. Some devices showed steady aging but many failed catastrophically due to corrosion of electrodes not active device layers. Degradation of cells kept in dark storage was minimal over periods up to one year.

  6. Characterization of Indoor and Outdoor Aerosols in a Suburban Area of Prague

    International Nuclear Information System (INIS)

    Smolik, J.; Dohanyosova, P.; Schwarz, J.; Zdimal, V.; Lazaridis, M.

    2008-01-01

    The mass, ionic and elemental size distributions of particulate matter (PM) measured indoors and outdoors in an apartment situated in a north-westward suburb of Prague are presented. The PM samples were collected by two Berner type low pressure impactors separating particles into 10 size fractions from 26 nm to 10 μm and were further analyzed by ion chromatography (IC) and proton induced X-ray emission (PIXE). Temperature, pressure and relative humidity were measured both indoors and outdoors parallel to PM sampling. The indoor and outdoor PM dynamics were recorded by two scanning mobility particle sizers (SMPS) and an aerodynamic particle sizer (APS). Finally, the ventilation rate was determined by a radon technique. Ion chromatography showed that the major inorganic components of the fine particle mode are sulfate, nitrate, and ammonium with very low indoor nitrate concentration. Crustal elements (Al, Si, Ca, Ti, Mn, and Fe) were associated with the coarse aerosol mode. The presence of people increased the mass concentration of coarse particles, whereas cooking, smoking, and burning of incense and candles contributed predominantly to the fine particle mode. Smoking and the burning of incense also increased the concentration of potassium, bromine and chlorine content in fine particles

  7. Prediction of indoor concentration of 0.5-4 µm particles of outdoor origin in an uninhabited apartment

    DEFF Research Database (Denmark)

    Schneider, T.; Jensen, K.A.; Clausen, P.A.

    2004-01-01

    Indoor and outdoor particle size distributions, indoor-outdoor pressure difference, indoor air-exchange rate, and meteorological conditions were measured at an uninhabited apartment located in a busy street in Copenhagen during 1-month long fall, winter and spring campaigns. Particle penetration...... was estimated from concentration rebound measurements following HEPA filtering of the indoor air by fitting a simple deterministic model. The model included measured air exchange rates and published surface deposition loss rates. This model was then used to predict indoor particle concentration. The model...

  8. Outdoor air dominates burden of disease from indoor exposures

    DEFF Research Database (Denmark)

    Hänninen, O.; Asikainen, A.; Carrer, P.

    2014-01-01

    Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin.......Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin....

  9. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows.

    Science.gov (United States)

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Röösli, Martin; Brink, Mark; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-18

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios-of open, tilted, and closed windows-were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor-indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor-indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows.

  10. Research on Integration of Indoor and Outdoor Positioning in Professional Athletic Training

    Directory of Open Access Journals (Sweden)

    Yongqing Liu

    2018-02-01

    Full Text Available GNSS is widely used in professional athletic training as an outdoor location based services, and the indoor positioning technology has gradually flourished in the gymnasium. To keep up with the demand for athletic training in indoor and outdoor environment, integration of indoor and outdoor positioning technology can achieve a seamless indoor/outdoor position solution. The proposed method uses GPS/BEIDOU with IMU-MEMS technology for outdoor positioning and UWB with IMU-MEMS technology for indoor positioning to provide high precision positioning services. The experimental results show that the proposed method can achieve meter level position accuracy in outdoor environment and centimeter level position accuracy in indoor environment, it can provide precise and real-time positioning service for effective athletic training aid.

  11. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  12. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  13. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur M; Kwon, Jaymin; Meng, Qing Yu; Zhang, Lin; Harrington, Robert; Liu, Weili; Reff, Adam; Lee, Jong Hoon; Alimokhtari, Shahnaz; Mohan, Kishan; Shendell, Derek; Jones, Jennifer; Farrar, L; Maberti, Slivia; Fan, Tina

    2005-11-01

    of many measured VOCs and carbonyl compounds. For several measured species, personal concentrations were higher than either indoor or outdoor concentrations, indicating the presence of some sources closely related to personal activities. For some species there were no significant indoor sources in the majority of the homes; thus indoor concentrations were mainly determined by outdoor concentrations in these homes. The range of distributions of air concentrations for the measured VOCs, formaldehyde and acetaldehyde, PM2.5, and AERs were generally consistent with values reported previously in the literature. Thus associations derived from or models based on this data set that may link the influence of outdoor sources with indoor air concentrations of air toxics and PM2.5 can be relevant to other urban settings. The simultaneous measurements of indoor concentrations, outdoor concentrations, AERs, and room volumes allowed the use of a mass balance model, under the steady-state approximation, to mechanistically examine the relative contributions of indoor and outdoor sources to measured indoor concentrations on a home-by-home basis. Estimated indoor source strengths for VOCs and carbonyl compounds varied widely from home to home, consistent with the indoor-outdoor concentration patterns, as shown in scatter plots. The indoor source estimations agreed with published values for PM2.5 and with the general understanding of sources of VOCs and carbonyl compounds. The source strengths reported here, derived from hundreds of homes, are an important contribution to the literature on exposure to air toxics. For the first time for many compounds, these estimates present a cohesive set of measurements across a range of air toxics in paired indoor, outdoor, and personal samples along with AER and questionnaire results that can be used for future analyses of indoor air quality. The estimation of outdoor contributions to measured indoor concentrations provides insights about the

  14. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  15. Indoor-Outdoor Detection Using a Smart Phone Sensor.

    Science.gov (United States)

    Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei

    2016-09-22

    In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users' current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station's signal strength in different environments, and identified the users' current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  16. Indoor-Outdoor Detection Using a Smart Phone Sensor

    Directory of Open Access Journals (Sweden)

    Weiping Wang

    2016-09-01

    Full Text Available In the era of mobile internet, Location Based Services (LBS have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users’ current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM communication cellular base station’s signal strength in different environments, and identified the users’ current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  17. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  18. Relationships in indoor/outdoor air pollution

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    Beryllium-7 and sulphurhexaflourid has been used as tracers in measurements designed to enable an estimate of the ratio of the outdoor to indoor time-integrated concentration for aerosols and non-reactive gasses of outdoor origin with a special reference to the reduction in inhalation dose that can be achieved by staying indoors during a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed and shows goos agreement with the results in this study. Protection factor from 1-12 has been found. (author)

  19. Indoor versus outdoor time in preschoolers at child care.

    Science.gov (United States)

    Tandon, Pooja S; Saelens, Brian E; Zhou, Chuan; Kerr, Jacqueline; Christakis, Dimitri A

    2013-01-01

    Being outdoors may have health benefits including being more physically active. Understanding the relationship between outdoor time and health is hampered by the difficulty of measuring outdoor time. To examine the accuracy and validity of light-sensor and GPS methods for quantifying outdoor time among those aged 3-5 years at child care. A total of 45 children (mean age 4.5 years, 64% boys) from five child care centers wore portable accelerometers with built-in light sensors and a separate GPS device around their waists during child care, providing 80,648 episodes (15 seconds each) for analysis. Direct observation (gold standard) of children being outdoors versus indoors was conducted for 2 days at each center. GPS signal-to-noise ratios, processed through the Personal Activity and Location Measurement System were used to define indoor versus outdoor locations. Receiver operating characteristic (ROC) analyses were used to determine thresholds for defining being indoors versus outdoors. Data were collected in Fall 2011, analyzed in 2012. Mean observed outdoor time was 63 [±44; range: 18-152] minutes/day. Mean light-sensor levels were significantly higher outdoors. The area under the ROC curve for location based on light sensor for all weather conditions was 0.82 (range: 0.70 on partly cloudy days to 0.97 on sunny days); for GPS, it was 0.89. The light sensor had a sensitivity of 74% and specificity of 86%. GPS had a sensitivity of 82% and specificity of 88%. A light sensor and a GPS device both distinguish indoor from outdoor time for preschoolers with moderate to high levels of accuracy. These devices can increase the feasibility and lower the cost of measuring outdoor time in studies of preschool children. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Fipronil and its degradates in indoor and outdoor dust

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R.

    2009-01-01

    Fipronil is a potent insecticide used for control of termites, fleas, roaches, ants, and other pests. We measured fipronil, fipronil sulfide, and desulfinyl fipronil concentrations in indoor and outdoor dust from 24 residences in Austin, Texas. At least one of these three fipronil compounds was detected in every sample. Fipronil accounted for most of the total fipronil (T-fipronil; fipronil+desulfinyl fipronil+fipronil sulfide), followed by desulfinyl fipronil and fipronil sulfide. Nineteen of 24 samples of indoor dust had T-fipronil concentrations less than 270 ??g/kg; the remaining five had concentrations from 1320 to 14,200 ??g/kg. All three of the residences with a dog on which a flea-control product containing fipronil was used were among the five residences with elevated fipronil concentrations. In outdoor dust, all concentrations of T-fipronil were less than 70??g/kg with one exception (430??g/kg). For every residence, the concentration of T-fipronil in indoor dust exceeded that in outdoor dust, and the median concentration of T-fipronil was 15 times higher indoors than outdoors.

  1. Estimating mortality derived from indoor exposure to particles of outdoor origin.

    Directory of Open Access Journals (Sweden)

    Wenjing Ji

    Full Text Available Following an extensive review of the literature, we further analyze the published data to examine the health effects of indoor exposure to particulate matter (PM of outdoor origin. We obtained data on all-cause, cardiovascular, and respiratory mortality per 10 μg/m3 increase in outdoor PM10 or PM2.5; the infiltration factors for buildings; and estimated time spent outdoors by individuals in the United States, Europe, China, and globally. These data were combined log-linear exposure-response model to estimate the all-cause, cardiovascular, and respiratory mortality of exposure to indoor PM pollution of outdoor origin. Indoor PM pollution of outdoor origin is a cause of considerable mortality, accounting for 81% to 89% of the total increase in mortality associated with exposure to outdoor PM pollution for the studied regions. The findings suggest that enhancing the capacity of buildings to protect occupants against exposure to outdoor PM pollution has significant potential to improve public health outcomes.

  2. Indoor/outdoor elemental concentration relationships at a nursery school

    International Nuclear Information System (INIS)

    Lannefors, H.; Hansson, H.C.

    1981-01-01

    Indoor and outdoor concentrations of lead and bromine have been measured at a nursery school, using streaker samplers with 2.4 h resolution. The observed variations in concentration were well-correlated with traffic intensity variations. In addition to their closely related time-variation curves, the bromine to lead ratios pointed to the emissions from leaded gasoline-powered vehicles as the main source of these elements both in and outdoors. Time-variation patterns on weekdays and during weekends indicated that the lead and bromine containing particles entered the nursery school mainly by leaking. Only a minor fraction seemed to be brought in and resuspended by the staff and children. The indoor concentrations of the elements studied were about 5 times lower than the outdoor levels thus considerably reducing the indoor exposure. (orig.)

  3. Enhancing integrated indoor/outdoor mobility in a smart campus

    OpenAIRE

    Torres Sospedra, Joaquín; Avariento, Joan; Rambla Risueño, David; Montoliu Colás, Raúl; Casteleyn, Sven; Benedito Bordonau, Mauri; Gould Carlson, Michael; Huerta Guijarro, Joaquín

    2015-01-01

    A Smart City relies on six key factors: Smart Governance, Smart People, Smart Economy, Smart Environment, Smart Living and Smart Mobility. This paper focuses on Smart Mobility by improving one of its key components: positioning. We developed and deployed a novel indoor positioning system (IPS) that is combined with an outdoor positioning system to support seamless indoor and outdoor navigation and wayfinding. The positioning system is implemented as a service in our broader cartography-based ...

  4. BRIDGING OUTDOOR AND INDOOR ENVIRONMENTAL SIMULATION FOR ASSESSING AND AIDING SUSTAINABLE URBAN NEIGHBOURHOOD DESIGN

    Directory of Open Access Journals (Sweden)

    Chengzhi Peng

    2012-11-01

    Full Text Available Urban dwellers in cities located in hot-arid or hothumid regions have greater needs to live in between outdoor and indoor environments. The sustainability of urban building design in these regions cannot be fully assessed by indoor environmental simulation not taking into account the microclimatic factors of the surrounding urban neighbourhood. We find that the current suites of outdoor and indoor simulation software do not connect with each other to give us a holistic understanding of both outdoor and indoor simulation results. This paper reports on our current development of a methodological framework for bridging the current gap between outdoor and indoor environmental simulation. Our objective is that assessment of sustainability at an urban neighbourhood level can be carried out more holistically, and hence achieving more valid environmental simulations from an urban  dwelling point of view. The outdoor-indoor coupling methodology is currently modelled on a digital work flow among three key software platforms: (1 ENVImet for urban neighbourhood outdoor simulation, (2 Ecotect for building indoor simulation, (3 uCampus for combined outdoor-indoor 3D visualisation modelling of an entire urban neighbourhood including its individual buildings. A case study of a new neighbourhood development proposed for New Cairo is presented to demonstrate how indoor environmental simulation can be grounded on outdoor environmental simulation of the urban neighbourhood. Graphical outputs from this outdoorindoor coupling approach to neighbourhood simulation can be further brought together onto a Web-based 3D virtual reality modelling platform to enable wider accessibility.

  5. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi; Roositalab, Jalil; Mohammadi, Jahangir

    2015-01-01

    The effective doses of public in Iran due to external gamma exposures from terrestrial radionuclides and from cosmic radiation indoors and outdoors of normal natural background radiation areas were determined by measurements and by calculations. For direct measurements, three measurement methods were used including a NaI(TI) scintillation survey meter for preliminary screening, a pressurised ionising chamber for more precise measurements and early warning measurement equipment systems. Measurements were carried out in a large number of locations indoors and outdoors ∼1000 houses selected randomly in 36 large cities of Iran. The external gamma doses of public from living indoors and outdoors were also calculated based on the radioactivity measurements of samples taken from soil and building materials by gamma spectrometry using a high-resolution HPGe system. The national mean background gamma dose rates in air indoors and outdoors based on measurements are 126.9±24.3 and 111.7±17.72 nGy h -1 , respectively. When the contribution from cosmic rays was excluded, the values indoors and outdoors are 109.2±20.2 and 70.2±20.59.4 nGy h -1 , respectively. The dose rates determined for indoors and outdoors by calculations are 101.5±9.2 and 72.2±9.4 nGy h -1 , respectively, which are in good agreement with directly measured dose rates within statistical variations. By considering a population-weighted mean for terrestrial radiation, the ratio of indoor to outdoor dose rates is 1.55. The mean annual effective dose of each individual member of the public from terrestrial radionuclides and cosmic radiation, indoors and outdoors, is 0.86±0.16 mSv y -1 by measurements and 0.8±0.2 mSv y -1 by calculations. The results of this national survey of public annual effective doses from national natural background external gamma radiation determined by measurements and calculations indoors and outdoors of 1000 houses in 36 cities of Iran are presented and discussed. (authors)

  6. Measurements of indoor and outdoor natural radiation exposure rates in model houses

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Fukaya, Mitsuharu; Minato, Susumu

    1990-01-01

    Natural gamma-ray and cosmic-ray exposure rates were measured indoors and outdoors for 94 model houses of four housing centers in Nagoya to obtain basic data for estimation of the population dose. Influence of the structure of houses on indoor exposure rates and relationship between indoor and outdoor natural gamma-ray exposure rates were studied. Exposure rates were measured with a 1.5'' φ x 4'' NaI (Tl) scintillation counter and a 6''φ spherical plastic scintillation counter. The mean indoor natural gamma-ray exposure rate in ferro-concrete buildings was about 40% higher than that in fireproof wooden houses, about 60% higher than that in light-weight steel-framed buildings, in fireproof wooden houses, it was also about 10% higher than in light-weight steel-framed building. The ratio of indoor to outdoor natural gamma-ray exposure rate was found to be about 0.95±0.15, 0.77±0.10, and 0.72±0.13 for ferro-concrete buildings, fireproof wooden houses and light-weight steel-framed buildings, respectively. The mean indoor cosmic-ray exposure rate in ferro-concrete buildings was 2.8 μR/h, about 18% lower than the outdoors. The indoor cosmic-ray exposure rate in fireproof wooden houses and light-weight steel-framed buildings were 3.2 μR/h, about 6% lower than the outdoors. (author)

  7. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows

    Science.gov (United States)

    Locher, Barbara; Piquerez, André; Habermacher, Manuel; Ragettli, Martina; Cajochen, Christian; Vienneau, Danielle; Foraster, Maria; Müller, Uwe; Wunderli, Jean Marc

    2018-01-01

    Noise exposure prediction models for health effect studies normally estimate free field exposure levels outside. However, to assess the noise exposure inside dwellings, an estimate of indoor sound levels is necessary. To date, little field data is available about the difference between indoor and outdoor noise levels and factors affecting the damping of outside noise. This is a major cause of uncertainty in indoor noise exposure prediction and may lead to exposure misclassification in health assessments. This study aims to determine sound level differences between the indoors and the outdoors for different window positions and how this sound damping is related to building characteristics. For this purpose, measurements were carried out at home in a sample of 102 Swiss residents exposed to road traffic noise. Sound pressure level recordings were performed outdoors and indoors, in the living room and in the bedroom. Three scenarios—of open, tilted, and closed windows—were recorded for three minutes each. For each situation, data on additional parameters such as the orientation towards the source, floor, and room, as well as sound insulation characteristics were collected. On that basis, linear regression models were established. The median outdoor–indoor sound level differences were of 10 dB(A) for open, 16 dB(A) for tilted, and 28 dB(A) for closed windows. For open and tilted windows, the most relevant parameters affecting the outdoor–indoor differences were the position of the window, the type and volume of the room, and the age of the building. For closed windows, the relevant parameters were the sound level outside, the material of the window frame, the existence of window gaskets, and the number of windows. PMID:29346318

  8. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  9. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada

    Science.gov (United States)

    Xu, Jing; Szyszkowicz, Mieczyslaw; Jovic, Branka; Cakmak, Sabit; Austin, Claire C.; Zhu, Jiping

    2016-09-01

    Indoor air and outdoor air concentration (I/O) ratio can be used to identify the origins of volatile organic compounds (VOCs). I/O ratios of 25 VOCs in Canada were estimated based on the data collected in various areas in Canada between September 2009 and December 2011. The indoor VOC data were extracted from the Canadian Health Measures Survey (CHMS). Outdoor VOC data were obtained from Canada's National Air Pollution Surveillance (NAPS) Network. The sampling locations covered nine areas in six provinces in Canada. Indoor air concentrations were found higher than outdoor air for all studied VOCs, except for carbon tetrachloride. Two different approaches were employed to estimate the I/O ratios; both approaches produced similar I/O values. The I/O ratios obtained from this study were similar to two other Canadian studies where indoor air and outdoor air of individual dwellings were measured. However, the I/O ratios found in Canada were higher than those in European cities and in two large USA cities, possibly due to the fact that the outdoor air concentrations recorded in the Canadian studies were lower. Possible source origins identified for the studied VOCs based on their I/O ratios were similar to those reported by others. In general, chlorinated hydrocarbons, short-chain (C5, C6) n-alkanes and benzene had significant outdoor sources, while long-chain (C10sbnd C12) n-alkanes, terpenes, naphthalene and styrene had significant indoor sources. The remaining VOCs had mixed indoor and outdoor sources.

  11. Risk factors for severe injury following indoor and outdoor falls in geriatric patients.

    Science.gov (United States)

    Kim, Sun Hyu

    2016-01-01

    This study was performed to examine the characteristics of indoor and outdoor falls in older patients and the factors related to severe injury in the emergency department (ED). In total, 26,515 patients fell indoors and 19,581 outdoors. The general and clinical characteristics were compared between the two groups and factors associated with severe injury following the falls were evaluated. Younger males fell more frequently outdoors than indoors. The common activities during outdoor falls were sports and leisure activities. Environmental hazards lead to more outdoor falls than indoor falls. Factors associated with severe injury after indoor falls were transport to the ED by public ambulance or from another medical facility rather than individual transportation, fall from stairs rather than fell over, and a head and neck injury rather than a lower extremity injury. Factors related to severe injury after outdoor falls were male sex, transport to the ED by public ambulance or from another medical facility or by another method rather than individual transportation, state employed, fall from stairs rather than fell over, head and neck or thorax or abdomen injury rather than a lower extremity injury. Transport to the ED by public ambulance or from another medical facility, and head and neck injury were risks for severe injury following indoor and outdoor falls in elderly subjects. Efforts to identify the risk factors for severe injury and for falling itself are important to prevent and reduce fall injuries in elderly subjects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  13. Measurements of MIMO Indoor Channels at 1800 MHz with Multiple Indoor and Outdoor Base Stations

    Directory of Open Access Journals (Sweden)

    Jaldén Niklas

    2007-01-01

    Full Text Available This paper proposes several configurations for multiple base stations in indoor MIMO systems and compares their performance. The results are based on channel measurements realized with a MIMO testbed. The receiver was moved along several routes and floors on an office building. Both outdoor and indoor locations are considered for the transmitters or base stations, which allow the analysis of not only indoor but also outdoor-to-indoor environment. The use of 2 base stations with different system level combinations of the two is analyzed. We show that the configuration with base station selection provides almost as good performance as a full water-filling scheme when the 2 base stations are placed at different locations. Also the spatial correlation properties for the different configurations are analyzed and the importance of considering path loss when evaluating capacity is highlighted.

  14. Indoor and Outdoor Surface-Growing Fungi Contamination at Higher Institutional Buildings in a Malaysian University

    Science.gov (United States)

    Er, C. M.; Sunar, N. M.; Leman, A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Surface-growing indoor and outdoor fungi were assessed using swabbing method to investigate the indoor contamination. The painted wall surface samples were collected from two institutional buildings (B1 and B2) of a university in southern Peninsular Malaysia; indoors and outdoors. The mould concentrations varied widely between indoor and outdoor surface samples of both buildings. The total indoor surface-growing mould concentration (8776.49 CFU/cm2) is significantly higher (pair quality parameters (relative humidity, temperature and air velocity) were also measured indoors and outdoors during the study and violation of the guideline provided by ICOP-IAQ 2010 were proven in indoor environment in both buildings. The results of this assessment showed that the indoor environments of both institutional buildings were contaminated by the surface-growing mould. It also suggested the faulty designs and/or usages of building material in these institutional buildings contributed toward the contamination. An innovative solution is needed to correct the problems.

  15. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    Science.gov (United States)

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3

  16. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2016-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected...... at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due...

  17. Factors affecting the concentration of outdoor particles indoors: Existing data and data needs

    International Nuclear Information System (INIS)

    McKone, T.E.; Thatcher, T.L.; Fisk, W.J.; Sextro, R.G.; Sohn, M.D.; Delp, W.W.; Riley, W.J.

    2002-01-01

    Accurate characterization of particle concentrations indoors is critical to exposure assessments. It is estimated that indoor particle concentrations depend strongly on outdoor concentrations. For health scientists, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this paper, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles indoors. To achieve this goal, we (i) identify and assemble relevant information on how particle behavior during air leakage, HVAC operation, and particle filtration effects indoor particle concentration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful; and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations

  18. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler

    International Nuclear Information System (INIS)

    Kim, Seung-Kyu; Shoeib, Mahiba; Kim, Kyeong-Soo; Park, Jong-Eun

    2012-01-01

    Despite concerns to their increasing contribution to ecological and human exposure, the atmospheric levels of poly- and perfluoroalkyl substances (PFASs) have been determined mainly in Europe and North America. This study presents the indoor and outdoor air concentrations of volatile PFASs [fluorotelomer alcohols (FTOHs), and perfluoroalkyl sulfonamides/sulfonamidoethanols/sulfonamide ethyl acetate (FOSAs/FOSEs/FOSEA)] for the first time in Korean cities. In contrast to the good agreement observed for indoor FTOHs levels in Korea and Europea/North America, FOSAs/FOSEs levels were 10–100-fold lower in Korean indoor air, representing a cultural difference of indoor source. Korean outdoor air contained higher PFAS levels than indoor air, and additionally showed different PFAS composition profile from indoor air. Thus, indoor air would not likely be a main contributor to atmospheric PFAS contamination in Korea, in contrast to western countries. Inhalation exposure of volatile PFASs was estimated to be a minor contributor to PFOA and PFOS exposure in Korea. - Highlights: ► Volatile PFASs were measured in indoor and outdoor airs of Korea, for the first time. ► Cultural difference in indoor source was observed for Korea v.s. western countries. ► Furthermore, PFASs concentrations were higher in indoor air than outdoor air. ► Indoor air was not a major contributor to atmospheric PFASs contamination in Korea. ► Release from industrial activities was considered a possible source. - Korean outdoor air showed not only different PFAS composition profile but higher PFAS levels than indoor airs, indicating indoor air would not be a main source to Korean atmospheric PFASs.

  19. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    Science.gov (United States)

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Endocrine disrupting chemicals in indoor and outdoor air

    Science.gov (United States)

    Rudel, Ruthann A.; Perovich, Laura J.

    The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals - that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose-response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting

  1. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers

    Science.gov (United States)

    Bohlin, Pernilla; Jones, Kevin C.; Tovalin, Horacio; Strandberg, Bo

    Air quality data of persistent organic pollutants (POPs) indoors and outdoors are sparse or lacking in several parts of the world, often hampered by the cost and inconvenience of active sampling techniques. Cheap and easy passive air sampling techniques are therefore helpful for reconnaissance surveys. As a part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) project in Mexico City Metropolitan Area in 2006, a range of POPs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs)) were analyzed in polyurethane foam (PUF) disks used as passive samplers in indoor and outdoor air. Results were compared to those from samplers deployed simultaneously in Gothenburg (Sweden) and Lancaster (United Kingdom). Using sampling rates suggested in the literature, the sums of 13 PAHs in the different sites were estimated to be 6.1-180 ng m -3, with phenanthrene as the predominant compound. Indoor PAH levels tended to be higher in Gothenburg and outdoor levels higher in Mexico City. The sum of PCBs ranged 59-2100 ng m -3, and seemed to be highest indoors in Gothenburg and Lancaster. PBDE levels (sum of seven) ranged 0.68-620 ng m -3, with the highest levels found in some indoor locations. OCPs (i.e. DDTs, HCHs, and chlordanes) were widely dispersed both outdoors and indoors at all three studied areas. In Gothenburg all POPs tended to be higher indoors than outdoors, while indoor and outdoor levels in Mexico City were similar. This could be due to the influence of indoor and outdoor sources, air exchange rates, and lifestyle factors. The study demonstrates how passive samplers can provide quick and cheap reconnaissance data simultaneously at many locations which can shed light on sources and other factors influencing POP levels in air, especially for the gaseous fractions.

  2. A note on the relationship between outdoor and indoor exposure integrals for air pollution of outdoor origin

    International Nuclear Information System (INIS)

    Gjoerup, H.L.; Roed, J.

    1980-05-01

    Beryllium-7 created by cosmic radiation has been used as a tracer in preliminary measurements designed to enable an estimation of the ratio between outdoor and indoor exposure integrals for aerosols of outdoor origin, with special reference to the reduction in inhalation dose that can be achieved by staying indoors during reactor accidents. Earlier investigations relevant to this problem are reviewed. It is concluded that the reduction is inhalation dose offered by an average Danish house is roughly one order of magnitude. (author)

  3. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol

    Science.gov (United States)

    Soleimani, Zahra; Goudarzi, Gholamreza; Sorooshian, Armin; Marzouni, Mohammad Bagherian; Maleki, Heidar

    2016-08-01

    The presence of microbes in airborne aerosol particles, especially dust, is a major public health concern in desert regions. This study is the first of its kind to examine the effect of dust storms on indoor and outdoor microbial air quality at a hospital on the western side of Iran (city of Ahvaz), which is notorious for being highly vulnerable to dust emissions. Air samples were collected inside and outside of the hospital environment for six months, with the unique advantage of this study being that the region and duration of measurements allow for a clear comparison between dusty and normal days. On normal days, the average concentrations (outdoor/indoor) of bacteria and fungi were 423/329 cfu m-3 and 596/386 cfu m-3, respectively, which increased to 1257/406 cfu m-3 and 1116/550 cfu m-3 on dust event days. Indoor/Outdoor ratios for bacteria and fungi are lower on dust event days (0.26-0.60) versus normal days (0.44-0.95). Bacillus spp., Micrococcus spp., Streptomyces spp., and Staphylococcus spp. were the dominant bacteria both indoors and outdoors on normal and dust event days. Gram positive bacteria exhibited higher concentrations than Gram negative bacteria in both outdoor and indoor air samples as well as during both normal and dust event days. The data suggest that Gram positive bacteria are more resistant to undesirable outdoor conditions (e.g., high incident solar radiation) as compared to Gram negative ones. These results have implications for other populated arid regions where more stringent control of indoor air quality can greatly benefit public health.

  4. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    OpenAIRE

    Owens, Charles; Ferguson, Gretta; Hermenau, Martin; Voroshazi, Eszter; Galagan, Yulia; Zimmermann, Birger; Rösch, Roland; Angmo, Dechan; Teran-Escobar, Gerardo; Uhrich, Christian; Andriessen, Ronn; Hoppe, Harald; Würfel, Uli; Lira-Cantu, Monica; Krebs, Frederik

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better ...

  5. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  6. Characterizing health impacts from indoor and outdoor exposure to fine particulates

    DEFF Research Database (Denmark)

    Vigon, Bruce; Fantke, Peter; McKone, Thomas E

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  7. Indoor and outdoor urban atmospheric CO2: Stable carbon isotope constraints on mixing and mass balance

    International Nuclear Information System (INIS)

    Yanes, Yurena; Yapp, Crayton J.

    2010-01-01

    Research highlights: → 13 C of indoor CO 2 indicates proportion of C 4 -derived carbon in occupants' diet. → Flux balance model for ventilated rooms shows rapid approach to CO 2 steady-state. → From extant indoor CO 2 data more dietary C 4 carbon in American than European diets. → Local outdoor urban CO 2 increase of 17 ppm in ten years, no change in average 13 C. - Abstract: From July to November 2009, concentrations of CO 2 in 78 samples of ambient air collected in 18 different interior spaces on a university campus in Dallas, Texas (USA) ranged from 386 to 1980 ppm. Corresponding δ 13 C values varied from -8.9 per mille to -19.4 per mille. The CO 2 from 22 samples of outdoor air (also collected on campus) had a more limited range of concentrations from 385 to 447 ppm (avg. = 408 ppm), while δ 13 C values varied from -10.1 per mille to -8.4 per mille (avg.=-9.0 per mille). In contrast to ambient indoor and outdoor air, the concentrations of CO 2 exhaled by 38 different individuals ranged from 38,300 to 76,200 ppm (avg. = 55,100 ppm), while δ 13 C values ranged from -24.8 per mille to -17.7 per mille (avg. = -21.8 per mille). The residence times of the total air in the interior spaces of this study appear to have been on the order of 10 min with relatively rapid approaches (∼30 min) to steady-state concentrations of ambient CO 2 gas. Collectively, the δ 13 C values of the indoor CO 2 samples were linearly correlated with the reciprocal of CO 2 concentration, exhibiting an intercept of -21.8 per mille, with r 2 = 0.99 and p 2 data representing 18 interior spaces (with varying numbers of occupants), and the coincidence of the intercept (-21.8 per mille) with the average δ 13 C value for human-exhaled CO 2 demonstrates simple mixing between two inputs: (1) outdoor CO 2 introduced to the interior spaces by ventilation systems, and (2) CO 2 exhaled by human occupants of those spaces. If such simple binary mixing is a common feature of interior spaces, it

  8. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  9. A nationwide survey of radon concentration in Japan. Indoor, outdoor and workplace

    International Nuclear Information System (INIS)

    Sanada, Tetsuya; Oikawa, Shinji; Kanno, Nobuyuki; Abukawa, Johji; Higuchi, Hideo

    2004-01-01

    The nationwide indoor, outdoor and workplace radon concentrations were surveyed in Japan. These surveys were conducted to estimate the natural radiation dose due to radon and its progeny for the general public. The radon concentration was measured using passive type radon monitor. The number of radon monitors were installed at indoor, outdoor and workplace for 940 houses, 705 points and 705 sites, respectively. The radon concentration was measured for one year at each measurement site. Annual mean radon concentration was obtained from four quarters measurements of 47 prefectures in Japan. The nationwide indoor, outdoor and workplace annual mean radon concentration were 15.5 Bq m -3 , 6.1 Bq m -3 and 20.8 Bq m -3 , respectively. Their radon concentration shows approximately a logarithmic normal distribution. Workplace showed relatively high radon concentration compared with other environments, may be due to construction materials and low ventilation rate. The indoor radon concentration found to be seasonal variation and architectural dependences. Seasonal variation and regional distribution of outdoor radon concentration was also observed. From the results of these radon surveys, the annual effective dose to the general public due to radon and its progeny was estimated to be 0.49 mSv y -1 in Japan. (author)

  10. Variability of indoor and outdoor VOC measurements: An analysis using variance components

    International Nuclear Information System (INIS)

    Jia, Chunrong; Batterman, Stuart A.; Relyea, George E.

    2012-01-01

    This study examines concentrations of volatile organic compounds (VOCs) measured inside and outside of 162 residences in southeast Michigan, U.S.A. Nested analyses apportioned four sources of variation: city, residence, season, and measurement uncertainty. Indoor measurements were dominated by seasonal and residence effects, accounting for 50 and 31%, respectively, of the total variance. Contributions from measurement uncertainty (<20%) and city effects (<10%) were small. For outdoor measurements, season, city and measurement variation accounted for 43, 29 and 27% of variance, respectively, while residence location had negligible impact (<2%). These results show that, to obtain representative estimates of indoor concentrations, measurements in multiple seasons are required. In contrast, outdoor VOC concentrations can use multi-seasonal measurements at centralized locations. Error models showed that uncertainties at low concentrations might obscure effects of other factors. Variance component analyses can be used to interpret existing measurements, design effective exposure studies, and determine whether the instrumentation and protocols are satisfactory. - Highlights: ► The variability of VOC measurements was partitioned using nested analysis. ► Indoor VOCs were primarily controlled by seasonal and residence effects. ► Outdoor VOC levels were homogeneous within neighborhoods. ► Measurement uncertainty was high for many outdoor VOCs. ► Variance component analysis is useful for designing effective sampling programs. - Indoor VOC concentrations were primarily controlled by seasonal and residence effects; and outdoor concentrations were homogeneous within neighborhoods. Variance component analysis is a useful tool for designing effective sampling programs.

  11. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  12. Indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations in primary schools in Sari, Iran.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Shabankhani, Bijan

    2013-09-01

    This study was carried out to determine the distribution of particles in classrooms in primary schools located in the centre of the city of Sari, Iran and identify the relationship between indoor classroom particle levels and outdoor PM2.5 concentrations. Outdoor PM2.5 and indoor PM1, PM2.5, and PM10 were monitored using a real-time Micro Dust Pro monitor and a GRIMM monitor, respectively. Both monitors were calibrated by gravimetric method using filters. The Kolmogorov-Smirnov test showed that all indoor and outdoor data fitted normal distribution. Mean indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations for all of the classrooms were 17.6 μg m(-3), 46.6 μg m(-3), 400.9 μg m(-3), and 36.9 μg m(-3), respectively. The highest levels of indoor and outdoor PM2.5 concentrations were measured at the Shahed Boys School (69.1 μg m(-3) and 115.8 μg m(-3), respectively). The Kazemi school had the lowest levels of indoor and outdoor PM2.5 (29.1 μg m(-3) and 15.5 μg m(-3), respectively). In schools located near both main and small roads, the association between indoor fine particle (PM2.5 and PM1) and outdoor PM2.5 levels was stronger than that between indoor PM10 and outdoor PM2.5 levels. Mean indoor PM2.5 and PM10 and outdoor PM2.5 were higher than the standards for PM2.5 and PM10, and there was a good correlation between indoor and outdoor fine particle concentrations.

  13. Indoor and Outdoor Allergies.

    Science.gov (United States)

    Singh, Madhavi; Hays, Amy

    2016-09-01

    In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Indoor and Outdoor Levels and Sources of Submicron Particles (PM1) at Homes in Edmonton, Canada.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B; Wallace, Lance A; Wheeler, Amanda J; MacNeill, Morgan; Héroux, Marie-Ève

    2015-06-02

    Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 μg/m(3) (interquartile range, IQR = 0.8-6.1 μg/m(3)) and 3.3 μg/m(3) (IQR = 1.5-6.9 μg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 μg/m(3), IQR = 2.4-8.6 μg/m(3)) and outdoor (median 4.3 μg/m(3), IQR = 2.6-7.4 μg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 μg/m(3), outdoors: 0.39 μg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.

  15. Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway

    Science.gov (United States)

    Goyal, Radha; Khare, Mukesh

    2009-12-01

    A study on indoor-outdoor RSPM (PM 10, PM 2.5 and PM 1.0) mass concentration monitoring has been carried out at a classroom of a naturally ventilated school building located near an urban roadway in Delhi City. The monitoring has been planned for a year starting from August 2006 till August 2007, including weekdays (Monday, Wednesday and Friday) and weekends (Saturday and Sunday) from 8:0 a.m. to 2:0 p.m., in order to take into account hourly, daily, weekly, monthly and seasonal variations in pollutant concentrations. Meteorological parameters, including temperature, rH, pressure, wind speed and direction, and traffic parameters, including its type and volume has been monitored simultaneously to relate the concentrations of indoor-outdoor RSPM with them. Ventilation rate has also been estimated to find out its relation with indoor particulate concentrations. The results of the study indicates that RSPM concentrations in classroom exceeds the permissible limits during all monitoring hours of weekdays and weekends in all seasons that may cause potential health hazards to occupants, when exposed. I/O for all sizes of particulates are greater than 1, which implies that building envelop does not provide protection from outdoor pollutants. Further, a significant influence of meteorological parameters, ventilation rate and of traffic has been observed on I/O. Higher I/O for PM 10 is indicating the presence of its indoor sources in classroom and their indoor concentrations are strongly influenced by activities of occupants during weekdays.

  16. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  17. INFORMATION SYSTEM SALES OF INDOOR AND OUTDOOR ORNAMENTAL PLANTS-BASED ONLINE

    Directory of Open Access Journals (Sweden)

    Sutedi Sutedi

    2017-05-01

    Full Text Available Ornamental plants have fairly high commercial value and much sought after by various circles. The prospect is in the business of ornamental plants can be said very brilliant and profitable. Where is in the business of ornamental plants can bring about advantages not the least. The business struggled with ornamental plants can have very favorable prospects for the long term. There are an awful lot of various kinds of ornamental plants that we can choose to use as ornaments to beautify residential home. The ornamental plants can be used as indoor ornamental plants placed in homes or can also be used as outdoor ornamental plants grown in the garden. Ornamental plants while more popular community-wide information system for ornamental plant however is currently designed specifically and not many people who know the information on price and specs or type of indoor and outdoor ornamental plants so that the need for sales information system of indoor and outdoor ornamental plants-based online. With the sales information system of Indoor and Outdoor ornamental plants-based online is expected to facilitate the customers, business processes that occur in the company's units, unit – units that exist within the system a functioning production units as the unit working on/produce ornamental plants. With the utilization of the system marketing media, promoting, finding new customers, the sales process, recapitulation payment of ornamental plants, control the conditions of stock products, development and delivery of products to customers including convincing the product gets to the customer

  18. Indoor/Outdoor Air Quality Assessment at School near the Steel Plant in Taranto (Italy

    Directory of Open Access Journals (Sweden)

    A. Di Gilio

    2017-01-01

    Full Text Available This study aims to investigate the air quality in primary school placed in district of Taranto (south of Italy, an area of high environmental risk because of closeness between large industrial complex and urban settlement. The chemical characterization of PM2.5 was performed to identify origin of pollutants detected inside school and the comparison between indoor and outdoor levels of PAHs and metals allowed evaluating intrusion of outdoor pollutants or the existence of specific indoor sources. The results showed that the indoor and outdoor levels of PM2.5, BaP, Cd, Ni, As, and Pb never exceeded the target values issued by World Health Organization (WHO. Nevertheless, high metals and PAHs concentrations were detected especially when school were downwind to the steel plant. The I/O ratio showed the impact of outdoor pollutants, especially of industrial markers as Fe, Mn, Zn, and Pb, on indoor air quality. This result was confirmed by values of diagnostic ratio as B(aP/B(gP, IP/(IP + BgP, BaP/Chry, and BaP/(BaP + Chry, which showed range characteristics of coke and coal combustion. However, Ni and As showed I/O ratio of 2.5 and 1.4, respectively, suggesting the presence of indoor sources.

  19. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany.

    Science.gov (United States)

    Oeder, S; Dietrich, S; Weichenmeier, I; Schober, W; Pusch, G; Jörres, R A; Schierl, R; Nowak, D; Fromme, H; Behrendt, H; Buters, J T M

    2012-04-01

    Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious. © 2011 John Wiley & Sons A/S.

  20. Concentration levels of radon in air, indoors and outdoors in houses of Mexico City

    International Nuclear Information System (INIS)

    Pena Garcia, P.

    1992-01-01

    Concentration levels of radon in air, indoors and outdoors have been obtained in houses from Mexico City, with the purpose of relating them with the local environment. Measurements were performed both outdoors and indoors in 60 unifamiliar houses. Track detectors, LR-115, Type II, were used in several detection arrangements during four recording periods with times of exposure of three months each, with the purpose of analyzing the fluctuations due to seasonal changes. Data were obtained about the construction materials were the detection systems were located in order to establish a correlation of radon levels with the climatic parameters and the construction materials. The results of radon concentrations both indoors or outdoors were lower than the international recommendations (148 Bq/m 3 ) (Author)

  1. Reduction of outdoor and indoor ambient dose equivalent after decontamination in the Fukushima evacuation zones

    International Nuclear Information System (INIS)

    Yoshida-Ohuchi, Hiroko; Kanagami, Takashi; Naitoh, Yutaka; Kameyama, Mizuki; Hosoda, Masahiro

    2017-01-01

    One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n=84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. The outdoor ambient dose equivalents [H"*(10)_o_u_t] ranged from 0.61 to 3.71 μSv h"-"1 and from 0.23 to 1.32 μSv h"-"1 before and after decontamination, respectively. The indoor ambient dose equivalents [H"*(10)"i"n] ranged from 0.29 to 2.53 μSv h"-"1 and from 0.16 to 1.22 μSv h"-"1 before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as 0.47±0.13, 0.51±0.13, and 0.58±0.08 (average±σ) when H"*(10)_o_u_t <1.0 μSv h"-"1, 1.0 μSv h"-"1 < H"*(10)_o_u_t <2.0 μSv h"-"1, and 2.0 μSv h"-"1< H"*(10)_o_u_t, respectively, indicating the values of RE increased as H"*(10)_o_u_t increased. It was found that the values of RE were 0.53±0.12 outdoors and 0.41±0.09 indoors, respectively, indicating RE was larger outdoors than indoors. Indoor dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents’ exposure dose before their returning home

  2. Reduction of outdoor and indoor ambient dose equivalent after decontamination in the Fukushima evacuation zones

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida-Ohuchi, Hiroko; Kanagami, Takashi [Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi (Japan); Naitoh, Yutaka; Kameyama, Mizuki [Japan Environment Research Co., Ltd., Miyagi (Japan); Hosoda, Masahiro [Dept. of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori (Japan)

    2017-03-15

    One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n=84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. The outdoor ambient dose equivalents [H{sup *}(10){sub out}] ranged from 0.61 to 3.71 μSv h{sup -1} and from 0.23 to 1.32 μSv h{sup -1} before and after decontamination, respectively. The indoor ambient dose equivalents [H{sup *}(10){sup in}] ranged from 0.29 to 2.53 μSv h{sup -1} and from 0.16 to 1.22 μSv h{sup -1} before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as 0.47±0.13, 0.51±0.13, and 0.58±0.08 (average±σ) when H{sup *}(10){sub out} <1.0 μSv h{sup -1}, 1.0 μSv h{sup -1} outdoors and 0.41±0.09 indoors, respectively, indicating RE was larger outdoors than indoors. Indoor dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents’ exposure dose before their returning home.

  3. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children)

    International Nuclear Information System (INIS)

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-01-01

    This work characterizes levels of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of preschool environments, and assesses the respective risks for 3–5-years old children. Eighteen gaseous and particulate (PM_1 and PM_2_._5) PAHs were collected indoors and outdoors during 63 days at preschools in Portugal. Gaseous PAHs accounted for 94–98% of total concentration (Σ_P_A_H_s). PAHs with 5–6 rings were predominantly found in PM_1 (54–74% particulate Σ_P_A_H_s). Lighter PAHs originated mainly from indoor sources whereas congeners with 4–6 rings resulted mostly from outdoor emissions penetration (motor vehicle, fuel burning). Total cancer risks of children were negligible according to USEPA, but exceeded (8–13 times) WHO health-based guideline. Carcinogenic risks due to indoor exposure were higher than for outdoors (4–18 times). - Highlights: • Lighter PAHs originate from indoor sources, 4–6 rings PAHs result from outdoors. • Gaseous PAHs account for the majority of PAH content in indoor air of preschools. • Lifetime lung cancer risk values exceed WHO health-based guideline level of 10"−"5. • Carcinogenic risks due to preschool indoor exposure are higher than for outdoors. - This work fills gap providing information on levels, phase distribution (gas, PM_1, PM_2_._5) and risks of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool settings.

  4. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    Science.gov (United States)

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  5. Indoor-outdoor nitric oxide and nitrogen dioxide concentrations at three sites in Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, D.R. (D.R. Rowe Engineering Services, Inc., Bowling Green, KY (United States)); Al-Dhowalia, K.H.; Mansour, M.E. (King Saud Univ., Riyadh (Saudi Arabia))

    1991-08-01

    The objective of this study was to evaluate the nitric oxide and nitrogen oxide concentrations indoors and outdoors at three sites in Riyadh, Saudi Arabia. Results show that the outdoor and indoor concentrations for NO were at least 270 and 16 times the reported average worldwide NO concentrations, respectively. The NO(sub 2) concentrations were about 14 times reported outdoor worldwide levels; however, NO(sub 2) concentrations indoors were generally below those reported in the literature. The data presented, in combination with information presented in previous articles, will provide a valuable background database for use in dispersion models to determine the effect of the Kuwaiti oil well fires on the air quality of Riyadh.

  6. Who children spend time with after school: associations with objectively recorded indoor and outdoor physical activity

    Science.gov (United States)

    2014-01-01

    Background Understanding how the determinants of behaviour vary by context may support the design of interventions aiming to increase physical activity. Such factors include independent mobility, time outdoors and the availability of other children. At present little is known about who children spend their time with after school, how this relates to time spent indoors or outdoors and activity in these locations. This study aimed to quantify who children spend their time with when indoors or outdoors and associations with moderate to vigorous physical activity (MVPA). Methods Participants were 427 children aged 10–11 from Bristol, UK. Physical activity was recorded using an accelerometer (Actigraph GT1M) and matched to Global Positioning System receiver (Garmin Foretrex 201) data to differentiate indoor and outdoor location. Children self-reported who they spent time with after school until bed-time using a diary. Each 10 second epoch was coded as indoors or outdoors and for ‘who with’ (alone, friend, brother/sister, mum/dad, other grown-up) creating 10 possible physical activity contexts. Time spent and MVPA were summarised for each context. Associations between time spent in the different contexts and MVPA were examined using multiple linear regression adjusting for daylight, age, deprivation and standardised body mass index. Results During the after school period, children were most often with their mum/dad or alone, especially when indoors. When outdoors more time was spent with friends (girls: 32.1%; boys: 28.6%) than other people or alone. Regression analyses suggested hours outdoors with friends were positively associated with minutes of MVPA for girls (beta-coefficient [95% CI]: 17.4 [4.47, 30.24]) and boys (17.53 [2.76, 32.31]). Being outdoors with brother/sister was associated with MVPA for girls (21.2 [14.17, 28.25]) but not boys. Weaker associations were observed for time indoors with friends (girls: 4.61 [1.37, 7.85]; boys: (7.42 [2.99, 11

  7. Measurements of environmental radon - 222 concentrations in indoors and outdoors in Egypt

    International Nuclear Information System (INIS)

    Kenawy, M.A.; Morsey, A.A.; Kotb, M.A.; Osman, A.; El-Haag, A.

    1990-01-01

    The major contribution to population exposure from natural radiation arises from the inhalation of the decay products of radon. Substantial surveys are being conducted by several investigators to estimate the indoor and outdoor exposure nationally and to discover regional variations. In this work, radon concentration in the indoors and outdoor air was determined using the can technique and employing CR-39 solid state nuclear track detector for lengthy exposures. The range of radon - 222 activity in this survey was 54 -299 PCi.m -3 in Cairo, 22 - 171 PCi.m -3 in Alexandria and 89 - 370 PCi.m -3 in Asiut. Measurements carried out in Aswan and Sinai ranged between 98 - 411 PCi.m -3 . Values of indoors and outdoors radon concentrations were found to vary with time of day, geographic location, season and height above ground. Further work is going on to study the different parameters affecting the levels of the environmental radon. The national survey and associated studies is expected to yield data that may correlate radon activity with some respiratory diseases, particularly lung cancer. (author). 7 refs, 5 figs

  8. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic.

    Science.gov (United States)

    Foraster, Maria; Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-11-01

    Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people's noise exposure indoors in bedrooms. We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). We evaluated 1,926 cohort participants at baseline (years 2003-2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: -0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise-SBP association was stronger and statistically significant with a threshold at 30 dB(A). Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by

  9. Indoor randon concentration. Temperature and wind effects; Concentrazione di radon indoor. Effetto del vento e della temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, L.; Benigni, S. [Milan Univ., Milan (Italy). Ist. di Fisica Generale Applicata

    2000-12-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied. [Italian] Si analizza e si discute il comportamento della concentrazione di radon indoor nel seminterrato di una casa di ricerca. Misure orarie sono state effettuate da novembre 1998 a giugno 1999. In molte sequenze di giorni la concentrazione del radon nel locale in analisi presenta forti variazioni nel corso della giornata con un accumulo notturno e decrescita nelle ore diurne. Sono state eseguite misure della velocita' del vento, delle temperature outdoor e indoor e della differenza di pressione outdoor-indoor e il loro andamento e' stato confrontato con quello della concentrazione del radon. Vengono discusse l'esalazione del radon dalle pareti, dal pavimento e dal soffitto e l'esalazione pressure difference driven dal suolo. Il rateo dei ricambi d'aria tra il locale e l'aria outdoor e' studiato.

  10. Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors on a concentrate-based ration.

    Science.gov (United States)

    Lejeune, Alexandre; Monahan, Frank J; Moloney, Aidan P; Earley, Bernadette; Black, Alistair D; Campion, Deirdre P; Englishby, Tanya; Reilly, Petrina; O'Doherty, John; Sweeney, Torres

    2010-03-31

    Despite an increasing preference of consumers for beef produced from more extensive pasture-based production systems and potential human health benefits from the consumption of such beef, data regarding the health status of animals raised on pasture are limited. The objective of this study was to characterise specific aspects of the bovine peripheral and the gastrointestinal muscosal immune systems of cattle raised on an outdoor pasture system in comparison to animals raised on a conventional intensive indoor concentrate-based system. A number of in vitro functional tests of immune cells suggested subtle differences between the animals on the outdoor versus indoor production systems. There was a decrease in the number of neutrophils and monocytes engaged in phagocytosis in outdoor cattle (P outdoor animals (P outdoor animals with elevated levels of serum pepsinogen (P outdoor animals in comparison to the indoor animals. Lower levels of copper and iodine were measured in the outdoor animals in comparison to indoor animals (P < 0.001). Despite distinctly contrasting production systems, only subtle differences were identified in the peripheral immune parameters measured between cattle raised at pasture in comparison to animals raised on a conventional intensive indoor concentrate-based production system.

  11. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  12. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Wel, L. van; Beckmann, G.; Anzion, R.B.M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  13. Chemical Characterization of the Indoor Air Quality of a University Hospital : Penetration of Outdoor Air Pollutants

    NARCIS (Netherlands)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two

  14. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    Science.gov (United States)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more

  15. Measurement of dose-determining physical parameters (F-factor, fp factor,...) for comparative analysis of outdoor/indoor radon exposure

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    The purpose of the project was to measure the airborne natural radon activity concentrations outdoor and the dose-determining parameters [non-deposited fraction (f p ), radon daughter products (F, PAEC), as well as the radioactive aerosol size distribution]. The impacts of meteorological parameters (pressure, rainfalls, wind velocities and temperature) on the those parameters and the exhalation of radon from the soil were to be determined. The acquired information was to be applied for an evaluation of the radiological outdoor situation and subsequent comparative analysis with the indoor radon exposure. (orig./CB) [de

  16. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM2.5 mass and chemical components

    Science.gov (United States)

    Zauli Sajani, Stefano; Ricciardelli, Isabella; Trentini, Arianna; Bacco, Dimitri; Maccone, Claudio; Castellazzi, Silvia; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M.

    2015-02-01

    In order to investigate relationships between outdoor air pollution and concentrations indoors, a novel design of experiment has been conducted at two sites, one heavily trafficked and the other residential. The novel design aspect involves the introduction of air directly to the centre of an unoccupied room by use of a fan and duct giving a controlled air exchange rate and allowing an evaluation of particle losses purely due to uptake on indoor surfaces without the losses during penetration of the building envelope which affect most measurement programmes. The rooms were unoccupied and free of indoor sources, and consequently reductions in particle concentration were due to deposition processes within the room alone. Measurements were made of indoor and outdoor concentrations of PM2.5, major chemical components and particle number size distributions. Despite the absence of penetration losses, indoor to outdoor ratios were very similar to those in other studies showing that deposition to indoor surfaces is likely to be the major loss process for indoor air. The results demonstrated a dramatic loss of nitrate in the indoor atmosphere as well as a selective loss of particles in the size range below 50 nm, in comparison to coarser particles. Depletion of indoor particles was greater during a period of cold weather with higher outdoor concentrations probably due to an enhancement of semi-volatile materials in the outdoor particulate matter. Indoor/outdoor ratios for PM2.5 were generally higher at the trafficked site than the residential site, but for particle number were generally lower, reflecting the different chemical composition and size distributions of particles at the two sites.

  17. Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center

    Directory of Open Access Journals (Sweden)

    Nasrin Rostami

    2016-06-01

    Full Text Available Hospital environments contain different types of microorganisms. Airborne fungi are one of these microbes and the major source of hospital indoor contamination that will be able to cause airborne fungal diseases. In the current study, the total count and diversity of the airborne filamentous and yeasts fungi were investigated in indoor and outdoor air of selective wards of Emam Reza Educational, Research and Treatment Center. This cross-sectional study was performed during the fall season. One hundred and ninety-two environmental samples of indoor and outdoor air from hematology, infectious diseases, Ear, Nose and Throat (ENT and Neonatal Intensive Care Unit (NICU wards were collected by open plate technique (on Sabouraud dextrose agar media once a week. The cultures were then examined and evaluated according to macroscopic and microscopic examination criteria. In this study, 67 (62.03% of indoor samples and 81 (96.42% of outdoor samples were positive for fungi. The most isolated fungi were yeast species (17.12%, Penicillium spp. (16.34%, Alternaria spp. (14.39%, Aspergillus niger (11.28%, A. flavus (8.95%, respectively. Almost all of the wards showed high rates of contamination by various fungi. However, the analysis of the data showed that indoor air of hematology ward had the highest fungal pollution. In contrast, the outdoor air of ENT had the highest fungal pollution. Thus, these results demonstrated that the cleansing and disinfection procedures in the hospital wards should be improved yet.

  18. An Integrated Approach to Indoor and Outdoor Localization

    Science.gov (United States)

    2017-04-17

    TITLE AND SUBTITLE An Integrated Approach to Indoor and Outdoor Localization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0299 5c.   PROGRAM ELEMENT...Distribution approved for public release. Figure 5: A flowchart of the method of computing an initial position estimate by comparing a single WiFi scan

  19. A sub-nationwide survey of outdoor and indoor 222Rn concentrations in China by passive method

    International Nuclear Information System (INIS)

    Jin Yihe; Ikebe, Y.; Iida, T.

    1996-01-01

    From Nov. 1988 to Mar. 1993, cooperated by China and Japan, a survey of outdoor and indoor 222 Rn concentrations in 10 cities which were highly populated in China was carried out by means of passive method. the annual mean of outdoor 222 Rn concentration in 10 cities was 8.8 Bq·m -3 . The highest of 13.5 Bq·m -3 was in Wuhan, the lowest of 3.3 Bq·m -3 was in Chongming Island of Shanghai; and there were no significant differences among the different years in the same areas. During the northwest wind seasons, about 50% of outdoor 222 Rn concentration in Taiwan was contributed by the airflow from the mainland. Typical apartment houses and offices built of brick and concrete were also surveyed for indoor 222 Rn concentration. The annual mean of indoor 222 Rn concentration in the 10 cities was 19.5 Bq·m - 3. The highest of 33.9 Bq·m -3 was observed in Guiyang, the lowest of 9.0 Bq·m -3 was observed in Chongming Island of Shanghai. The outdoor and indoor 222 Rn concentrations showed a clear seasonal pattern with the minimum in summer and the maximum in winter. And they also showed a clear geographic distribution tendency; they were higher in inland than in seashores, and higher in the south than in the north. The ratios of indoor to outdoor 222 Rn concentrations were from 1.1 to 4.6. The annual effective dose equivalents resulting from outdoor and indoor 222 Rn concentrations amounted to about 0.64 mSv·a -1 . The highest was in Guiyang, and the lowest was in Nantong, being 1.12 and 0.39 mSv·a -1 , respectively

  20. Influences of Green Outdoors versus Indoors Environmental Settings on Psychological and Social Outcomes of Controlled Exercise

    Science.gov (United States)

    Rogerson, Mike; Gladwell, Valerie F.; Gallagher, Daniel J.; Barton, Jo L.

    2016-01-01

    This study addressed a methodological gap by comparing psychological and social outcomes of exercise in green outdoors versus built indoors settings, whilst rigorously controlling exercise mode and intensity. The hypotheses were that greater improvements or more desirable values for directed attention, mood, perceived exertion, social interaction time, intention for future exercise behaviour and enjoyment would be associated with outdoors compared to indoors exercise. Following a baseline session, paired participants completed two conditions of 15 min of cycling on an ergometer placed outside in a natural environment and inside in a laboratory setting in a randomized, counter-balanced order. At pre- and post-exercise, directed attention was measured with the digit span backwards task, and mood was assessed with the Profile of Mood States. During the exercise session, visual and verbal interactions were recorded by means of experimenter observations. After each exercise session, participants provided self-reports of their enjoyment of the exercise, perceived exertion and intention for future exercise in the same environment. Social interaction time was significantly greater during outdoors exercise versus indoors; on average, participants engaged in three minutes more social interaction during exercise outdoors compared to indoors. Social interaction time significantly predicted intention for future exercise in the outdoors condition, but did not in the indoor condition. There was a significant time by condition interaction for directed attention. Scores worsened in the indoors condition, but improved in the outdoors condition. There was no statistically-significant time by condition interaction for mood and no significant difference between conditions for either perceived exertion or intention. Taken together, these findings show that exercise in a natural environment may promote directed attention and social interactions, which may positively influence future

  1. Indoor and Outdoor Mobile Mapping Systems for Architectural Surveys

    Science.gov (United States)

    Campi, M.; di Luggo, A.; Monaco, S.; Siconolfi, M.; Palomba, D.

    2018-05-01

    This paper presents the results of architectural surveys carried out with mobile mapping systems. The data acquired through different instruments for both indoor and outdoor surveying are analyzed and compared. The study sample shows what is required for an acquisition in a dynamic mode indicating the criteria for the creation of a georeferenced network for indoor spaces, as well as the operational processes concerning data capture, processing, and management. The differences between a dynamic and static scan have been evaluated, with a comparison being made with the aerial photogrammetric survey of the same sample.

  2. [The community succession of sarcosaphagous insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area].

    Science.gov (United States)

    Yin, Xiao-Jun; Ma, Meng-Yun; Zhou, Hui; Lai, Yue; Wang, Jiang-Feng

    2014-06-01

    To explore the growing development and community succession of main sarcosaphagous insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area and to estimate the postmortem interval (PMI). From early May to August in 2013, in Forensic Medical Examination Center of Shenzhen Public Security Bureau, the main insect species and the decomposition process were observed in two adult pig carcasses of simulative indoor and outdoor environment. The different decomposition stages and the community succession of insects were recorded. The indoor and outdoor pig carcasses showed skeleton 412.5 and 325 hours after death, respectively. The main species of flies on pig carcasses were Chrysomya megacephala, Chrysomya rufifacies and Chrysomya chani. The main species of beetles were Crecphilus maxillosus, Necrobia ruficollis, Saprinus splendens and Dermestes maculatu. The dominant species of flies in the outdoor pig carcasses obviously produced the second generations due to the effect of mass rainfall, nor in the indoor pig carcasses. There are regular patterns on the community succession of insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area. The activity patterns of seven typical insects and their larva show important value for estimating PMI.

  3. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    Science.gov (United States)

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  4. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    Science.gov (United States)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  5. Indoor-outdoor relationship of fungal aerosols in domestic homes situated in humid-warm climate

    International Nuclear Information System (INIS)

    ACeron Palma, I. M.; Lopez Pacheco, M.; Perez Sanchez, M. M.; Quintal Franco, C.; Giacoman Vallejos, G.; Ponce Caballero, C.

    2009-01-01

    Among the different kinds of bio aerosols, fungi represent a heterogeneous group, which plays an important role in human pathology. These microorganisms can be the cause of a variety of infectious diseases as well as allergic and toxic effects. Therefore, it is necessary to assess their composition and concentrations indoors, outdoors and in domestic environments. The study of indoor-air quality is a relatively new activity in the world, and very recent in Mexico. The aim of this study was to establish the relation between indoors and outdoors fungal aerosols in domestic homes. Air samples were collected, using the 6-stage Andersen impactor, inside and outside thirty domestic homes of Merida city, in Yucatan, Mexico. (Author)

  6. Low VHF Channel Measurements and Simulations in Indoor and Outdoor Scenarios

    Science.gov (United States)

    2015-05-01

    Transactions on. 2002;50(5):591-599. 22. Nerguizian C, Despins C, Affes S, Djadel M. Radio-channel characterization of an underground mine at 2.4 ghz...INTENTIONALLY LEFT BLANK. viii 1. Introduction Reliable wireless communication is of paramount importance for many important civilian and military...report, we study near-ground, wireless channel modeling in the lower VHF band for indoor and indoor/outdoor scenarios, drawing from extensive propagation

  7. Microbiological Indoor and Outdoor Air Quality of Two Major ...

    African Journals Online (AJOL)

    Both indoor and outdoor air samples were assessed monthly for the three (3) months in the wet season (June – August, 2010) and dry season (November 2010 - January 2011) using the settled plate methods. The study sites were divided into nine (9) units which include accident and emergency ward, laboratory, male ward ...

  8. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Rufus D. [KTL-Finnish National Inst. of Public Health, Dept. of Environmental Hygiene, Kuopio (Finland); California Univ., School of Public Health, Berkeley, CA (United States); Jurvelin, J. [KTL-Finnish National Inst. of Public Health, Dept. of Environmental Hygiene, Kuopio (Finland); Jyvaeskylae Polytechnic, School of Engineering and Technology, Jyvaeskylae (Finland); Koistinen, K. [KTL-Finnish National Inst. of Public Health, Dept. of Environmental Hygiene, Kuopio (Finland); Saarela, K. [VTT, Chemical Technology, Espoo (Finland); Jantunen, M. [EC JRC, Inst. of the Environment, Ispra (Italy)

    2001-07-01

    Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling. (Author)

  9. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  10. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants.

    Science.gov (United States)

    Scheepers, Paul T J; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B M

    2017-05-08

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO₂), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO₂ (4.9-17.4 μg/m³) and formaldehyde (2.5-6.4 μg/m³) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m³ (range: 33.1-2450 μg/m³) and was fivefold higher in laboratories (316 μg/m³) compared to offices (57.0 μg/m³). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80-90% efficiency filter ( p engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  11. Indoor and outdoor particulate matter in primary school classrooms with fan-assisted natural ventilation in Singapore.

    Science.gov (United States)

    Chen, Ailu; Gall, Elliott T; Chang, Victor W C

    2016-09-01

    We conducted multiday continuous monitoring of indoor and outdoor particulate matter (PM) in classrooms with fan-assisted natural ventilation (NV) at five primary schools in Singapore. We monitored size-resolved number concentration of PM with diameter 0.3-10 μm at all schools and alveolar deposited surface area concentrations of PM with diameter 0.01-1.0 μm (SA0.01-1.0) at two schools. Results show that, during the monitoring period, schools closer to expressways and in the downtown area had 2-3 times higher outdoor PM0.3-1.0 number concentrations than schools located in suburban areas. Average indoor SA0.01-1.0 was 115-118 μm(2) cm(-3) during periods of occupancy and 72-87 μm(2) cm(-3) during unoccupied periods. There were close indoor and outdoor correlations for fine PM during both occupied and unoccupied periods (Pearson's r = 0.84-1.0) while the correlations for coarse PM were weak during the occupied periods (r = 0.13-0.74). Across all the schools, the size-resolved indoor/outdoor PM ratios (I/O ratios) were 0.81 to 1.58 and 0.61 to 0.95 during occupied and unoccupied periods, respectively, and average infiltration factors were 0.64 to 0.94. Average PM net emission rates, calculated during periods of occupancy in the classrooms, were lower than or in the lower range of emission rates reported in the literature. This study also reveals that indoor fine and submicron PM predominantly come from outdoor sources, while indoor sources associated with occupancy may be important for coarse PM even when the classrooms have high air exchange rates.

  12. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Relationships of outdoor and indoor ultrafine particles at residences downwind of a major international border crossing in Buffalo, NY.

    Science.gov (United States)

    McAuley, T R; Fisher, R; Zhou, X; Jaques, P A; Ferro, A R

    2010-08-01

    During winter 2006, indoor and outdoor ultrafine particle (UFP) size distribution measurements for particles with diameters from 5.6 to 165 nm were taken at five homes in a neighborhood directly adjacent to the Peace Bridge Complex (PBC), a major international border crossing connecting Buffalo, New York to Fort Erie, Ontario. Monitoring with 1-s time resolution was conducted for several hours at each home. Participants were instructed to keep all external windows and doors closed and to refrain from cooking, smoking, or other activity that may result in elevating the indoor UFP number concentration. Although the construction and age for the homes were similar, indoor-to-outdoor comparisons indicate that particle infiltration rates varied substantially. Overall, particle concentrations indoors were lower and less variable than particle concentrations outdoors, with average indoor-outdoor ratios ranging from 0.1 to 0.5 (mean 0.34) for particles between 5.6 and 165 nm in diameter. With no indoor sources, the average indoor-outdoor ratios were lowest (0.2) for 20-nm particles, higher (0.3) for particles <10 nm, and highest (0.5) for particles 70-165 nm. This study provides insight into the penetration of UFP into homes and the resulting change in particle size distributions as particles move indoors near a major diesel traffic source. Although people spend most of their time in their homes, exposure estimates for epidemiological studies are generally determined using ambient concentrations. The findings of this study will contribute to improved size-resolved UFP exposure estimates for near roadway exposure assessments and epidemiological studies.

  14. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment.

    Science.gov (United States)

    Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.

  15. Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building–Tree Grouping Patterns

    Directory of Open Access Journals (Sweden)

    Bo Hong

    2018-01-01

    Full Text Available Airflow behavior and indoor/outdoor PM2.5 dispersion in different building–tree grouping patterns depend significantly on the building–tree layouts and orientation towards the prevailing wind. By using a standard k-ε model and a revised generalized drift flux model, this study evaluated airflow fields and indoor/outdoor relationships for PM2.5 resulting from partly wind-induced natural ventilation in four hypothetical building–tree grouping patterns. Results showed that: (1 Patterns provide a variety of natural ventilation potential that relies on the wind influence, and buildings that deflect wind on the windward facade and separate airflow on the leeward facade have better ventilation potential; (2 Patterns where buildings and trees form a central space and a windward opening side towards the prevailing wind offer the best ventilation conditions; (3 Under the assumption that transported pollution sources are diluted through the inlet, the aerodynamics and deposition effects of trees cause the lower floors of a multi-storey building to be exposed to lower PM2.5 compared with upper floors, and lower indoor PM2.5 values were found close to the tree canopy; (4 Wind pressure differences across each flat showed a poor correlation (R2 = 0.059, with indoor PM2.5 concentrations; and (5 Patterns with the long facade of buildings and trees perpendicular to the prevailing wind have the lowest indoor PM2.5 concentrations.

  16. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools.

    Science.gov (United States)

    Raysoni, Amit U; Stock, Thomas H; Sarnat, Jeremy A; Chavez, Mayra C; Sarnat, Stefanie Ebelt; Montoya, Teresa; Holguin, Fernando; Li, Wen-Whai

    2017-12-01

    A 14-week air quality study, characterizing the indoor and outdoor concentrations of 18 VOCs at four El Paso, Texas elementary schools, was conducted in Spring 2010. Three schools were in an area of high traffic density and the fourth school, considered as a background school, was situated in an area affected minimally by stationary and mobile sources of air pollution. Passive samplers were deployed for monitoring and analyzed by GC/MS. Differences in the concentration profiles of the BTEX species between the high and low traffic density schools confirmed the pre-defined exposure patterns. Toluene was the predominant compound within the BTEX group and the 96-hr average outdoor concentrations varied from 1.16 to 4.25 μg/m 3 across the four schools. Outdoor BTEX species were strongly correlated with each other (0.63 schools in contrast to the low-exposure school. This was further corroborated by the results obtained from the BTEX inter-species ratios (toluene: benzene and m, p- xylenes: ethylbenzene). Certain episodic events during the study period resulted in very elevated concentrations of some VOCs such as n-pentane. Indoor concentration of compounds with known indoor sources such as α -pinene, d-limonene, p-dichlorobenzene, and chloroform were generally higher than their corresponding outdoor concentrations. Cleaning agents, furniture polishes, materials used in arts and crafts activities, hot-water usage, and deodorizing cakes used in urinal pots were the likely major sources for these high indoor concentrations. Finally, retrospective assessment of average ambient BTEX concentrations over the last twenty years suggest a gradual decrement in this border region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  18. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  19. The effect of farrowing environment and previous experience on the maternal behaviour of sows in indoor pens and outdoor huts.

    Science.gov (United States)

    Wülbers-Mindermann, M; Berg, C; Illmann, G; Baulain, U; Algers, B

    2015-04-01

    Outdoor farrowing huts facilitate a less restricted maternal behaviour in sows compared with sows kept indoors in farrowing pens. The aim of our study was to investigate whether there are behavioural differences between primiparous sows kept outdoors in farrowing huts and indoors in pens, and whether the maternal behaviour during the second parity, when all sows were kept outdoors in farrowing huts, would differ between sows that have experienced the indoor or the outdoor environment, respectively, during their first parturition. A total of 26 Yorkshire×Swedish Landrace sows were studied. Of these, 11 sows were housed outdoors in farrowing huts during both parturitions (group=OUTOUT). The other 15 sows were kept indoors in a barn with single farrowing pens during their first parturition. During their second parturition, sows were kept outdoors in farrowing huts (group=INOUT). The behaviour was video recorded from 2 h prepartum to 48 h postpartum. The sows' responsiveness to playbacks of a piglet's screams was tested on days 2 to 3 postpartum. Parity 1: during the last 2 h prepartum, OUTOUT sows had a higher proportion of observations in the sternal lying position (Pbehavioural differences between INOUT and OUTOUT sows. In conclusion, it is not problematic for a second parity sow with initial maternal experience from an indoor farrowing pen to be kept outdoors in farrowing huts during its following farrowing.

  20. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  1. wayGoo: a platform for geolocating and managing indoor and outdoor spaces

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Karafylli, Christina; Karafylli, Maria; Motos, Dionysis; Lampropoulos, Vassilis; Dimitros, Kostantinos; Margonis, Christos

    2016-05-01

    wayGoo2 is a platform for Geolocating and Managing indoor and outdoor spaces and content with multidimensional indoor and outdoor Navigation and Guidance. Its main components are a Geographic Information System, a back-end server, front-end applications and a web-based Content Management System (CMS). It constitutes a fully integrated 2D/3D space and content management system that creates a repository that consists of a database, content components and administrative data. wayGoo can connect to any third party database and event management data-source. The platform is secure as the data is only available through a Restful web service using https security protocol in conjunction with an API key used for authentication. To enhance users experience, wayGoo makes the content available by extracting components out of the repository and constructing targeted applications. The wayGoo platform supports geo-referencing of indoor and outdoor information and use of metadata. It also allows the use of existing information such as maps and databases. The platform enables planning through integration of content that is connected either spatially, temporally or contextually, and provides immediate access to all spatial data through interfaces and interactive 2D and 3D representations. wayGoo constitutes a mean to document and preserve assets through computerized techniques and provides a system that enhances the protection of your space, people and guests when combined with wayGoo notification and alert system. It constitutes a strong marketing tool providing staff and visitors with an immersive tool for navigation in indoor spaces and allowing users to organize their agenda and to discover events through wayGoo event scheduler and recommendation system. Furthermore, the wayGoo platform can be used in Security applications and event management, e.g. CBRNE incidents, man-made and natural disasters, etc., to document and geolocate information and sensor data (off line and real time

  2. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data.

    Science.gov (United States)

    Meng, Qing Yu; Turpin, Barbara J; Korn, Leo; Weisel, Clifford P; Morandi, Maria; Colome, Steven; Zhang, Junfeng Jim; Stock, Thomas; Spektor, Dalia; Winer, Arthur; Zhang, Lin; Lee, Jong Hoon; Giovanetti, Robert; Cui, William; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2005-01-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) study was designed to investigate residential indoor, outdoor and personal exposures to several classes of air pollutants, including volatile organic compounds, carbonyls and fine particles (PM2.5). Samples were collected from summer, 1999 to spring, 2001 in Houston (TX), Los Angeles (CA) and Elizabeth (NJ). Indoor, outdoor and personal PM2.5 samples were collected at 212 nonsmoking residences, 162 of which were sampled twice. Some homes were chosen due to close proximity to ambient sources of one or more target analytes, while others were farther from sources. Median indoor, outdoor and personal PM2.5 mass concentrations for these three sites were 14.4, 15.5 and 31.4 microg/m3, respectively. The contributions of ambient (outdoor) and nonambient sources to indoor and personal concentrations were quantified using a single compartment box model with measured air exchange rate and a random component superposition (RCS) statistical model. The median contribution of ambient sources to indoor PM2.5 concentrations using the mass balance approach was estimated to be 56% for all study homes (63%, 52% and 33% for California, New Jersey and Texas study homes, respectively). Reasonable variations in model assumptions alter median ambient contributions by less than 20%. The mean of the distribution of ambient contributions across study homes agreed well for the mass balance and RCS models, but the distribution was somewhat broader when calculated using the mass balance model with measured air exchange rates.

  3. i-Locate - Indoor/Outdoor location and Asset Management through Open Data

    Directory of Open Access Journals (Sweden)

    Claudio Eccher

    2015-02-01

    Full Text Available Studi recenti hanno evidenziato che, in media, trascorriamo circa il 90% del nostro tempo in ambienti chiusi e, spesso, non familiari. L’esigenza di localizzare/guidare persone o ogg etti in spazi sia esterni che interni (senza discontinuità tra esterno ed interno darà origine ad una serie di nuovi servizi di tipo LBS (Location-Based Services che potranno avere anche una notevole rilevanza economica. i-locate (Indoor / outdoor location and Asset Management Through open geodata is a project that aims to develop a set of tools and services based on geo location technologies based on open data for the location and management of objects in indoor and outdoor spaces. The tools are intended both to citizens who use their smartphones to access services, aids to navigation from the front door to internal destinations to buildings (public office, clinic, shop, etc.. Obtaining any information available to support (code , unforeseen changes in the path, suggestions, etc., and professionals for specific activities that require the location of people, equipment, etc. i-locate to an intense use of GIS technologies for navigation and tracking "indoor" (indoor GIS, 3D GIS, to locate people (eg. Alzheimer's patients and their movements in areas not suited (geofencing to identify and track objects / portable equipment for their location, management and maintenance.

  4. i-Locate - Indoor/Outdoor location and Asset Management through Open Data

    Directory of Open Access Journals (Sweden)

    Claudio Eccher

    2015-02-01

    Full Text Available Studi recenti hanno evidenziato che, in media, trascorriamo circa il 90% del nostro tempo in ambienti chiusi e, spesso, non familiari. L’esigenza di localizzare/guidare persone o ogg etti in spazi sia esterni che interni (senza discontinuità tra esterno ed interno darà origine ad una serie di nuovi servizi di tipo LBS (Location-Based Services che potranno avere anche una notevole rilevanza economica.i-locate (Indoor / outdoor location and Asset Management Through open geodata is a project that aims to develop a set of tools and services based on geo location technologies based on open data for the location and management of objects in indoor and outdoor spaces. The tools are intended both to citizens who use their smartphones to access services, aids to navigation from the front door to internal destinations to buildings (public office, clinic, shop, etc.. Obtaining any information available to support (code , unforeseen changes in the path, suggestions, etc., and professionals for specific activities that require the location of people, equipment, etc. i-locate to an intense use of GIS technologies for navigation and tracking "indoor" (indoor GIS, 3D GIS, to locate people (eg. Alzheimer's patients and their movements in areas not suited (geofencing to identify and track objects / portable equipment for their location, management and maintenance.

  5. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  6. Indoor ran don concentration. Temperature and wind effects

    International Nuclear Information System (INIS)

    Sesana, L.; Benigni, S.

    2000-01-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied [it

  7. Integrated algorithms for RFID-based multi-sensor indoor/outdoor positioning solutions

    Science.gov (United States)

    Zhu, Mi.; Retscher, G.; Zhang, K.

    2011-12-01

    Position information is very important as people need it almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques but these techniques are difficult to be used indoors since GPS signal reception is limited. The alternative techniques that can be used for indoor positioning include, to name a few, Wireless Local Area Network (WLAN), bluetooth and Ultra Wideband (UWB) etc.. However, all of these have limitations. The main objectives of this paper are to investigate and develop algorithms for a low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) and its integration with other positioning systems. An RFID system consists of three components, namely a control unit, an interrogator and a transponder that transmits data and communicates with the reader. An RFID tag can be incorporated into a product, animal or person for the purpose of identification and tracking using radio waves. In general, for RFID positioning in urban and indoor environments three different methods can be used, including cellular positioning, trilateration and location fingerprinting. In addition, the integration of RFID with other technologies is also discussed in this paper. A typical combination is to integrate RFID with relative positioning technologies such as MEMS INS to bridge the gaps between RFID tags for continuous positioning applications. Experiments are shown to demonstrate the improvements of integrating multiple sensors with RFID which can be employed successfully for personal positioning.

  8. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  9. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    Directory of Open Access Journals (Sweden)

    Paul T. J. Scheepers

    2017-05-01

    Full Text Available For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ. The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC, acrolein, formaldehyde, nitrogen dioxide (NO2, respirable particulate matter (PM-4.0 and PM-2.5 and their respective benz(apyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3 and formaldehyde (2.5–6.4 μg/m3 were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3 and was fivefold higher in laboratories (316 μg/m3 compared to offices (57.0 μg/m3. PM-4.0 and benzo(apyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01. No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities.

  10. Seamless Indoor/Outdoor Positioning Handover for Location-Based Services in Streamspin

    DEFF Research Database (Denmark)

    Hansen, Rene; Wind, Rico; Jensen, Christian Søndergaard

    2009-01-01

    the delivery of truly ubiquitous location-based services by integrating GPS and Wi-Fi location fingerprinting. The paper puts focus on key aspects of the seamless handover between outdoor to indoor positioning. Several different handover solutions are presented,and their applicability is evaluated with respect...

  11. Hourly indoor radon measurements in a research house.

    Science.gov (United States)

    Sesana, Lucia; Begnini, Stefania

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Prealps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of (222)Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence.

  12. Hourly indoor radon measurements in a research house

    International Nuclear Information System (INIS)

    Sesana, L.; Begnini, S.

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Pre-alps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of 222 Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence. (authors)

  13. INDOOR-OUTDOOR AEROSOL CONCENTRATIONS IN TWO PORTUGUESE CITIES AND THE GLOBAL WARMING SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Antonio F. Miguel; A. Heitor Reis [Department of Physics, University of Evora (Portugal); Marta Melgao [Geophysics Centre of Evora (Portugal)

    2008-09-30

    Aerosols play a major role both in climate change and in air quality. They affect climate through interfering with radiative transfer and hence the atmospheric temperature, and also the air quality. Many epidemiological studies have confirmed that a relation exists between elevated aerosol particle concentration and adverse human health effects. Aerosol particle number and size distributions were measured both indoors and outdoors in the urban areas of Evora and Lisbon. We investigated the indoor-to-outdoor relationship of aerosol particles and the aerosol size distributions. The impact of the occurrence of a residential fire in the aerosol size distribution is also analyzed. Finally, we speculate of how global increase in temperature can affect concentration of aerosols in the atmosphere, via increased boundary layer convection.

  14. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    Science.gov (United States)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  15. Behavioural repertoire of free-range laying hens indoors and outdoors, and in relation to distance from the shed.

    Science.gov (United States)

    Thuy Diep, A; Larsen, H; Rault, J-L

    2018-04-01

    Access to an outdoor area is believed to allow free-range hens to express a greater behavioural repertoire. However, very little research has been done in this area. We hypothesised that the type and frequency of behaviours would differ between areas that vary in their characteristics and distance from the shed. This preliminary study investigated the behaviour of free-range laying hens in indoor and outdoor areas on one commercial free-range farm, through video recordings and scan sampling of focal hens, with the aim of determining their behavioural repertoire and time budget. While ranging, hens spent most of their time foraging. Indoors, hens preened and rested. Behaviour in the wintergarden showed similarities to both the indoor and outdoor areas, with preening, resting and foraging behaviours. Differences were not in the main behavioural repertoire, but rather in terms of time budget, with access to the range and wintergarden encouraging exploration. There was no difference in the types of behaviours that hens performed in the outdoor range compared with inside the shed, but access to a wintergarden and the outdoor range were favoured by the hens for foraging. © 2018 Australian Veterinary Association.

  16. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    Science.gov (United States)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations

  17. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  18. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  19. Searching for Authentic Context in Designing PISA-like Mathematics Problem: From Indoor to Outdoor Field Experience

    Science.gov (United States)

    Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah

    2018-01-01

    Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.

  20. Implications of chiral signatures of PCBs in soil, outdoor, and indoor air in the West Midlands conurbation, UK

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, A.; Hazrati, S.; Harrad, S. [Birmigham Univ., Birmingham (United Kingdom)

    2005-07-01

    This paper provided additional data related to a study conducted to determine chiral signatures of polychlorinated biphenyl (PCBs) in outdoor air and topsoil from urban, rural and semi-urban locations in the United Kingdom's West Midlands conurbation. The study hypothesized that the ventilation of PCB-contaminated indoor air was a principal source of the racemic PCBs observed in outdoor air. Measurements of chiral signatures of PCBs in indoor air were measured. Chiral signatures of PCB 136 and 149 were expressed in terms of enantiomeric excess. Outdoor air and soil samples were collected from 10 sites located on a southwest to northeast transect of the conurbation at intervals of between 3 and 17 km. Topsoil and air samples were collected on a monthly basis to examine seasonal variability. Passive air samplers were used to provide a time-integrated atmospheric signal over each sampling period. Twenty indoor air samples were collected using PUF disk samplers. All samples were then extracted, purified, and subjected to enantioselective gas chromatography and mass spectrometry (GC-MS) analysis. Results suggested that chiral signatures in outdoor air for all target PCBs were racemic at all locations, and confirmed earlier hypotheses that the ventilation of PCB-contaminated indoor air is the principal source of PCB contamination in the urban atmosphere. It was concluded that actions to reduce PCB stocks remaining in use in indoor environments will result in a significant reduction in atmospheric concentrations. 7 refs., 2 tabs., 1 fig.

  1. Toxic effects of indoor and outdoor airborne particles relevant to carcinogenesis

    NARCIS (Netherlands)

    Heussen, G.A.H.

    1993-01-01

    The mutagenicity of indoor and outdoor airborne particulate matter (APM) has been demonstrated by previous in vitro studies (Alink et al., 1983; Van Houdt et al., 1984, 1986, 1987). The aim of the present thesis was to contribute to a better understanding of the mode of action of AIM in the

  2. Outdoor and indoor air quality and cognitive ability in young children.

    Science.gov (United States)

    Midouhas, Emily; Kokosi, Theodora; Flouri, Eirini

    2018-02-01

    This study examined outdoor and indoor air quality at ages 9 months and 3 years and their association with cognitive ability at age 3 in England and Wales. Data from 8198 Millennium Cohort Study children were analysed using multilevel regression. Outdoor air quality was assessed with mean annual estimates of nitrogen dioxide (NO 2 ) levels within a standard small area (ward). Indoor air quality was measured with parent-reports of damp or condensation in the home and exposure to secondhand smoke in the home. Cognitive ability was assessed with the British Ability Scales Naming Vocabulary subscale and the Bracken School Readiness Assessment. In adjusted models, consistent exposure to high levels of NO 2 at age 9 months and age 3 years was associated with lower verbal ability at age 3 years. Damp/condensation and secondhand smoke in the home at either age or at both ages were correlated with lower school readiness at age 3 years. Exposures to damp/condensation at age 3 years or at both ages and secondhand smoke at either age or at both ages were associated with lower verbal ability at age 3 years. Young children's exposures to indoor damp or condensation and secondhand smoke are likely to be detrimental for their cognitive outcomes. However, there do not appear to be any short-term effects of NO 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    Science.gov (United States)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  4. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China.

    Science.gov (United States)

    Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu

    2018-06-01

    China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Robustness of Visual Place Cells in Dynamic Indoor and Outdoor Environment

    Directory of Open Access Journals (Sweden)

    C. Giovannangeli

    2006-06-01

    Full Text Available In this paper, a model of visual place cells (PCs based on precise neurobiological data is presented. The robustness of the model in real indoor and outdoor environments is tested. Results show that the interplay between neurobiological modelling and robotic experiments can promote the understanding of the neural structures and the achievement of robust robot navigation algorithms. Short Term Memory (STM, soft competition and sparse coding are important for both landmark identification and computation of PC activities. The extension of the paradigm to outdoor environments has confirmed the robustness of the vision-based model and pointed to improvements in order to further foster its performance.

  6. A GPS Sensing Strategy for Accurate and Energy-Efficient Outdoor-to-Indoor Handover in Seamless Localization Systems

    Directory of Open Access Journals (Sweden)

    Yungeun Kim

    2012-01-01

    Full Text Available Indoor localization systems typically locate users on their own local coordinates, while outdoor localization systems use global coordinates. To achieve seamless localization from outdoors to indoors, a handover technique that accurately provides a starting position to the indoor localization system is needed. However, existing schemes assume that a starting position is known a priori or uses a naïve approach to consider the last location obtained from GPS as the handover point. In this paper, we propose an accurate handover scheme that monitors the signal-to-noise ratio (SNR of the effective GPS satellites that are selected according to their altitude. We also propose an energy-efficient handover mechanism that reduces the GPS sampling interval gradually. Accuracy and energy efficiency are experimentally validated with the GPS logs obtained in real life.

  7. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration

    NARCIS (Netherlands)

    Owens, C.; Ferguson, G.M.; Hermenau, M.; Voroshazi, E.; Galagan, Y.; Zimmermann, B.; Rosch, R.; Angamo, D.; Teran, G.; Uhrich, C.; Andriessen, R.; Hoppe, H.; Wurfel, U.; Lira-Cantu, M.; Krebs, F.; Tanenbaum, D.

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency, fill factor, and IV curves were collected at regular

  8. Assessment of indoor and outdoor PM species at schools and residences in a high-altitude Ecuadorian urban center.

    Science.gov (United States)

    Raysoni, Amit U; Armijos, Rodrigo X; Weigel, M Margaret; Montoya, Teresa; Eschanique, Patricia; Racines, Marcia; Li, Wen-Whai

    2016-07-01

    An air monitoring campaign to assess children's environmental exposures in schools and residences, both indoors and outdoors, was conducted in 2010 in three low-income neighborhoods in Z1 (north), Z2 (central), and Z3 (southeast) zones of Quito, Ecuador - a major urban center of 2.2 million inhabitants situated 2850 m above sea level in a narrow mountainous basin. Z1 zone, located in northern Quito, historically experienced emissions from quarries and moderate traffic. Z2 zone was influenced by heavy traffic in contrast to Z3 zone which experienced low traffic densities. Weekly averages of PM samples were collected at schools (one in each zone) and residences (Z1 = 47, Z2 = 45, and Z3 = 41) every month, over a twelve-month period at the three zones. Indoor PM2.5 concentrations ranged from 10.6 ± 4.9 μg/m(3) (Z1 school) to 29.0 ± 30.5 μg/m(3) (Z1 residences) and outdoor PM2.5 concentrations varied from 10.9 ± 3.2 μg/m(3) (Z1 school) to 14.3 ± 10.1 μg/m(3) (Z2 residences), across the three zones. The lowest values for PM10-2.5 for indoor and outdoor microenvironments were recorded at Z2 school, 5.7 ± 2.8 μg/m(3) and 7.9 ± 2.2 μg/m(3), respectively. Outdoor school PM concentrations exhibited stronger associations with corresponding indoor values making them robust proxies for indoor exposures in naturally ventilated Quito public schools. Correlation analysis between the school and residential PM size fractions and the various pollutant and meteorological parameters from central ambient monitoring (CAM) sites suggested varying degrees of temporal relationship. Strong positive correlation was observed for outdoor PM2.5 at Z2 school and its corresponding CAM site (r = 0.77) suggesting common traffic related emissions. Spatial heterogeneity in PM2.5 concentrations between CAM network and sampled sites was assessed using Coefficient of Divergence (COD) analysis. COD values were lower when CAM sites were paired with outdoor

  9. Microbial Air Contamination in Indoor and Outdoor Environment of Pig Farms

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2014-05-01

    Full Text Available Ensuring a good air quality in pig farms is important for the health of animals and human workers. The aim of this study was the assessment of the microbiological quality of the air inside the pig houses and outside of these. The study was accomplished in two pig-fattening farms in Cluj County. The microbiological air quality was assessed in the cold and warm season, by determination of the total counts of mesophilic bacteria, staphylococci, streptococci, gram-negative bacteria and fungi. The bacterial and fungal counts varied in the air of the investigated farms. In relation to the season the mean counts of bacteria and fungi were significantly higher (P 0.05 were found between the values of the parameters determined from the indoor air and those obtained outside, from a distance of 5 m from the pig houses. The numbers of the bacteria and fungi in the outdoor air lowered as the distance from the farms increased, the differences being significant at 25 and 50 m (P < 0.05. The results of the study show a high bacterial contamination of the indoor and outdoor air of the pig farms.

  10. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea

    International Nuclear Information System (INIS)

    Bae, Hyunjoo; Chung, Moonho; Yang, Wonho

    2004-01-01

    It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO 2 ) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m 3 , respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO 2 , indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources

  11. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air

    Directory of Open Access Journals (Sweden)

    Chunrong Jia

    2010-07-01

    Full Text Available Both the recent classification of naphthalene as a possible human carcinogen and its ubiquitous presence motivate this critical review of naphthalene’s sources and exposures. We evaluate the environmental literature on naphthalene published since 1990, drawing on nearly 150 studies that report emissions and concentrations in indoor, outdoor and personal air. While naphthalene is both a volatile organic compound and a polycyclic aromatic hydrocarbon, concentrations and exposures are poorly characterized relative to many other pollutants. Most airborne emissions result from combustion, and key sources include industry, open burning, tailpipe emissions, and cigarettes. The second largest source is off-gassing, specifically from naphthalene’s use as a deodorizer, repellent and fumigant. In the U.S., naphthalene’s use as a moth repellant has been reduced in favor of para-dichlorobenzene, but extensive use continues in mothballs, which appears responsible for some of the highest indoor exposures, along with off-label uses. Among the studies judged to be representative, average concentrations ranged from 0.18 to 1.7 μg m-3 in non-smoker’s homes, and from 0.02 to 0.31 μg m-3 outdoors in urban areas. Personal exposures have been reported in only three European studies. Indoor sources are the major contributor to (non-occupational exposure. While its central tendencies fall well below guideline levels relevant to acute health impacts, several studies have reported maximum concentrations exceeding 100 μg m-3, far above guideline levels. Using current but draft estimates of cancer risks, naphthalene is a major environmental risk driver, with typical individual risk levels in the 10-4 range, which is high and notable given that millions of individuals are exposed. Several factors influence indoor and outdoor concentrations, but the literature is inconsistent on their effects. Further investigation is needed to better characterize naphthalene

  12. Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building – A case study

    International Nuclear Information System (INIS)

    Xie, Dong; Liao, Maili; Kearfott, Kimberlee J.

    2015-01-01

    A series of experiments was conducted to measure indoor radon concentrations variations and observe any correlations with indoor and outdoor atmospheric parameters for over a period of one year. Indoor environmental parameters and radon concentrations were measured on an hourly basis in a two-story building both in a laboratory on the well-ventilated ground floor and in the basement below it which had negligible ventilation. The monthly average indoor radon concentration value of 29 ± 21 Bq m"−"3 in the laboratory was below the ICRP recommended limit of 200–300 Bq m"−"3. The monthly normalization factor for that location ranged from 0.5 to 2.0, while the seasonal normalization factor ranged from 0.78 to 2.0. In the unventilated basement, however, the average monthly indoor radon concentration was 1083 ± 6 Bq m"−"3 with little seasonal variation. The basement is only used for storage and thus the elevated radon concentration does not pose a serious health risk. The results indicated that indoor radon levels are higher in the autumn–winter season than in the spring–summer season. Analysis further showed that indoor radon concentrations negatively correlated with indoor humidity (correlation coefficient R = −0.14, p < 0.01), outdoor temperature (correlation coefficient R = −0.3, p < 0.01), outdoor dew point temperature (correlation coefficient R = −0.17, p < 0.01) and outdoor wind speeds (correlation coefficient R = −0.25, p < 0.05). Radon concentrations correlated positively with outdoor barometric pressure (correlation coefficient R = 0.35, p < 0.01), indoor–outdoor temperature difference (correlation coefficient R = 0.32, p < 0.05) and indoor–outdoor barometric pressure difference (correlation coefficient R = 0.67, p < 0.01). Indoor temperature, indoor barometric pressure and outdoor wind direction showed no clear correlations with indoor radon concentration. - Highlights: • Environmental variables and

  13. Correspondence between Children's Indoor and Outdoor Play in Japanese Preschool Daily Life

    Science.gov (United States)

    Hirose, Toshiya; Koda, Naoko; Minami, Tetsuhiro

    2012-01-01

    This study examined the correspondence between children's indoor and outdoor play in a preschool environment to investigate whether the children maintained a tendency to engage in a particular type of play irrespective of the environment, or whether they changed the type of play according to the environment. Play behaviours of 18 three-year-old…

  14. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China.

    Science.gov (United States)

    Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin; Wang, Runhua; Su, Guijin; Liu, Wenbin; Liu, Guorui; Zheng, Minghui

    2017-06-01

    Persistent organic pollutants (POPs) were listed in the Stockholm Convention, because of their adverse health effects, persistence, bioaccumulation and ubiquitous presence in the environment. Short chain chlorinated paraffins (SCCPs), chlorinated derivatives of n-alkanes, have been listed as candidate POPs under Stockholm Convention. Inhalation uptake was an important exposure pathway for non-occupational adult human and the pollution of particle matter has caused great concern. There are some studies focused on POPs such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans and polybrominated diphenyl ethers in different size particles. However, there were no studies that discussed CP concentrations in particulate matter (PM) with different sizes. In this study, a total of 30 PM samples were collected both outdoors and indoors at a sampling site in Beijing. These samples were used to investigate the concentrations and distributions of SCCPs and medium chain chlorinated paraffins (MCCPs) in PM fractions of different sizes, and to evaluate inhalation exposure risks. The results showed that the average SCCPs and MCCPs in the outdoor PM 10 were 23.9 and 3.6 ng m -3 , while the mean values in indoor were 61.1 and 6.9 ng m -3 , respectively. The levels of SCCPs and MCCPs in indoor and outdoor were relatively high. SCCP and MCCP concentrations in the indoor PM 10 /PM 2.5 /PM 1.0 samples were higher than the corresponding values in the outdoor, because of the using of some products containing CPs in the indoors, like paints and coatings, leather and rubber products. In both outdoor and indoor air, CPs are mainly associated with particles ≤2.5 μm in diameter. The main homolog groups for both SCCPs and MCCPs were C 10-11 Cl 7-8 . It is assumed that SCCPs in the outdoor and indoor PM samples may mainly derive from the production and use of CP-42 and CP-52. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency, fill factor, and IV curves were collected at regular inter...

  16. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration

    NARCIS (Netherlands)

    Owens, C.; Ferguson, G.M.; Hermenau, M.; Voroshazi, E.; Galagan, Y.; Zimmermann, B.; Rösch, R.; Angmo, D.; Teran-Escobar, G.; Uhrich, C.; Andriessen, R.; Hoppe, H.; Würfel, U.; Lira-Cantu, M.; Krebs, F.C.; Tanenbaum, D.M.

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at

  17. Novel method for estimation of the indoor-to-outdoor airborne radioactivity ratio following the Fukushima Daiichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yanliang, E-mail: hytyl@163.com [College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang, Hunan Province (China); Ishikawa, Tetsuo [Fukushima Medical University, 1 Hikariga-oka, Fukushima (Japan); Janik, Miroslaw [Regulatory Science Research Program, National Institute of Radiological Sciences, Chiba (Japan); Tokonami, Shinji [Department of Radiation Physics, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori (Japan); Hosoda, Masahiro [Hirosaki University Graduate School of Health Science, Hirosaki, Aomori (Japan); Sorimachi, Atsuyuki [Fukushima Medical University, 1 Hikariga-oka, Fukushima (Japan); Kearfott, Kimberlee [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2015-12-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan resulted in significant releases of fission products. While substantial data exist concerning outdoor air radioactivity following the accident, the resulting indoor radioactivity remains pure speculation without a proper method for estimating the ratio of the indoor to outdoor airborne radioactivity, termed the airborne sheltering factor (ASF). Lacking a meaningful value of the ASF, it is difficult to assess the inhalation doses to residents and evacuees even when outdoor radionuclide concentrations are available. A simple model was developed and the key parameters needed to estimate the ASF were obtained through data fitting of selected indoor and outdoor airborne radioactivity measurement data obtained following the accident at a single location. Using the new model with values of the air exchange rate, interior air volume, and the inner surface area of the dwellings, the ASF can be estimated for a variety of dwelling types. Assessment of the inhalation dose to individuals readily follows from the value of the ASF, the person's indoor occupancy factor, and the measured outdoor radioactivity concentration. - Highlights: • Actual ASF of the dwells is very important to estimate the inhalation dose. • A simple model is developed to describe ASF. • The key parameter of ASF is obtained from the measurement of NIRS. • The ASF of any dwellings can be obtained by our model and relatively parameters.

  18. Microenvironmental air and soil monitoring of contaminants: An evaluation of indoor and outdoor levels in Chihuahua City

    Science.gov (United States)

    Delgado-Rios, Marcos

    Like most of the cities around the world Chihuahua City suffers atmospheric and soil pollution. This is a problem that requires immediate attention from both public authorities and the scientific community. Although it is known that high levels of heavy metals are present in the airborne particulate matter, soil and dust in many urban regions, the information about personal exposure to these pollutants in Chihuahua City is nonexistent. This study focuses on the analysis and characterization of lead and arsenic in the airborne and soil particulate matter present in the interiors of households and their surrounding outdoor environments in the southern part of Chihuahua City. The sampling area chosen for this study was located in the southern part of Chihuahua City. An atmospheric sampling point selected by the Centro de Investigacion en Materiales Avanzados (CIMAV) was selected as a geographical center, with a 2 km radius forming the sampling area. The households selected for analyses were located on Lombardo Toledano Street, a high-traffic street. The main objectives of this study were to establish the maximum exposure level in outdoor and indoor environments for particulate matter less than 10 mum (PM 10), Pb, and As, to determine the background level of Chihuahua City for these same elements, to determine the isotopic ratios of Pb206 and Pb207 in the indoor and outdoor atmospheric samples, and to verify if the source of the pollution is from anthropogenic and/or natural sources. Additionally, a comparison of the analytical data from X-ray fluorescence (XRF) versus the analytical data from inductively coupled plasma with optical emission spectroscopy (ICP-OES) was conducted. The comparison of these techniques was based on sample preparation, speed of analysis, and accuracy of results. In the case of sample preparation, two extraction techniques were performed for a comparison of the extraction/leaching of Pb and As from the samples. These microwave

  19. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan.

    Science.gov (United States)

    Khan, Muhammad Usman; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2016-09-01

    This is the first robust study designed to probe selected flame retardants (FRs) in the indoor and outdoor dust of industrial, rural and background zones of Pakistan with special emphasis upon their occurrence, distribution and associated health risk. For this purpose, we analyzed FRs such as polybrominated diphenylethers (PBDEs), dechlorane plus (DP), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) in the total of 82 dust samples (indoor and outdoor) collected three from each zone: industrial, rural and background. We found higher concentrations of FRs (PBDEs, DP, NBFRs and OPFRs) in industrial zones as compared to the rural and background zones. Our results reveal that the concentrations of studied FRs are relatively higher in the indoor dust samples being compared with the outdoor dust and they are ranked as: ∑OPFRs > ∑NBFRs > ∑PBDEs > ∑DP. A significant correlation in the FRs levels between the indoor and outdoor dust suggest the potential intermixing of these compounds between them. The principal component analysis/multiple linear regression predicts the percent contribution of FRs from different consumer products in the indoor and outdoor dust of industrial, rural and background zones to trace their source origin. The FRs detected in the background zones reveal the dust-bound FRs suspended in the air might be shifted from different warmer zones or consumers products available/used in the same zones. Hazard quotient (HQ) for FRs via indoor and outdoor dust intake at mean and high dust scenarios to the exposed populations (adults and toddlers) are found free of risk (HQ < 1) in the target zones. Furthermore, our nascent results will provide a baseline record of FRs (PBDEs, DP, NBFRs and OPFRs) concentrations in the indoor and outdoor dust of Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children.

    Science.gov (United States)

    Braniš, Martin; Safránek, Jiří; Hytychová, Adéla

    2011-05-01

    It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise. Mass concentrations of size-segregated aerosol were measured simultaneously in an elementary school gym and an adjacent outdoor site in the central part of Prague by two pairs of collocated aerosol monitors-a fast responding photometer DusTrak and a five stage cascade impactor. To encompass seasonal and annual differences, 89 days of measurements were performed during ten campaigns between 2005 and 2009. The average (all campaigns) outdoor concentration of PM(2.5) (28.3 μg m(-3)) measured by the cascade impactors was higher than the indoor value (22.3 μg m(-3)) and the corresponding average from the nearest fixed site monitor (23.6 μg m(-3)). Indoor and outdoor PM(2.5) concentrations exceeded the WHO recommended 24-h limit in 42% and 49% of the days measured, respectively. The correlation coefficient (r) between corresponding outdoor and indoor aerosol sizes increased with decreasing aerodynamic diameter of the collected particles (r = 0.32-0.87), suggesting a higher infiltration rate of fine and quasi-ultrafine particles. Principal component analysis revealed five factors explaining more than 82% of the data variability. The first two factors reflected a close association between outdoor and indoor fine and quasi-ultrafine particles confirming the hypothesis of high infiltration rate of particles from outdoors. The third factor indicated that human

  1. Magnetic field action on outdoor and indoor cultures of Spirulina: Evaluation of growth, medium consumption and protein profile.

    Science.gov (United States)

    Deamici, Kricelle Mosquera; Santos, Lucielen Oliveira; Costa, Jorge Alberto Vieira

    2018-02-01

    This study aimed at evaluating whether a magnetic field (MF) affects the growth of Spirulina sp. when applied to it at different exposure times in indoor and outdoor culture systems. The effects of MF on chlorophyll content, medium consumption and protein profile were also investigated. In raceway tanks, a 25 mT MF was applied for 24 h or for 1 h d -1 . MF for 24 h to outdoor assays increased biomass concentration and chlorophyll-a content besides altering the protein profile. Outdoor Spirulina growth was higher (∼3.65 g L -1 ) than the growth found in indoor assays (∼1.80 g L -1 ), while nitrogen and phosphorus consumption was not enhanced by the application of MF. This is the first study that investigated the influence of MF on outdoor microalga assays, and the results showed that MF affected the metabolism of Spirulina cultured in raceways, especially when it was grown outdoors in uncontrolled environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparative fly species composition on indoor and outdoor forensic cases in Malaysia.

    Science.gov (United States)

    Syamsa, Rizal Abdullah; Omar, Baharudin; Ahmad, Firdaus Mohd Salleh; Hidayatulfathi, Othman; Shahrom, Abd Wahid

    2017-01-01

    Forensic entomology refers to the science of collection and analysis of insect evidence in order to determine the minimum time period since death. This study aimed to investigate the occurrence of forensically important flies on 34 human remains referred to Universiti Kebangsaan Malaysia Medical Centre over a period of three years. Entomological specimens were collected at the death scenes and/or during autopsies. Live specimens were reared into adults while preserved specimens were processed for species identification. Five families, seven genera and nine species of flies were identified from human remains. The results of the study showed Chrysomya megacephala (Calliphoridae) maggots occurred on corpses with the highest frequency (70.6%), followed by Ch. rufifacies (Calliphoridae) (44.1%), sarcophagid fly (Sarcophagidae) (38.2%), Synthesiomya nudiseta (Muscidae) (20.6%), Megaselia scalaris (Phoridae) (14.7%), Lucilia cuprina (Calliphoridae) (5.9%), Ch. nigripes (Calliphoridae) (5.9%), Eristalis spp. (Syrphidae) (5.9%) and Hydrotaea spinigera (Muscidae) (2.9%). The greatest fly diversity occurred on remains recovered indoors (eight species) compared to outdoors (three species). Whilst, single and double infestations were common for both indoor and outdoor cases, multiple infestation of up to six species was observed in one of the indoor cases. Although large numbers of fly species were found on human remains, the predominant species were still those of Chrysomya, while S. nudiseta was found only on human remains recovered from indoors. The present study provides additional knowledge in the context of Malaysian forensic entomology and the distribution of forensically important flies which is of relevance to forensic science. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. An Empirical Outdoor-to-Indoor Path Loss Model from below 6 GHz to cm-Wave Frequency Bands

    DEFF Research Database (Denmark)

    Rodriguez Larrad, Ignacio; Nguyen, Huan Cong; Kovács, István Z.

    2017-01-01

    This letter presents an empirical multi-frequency outdoor-to-indoor path loss model. The model is based on measurements performed on the exact same set of scenarios for different frequency bands ranging from traditional cellular allocations below 6 GHz (0.8, 2, 3.5 and 5.2 GHz), up to cm-wave fre......This letter presents an empirical multi-frequency outdoor-to-indoor path loss model. The model is based on measurements performed on the exact same set of scenarios for different frequency bands ranging from traditional cellular allocations below 6 GHz (0.8, 2, 3.5 and 5.2 GHz), up to cm...

  4. Heat stress in urban areas. Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Franck, Ulrich; Roeder, Stefan; Schlink, Uwe [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Core Facility Studies; Krueger, Michael [Leipzig Univ. (Germany). Inst. of Geography; Schwarz, Nina [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Computational Landscape Ecology; Grossmann, Katrin [Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany). Dept. of Urban and Environmental Sociology

    2013-04-15

    Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night) are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for both outdoor and

  5. Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig

    Directory of Open Access Journals (Sweden)

    Ulrich Franck

    2013-04-01

    Full Text Available Climate projections for Leipzig suggest elevated minimum and maximum temperatures as well as more frequent days with high temperatures. Hence, climate change is threatening human well-being and health. People spend the majority of their time indoors. Therefore, indoor temperatures (especially during the night are of special importance with respect to well-being and health. Indoor air temperature depends on outdoor air temperatures, but is for example modified by type of urban structure, housing area, and may be also influenced by differences in the behavior of the inhabitants. Especially in cities, outdoor air temperatures depend on urban structure e.g. housing density, building arrangement, unpaved areas, types of urban structures, urban green, and other factors. Hence, the questions arise how types of urban structures are related to inner-urban temperature differences and how outdoor air temperatures influence indoor temperatures in dependence on urban housing conditions. This work is a part of a pilot study conducted during the summer 2010 which gathered data from remote sensing, mobile measurements, stationary measurements of air temperatures and relative humidity in areas with different housing structures, and of indoor as well as outdoor temperatures in occupied apartments. Household-survey data reported the subjective perception of heat stress. The study resulted in rather complex relationships between type of housing areas, indoor and outdoor temperatures, morning and evening temperatures, indoor and outdoor temperatures as well as subjective heat perception. Green spaces and types of residential areas are related to air temperatures. More green resulted in lower temperatures. Temperatures have a tendency to increase with increasing story number and are significantly higher in the top floor. An indoor heat island effect corresponding to the outdoor effect could be shown for the homes: Distance to city center is a predicting variable for

  6. Simultaneous sampling of indoor and outdoor airborne radioactivity after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Arae, Hideki; Sahoo, Sarata Kumar; Janik, Miroslaw; Hosoda, Masahiro; Tokonami, Shinji

    2014-02-18

    Several studies have estimated inhalation doses for the public because of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Most of them were based on measurement of radioactivity in outdoor air and included the assumption that people stayed outdoors all day. Although this assumption gives a conservative estimate, it is not realistic. The "air decontamination factor" (ratio of indoor to outdoor air radionuclide concentrations) was estimated from simultaneous sampling of radioactivity in both inside and outside air of one building. The building was a workplace and located at the National Institute of Radiological Sciences (NIRS) in Chiba Prefecture, Japan. Aerosol-associated radioactive materials in air were collected onto filters, and the filters were analyzed by γ spectrometry at NIRS. The filter sampling was started on March 15, 2011 and was continued for more than 1 year. Several radionuclides, such as (131)I, (134)Cs, and (137)Cs were found by measuring the filters with a germanium detector. The air decontamination factor was around 0.64 for particulate (131)I and 0.58 for (137)Cs. These values could give implications for the ratio of indoor to outdoor radionuclide concentrations after the FDNPP accident for a similar type of building.

  7. Indoor multipath mitigation

    DEFF Research Database (Denmark)

    Dragünas, Kostas; Borre, Kai

    2010-01-01

    There are many applications that require continuous positioning in combined outdoor urban and indoor environments. GNSS has been used for a long time in outdoor environments, while indoor positioning is still a challenging task. One of the major degradations that GNSS receivers experience indoors...

  8. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  9. Preliminary evaluation, using passive tubes, of carbon monoxide concentrations in outdoor and indoor air at street level shops in Genoa (Italy)

    Science.gov (United States)

    Valerio, Federico; Pala, Mauro; Lazzarotto, Anna; Balducci, Daniele

    Preliminary information on carbon monoxide (CO) concentrations (exposure time: 8 h) both inside and outside 38 randomly selected shops situated on four heavy traffic streets of Genoa was obtained using passive diffusion tubes. Reproducibility and accuracy of this analytical method were tested in real outdoor urban conditions and found within 25%; the detection limit was 1 mgm -3 of CO. The highest mean CO concentrations (15.8 ± 2.2 mgm -3) were found inside shops on Balbi street, a narrow "canyon street". Only in two small shops and two bars (both with many smokers) and in a delicatessen, were indoor CO concentrations significantly higher than outdoor values. The mean outdoor CO concentrations (mgm -3) along the four streets considered (XX Settembre, Balbi, Rolando, Fillak) were 7.4 ± 2.2; 14.5 ± 8.7; 5.8 ± 0.4; 10.5 ± 3.7, respectively. No statistical difference was found, comparing the mean indoor CO concentration with the mean CO outdoor value, measured simultaneously along the sidewalks of each street. CO concentrations in 10 shops without smokers and the nearest outdoor measurements were linearly correlated ( r = 0.99; p statistically significant difference was found comparing indoor CO pollution in shops with smokers (CO: 8.0 ± 5.4) to those without smokers (CO: 7.1 ± 4.6). Forced ventilation, with air intake far from traffic, proved effective in some specific situations in reducing indoor CO concentrations.

  10. The Los Angeles TEAM Study: personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds.

    Science.gov (United States)

    Wallace, L; Nelson, W; Ziegenfus, R; Pellizzari, E; Michael, L; Whitmore, R; Zelon, H; Hartwell, T; Perritt, R; Westerdahl, D

    1991-04-01

    The U.S. Environmental Protection Agency and the California Air Resources Board studied the exposures of 51 residents of Los Angeles, California, to 25 volatile organic chemicals (VOCs) in air and drinking water in 1987. A major goal of the study was to measure personal, indoor, and outdoor air concentrations, and breath concentrations of VOCs in persons living in households that had previously been measured in 1984. Other goals were to confirm the marked day-night and seasonal differences observed in 1984; to determine room-to-room variability within homes; to determine source emission rates by measuring air exchange rates in each home; and to extend the coverage of chemicals by employing additional sampling and analysis methods. A total of 51 homes were visited in February of 1987, and 43 of these were revisited in July of 1987. The results confirmed previous TEAM Study findings of higher personal and indoor air concentrations than outdoor concentrations of all prevalent chemicals (except carbon tetrachloride); higher personal, indoor, and outdoor air concentrations in winter than in summer; and (in winter only) higher outdoor concentrations at night than in the daytime. New findings included the following: (1) room-to-room variability of 12-hour average concentrations was very small, indicating that a single monitor may be adequate for estimating indoor concentrations over this time span; (2) "whole-house" source emission rates were relatively constant during both seasons, with higher rates for odorous chemicals such as p-dichlorobenzene and limonene (often used in room air fresheners) than for other classes of chemicals; (3) breath concentrations measured during morning and evening were similar for most participants, suggesting the suitability of breath measurements for estimating exposure in the home; (4) limited data obtained on two additional chemicals-toluene and methylene chloride-indicated that both were prevalent at fairly high concentrations and that

  11. A survey of perfluoroalkyl sulfonamides in indoor and outdoor air using passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Shoeib, M.; Harner, T. [Meteorological Service of Canada, Environment Canada (Canada); Wilford, B.; Jones, K. [Lancaster Univ. (United Kingdom). Environmental Science; Zhu, J. [Chemistry Research Division, Health Canada, Tunney' s Pasture, Ottawa (Canada)

    2004-09-15

    Perfluorooctane sulfonate (PFOS) has recently emerged as a priority environmental pollutant due to its widespread detection in biological samples from remote regions including the Arctic and the Mid-North Pacific Ocean. Because PFOS is fairly involatile, it is hypothesized that its occurrence in remote regions is the result of atmospheric transport of more volatile precursor compounds such as the perfluoroalkyl sulfonamides (PFASs). PFASs are used in variety of consumer products for water and oil resistance including surface treatments for fabric, upholstery, carpet, paper and leather. In a recent pilot study employing high volume air samples, indoor air concentrations of PFASs were approximately 100 times greater than outdoor levels. This is of significance because people typically spend about 90% of their time indoors 5 and this exposure may serve as an important uptake pathway. Indoor air also serves as a source of PFASs to the outside where PFASs are ultimately transported and distributed throughout the environment. The current study is intended to be a more comprehensive survey of indoor and outdoor air allowing more confident conclusions to be made. Passive air samplers comprised of polyurethane foam (PUF) disks were used. These are quiet, non-intrusive samplers that operate without the aid of a pump or electricity. Air movement delivers chemical to the sampler which has a high retention capacity for persistent organic pollutants (POPs). PUF disks samplers have been previously used successfully to monitor different classes of hydrophobic persistent organic pollutants POPs.

  12. An Analysis of Engagement in a Combination Indoor/Outdoor Augmented Reality Educational Game

    Science.gov (United States)

    Folkestad, James; O'Shea, Patrick

    2011-01-01

    This paper describes the results of a qualitative analysis of video captured during a dual indoor/outdoor Augmented Reality experience. Augmented Reality is the layering of virtual information on top of the physical world. This Augmented Reality experience asked students to interact with the San Diego Museum of Art and the Botanical Gardens in San…

  13. Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors on a concentrate-based ration

    Directory of Open Access Journals (Sweden)

    Reilly Petrina

    2010-03-01

    Full Text Available Abstract Background Despite an increasing preference of consumers for beef produced from more extensive pasture-based production systems and potential human health benefits from the consumption of such beef, data regarding the health status of animals raised on pasture are limited. The objective of this study was to characterise specific aspects of the bovine peripheral and the gastrointestinal muscosal immune systems of cattle raised on an outdoor pasture system in comparison to animals raised on a conventional intensive indoor concentrate-based system. Results A number of in vitro functional tests of immune cells suggested subtle differences between the animals on the outdoor versus indoor production systems. There was a decrease in the number of neutrophils and monocytes engaged in phagocytosis in outdoor cattle (P P P P P P P Conclusion Despite distinctly contrasting production systems, only subtle differences were identified in the peripheral immune parameters measured between cattle raised at pasture in comparison to animals raised on a conventional intensive indoor concentrate-based production system.

  14. Outdoor and indoor dose assessment using environmental thermoluminescence dosimeters (TLDs) in Costa Rica

    International Nuclear Information System (INIS)

    Mora, Patricia

    2003-01-01

    Costa Rica lies at the intersection of the Cocos and Caribbean plates in Central America. It has mountain ranges with many active volcanoes along its territory. Its soils are predominantly of volcanic origin. Natural radiation measurements utilising environmental CaF 2 :Dy thermoluminescence dosimeters were used for the first time in Costa Rica by the Dosimetry Section of the Atomic, Nuclear and Molecular Sciences Research Center of the University of Costa Rica. Seven hundred outdoor measurements were obtained in a 3.5-year period at eight different sites throughout the country. One hundred and seventy-four indoor readings were also collected at four sites for a 2-year period. Population-weighted averages give 82 nGy h -1 for outdoors and 130 nGy h -1 for indoors. The values lie on the upper range of worldwide reported values due to reported soil characteristics rich in uranium and potassium. A preliminary population-weighted value of 0.74 mSv/year for the effective dose is calculated for natural terrestrial gamma radiation in Costa Rica

  15. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Directory of Open Access Journals (Sweden)

    Camilla Vornanen-Winqvist

    2018-01-01

    Full Text Available This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC and fine particulate matter (PM2.5 decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  16. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A.; Mikkola, Raimo; Marik, Tamás; Salonen, Heidi

    2018-01-01

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention. PMID:29385772

  17. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems.

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A; Mikkola, Raimo; Marik, Tamás; Kredics, László; Salonen, Heidi; Kurnitski, Jarek

    2018-01-30

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM 2.5 ) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  18. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  19. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  20. Vitamin D-binding protein, vitamin D status and serum bioavailable 25(OH)D of young Asian Indian males working in outdoor and indoor environments.

    Science.gov (United States)

    Goswami, Ravinder; Saha, Soma; Sreenivas, Vishnubhatla; Singh, Namrata; Lakshmy, Ramakrishnan

    2017-03-01

    Urban Asian Indians generally have low serum 25(OH)D. Information on serum bioavailable 25(OH)D and the effect of prolonged sun-exposure in them is not known. We assessed serum 25(OH)D and bioavailable 25(OH)D in males with varying durations of sun-exposure in Delhi during August-September. Serum 25(OH)D, vitamin D-binding protein (DBP), bioavailable 25(OH)D, free 25(OH)D index, iPTH, ionized calcium and sun-index were assessed in outdoor, mixed outdoor-indoor and indoor workers (n = 88, 32 and 74, respectively). The mean sun-index (12.0 ± 6.25, 4.3 ± 2.20 and 0.7 ± 0.62, respectively; P < 0.001) was highest outdoors and lowest indoors. Serum 25(OH)D (29.0 ± 8.61, 19.1 ± 5.73 and 10.9 ± 4.19 ng/ml, respectively; P < 0.001), bioavailable 25(OH)D and free 25(OH)D index were maximum in outdoor workers followed by mixed-exposure and indoor workers. Their mean serum DBP levels (241.2 ± 88.77, 239.3 ± 83.40 and 216.6 ± 63.93 µg/ml, respectively; P = 0.12) were comparable. Mean serum iPTH was significantly lower in outdoor than indoor workers and showed inverse correlations with serum 25(OH)D, bioavailable 25(OH)D and free 25(OH)D index (r = -0.401, -0.269 and -0.236, respectively; P < 0.001 in all). Daily dietary-calorie intake was higher and calcium lower in outdoor than indoor workers. On regression analysis, sun-exposure was the only significant variable, increasing serum 25(OH)D by 2.03 ng/ml per hour of sun-exposure (95 % confidence interval 1.77-2.28; P < 0.001). Outdoor workers with prolonged sun-exposure were vitamin D-sufficient, with higher serum bioavailable 25(OH)D than the indoor workers during summer. Use of serum DBP levels did not affect the interpretation of their vitamin D status.

  1. Relationship of Indoor and Outdoor Air Pollutants in a Naturally Ventilated Historical Building Envelope

    Czech Academy of Sciences Publication Activity Database

    López-Aparicio, S.; Smolík, Jiří; Mašková, Ludmila; Součková, M.; Grøntoft, T.; Ondráčková, Lucie; Stankiewicz, J.

    2011-01-01

    Roč. 46, č. 7 (2011), s. 1460-1468 ISSN 0360-1323 Grant - others:MF NF(CZ) A/CZ0046/2/0001 Institutional research plan: CEZ:AV0Z40720504 Keywords : indoor/outdoor ration * natural ventilation * ammonia Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2011

  2. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  3. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  4. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.

    Science.gov (United States)

    Khan, Muhammad Usman; Besis, Athanasios; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-10-01

    Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m 3 ), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong.

    Science.gov (United States)

    Deng, Wen-Jing; Zheng, Hai-Long; Tsui, Anita K Y; Chen, Xun-Wen

    2016-11-01

    Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM 2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM 2.5 levels (1.3×10 1 to 2.9×10 1 μg/m 3 for indoor; 9.5 to 8.8×10 1 μg/m 3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5×10 1 μg/m 3 ). Indoor PM 2.5 mass concentrations were correlated with outdoor PM 2.5 in four of the kindergartens. The PBDEs (0.10-0.64ng/m 3 in PM 2.5 ; 0.30-2.0×10 2 ng/g in dust) and DP (0.05-0.10ng/m 3 in PM 2.5 ; 1.3-8.7ng/g in dust) were detected in 100% of the PM 2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by >7-fold from 8.8×10 2 ng/m -3 to 6.7×10 3 ng/m -3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7×10 1 μg/m 3 to 9.3×10 1 μg/m 3 indoors and from 1.9×10 1 μg/m 3 to 4.3×10 1 μg/m 3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM 2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E-05 to 2.1E-04 indoors and from 1.9E-05 to 6.2E-05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different

  6. Outdoor smoking behaviour and support for outdoor smoking restrictions before and after France's national smoking ban.

    Science.gov (United States)

    Kennedy, Ryan David; Behm, Ilan; Craig, Lorraine; Thompson, Mary E; Fong, Geoffrey T; Guignard, Romain; Beck, Francois

    2012-02-01

    On January 1, 2008, the French government implemented a national ban on indoor smoking in hospitality venues. Survey results indicate the indoor ban has been successful at dramatically reducing indoor smoking; however, there are reports of an increased number of outdoor hospitality spaces (patios) where smoking can take place. This study sought to understand if the indoor ban simply moved smoking to the outdoors, and to assess levels of support for smoking restrictions in outdoor hospitality settings after the smoke-free law. Telephone interviews were conducted among 1067 adult smokers before and after the 2008 indoor ban as part of the International Tobacco Control (ITC) France Survey. Among other topics, this survey measures how the smoking ban has influenced smoking behaviour relevant to outdoor sections of hospitality venues. In addition, 414 non-smoking adults and 164 respondents who had quit smoking between waves were also asked about support for outdoor smoking restrictions. Reported smoking outdoors at cafés/pubs/bars increased from 33.6% of smokers at Wave 1 to 75.9% at Wave 2. At restaurants, smoking outdoors increased from 28.9% to 59.0%. There was also an increase in reported non-smoking for both visits to cafés/pubs/bars, and restaurants from 13.4% to 24.7%, and 30.4% to 40.8% respectively. The majority of smokers (74.5%), non-smokers (89.4%) and quitters (74.0%) support a partial or complete ban on smoking in outdoor areas of restaurants. The indoor smoking ban moved smoking to outdoor spaces; however, the ban is also associated with increased non-smoking behaviour. The majority of respondents support outdoor smoking restrictions in patio environments.

  7. Number Concentrations and Modal Structure of Indoor/Outdoor Fine Particles in Four European Cities.

    Czech Academy of Sciences Publication Activity Database

    Lazaridis, M.; Eleftheriadis, K.; Ždímal, Vladimír; Schwarz, Jaroslav; Wagner, Zdeněk; Ondráček, Jakub; Drossinos, Y.; Glytsos, T.; Vratolis, S.; Torseth, K.; Moravec, Pavel; Hussein, T.; Smolík, Jiří

    2017-01-01

    Roč. 17, č. 1 (2017), s. 131-146 ISSN 1680-8584 EU Projects: European Commission(XE) 315760 - HEXACOMM Institutional support: RVO:67985858 Keywords : indoor/outdoor aerosol * I/O ratio * modal structure Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.606, year: 2016

  8. Indoor and outdoor SO{sub 2} in a community near oil sand extraction and production facilities in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Ranganathan, H.K.S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2006-07-01

    In order to examine whether the proximity to several oil sand operations in the Athabasca region has affected the air quality in nearby communities, a baseline study measuring indoor and outdoor sulphur dioxide (SO{sub 2}) levels was conducted in Fort McKay, a small native community located in northern Alberta. The study involved deploying a passive sampling device for 96 hours at 30 randomly chosen homes over a 6 week period such that 75 per cent of homes were sampled during weekdays and 25 per cent during weekends. The common living area of each home (kitchen or family room) was sampled indoors. Outdoor passive samplers were attached to a sampling stand under a shelter in the yard. This article presented an introduction to oil sands development in the region and discussed the link between SO{sub 2} emissions and outdoor air pollution. The passive sampling monitors and study methods were described. Last, the article discussed the results of the study and provided a discussion of quality assurance and quality control; indoor and outdoor SO{sub 2} levels; and air exchange measurements. It was concluded that the results of the testing to determine accuracy and precision of the monitors were both within 35 per cent based on a 96 hour average measurement, which are considered very low and consistent with levels observed elsewhere in Alberta. 43 refs., 5 tabs., 4 figs.

  9. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  10. Indoor and outdoor PM10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa

    Directory of Open Access Journals (Sweden)

    Vusumuzi Nkosi

    2017-01-01

    Full Text Available Abstract Background Few studies in South Africa have investigated the exposure of asthmatic learners to indoor and outdoor air pollution at schools. This study compared outdoor PM10 and SO2 exposure levels in exposed (1–2 km from gold mine dumps and unexposed schools (5 km or more from gold mine dumps. It also examined exposure of asthmatic children to indoor respirable dust at exposed and unexposed schools. Methods The study was conducted between 1 and 31 October 2012 in five schools from exposed and five from unexposed communities. Outdoor PM10 and SO2 levels were measured for 8-h at each school. Ten asthmatic learners were randomly selected from each school for 8-h personal respirable dust sampling during school hours. Results The level of outdoor PM10 for exposed was 16.42 vs. 11.47 mg.m−3 for the unexposed communities (p < 0.001. The outdoor SO2 for exposed was 0.02 ppb vs. 0.01 ppb for unexposed communities (p < 0.001. Indoor respirable dust in the classroom differed significantly between exposed (0.17 mg.m−3 vs. unexposed (0.01 mg.m−3 children with asthma at each school (p < 0.001. Conclusion The significant differences between exposed and unexposed schools could reveal a serious potential health hazard for school children, although they were within the South African Air Quality Standards’ set by the Department of Environmental Affairs. The indoor respirable dust levels in exposed schools could have an impact on children with asthma, as they were significantly higher than the unexposed schools, although there are no published standards for environmental exposure for children with asthma.

  11. Enviromental gamma rate in outdoor and indoor of Kermanshah provience in different seasons, (2010-11

    Directory of Open Access Journals (Sweden)

    Khosro Chopani

    2014-08-01

    Full Text Available Background: Background radiation exists naturally in the environment and affects all living organisms. Assessment of these radiations is important because they cause somatic & genetic damages. This survey was carried out to determine the environmental gamma rate was measured in different seasons in Kermanshah towns, and the effective dose for the residents of these regions was calculated. Methods: gamma dose rate was determined by Geiger Muller detector (RADOS CO, RDS-120.To this end, six and seven stations were selected in outdoor and indoor areas, respectively. In other towns‚ however, the measurements were performed at one station in outdoor center of each town. Results: The mean values of indoor and outdoor gamma dose rates in Kermanshah were 99.96 and 118.6 nSv/h, respectively and the mean values of environmental gamma in outdoor areas of Islamabad-e-Gharb‚ Songhor‚ Sahneh‚ Gilan-e-Gharb, Sarpol-e-Zahab‚ Ghasr-e-Shirin‚ Harsin‚ Paveh‚ Ravansar and Javanrood towns were 99.96 ‚ 120.5 ‚ 143 ‚ 115.7 ‚ 71.7 ‚ 76.2 ‚ 82 ‚ 108.5 ‚ 95.7‚ 95.7 and 106 nSv/h, respectively. Also, the highest and the lowest annual effective dose were reported for Songhor (0.88 mSv/y and Gilan-e-Gharb (0.44mSv/y, respectively. Conclusion: The outdoor annual effective doses for the residents of Kermanshah‚ Islamabad-e-Gharb‚ Sahneh‚ Gilan-e-Gharb‚ Sarpol-e-Zahab‚ Ghasr-e-Shirin‚ Harsin‚ Paveh‚ Ravansar and Javanrood were lower than the global value (0.76 mSv/y except for Songhor with 16% higher dose.

  12. Research Article Evaluation of different signal propagation models for a mixed indoor-outdoor scenario using empirical data

    Directory of Open Access Journals (Sweden)

    Oleksandr Artemenko

    2016-06-01

    Full Text Available In this paper, we are choosing a suitable indoor-outdoor propagation model out of the existing models by considering path loss and distance as parameters. A path loss is calculated empirically by placing emitter nodes inside a building. A receiver placed outdoors is represented by a Quadrocopter (QC that receives beacon messages from indoor nodes. As per our analysis, the International Telecommunication Union (ITU model, Stanford University Interim (SUI model, COST-231 Hata model, Green-Obaidat model, Free Space model, Log-Distance Path Loss model and Electronic Communication Committee 33 (ECC-33 models are chosen and evaluated using empirical data collected in a real environment. The aim is to determine if the analytically chosen models fit our scenario by estimating the minimal standard deviation from the empirical data.

  13. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  14. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  15. Matrix vaccination guidelines : 2015 ABCD recommendations for indoor/outdoor cats, rescue shelter cats and breeding catteries

    NARCIS (Netherlands)

    Hosie, Margaret J; Addie, Diane D; Boucraut-Baralon, Corine; Egberink, Herman; Frymus, Tadeusz; Gruffydd-Jones, Tim; Hartmann, Katrin; Horzinek, Marian C; Lloret, Albert; Lutz, Hans; Marsilio, Fulvio; Pennisi, Maria Grazia; Radford, Alan D; Thiry, Etienne; Truyen, Uwe; Möstl, Karin

    OVERVIEW: In 2013, the ABCD published 'Matrix vaccination guidelines: ABCD recommendations for indoor/outdoor cats, rescue shelter cats and breeding catteries' in a Special Issue of the Journal of Feline Medicine and Surgery (Volume 15, Issue 7, pages 540-544). The ABCD's vaccination recommendations

  16. Indoor, outdoor, and personal exposure monitoring of particulate air pollution: the Baltimore elderly epidemiology-exposure pilot study

    Science.gov (United States)

    Williams, Ron; Creason, John; Zweidinger, Roy; Watts, Randall; Sheldon, Linda; Shy, Carl

    A 17-day pilot study investigating potential PM exposures of an elderly population was conducted near Baltimore, Maryland. Collection of residential indoor, residential outdoor, and ambient monitoring data associated with the subjects living at a common retirement facility was integrated with results from a paired epidemiological pilot study. This integration was used to investigate the potential pathophysiological health effects resulting from daily changes in estimated PM exposures with results reported elsewhere. Objectives of the exposure study were to determine the feasibility of performing PM exposure assessment upon an elderly population and establishing relationships between the various exposure measures including personal monitoring. PM 2.5 was determined to be the dominant outdoor size fraction (0.83 PM 2.5/PM 10 mass ratio by dichot monitoring). Individual 24-h PM 1.5 personal exposures ranged from 12 to 58 μg m -3. Comparison of data from matched sampling dates resulted in mean daily PM 1.5 personal, PM 2.5 outdoor, and PM 1.5 indoor concentrations of 34, 17, and 17 μg m -3, respectively. Activity patterns of the study population indicated a generally sedentary population spending a mean of 96% of each day indoors. Future studies would benefit from the use of a consistent sampling methodology across a larger number of PM measurement sites relevant to the elderly subjects, as well as a larger personal PM exposure study population to more successfully collect data needed in matched epidemiological-exposure studies.

  17. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Science.gov (United States)

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  18. PORK CARCASS COMPOSITION AND THE MEAT QUALITY OF THE BLACK SLAVONIAN PIG – THE ENDANGERED BREEDS IN THE INDOOR AND OUTDOOR KEEPING SYSTEM

    Directory of Open Access Journals (Sweden)

    Danijela Butko

    2007-06-01

    Full Text Available The research has been made on 20 Black Slavonian Pigs in both ways of keeping them (indoor, outdoor. The pigs have been fed up to 135 kg body weight. The pigs in the outdoor system have been held on a natural pasture ground. Other than pasture, the pigs have consumed, over the summer period, the food offered on stubble-fields after the harvest (barley, wheat and over the winter times after corn harvest. They had only minimal corn consumption; mostly during the winter (average daily consumption was 0.15 kg. Dissection of cold (+40C right sided pig body composition has been made by the modified Weniger et al (1963 method. The meat quality has been determined on a long back muscle sample (musculus longissimus dorsi- MLD taken berween 13th and 14th rib. The pig carcasses in the outdoor system had a very significant (P<0.01 absolute and relative leg share, less belly-rib share and higher meat quantity. Commercially, more valuable parts-legs and back had a greater share of muscle tissue in pigs' carcasses in the outdoor system. The meat of the pigs in the outdoor system had no signifficant differences from the pigs in the indoor system, concerning the pH1, pH2, water holding capacity, colour and marbling. However, the meat of the pigs in the outdoor system had higher content of crude fat from the pigs in the indoor system.

  19. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2017-07-01

    In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. 'Real world' measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m 3 ) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radon Concentration in Outdoors and Indoors Around the Flare in Oil Mine Sites

    International Nuclear Information System (INIS)

    Sutarman; Wahyudi; Luhantara

    2003-01-01

    The flares are much found at the oil exploration areas which appear the combustion gases emission to the environment that pass through a pipe at about 8 m high from the ground level. The flare is released into the environment together with the hydrocarbon and radon gases. This study has been carried out the measurement of the radon gas concentration only. Radon is a radioactive gas which comes from the natural radioactive decay of uranium ( 238 U). The outdoor radon concentrations were measured in 23 locations with the two-filter method. The locations were determined by a circle which the flare as the point center. The outdoor radon concentrations were measured in 74 houses (more than distance of 600 m from the flare) with the alpha track detector (CR-39) placed in the living rooms for about three months. The measurements of the radon concentrations were carried out in Cepu, Cirebon, and Prabumulih oil mine sites. The results showed that the outdoor radon concentrations a range of 108 Bq/m 3 to 256 Bq/m 3 in Cepu, 248 Bq/m 3 to 3525 Bq/m 3 in Cirebon, and 51 Bq/m 3 to 114 Bq/m 3 in Prabumulih. The results showed that the indoor radon concentrations a range of 11 Bq/m 3 to 38 Bq/m 3 in Cepu, 28 Bq/m 3 to 184 Bq/m 3 in Cirebon, and 12 Bq/m 3 to 38 Bq/m 3 in Prabumulih. The data of the maximum radon concentration in outdoor air was higher than an actual level which recommended by International Atomic Energy Agency (IAEA) for workplaces. The maximum radon concentration in indoor air was lower than an actual level which recommended by IAEA for dwellings. IAEA recommends the actual level of 1000 Bq/m 3 for workplaces and 200 Bq/m 3 for dwellings. These data will be used for the baseline data of the environmental radioactivity in Indonesia. (author)

  1. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  2. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces

    NARCIS (Netherlands)

    Koontz, AM; Cooper, RA; Boninger, ML; Yang, YS; Impink, BG; van der Woude, LHV

    2005-01-01

    The objective of this study was to conduct a kinetic analysis of manual wheelchair propulsion during start-LIP on select indoor and Outdoor surfaces. Eleven manual wheelchairs were fitted with a SMART(Wheel) and their users were asked to Push on a Course consisting of high- and low-pile carpet,

  3. Psychotropic substances in indoor environments.

    Science.gov (United States)

    Cecinato, Angelo; Romagnoli, Paola; Perilli, Mattia; Patriarca, Claudia; Balducci, Catia

    2014-10-01

    The presence of drugs in outdoor air has been established, but few investigations have been conducted indoors. This study focused on psychotropic substances (PSs) at three schools, four homes and one office in Rome, Italy. The indoor drug concentrations and the relationships with the outdoor atmosphere were investigated. The optimised monitoring procedure allowed for the determination of cocaine, cannabinoids and particulate fractions of nicotine and caffeine. In-field experiments were performed during the winter, spring and summer seasons. Psychotropic substances were observed in all indoor locations. The indoor concentrations often exceeded those recorded both outdoors at the same sites and at the atmospheric pollution control network stations, indicating that the drugs were released into the air at the inside sites or were more persistent. During winter, the relative concentrations of cannabinol, cannabidiol and tetrahydrocannabinol depended on site and indoor/outdoor location at the site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations

    Science.gov (United States)

    Gonçalves, Fábio Luiz Teixeira; Bauer, Heidi; Cardoso, Maria Regina Alves; Pukinskas, Sandra; Matos, Dulcilena; Melhem, Márcia; Puxbaum, Hans

    2010-07-01

    The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m-3]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16°C and above 25°C caused a reduction in the concentration (CFU m-3) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.

  5. Contrasts in spatial and temporal variability of oxidative capacity and elemental composition in moxibustion, indoor and outdoor environments in Beijing

    International Nuclear Information System (INIS)

    Huang, Jian; Lim, Min Yee; Hwang, Chaxi; Zhao, Baixiao; Shao, Longyi

    2015-01-01

    Moxibustion is a traditional Chinese medicine therapy that burns moxa floss which produces a substantial amount of PM 10 into the environment, thus spawning safety concerns about health impacts of the smoke. We compared the oxidative capacity and elemental composition of moxibustion-derived and ambient PM 10 in summer and winter to provide a source-, spatial- and temporal-comparison of PM 10 biological responses. The PM 10 oxidative capacity was 2.04 and 1.45 fold lower, and dose-dependent slope gradient was 2.36 and 1.76 fold lower in moxibustion environment than indoor or outdoor. Oxidative damage was highly correlated with iron, cesium, aluminum and cobalt in indoor, but moxibustion environment displayed low associations. The total elemental concentration was also lower in moxibustion environment than indoor (2.28 fold) or outdoor (2.79 fold). The source-to-dose modeling and slope gradient analysis in this study can be used as a model for future source-, spatial- and temporal-related moxibustion safety evaluation studies. - Highlights: • Source-, spatial- and temporal-comparisons of PM 10 of moxa smoke and ambient air. • Moxibustion environment had the lowest oxidative capacity temporally and spatially. • Total elemental concentration was also lowest in moxibustion environment. • Low correlations between metals and oxidative damage in moxibustion environment. • Moxibustion-derived PM 10 may not be as injurious to human health as thought. - Moxibustion-derived PM 10 had the lowest oxidative capacity and total elemental concentration when compared with indoor and outdoor environments

  6. Climate change and health: Indoor heat exposure in vulnerable populations

    International Nuclear Information System (INIS)

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-01

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  7. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  8. Source Apportionment and Influencing Factor Analysis of Residential Indoor PM2.5 in Beijing

    Science.gov (United States)

    Yang, Yibing; Liu, Liu; Xu, Chunyu; Li, Na; Liu, Zhe; Wang, Qin; Xu, Dongqun

    2018-01-01

    In order to identify the sources of indoor PM2.5 and to check which factors influence the concentration of indoor PM2.5 and chemical elements, indoor concentrations of PM2.5 and its related elements in residential houses in Beijing were explored. Indoor and outdoor PM2.5 samples that were monitored continuously for one week were collected. Indoor and outdoor concentrations of PM2.5 and 15 elements (Al, As, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Pb, Se, Tl, V, Zn) were calculated and compared. The median indoor concentration of PM2.5 was 57.64 μg/m3. For elements in indoor PM2.5, Cd and As may be sensitive to indoor smoking, Zn, Ca and Al may be related to indoor sources other than smoking, Pb, V and Se may mainly come from outdoor. Five factors were extracted for indoor PM2.5 by factor analysis, explained 76.8% of total variance, outdoor sources contributed more than indoor sources. Multiple linear regression analysis for indoor PM2.5, Cd and Pb was performed. Indoor PM2.5 was influenced by factors including outdoor PM2.5, smoking during sampling, outdoor temperature and time of air conditioner use. Indoor Cd was affected by factors including smoking during sampling, outdoor Cd and building age. Indoor Pb concentration was associated with factors including outdoor Pb and time of window open per day, building age and RH. In conclusion, indoor PM2.5 mainly comes from outdoor sources, and the contributions of indoor sources also cannot be ignored. Factors associated indoor and outdoor air exchange can influence the concentrations of indoor PM2.5 and its constituents. PMID:29621164

  9. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  10. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  11. Resolving the influential parameters of thermal comfort perception amidst indoor-outdoor spatial transitions: Case study in a lecture room

    NARCIS (Netherlands)

    Derks, M.T.H.; Loomans, M.G.L.C.; Mishra, A.K.; Kort, H.S.M.

    2017-01-01

    Indoor to outdoor transitions have an undeniable impact on thermal perception of occupants and can impact their evaluation of a building. These aspects are often overlooked in thermal comfort standards. We address this gap using a mixed methods study, with students in undergraduate level classrooms

  12. Indoor Tanning

    Science.gov (United States)

    ... proof that indoor tanning is safer than tanning outdoors. Indoor tanning systems give concentrated UV exposure regardless ... For example, it’s essential for promoting good bone health. While UV ... a tan to get that benefit. According to the Surgeon General, fair and light- ...

  13. Distribution of Gas Phase Polycyclic Aromatic Hydrocarbons (PAHs in Selected Indoor and Outdoor Air Samples of Malaysia: a Case Study in Serdang, Selangor and Bachang, Malacca

    Directory of Open Access Journals (Sweden)

    Haris Hafizal Abd Hamid

    2017-07-01

    Full Text Available Distribution of 10 polycyclic aromatic hydrocarbons (PAHs in the gas phase of air from selected indoor and outdoor areas of Selangor and Malacca, Malaysia has been investigated. A locally designed Semi Permeable Membrane Device (SPMD was applied for passive air sampling for 37 days at selected locations. Cleanup was carried out with Gas Purge - Micro Syringe Extraction (GP-MSE and the final analysis was using Gas Chromatography-Mass Spectrometry (GC-MS. In this study, 6 indoor and 12 outdoor locations were selected for air sampling. A total of 10 compounds of PAHs (Ʃ10PAHs were determined in the range of 0.218 ng/m3 - 1.692 ng/m3 and 0.378 ng/m3 - 1.492 ng/m3 in outdoor and indoor samples respectively. In the outdoor samples, locations such as near a petrol station and heavy traffic showed the maximum levels of Ʃ10PAHs, while rooftop samples showed the lowest Ʃ10PAHs. The distribution of gas phase Ʃ10PAHs was influenced by vehicular emission. Low molecular weight (LMW compounds (2-3 rings were dominant in all samples (>70% indicating that SPMD has successfully sampled the gas phase of the air.

  14. Indoor/outdoor relationships, sources and cancer risk assessment of NPAHs and OPAHs in PM2.5 at urban and suburban hotels in Jinan, China

    Science.gov (United States)

    Li, Yanyan; Yang, Lingxiao; Chen, Xiangfeng; Jiang, Pan; Gao, Ying; Zhang, Junmei; Yu, Hao; Wang, Wenxing

    2018-06-01

    Paired indoor and outdoor measurements of 16 NPAHs and 5 OPAHs in PM2.5 were conducted at urban and suburban sites during January 2016 in Jinan, China. The concentrations of both indoor and outdoor NPAHs and OPAHs were higher at the urban site compared with the suburban site. 9N-ANT (16-42%), 2+3N-FLA (15-51%), 2N-PYR (6-20%), and 1N-PYR (4-6%) were the dominant NPAHs at all sites, and 9-FO (61-81%) was the most abundant OPAHs. Solid fuel combustion, motor vehicle exhausts, and secondary generation were the main sources of the PAH derivatives in this study area. The I/O ratios of 90% of NPAHs and OPAHs at the first urban indoor site (abbreviated as URI1, Green Tree Inn) and the suburban indoor site (abbreviated as SUI, the Seven Star Hotel) were Hotel), the I/O ratios of 2- and 3-ring NPAHs and OPAHs were >1.00, which was likely due to cooking activities occurring near the measurement site. Measurements of outdoor 2+3N-FLA/1N-PYR revealed mainly primary emission at the urban site and secondary sources at the suburban site, the average ratios were 3.76 and 12.22, respectively. The average ratio of 2+3N-FLA/2N-PYR at all sites was 3.3, indicating that the OH-initiated reaction was the dominant secondary formation pathway. Nighttime ratios of 2+3N-FLA/1N-PYR were significantly higher than the daytime ratios at all sites. The difference was especially pronounced during heavily polluted conditions at the suburban site, which suggests that heavy pollution and nighttime conditions promote secondary production. Additionally, the cancer risk was highest in urban outdoor (abbreviated as URO) when the population expose to the level as the outdoor air in the urban. The risk suggested that adults may be at a higher cancer risk.

  15. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers.

    Science.gov (United States)

    Chen, Renjie; Zhao, Ang; Chen, Honglei; Zhao, Zhuohui; Cai, Jing; Wang, Cuicui; Yang, Changyuan; Li, Huichu; Xu, Xiaohui; Ha, Sandie; Li, Tiantian; Kan, Haidong

    2015-06-02

    Indoor exposure to fine particulate matter (PM2.5) from outdoor sources is a major health concern, especially in highly polluted developing countries such as China. Few studies have evaluated the effectiveness of indoor air purification on the improvement of cardiopulmonary health in these areas. This study sought to evaluate whether a short-term indoor air purifier intervention improves cardiopulmonary health. We conducted a randomized, double-blind crossover trial among 35 healthy college students in Shanghai, China, in 2014. These students lived in dormitories that were randomized into 2 groups and alternated the use of true or sham air purifiers for 48 h with a 2-week washout interval. We measured 14 circulating biomarkers of inflammation, coagulation, and vasoconstriction; lung function; blood pressure (BP); and fractional exhaled nitric. We applied linear mixed-effect models to evaluate the effect of the intervention on health outcome variables. On average, air purification resulted in a 57% reduction in PM2.5 concentration, from 96.2 to 41.3 μg/m3, within hours of operation. Air purification was significantly associated with decreases in geometric means of several circulating inflammatory and thrombogenic biomarkers, including 17.5% in monocyte chemoattractant protein-1, 68.1% in interleukin-1β, 32.8% in myeloperoxidase, and 64.9% in soluble CD40 ligand. Furthermore, systolic BP, diastolic BP, and fractional exhaled nitrous oxide were significantly decreased by 2.7%, 4.8%, and 17.0% in geometric mean, respectively. The impacts on lung function and vasoconstriction biomarkers were beneficial but not statistically significant. This intervention study demonstrated clear cardiopulmonary benefits of indoor air purification among young, healthy adults in a Chinese city with severe ambient particulate air pollution. (Intervention Study on the Health Impact of Air Filters in Chinese Adults; NCT02239744). Copyright © 2015 American College of Cardiology Foundation

  16. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  17. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    Science.gov (United States)

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-02-22

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption.

  18. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    Directory of Open Access Journals (Sweden)

    Han Zou

    2016-02-01

    Full Text Available The location and contextual status (indoor or outdoor is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS for individuals. In addition, optimizations of building management systems (BMS, such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption.

  19. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization...... in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...... from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision...

  20. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes

    Science.gov (United States)

    Garetano, Gary; Gochfeld, Michael; Stern, Alan H.

    2006-01-01

    Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659

  1. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  2. Safety assessment of outdoor live fire range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  3. A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

    Directory of Open Access Journals (Sweden)

    Wilson Sakpere

    2017-12-01

    Full Text Available The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR, Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF, Visible Light, Pedestrian Dead Reckoning (PDR/Inertial Navigation System (INS and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB, Wireless Sensor Network (WSN, Wireless Local Area Network (WLAN, Radio-Frequency Identification (RFID and Near Field Communication (NFC. In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA, Time of Arrival (TOA, Time Difference of Arrival (TDOA and Received Signal Strength Indication (RSSI, while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation.

  4. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  5. The relationship between perceived health and physical activity indoors, outdoors in built environments, and outdoors in nature.

    Science.gov (United States)

    Pasanen, Tytti P; Tyrväinen, Liisa; Korpela, Kalevi M

    2014-11-01

    A body of evidence shows that both physical activity and exposure to nature are connected to improved general and mental health. Experimental studies have consistently found short term positive effects of physical activity in nature compared with built environments. This study explores whether these benefits are also evident in everyday life, perceived over repeated contact with nature. The topic is important from the perspectives of city planning, individual well-being, and public health. National survey data (n = 2,070) from Finland was analysed using structural regression analyses. Perceived general health, emotional well-being, and sleep quality were regressed on the weekly frequency of physical activity indoors, outdoors in built environments, and in nature. Socioeconomic factors and other plausible confounders were controlled for. Emotional well-being showed the most consistent positive connection to physical activity in nature, whereas general health was positively associated with physical activity in both built and natural outdoor settings. Better sleep quality was weakly connected to frequent physical activity in nature, but the connection was outweighed by other factors. The results indicate that nature provides an added value to the known benefits of physical activity. Repeated exercise in nature is, in particular, connected to better emotional well-being. © 2014 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of The International Association of Applied Psychology.

  6. Exposure to secondhand smoke in terraces and other outdoor areas of hospitality venues in eight European countries.

    Science.gov (United States)

    López, Maria J; Fernández, Esteve; Gorini, Giuseppe; Moshammer, Hanns; Polanska, Kinga; Clancy, Luke; Dautzenberg, Bertrand; Delrieu, Agnes; Invernizzi, Giovanni; Muñoz, Glòria; Precioso, Jose; Ruprecht, Ario; Stansty, Peter; Hanke, Wojciech; Nebot, Manel

    2012-01-01

    Outdoor secondhand smoke (SHS) concentrations are usually lower than indoor concentrations, yet some studies have shown that outdoor SHS levels could be comparable to indoor levels under specific conditions. The main objectives of this study were to assess levels of SHS exposure in terraces and other outdoor areas of hospitality venues and to evaluate their potential displacement to adjacent indoor areas. Nicotine and respirable particles (PM2.5) were measured in outdoor and indoor areas of hospitality venues of 8 European countries. Hospitality venues of the study included night bars, restaurants and bars. The fieldwork was carried out between March 2009 and March 2011. We gathered 170 nicotine and 142 PM2.5 measurements during the study. The median indoor SHS concentration was significantly higher in venues where smoking was allowed (nicotine 3.69 µg/m3, PM2.5: 120.51 µg/m3) than in those where smoking was banned (nicotine: 0.48 µg/m3, PM2.5: 36.90 µg/m3). The median outdoor nicotine concentration was higher in places where indoor smoking was banned (1.56 µg/m3) than in venues where smoking was allowed (0.31 µg/m3). Among the different types of outdoor areas, the highest median outdoor SHS levels (nicotine: 4.23 µg/m3, PM2.5: 43.64 µg/m3) were found in the semi-closed outdoor areas of venues where indoor smoking was banned. Banning indoor smoking seems to displace SHS exposure to adjacent outdoor areas. Furthermore, indoor settings where smoking is banned but which have a semi-closed outdoor area have higher levels of SHS than those with open outdoor areas, possibly indicating that SHS also drifts from outdoors to indoors. Current legislation restricting indoor SHS levels seems to be insufficient to protect hospitality workers--and patrons--from SHS exposure. Tobacco-free legislation should take these results into account and consider restrictions in the terraces of some hospitality venues to ensure effective protection.

  7. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    OpenAIRE

    Bartosz Szulczyński; Jacek Gębicki

    2017-01-01

    The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their ...

  8. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments – A review on occurrence and human exposure

    International Nuclear Information System (INIS)

    Besis, Athanasios; Samara, Constantini

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) constitute an important group of brominated flame retardants that have been massively produced and extensively used in numerous everyday products, providing longer escape times in case of fire and thus saving lives, as well as reducing the damage of property. In recent years, PBDEs have been recognized as significant pollutants of the indoor environment. This article provides a synthesis and critical evaluation of the state of the knowledge about the occurrence of PBDEs in the indoor environment (air and dust in homes, workplaces and cars) in different countries in Europe, North America, Asia and Australia, as well as about the human exposure via indoor air inhalation and dust ingestion in comparison to outdoor air inhalation and dietary intake. - Although dietary intake is major human exposure route to PBDEs, there is sufficient body of evidence for the ubiquitous presence of these compounds in indoor air and dust, therefore for the potential for significant exposure at work, at home, as well as in closed means of transport.

  9. Indoor/outdoor of PM10 relationships and its water-soluble ions composition in selected primary schools in Malaysia

    Science.gov (United States)

    Mohamad, Noorlin; Latif, Mohd Talib

    2013-11-01

    Measurements of PM10 and water-soluble ions were carried out on indoor and outdoor PM10 (particles > 10 μm in aerodynamic diameter) aerosols sampled at selected primary schools of Kuala Lumpur (S1) and Putrajaya (S2), respectively. Samples were collected using a low volume sampler on Teflon filters. The water-soluble ions chloride (Cl-), nitrate (NO3-), sulfate (SO42-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+) and ammonium (NH4+) was analyzed using ion chromatography. The results showed that the indoor PM10 mass concentrations in S1 and S2 were 96.6 and 69.5 μg/m3, while the outdoor PM10 mass concentrations were 80.1 and 85.2 μg/m3, respectively. This indicated that NO3- were the most dominant ions, followed by SO42-, Ca2+, K+ and Na+, while Cl-, Mg2+ and Na+ were present at low concentrations. Pearson's correlation test applied to all the data showed high correlation between SO42- and NO3-, indicating a common anthropogenic origin. In addition, the correlations between Na+ and Ca2+ indicated crustal origins that significantly contributed to human exposure.

  10. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. Three criteria when used can prevent radon infiltration and lower...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...

  11. Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure.

    Science.gov (United States)

    Wang, Wei; Wu, Fu-Yong; Huang, Min-Juan; Kang, Yuan; Cheung, Kwai Chung; Wong, Ming Hung

    2013-10-15

    Indoor and outdoor dusts from two urban centers in the Pearl River Delta, China, were analyzed and phthalate esters varied from 4.95 to 2,220 μg g(-1) in indoor dust, significantly higher than outdoor dust (1.70-869 μg g(-1)). Di-2-ethylhexyl phthalate (DEHP) was the dominant phthalate found and the highest distribution factor (DF) (1.56 ± 0.41) was noted in the human T cell lymphoblast leukemic cell line (CCRF-CEM) indicated by Lethal Concentration 50 (LC50) decreased with particle size. The power model was found as a better fit for explaining the relationship between LC50 and phthalates (R(2)=0.46, passessment indicated that indoor dust ingestion accounted for the major source for DEHP exposure (81.4-96.4% of non-dietary exposure and 36.5% of total exposure), especially for toddlers. The cancer risks associated with DEHP via home dust were high (10(-6)-10(-4)), with 10% of houses estimated with unacceptable risks (>10(-4)). After corrected with the bioaccessibility of phthalates, the cancer risks of dust exposure were moderate (10(-7)-10(-5)). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The importance of determining the air exchange rate in flats and buildings for calculations of the averted indoor inhalation doses arising from contaminated outdoor air

    International Nuclear Information System (INIS)

    Jilek, Karel; Thomas, J.; Bulanek, B.; Lenk, J.; Marikova, S.

    2015-01-01

    The indoor-outdoor air exchange rate is an important parameter when refining estimates of the averted inhaled doses to population in houses and buildings after an emergency event resulting in contamination of outdoor air with a radioactive material. The air exchange rates measured in 70 occupied houses and in 20 unoccupied houses using N 2 O as the tracer gas are presented, and the results of modelling the averted doses in the residential buildings for both gaseous and aerosol outdoor contaminants are demonstrated. (orig.)

  13. Indoor organic and inorganic pollutants: In-situ formation and dry deposition in Southeastern Brazil

    Science.gov (United States)

    Allen, Andrew G.; Miguel, Antonio H.

    We have measured indoor and outdoor levels of particle- and gas-phase pollutants, collected in offices, restaurants and a hotel at six different sites in and around the cities of São Paulo and Campinas, Brazil, during summer 1993. Gas-phase species included acetic acid, formic acid, nitrous acid, hydrochloric acid, sulfur dioxide, nitric acid, oxalic acid, and pyruvic acid. Fine mode ( 3 μm dp) species measured included chloride, potassium, acetate, nitrate, magnesium, formate, sodium, pyruvate, nitrite, calcium, sulfate, oxalate, and ammonium. One sample (˜ 6 h) was simultaneously collected indoors and outdoors at each site during regular working hours. Indoor samplers were located ca. 1.5 m from the floor, and the outdoors immediately outside the window. Indoor/outdoor concentration ratios suggest that fine potassium chloride was produced indoors in appreciable amounts at both restaurants studied and, to a lesser extent, in the three offices as well. Indoor fine nitrate particles found in restaurants appear to have been produced by fuel combustion; a small fraction may have resulted from dry deposition of nitric acid onto existing fine particles. Indoor and outdoor concentrations of fine- and coarse-mode acetate suggest their production at all sites. The average concentration of gas-phase acetic acid was 42 μg m -3 indoors compared to 9.0 μg m -3 outdoors. In-situ formation of nitrous acid and acetic acid appears to have occurred at all indoor sites. High levels of formic and acetic acids were produced indoors at a pizzeria that used wood for cooking. Nitrous acid average concentrations for all sites were 8.4 μm m -3 indoors and 3.2 μm m -3 outdoors. Indoor/outdoor ratios at all sites suggest that dry deposition indoors may have occurred for hydrochloric acid, nitric acid and sulfur dioxide and that fine-mode sulfate infiltrate buildings from outside at most sites.

  14. Sex differences in circumstances and consequences of outdoor and indoor falls in older adults in the MOBILIZE Boston cohort study

    Science.gov (United States)

    2013-01-01

    Background Despite extensive research on risk factors associated with falling in older adults, and current fall prevention interventions focusing on modifiable risk factors, there is a lack of detailed accounts of sex differences in risk factors, circumstances and consequences of falls in the literature. We examined the circumstances, consequences and resulting injuries of indoor and outdoor falls according to sex in a population study of older adults. Methods Men and women 65 years and older (N = 743) were followed for fall events from the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) Boston prospective cohort study. Baseline measurements were collected by comprehensive clinical assessments, home visits and questionnaires. During the follow-up (median = 2.9 years), participants recorded daily fall occurrences on a monthly calendar, and fall circumstances were determined by a telephone interview. Falls were categorized by activity and place of falling. Circumstance-specific annualized fall rates were calculated and compared between men and women using negative binomial regression models. Results Women had lower rates of outdoor falls overall (Crude Rate Ratio (RR): 0.72, 95% Confidence Interval (CI): 0.56-0.92), in locations of recreation (RR: 0.34, 95% CI: 0.17-0.70), during vigorous activity (RR: 0.38, 95% CI: 0.18-0.81) and on snowy or icy surfaces (RR: 0.55, 95% CI: 0.36-0.86) compared to men. Women and men did not differ significantly in their rates of falls outdoors on sidewalks, streets, and curbs, and during walking. Compared to men, women had greater fall rates in the kitchen (RR: 1.88, 95% CI: 1.04-3.40) and while performing household activities (RR: 3.68, 95% CI: 1.50-8.98). The injurious outdoor fall rates were equivalent in both sexes. Women’s overall rate of injurious indoor falls was nearly twice that of men’s (RR: 1.98, 95% CI: 1.44-2.72), especially in the kitchen (RR: 6.83, 95% CI: 2

  15. PERSONAL, INDOOR, AND OUTDOOR CONCENTRATIONS OF PM2.5, PARTICULATE NITRATE, AND ELEMENTAL CARBON FOR INDIVIDUALS WITH COPD IN LOS ANGELES, CA

    Science.gov (United States)

    This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...

  16. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania.

    Science.gov (United States)

    Moshi, Irene R; Ngowo, Halfan; Dillip, Angel; Msellemu, Daniel; Madumla, Edith P; Okumu, Fredros O; Coetzee, Maureen; Mnyone, Ladslaus L; Manderson, Lenore

    2017-07-04

    The extensive use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) in Africa has contributed to a significant reduction in malaria transmission. Even so, residual malaria transmission persists in many regions, partly driven by mosquitoes that bite people outdoors. In areas where Anopheles gambiae s.s. is a dominant vector, most interventions target the reduction of indoor transmission. The increased use of ITNs/LLINs and IRS has led to the decline of this species. As a result, less dominant vectors such as Anopheles funestus and Anopheles arabiensis, both also originally indoor vectors but are increasingly biting outdoors, contribute more to residual malaria transmission. The study reports the investigated community perceptions on malaria and their implications of this for ongoing outdoor malaria transmission and malaria control efforts. This was a qualitative study conducted in two rural villages and two peri-urban areas located in Kilombero Valley in south-eastern Tanzania. 40 semi-structured in-depth interviews and 8 focus group discussions were conducted with men and women who had children under the age of five. The Interviews and discussions focused on (1) community knowledge of malaria transmission, and (2) the role of such knowledge on outdoor malaria transmission as a contributing factor to residual malaria transmission. The use of bed nets for malaria prevention has been stressed in a number of campaigns and malaria prevention programmes. Most people interviewed believe that there is outdoor malaria transmission since they use interventions while indoors, but they are unaware of changing mosquito host-seeking behaviour. Participants pointed out that they were frequently bitten by mosquitoes during the evening when outdoors, compared to when they were indoors. Most participants stay outdoors in the early evening to undertake domestic tasks that cannot be conducted indoors. House structure, poor ventilation and warm weather conditions

  17. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Roed, Jørn

    1997-01-01

    The process of aerosol deposition on indoor surfaces has implications for human exposure to particulate contaminants of both indoor and outdoor origin. In the radiological context, current accident models assume a uniform Dose Reduction Factor (DRF) of 0.5 for indoor residence during the outdoor...

  18. Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.N.; Ko, Y.C.; Chao, Y.Y.; Huang, C.C.; Lin, R.S.

    1999-10-01

    The study aim was to estimate the contribution of indoor and outdoor air pollution to the 1-year prevalence of adolescent asthma after personal susceptibility and other potential risk factors were taken into account. A large-scaled cross-sectional study was conducted among 165,173 high school students aged 11 to 16 years in the different communities of Kaohsiung and Pintong in Taiwan, from October 1995 to June 1996. Each student and his/her parents participating in the study completed a video and a written International Study of Asthma and Allergies in Childhood questionnaire about symptoms of wheezing and allergies, passive smoking, and demographic variables. After adjustment for potential confounders, adolescents exposed to cigarette smoking and environmental tobacco smoke were found to suffer from asthma at an increased frequency. The authors observed a statistically significant association between outdoor air pollution and asthma, after controlling for potential confound variables. Total suspended particulate, nitrogen dioxide, carbon monoxide, ozone, and airborne dust particles all displayed an independent association with asthma, respectively. There were no selection biases in this community-based study, which provides evidence that passive smoking and long-term, high average outdoor air pollution are independent risk factors of asthma.

  19. Unusually amplified summer or winter indoor levels of radon

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.

    1993-01-01

    The ratios of winter/summer indoor radon levels for houses in different regions of the southern Appalachians are characterized by individual log-normal distributions with geometric means both above and below unity. In some counties and cities, subpopulations of houses have unusually exaggerated winter/summer ratios of indoor radon, as well as high indoor radon levels, during periods of either warm or cool weather. It is proposed that in many instances, houses are communicating with larger than normal underground reservoirs of radon-bearing air in hilly karst terrains; differences between the outdoor and underground air temperatures are believed to provide density gradients producing aerostatic pressure differences for seasonally directed underground transport and subsequently elevated indoor radon. These seasonal movements of air are analogous to the well-known underground chimney effects, which produce interzonal flows of air inside caves

  20. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens

    Directory of Open Access Journals (Sweden)

    Dorina Gabriela Karottki

    2015-02-01

    Full Text Available To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF, lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16 and surfactant protein-D (SPD were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC, weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.

  1. Multi-dimensional indoor location information model

    NARCIS (Netherlands)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Huang, L.; Zhou, Y.; Du, Z.

    2013-01-01

    Aiming at the increasing requirements of seamless indoor and outdoor navigation and location service, a Chinese standard of Multidimensional Indoor Location Information Model is being developed, which defines ontology of indoor location. The model is complementary to 3D concepts like CityGML and

  2. Thermal (dis)comfort experienced from physiological movements across indoor, transitional and outdoor spaces in Singapore: A pilot study

    Science.gov (United States)

    Li Heng, Su; Chow, Winston

    2017-04-01

    Human thermal comfort research is important as climate discomfort can adversely affect both health and work productivity in cities; however, such biometeorological work in low-latitude urban areas is still relatively unstudied hitherto. In the tropical metropolis of Singapore, a suite of policies have been implemented aimed at improving environmental sustainability via increasing car-free commutes and pedestrian movement during work/school journeys, with the consequence that individuals will likely have increased personal exposure through a variety of spaces (and climates) during typical daily activities. As such, research into exploring the thermal (dis)comfort experienced during pedestrian movements across these indoor, outdoor and transitional (semi-outdoor) spaces would yield interesting applied biometerological insights. This pilot study thus investigates how pedestrian thermal comfort varies spatially across a university campus, and how the physical intensity of pedestrian travel affects thermal comfort across these spaces. Over a 10-week period, we profiled six students for both their objective and subjective pedestrian thermal comfort during traverses across different spaces. Data were obtained through use of (a.) of a heat stress sensor, (b.) a fitness tracker, and (b.) a questionnaire survey to record traverse measurements of the microclimate, their physiological data, and their perceived microclimate comfort respectively. Measured climate and physiological data were used to derive commonly-used thermal comfort indices like wet-bulb globe temperature (WBGT) and physiological equivalent temperature (PET). Further, interviews were conducted with all six subjects at the end of the fieldwork period to ascertain details on individual acclimatization behavior and adaptation strategies. The results indicate that (a.) more than 50% of the microclimatic conditions within each indoor, semi-outdoor, and outdoor space exceeded heat stress thresholds of both PET and

  3. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illuminiation

    NARCIS (Netherlands)

    Di Giacomo, F.; Zardetto, V.; Lucarelli, G.; Cina, L.; Di Carlo, A.; Creatore, M.; Brown, T.M.

    2016-01-01

    Today poly and mono-crystalline silicon dominate the photovoltaic (PV) markets for outdoor applications. Nevertheless, there is a growing requirement for PV to be deployed in a wide variety of conditions from building-integrated, to portable electronics, to indoors for powering smart sensors,

  4. Simulating Real-World Exposures during Emergency Events: Studying Effects of Indoor and Outdoor Releases in the Urban Dispersion Project in Upper Manhattan, NY

    Science.gov (United States)

    A prospective personal exposure study, involving indoor and outdoor releases, was conducted in upper Midtown Manhattan in New York City as part of the Urban Dispersion Program (UDP) focusing on atmospheric dispersion of chemicals in complex urban settings. The UDP experiments inv...

  5. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air

    Science.gov (United States)

    Moreau-Guigon, Elodie; Alliot, Fabrice; Gaspéri, Johnny; Blanchard, Martine; Teil, Marie-Jeanne; Mandin, Corinne; Chevreuil, Marc

    2016-12-01

    Fifty-eight semi-volatile organic compounds (SVOCs) were investigated simultaneously in three indoor (apartment, nursery and office building) and one outdoor environment in the centre of Paris (France). All of these compounds except tetrabromobisphenol A were quantified in the gaseous and particulate phases in all three environments, and at a frequency of 100% for the predominant compounds of each SVOC class. Phthalic acid esters (PAEs) were the most abundant group (di-iso-butyl phthalate: 29-661 ng m-3, diethyl phthalate: 15-542 ng m-3), followed by 4-nonylphenol (1.4-81 ng m-3), parabens (methylparaben: 0.03-2.5 ng m-3), hexachlorobenzene (HCB) (0.002-0.26 ng m-3) and pentachlorobenzene (PeCB) (0.001-0.23 ng m-3). Polycyclic aromatic hydrocarbons (as ∑8PAHs) ranged from 0.17 to 5.40 ng m-3, polychlorinated biphenyls (as ∑7PCBi) from 0.06 to 4.70 ng.m3 and polybromodiphenyl ethers (as ∑8PBDEs) from 0.002 to 0.40 ng m-3. For most pollutants, significantly higher concentrations were observed in the nursery compared to the apartment and office. Overall, the indoor air concentrations were up to ten times higher than outdoor air concentrations. Seasonal variations were observed for PAEs, PCBs and PAHs. SVOCs were predominantly identified in the gaseous phase (>90%), except for some high-molecular-weight PAEs, PAHs and PCBs.

  6. Indoor and Outdoor Air Pollution- related Health Problem in Ethiopia: Review of Related Literature.

    Science.gov (United States)

    Tefera, Worku; Asfaw, Araya; Gilliland, Frank; Worku, Alemayehu; Wondimagegn, Mehari; Kumie, Abera; Samet, Jonathan; Berhane, Kiros

    2016-01-01

    worsening outdoor air pollution. This tentative conclusion carries with it the urgent need for more evidence-based research and capacity building in the areas of indoor and outdoor air pollution.

  7. Indoor Climate of Large Glazed Spaces

    DEFF Research Database (Denmark)

    Hendriksen, Ole Juhl; Madsen, Christina E.; Heiselberg, Per

    In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crui...... it is cruicial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.......In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate...

  8. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  9. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  10. Evaluation of Spectrum Usage for GSM band in Indoor and Outdoor Scenario for Dynamic Spectrum Access

    DEFF Research Database (Denmark)

    Patil, Kishor P.; Barge, Snehal; Skouby, Knud Erik

    2013-01-01

    , and transmit power. Several measurements have shown that the current spectrum is inefficiently utilized. The inefficient utilization problem can be solved with the help of Dynamic Spectrum Access. This paper describes the GSM band measurement conducted at different locations. In this paper, we report detailed...... measurement results of GSM band including statistical as well as spectral occupancy details obtained from measurement campaign conducted in Pune, India for indoor and outdoor scenarios. The results can be further used as an input for spectrum regulator for considering Cognitive Radio (CR) operation in GSM...

  11. INDOOR AND OUTDOOR SOURCE CONTRIBUTIONS TO PERSONAL PM2.5 FOR A PANEL OF INDIVIDUALS WITH CARDIOVASCULAR DISEASE OR COPD LIVING IN BOSTON, MA

    Science.gov (United States)

    Repeated personal, home indoor, home outdoor, and ambient particulate and gaseous pollutant levels were characterized for individuals with cardiovascular disease or COPD and their partners living in the Boston area. Health status was determined by self-reported history of myoc...

  12. Indoor PAHs at schools, homes and offices in Rome, Italy

    Science.gov (United States)

    Romagnoli, P.; Balducci, C.; Perilli, M.; Gherardi, M.; Gordiani, A.; Gariazzo, C.; Gatto, M. P.; Cecinato, A.

    2014-08-01

    Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 particles were monitored in three microenvironments (schools, homes and offices) in the city of Rome, Italy, between winter 2011 and summer 2012. Molecular signatures and indoor/outdoor concentration ratios of PAHs were investigated, with special emphasis on carcinogenic congeners. At indoor locations, total PAHs ranged, on average, from 1.8 to 8.4 ng/m3 in winter and from 0.30 to 1.35 ng/m3 in spring/summer. Outdoors, total PAH concentrations were found to reach 6.3-17.9 ng/m3 in winter and 0.42-1.74 ng/m3 in spring-summer. Indoors, the concentration of benzo[a]pyrene (BaP) was as high as 1.1 ng/m3 in winter and below 0.1 ng/m3 in the warm season, independently of site type; the yearly average remained below the European guideline value. The indoor/outdoor concentration ratios of individual compounds were lower than one for most of congeners, suggesting that outdoor sources were predominant. Nonetheless, the percentages of PAH compounds changed with sites and seasons; in particular, in spring/summer, the concentration of BaP at our sites was more than twice that recorded at the regional network stations.

  13. A survey of indoor pollution by volatile organo halogen compounds in Katsushika, Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Amagai, T.; Olansandan; Matsushita, H. [University of Shizuoka, Shizuoka (Japan); Ono, M. [National Institute for Environmental Studies, Ibaraki (Japan); Nakai, S. [Yokohama National University, Yokohama (Japan); Tamura, K. [National Institute for Minamata Disease, Kumamoto (Japan); Maeda, K. [Tokyo Kasel University, Tokyo (Japan)

    1999-07-01

    A survey of indoor and outdoor pollution by 10 volatile organo halogen compounds (VOHCs) was performed in Katsushika Ward, Tokyo, Japan. Thirteen houses in February and 30 houses in July were sampled. Four consecutive 24-hour samples were collected by passive sampling from living room, kitchen, bedroom, bathroom and outdoors in February and July 1995. Indoor concentrations of carbon tetrachloride and trichloroethylene were at nearly the same as outdoor concentrations; therefore, it was concluded that indoor pollution by these compounds was primarily due to penetration of outdoor pollutants. Indoor concentrations of some VOHCs were considerably higher than outdoor concentrations and they varied widely between households. The list included: p-dichlorobenzene, tetrachloroethylene and tri halomethanes, for which emission sources were insect repellents, dry-cleaned clothes, and tap water, showers and bathtub water, respectively. Indoor concentrations of these compounds were higher in reinforced concrete houses than in wooden houses or wooden houses with mortar walls. This suggests that airtightness of the rooms is responsible for high indoor VOHC concentrations. (author)

  14. Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania

    Directory of Open Access Journals (Sweden)

    Mgando Joseph

    2011-06-01

    Full Text Available Abstract Background Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania. Methods Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre, underneath the outdoor kitchen (kibanda roof and from a drop-net. Data were analysed with generalized linear models. Results The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519. The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more user-friendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre. Conclusions The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting

  15. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  16. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  17. Continual monitoring of radon decay products concentration in indoor and outdoor air

    International Nuclear Information System (INIS)

    Petruf, P.; Holy, K.; Stanys, T.

    1998-01-01

    The goal of this work was the development of the method and construction and testing of measurement device for continual monitoring of radon daughters concentrations in the indoor and outdoor environment with regard to make possible to determine very low activities in the outdoor air (below % Bq/m 3 ). In this method air sample is drawn through the appropriate filter material. Radon and thoron daughters both attached and unattached on aerosols particles are collected on the filter surface and then the filter activity is counted. The silicon surface barrier detector with the active area of 200 mm 2 in monitor was used. The Millipore AW19-type filter was chosen and sampling rate of 30 l/min for collecting of the air samples. The determination of the individual activity concentrations in three-count method is based on the solution of the simultaneous equations describing the number of atoms of measured nuclides on the filter during and after sampling. The monitor was tested in three different environments (the average values of the activity concentrations of radon and its decay products in Bq/m 3 are given): in the basement of the building: 61.4 ± 5.0 of 222 Rn, 29.5 ± 2.8 of 218 Po, 14.1 ± 1.8 of 214 Pb and 12.1 ± 1.6 of 214 Bi; in the room on the second floor of the same building:22.2 ± 7.9 of 222 Rn, 7.3 ± 2.8 of 218 Po, 4.6 ± 1.9 of 214 Pb and 2.6 ± 1.2 of 214 Bi ; in the outdoor air in front of the building: 4.1 ± 2.7 of 222 Rn, 2.3 ± 0.9 of 218 Po, 1.5 ± 0.8 of 214 Pb and 1.4 ± 0.6 of 214 Bi. The results show a good agreement with expectations of the activity concentrations in three different environments. The monitor enables to determine low activity concentrations in the outdoor with an acceptable precision during one hour counting. The monitor can be used for the research of the correlation between the atmospheric stability and activity concentrations of radon decay products

  18. A Robust Method for Detecting Parking Areas in Both Indoor and Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Wenhao Zong

    2018-06-01

    Full Text Available Although an automatic parking system has been installed in many vehicles recently, it is still hard for the system to confirm by itself whether a vacant parking area truly exists or not. In this paper, we introduced a robust vision-based vacancy parking area detecting method for both indoor and outdoor environments. The main contribution of this paper is given as follows. First, an automatic image stitching method is proposed. Secondly, the problem of environment illuminating change and line color difference is considered and solved. Thirdly, the proposed algorithm is insensitive to the shadow and scene diversity, which means the detecting result satisfies most of the environment. Finally, a vehicle model is considered for tracking and reconfirming the detecting results to eliminate most of the false positives.

  19. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  20. Vitality of plants to live in the indoor environment

    Science.gov (United States)

    Shamsuri, Mohd Mahathir Suhaimi; Leman, A. M.; Hariri, Azian; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Indoor air quality (IAQ) is generally a public concern because 90% of people spend their time indoor. IAQ must be preserved wisely to guarantee the health of the building occupants. One of the ways to maintain the quality of air is by placing plants in the building. However, all plants come from the outdoor, and the environment is different compared to indoor. Environmental factors such as temperature and light will absolutely affect the growth of the plant. Light and temperature that are too bright or too deem can wither the plants. Nevertheless, certain plant is capable of adapting with different situation after assimilation process has been conducted. This study intends to analyze the capacity of seven selected plants (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plant, Spider Plant, and Syngonium) to live in an indoor environment. The vitality of plants is based on photosynthetic level that is measured using leaf - chamber (LI-COR 6400). Two groups of plants were located in indoor and outdoor (indigenous location) setting, and were allowed to assimilate for two months before measurement were carried out. The results for the plant located indoor shows that only Spider Plant cannot perform photosynthesis under 300 lux, where the photosynthetic value remains negative. Meanwhile, other plants such as Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plant, and Syngonium that were left indoor showed similar 300 lux in which conform the ability of the plants to perform photosynthesis with the value of 0.3, 0.15, 0.35, 0.1, 0.15, and 0.1. In comparison, all of the plants that were stationed indoor and outdoor (except Spider Plant), the light compensation point (LCP) for indoor shows smaller value than the outdoor. This is because all the indoor plants had down - regulated their photosynthesis process by becoming more sensitive to light after their assimilation. From this study, it can be concluded that all plants except Spider Plant is able to live

  1. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  2. Integration of Kinect and Low-Cost Gnss for Outdoor Navigation

    Science.gov (United States)

    Pagliaria, D.; Pinto, L.; Reguzzoni, M.; Rossi, L.

    2016-06-01

    Since its launch on the market, Microsoft Kinect sensor has represented a great revolution in the field of low cost navigation, especially for indoor robotic applications. In fact, this system is endowed with a depth camera, as well as a visual RGB camera, at a cost of about 200. The characteristics and the potentiality of the Kinect sensor have been widely studied for indoor applications. The second generation of this sensor has been announced to be capable of acquiring data even outdoors, under direct sunlight. The task of navigating passing from an indoor to an outdoor environment (and vice versa) is very demanding because the sensors that work properly in one environment are typically unsuitable in the other one. In this sense the Kinect could represent an interesting device allowing bridging the navigation solution between outdoor and indoor. In this work the accuracy and the field of application of the new generation of Kinect sensor have been tested outdoor, considering different lighting conditions and the reflective properties of the emitted ray on different materials. Moreover, an integrated system with a low cost GNSS receiver has been studied, with the aim of taking advantage of the GNSS positioning when the satellite visibility conditions are good enough. A kinematic test has been performed outdoor by using a Kinect sensor and a GNSS receiver and it is here presented.

  3. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  4. Effectiveness of using pure copper and silver coupon corrosivity monitoring (CCM) metal strips to measure the severity levels of air pollutants in indoor and outdoor atmospheres

    CSIR Research Space (South Africa)

    Foax, LJ

    2008-10-01

    Full Text Available Severity levels of air pollutants rich in oxides, chlorides and sulphides were successfully measured in indoor and outdoor atmospheres using pure copper and silver coupon corrosivity monitoring (CCM) metal strips when the maximum exposure periods...

  5. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Junhong, E-mail: junhongbai@163.com; Huang, Laibin, E-mail: seahuanglaibin@gmail.com; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg{sup −1}] for salinity and [0–4.0 mg kg{sup −1}] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg{sup −1} available Cd and 778.6 mg kg{sup −1} salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity.

  6. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    International Nuclear Information System (INIS)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-01-01

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg −1 ] for salinity and [0–4.0 mg kg −1 ] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg −1 available Cd and 778.6 mg kg −1 salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity

  7. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables.

    Science.gov (United States)

    Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado

    2014-08-01

    The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.

  8. Accelerometer Measured Level of Physical Activity Indoors and Outdoors During Preschool Time in Sweden and the United States

    DEFF Research Database (Denmark)

    Raustorp, A.; Pagels, P.; Boldemann, C.

    2012-01-01

    BACKGROUND: It is important to understand the correlates of physical activity in order to influence policy and create environments that promote physical activity among preschool children. We compared preschoolers' physical activity in Swedish and in US settings and objectively examined differences...... boys and girls indoor and outdoor physical activity regarding different intensity levels and sedentary behaviour. METHODS: Accelerometer determined physical activity in 50 children with mean age 52 months, (range 40-67) was recorded during preschool time for 5 consecutive weekdays at four sites...

  9. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  10. Effects of indoor and outdoor cultivation conditions on 137 Cs concentrations in cultivated mushrooms produced after the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi

    2017-01-01

    Radiocesium ( 134 Cs and 137 Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. 137 Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant 137 Cs concentration differences were found between these two cultivation methods. Using detected 137 Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg -1 ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Evaluación de la calidad del aire interior y exterior en un jardín de niños de la Ciudad de México Evaluation of indoor and outdoor air quality of a nursery school in Mexico City

    Directory of Open Access Journals (Sweden)

    Marlene Cortez-Lugo

    1998-09-01

    Full Text Available Objetivo. Evaluar las diferencias en los niveles de ozono (O3 y bióxido de nitrógeno (NO2 en el interior y el exterior de una escuela en el suroeste de la Ciudad de México. Material y métodos. Se midieron diariamente estos contaminantes dentro y fuera del salón, de enero a abril de 1990, mediante monitoreo manual. Resultados. El NO2 adentro y afuera no sobrepasó la norma mexicana (0.21 ppm. El coeficiente de correlación entre las concentraciones máximas de NO2 de la estación de monitoreo local de la ciudad y el exterior del salón fue de 0.82 (pObjective. To evaluate the differences between indoor and outdoor ozone (O3 and nitrogen dioxide (NO2 levels at a school located in southwest Mexico City. Material and methods. Indoor and outdoor O3 and NO2 levels were measured daily between January and April 1990 by manual monitoring. Results. Indoor and outdoor concentrations of nitrogen dioxide did not surpass the Mexican standard (0.21 ppm. The correlation coefficient between maximum NO2 concentrations measured by the city’s local monitoring station and those measured outside the classroom was 0.82 (p< 0.001. Regarding ozone, its maximum outdoor concentration was 0.29 ppm and indoor concentrations were on average below 0.06 ppm (maximum = 0.17 ppm. The indoor/outdoor correlation coefficient was 0.72, and for every 1.7 ppm outside, there was 1.0 ppm inside (p< 0.05 Conclusions. Since the highest outdoors O3 concentrations were observed between 11:00 and 14:00 hrs, it is recommendable to have recess before this time.

  12. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory.

    Science.gov (United States)

    Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Faridi, Sasan; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Momeniha, Fatemeh; Gholampour, Akbar; Arhami, Mohammad; Kashani, Homa; Zare, Ahad; Niazi, Sadegh; Rastkari, Noushin; Nazmara, Shahrokh; Ghani, Maryam; Yunesian, Masud

    2015-09-15

    In the present work, we investigated the characteristics of polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s in indoor/outdoor PM10, PM2.5, and PM1 in a retirement home and a school dormitory in Tehran from May 2012 to May 2013. The results indicated that the annual levels of indoor and outdoor PM10 and PM2.5 were much higher than the guidelines issued by the World Health Organization (WHO). The most abundant detected metal(loid)s in PM were Si, Fe, Zn, Al, and Pb. We found higher percentages of metal(loid)s in smaller size fractions of PM. Additionally, the results showed that the total PAHs (ƩPAHs) bound to PM were predominantly (83-88%) found in PM2.5, which can penetrate deep into the alveolar regions of the lungs. In general, carcinogenic PAHs accounted for 40-47% of the total PAHs concentrations; furthermore, the smaller the particle size, the higher the percentage of carcinogenic PAHs. The percentages of trace metal(loid)s and carcinogenic PAHs in PM2.5 mass were almost twice as high as those in PM10. This can most likely be responsible for the fact that PM2.5 can cause more adverse health effects than PM10 can. The average BaP-equivalent carcinogenic (BaP-TEQ) levels both indoors and outdoors considerably exceeded the maximum permissible risk level of 1 ng/m(3) of BaP. The enrichment factors and diagnostic ratios indicated that combustion-related anthropogenic sources, such as gasoline- and diesel-fueled vehicles as well as natural gas combustion, were the major sources of PAHs and trace metal(loid)s bound to PM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Depressive-like behavior, its sensitization, social buffering, and altered cytokine responses in rhesus macaques moved from outdoor social groups to indoor housing.

    Science.gov (United States)

    Hennessy, Michael B; Chun, Katie; Capitanio, John P

    2017-02-01

    Psychosocial stressors appear to promote the onset of depressive illness through activation and sensitization of inflammatory mechanisms. Here, adult male rhesus monkeys brought from large outdoor social groups to indoor housing for 8 days reliably exhibited a hunched, depressive-like posture. When rehoused indoors a second 8 days about 2 weeks later, monkeys housed alone, but not those with an affiliative partner, showed sensitization of the depressive-like hunched posture. Housing indoors also affected circulating pro-inflammatory cytokines: IL-1β showed increased responsiveness to immune challenge, and IL-1β and TNF-α showed reduced suppression by dexamethasone. Sensitivity of the anti-inflammatory cytokine IL-10 to immune challenge exhibited a relative increase from the first to the second round of indoor housing in animals housed in pairs, and a relative decrease in animals housed alone. Cytokine levels during indoor housing were positively correlated with duration of depressive-like behavior. Plasma cortisol levels increased but did not differentiate housing conditions or rounds. Results demonstrate a rapid induction and sensitization of depressive-like behavior to indoor individual housing, social buffering of sensitization, and associated inflammatory responses. This paradigm may provide a practical nonhuman primate model for examining inflammatory-mediated consequences of psychosocial stressors on depression and possible social buffering of these effects.

  14. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  15. Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany)

    International Nuclear Information System (INIS)

    Cyrys, J.; Woelke, G.; Wichmann, H.E.; Heinrich, J.; Richter, K.

    2000-01-01

    Here we report indoor and outdoor concentrations of NO 2 for Erfurt and Hamburg and assess the contribution of the most important indoor sources (e.g. the presence of gas cooking ranges, smoking) and outdoor sources (traffic exhaust emissions). We examined the relative contribution of the different sources of NO 2 to the total indoor NO 2 levels in Erfurt and Hamburg. NO 2 indoor concentrations in Hamburg were slightly higher than those in Erfurt (i.e. living room: 15 μg m -3 for Erfurt and 17 μg m -3 for Hamburg). A linear regression model including the variables, place of residence, season and outdoor NO 2 levels, location of the home within the city, housing and occupant characteristics accounted for 38% of the NO 2 variance. The most important predictors of indoor NO 2 concentrations were gas in cooking followed by other characteristics, such as ventilation or outdoor NO 2 level. Residences in which gas was used for cooking, or in which occupants smoked, had substantially higher indoor NO 2 concentrations (41 or 18% increase, respectively). An increase in the outdoor NO 2 concentration from the 25th to the 75th-percentile (17 μg m -3 ) was associated with a 33% increase in the living room NO 2 concentration. Multiple regression analysis for both cities separately illustrated that use of gas for cooking was the major indoor source of NO 2 . This variable caused a similar increase in the indoor NO 2 levels in each city (43% in Erfurt and 47% in Hamburg). However, outdoor sources of NO 2 (motor vehicle traffic) contributed more to indoor NO 2 levels in Hamburg than in Erfurt

  16. Towards Indoor Transportation Mode Detection using Mobile Sensing

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Kjærgaard, Mikkel Baun

    2015-01-01

    Transportation mode detection is a growing field of research, in which a variety of methods have been developed for detecting transportation modes foremost for outdoor travels. It has been employed in application areas such as public transportation, environmental footprint profiling, and context......-aware mobile assistants. For indoor travels the problem of transportation mode detection has received comparatively little attention, even though diverse transportation modes, such as biking, electric vehicles, and scooters, are used indoors, especially in large building complexes. The potential applications...... are diverse, may also extend beyond indoor variants of the above outdoor applications, and include, e.g., scheduling and progress tracking for mobile workers, management of vehicular resources, and navigation support. However, for indoor transportation mode detection, both the physical environment as well...

  17. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    International Nuclear Information System (INIS)

    Cetin, Banu; Odabasi, Mustafa

    2011-01-01

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. Σ 7 PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE (Σ 7 PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m -2 , respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  18. Polybrominated diphenyl ethers (PBDEs) in indoor and outdoor window organic films in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, Banu [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey); Odabasi, Mustafa, E-mail: mustafa.odabasi@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2011-01-30

    Polybrominated diphenyl ether (PBDE) concentrations of outdoor and indoor organic films on window glasses were measured at different locations (offices, laboratories, and homes in urban, suburban, rural, and industrial sites) in Izmir, Turkey. {Sigma}{sub 7}PBDE concentrations were dominated by technical penta and deca-BDE mixture components. Average total outdoor PBDE ({Sigma}{sub 7}PBDE) concentrations for suburban, urban, and industrial sites were 43.5, 45.5, and 206 ng m{sup -2}, respectively. This spatial gradient (industrial > urban > suburban concentrations) was similar to one observed for ambient air concentrations recently in Izmir, Turkey. The highest concentrations measured in the industrial area were attributed to the significant PBDE emissions from several steel plants located in the area. Air-organic film partitioning modeling results have suggested that organic films can be used in conjunction with the dynamic uptake model to approximate the gas-phase ambient air concentrations. Modeling results have also indicated that congeners in the gas-phase with very large octanol-air partition coefficients (i.e., BDE-154, -153, and -209) will require several months to approach equilibrium with the surface films. This finding may have important implications for gas-particle and gas-film partitioning, transport, and photolytic degradation of atmospheric PBDEs.

  19. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  20. Personal exposures to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague

    International Nuclear Information System (INIS)

    Kousa, A.; Rotko, T.; Alm, S.; Monn, C.

    2001-01-01

    Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO 2 ) were measured for 262 urban adult (25-55 years) participants in three EXPOLIS centres (Basel, Switzerland; Helsinki, Finland; and Prague, Czech Republic) using passive samplers for 48-h sampling periods during 1996-1997. The average residential outdoor and indoor NO 2 levels were lowest in Helsinki (24 ± 12 and 18 ± 11 μgm -3 , respectively), highest in Prague (61 ± 20 and 43 ± 23μgm -3 ), with Basel in between (36 ± 13 and 27± 13μgm -3 ). Average workplace NO 2 levels, however, were highest in Basel (36 ± 24μgm -3 ), lowest in Helsinki (27 ± 15μgm -3 ), with Prague in between (30 ± 18μgm -3 ). A time-weighted microenvironmental exposure model explained 74% of the personal exposure variation in all centre and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO 2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11-19% of personal NO 2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO 2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power. (Author)

  1. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China

    International Nuclear Information System (INIS)

    Wang Xinhua; Bi Xinhui; Sheng Guoying; Fu Jiamo

    2006-01-01

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 μg m -3 were significantly higher than outdoor PM2.5 standard of 65 μg m -3 recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R 2 of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R 2 of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and

  2. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    Science.gov (United States)

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  3. Research trends in outdoor pig production — A review

    Directory of Open Access Journals (Sweden)

    Hyun-Suk Park

    2017-09-01

    Full Text Available Since the industrialization of swine production in the late 1900s, swine farms in the United States, as well as in Europe, have largely become consolidated. Pig farms became larger in size but fewer in number, with 91% of market pigs being produced by large operations with 5,000 or more pigs on-site in the US, and only 3% of the total utilized agricultural land representing organic farming. Such change in the market made it difficult for small farmers to stay competitive, forcing them to find alternative ways to reduce the cost of production and increase profit using the outdoor production system. In contrast to the indoor confinement system, outdoor production system uses pasture-based units and/or deep-bedded hoop structures that promote animal welfare and environmental sustainability with a lower capital investment. In accord with the growing concern for animal and environmental welfare and food safety by the consumers, small farmers practicing an outdoor production system are seeing increased opportunities for marketing their products in the pork niche market. Unlike the general belief that the reproductive and growth performance measures of the outdoor sows and piglets are poorer in comparison with the animals reared indoors, studies showed that there was no significant difference in the performance measures, and some traits were even better in outdoor animals. Improved reproductive and production traits can increase the sustainability of outdoor farming. Present study reviewed the recent studies comparing the performance measures, meat quality and health of indoor and outdoor animals, as well as the efforts to improve the outdoor production system through changes in management such as hut types and breed of animals.

  4. Research trends in outdoor pig production — A review

    Science.gov (United States)

    Park, Hyun-Suk; Min, Byungrok; Oh, Sang-Hyon

    2017-01-01

    Since the industrialization of swine production in the late 1900s, swine farms in the United States, as well as in Europe, have largely become consolidated. Pig farms became larger in size but fewer in number, with 91% of market pigs being produced by large operations with 5,000 or more pigs on-site in the US, and only 3% of the total utilized agricultural land representing organic farming. Such change in the market made it difficult for small farmers to stay competitive, forcing them to find alternative ways to reduce the cost of production and increase profit using the outdoor production system. In contrast to the indoor confinement system, outdoor production system uses pasture-based units and/or deep-bedded hoop structures that promote animal welfare and environmental sustainability with a lower capital investment. In accord with the growing concern for animal and environmental welfare and food safety by the consumers, small farmers practicing an outdoor production system are seeing increased opportunities for marketing their products in the pork niche market. Unlike the general belief that the reproductive and growth performance measures of the outdoor sows and piglets are poorer in comparison with the animals reared indoors, studies showed that there was no significant difference in the performance measures, and some traits were even better in outdoor animals. Improved reproductive and production traits can increase the sustainability of outdoor farming. Present study reviewed the recent studies comparing the performance measures, meat quality and health of indoor and outdoor animals, as well as the efforts to improve the outdoor production system through changes in management such as hut types and breed of animals. PMID:28728401

  5. Associations between the proportion of Salmonella seropositive slaughter pigs and the presence of herd level risk factors for introduction and transmission of Salmonella in 34 Danish organic, outdoor (non-organic) and indoor finishing-pig farms

    DEFF Research Database (Denmark)

    Zheng, D.M.; Bonde, Marianne; Sørensen, Jan Tind

    2007-01-01

    This paper evaluates the association between herd level risk factors for introduction and transmission of Salmonella in farms with three different production systems: organic, outdoor (non-organic) and indoor finishing-pig farms, and the presence of seropositive animals in the herds. Potential risk...... factors for Salmonella in the three pig production systems were identified through a literature review, and management information as well as serological data were collected in 34 pig farms: 11 organic farms, 12 outdoor farms, and 11 indoor farms. There were no general differences in the proportion...

  6. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  7. Seasonal and Spatial Variations of Indoor Pollen in a Hospital

    Directory of Open Access Journals (Sweden)

    Santiago Fernández-Rodríguez

    2009-12-01

    Full Text Available The airborne indoor pollen in a hospital of Badajoz (Spain was monitored over two years using a personal Burkard sampler. The air was sampled in four places indoors—one closed room and one open ward on each of the ground and the third floors—and one place outdoors at the entrance to the hospital. The results were compared with data from a continuous volumetric sampler. While 32 pollen types were identified, nearly 75% of the total counts were represented by just five of them. These were: Quercus, Cupressaceae, Poaceae, Olea, and Plantago. The average indoor concentration was 25.2 grains/m3, and the average indoor/outdoor ratio was 0.27. A strong seasonal pattern was found, with the highest levels in spring and winter, and the indoor concentrations were correlated with the outdoor one. Indoor air movement led to great homogeneity in the airborne pollen presence: the indoor results were not influenced by whether or not the room was isolated, the floor level, or the number of people in or transiting the site during sampling. The presence of ornamental vegetation in the area surrounding the building affected the indoor counts directly as sources of the pollen.

  8. An architectural framework for 5G indoor communications

    NARCIS (Netherlands)

    Chandra, Kishor; Prasad, R. Venkatesha; Niemegeers, Ignas

    2015-01-01

    In this paper, we emphasize on indoor networks in 5G era. We explore the possible technologies and architectural solutions for 5G indoor communications. Owing to the fact that requirements for indoor and outdoor communications will be quite different in the next generation networks, we try to define

  9. Indoor PM2.5 in an urban zone with heavy wood smoke pollution: The case of Temuco, Chile.

    Science.gov (United States)

    Jorquera, Héctor; Barraza, Francisco; Heyer, Johanna; Valdivia, Gonzalo; Schiappacasse, Luis N; Montoya, Lupita D

    2018-05-01

    Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; however, little is known about the indoor air quality in this region. A field measurement campaign at 63 households in the Temuco urban area was conducted in winter 2014 and is reported here. In this study, indoor and outdoor (24-hr) PM 2.5 and its elemental composition were measured and compared. Infiltration parameters and outdoor/indoor contributions to indoor PM 2.5 were also determined. A statistical evaluation of how various air quality interventions and household features influence indoor PM 2.5 was also performed. This study determined median indoor and outdoor PM 2.5 concentrations of 44.4 and 41.8 μg/m 3 , respectively. An average infiltration factor (0.62 ± 0.06) was estimated using sulfur as a tracer species. Using a simple mass balance approach, median indoor and outdoor contributions to indoor PM 2.5 concentrations were then estimated as 12.5 and 26.5 μg/m 3 , respectively; therefore, 68% of indoor PM 2.5 comes from outdoor infiltration. This high percentage is due to high outdoor pollution and relatively high household air exchange rates (median: 1.06 h -1 ). This study found that S, Br and Rb were dominated by outdoor contributions, while Si, Ca, Ti, Fe and As originated from indoor sources. Using continuous indoor and outdoor PM 2.5 measurements, a median indoor source strength of 75 μg PM 2.5 /min was estimated for the diurnal period, similar to literature results. For the evening period, the median estimate rose to 135 μg PM 2.5 /min, reflecting a more intense wood burning associated to cooking and space heating at night. Statistical test results (at the 90% confidence level) support the ongoing woodstove replacement program (reducing emissions) and household weatherization subsidies (reducing heating demand) for improving indoor air quality in southern Chile, and suggest that a cookstove improvement program might be helpful as well

  10. Evaluation of Indoor Radio Deployment Options in High-Rise Building

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Wigard, Jeroen; Kovacs, Istvan

    2017-01-01

    to the increase of inter-cell interference (ICI). Increasing transmit power brings largest gain when the density of indoor cell is low, and the noise and/or outdoor interference is the dominant source of performance degradation. When analyzing performance gain of an ideal receiver-side Interference Cancellation......In this paper we set out to analyze the indoor capacity under a realistic high-rise building scenario. The study takes into consideration the number of indoor cells deployed per floor, different inter-site distances (ISDs), transmit power settings and outdoor macro interference levels. The outcome...

  11. The effect of proximity to major roads on indoor air quality in typical Australian dwellings

    Science.gov (United States)

    Lawson, Sarah J.; Galbally, Ian E.; Powell, Jennifer C.; Keywood, Melita D.; Molloy, Suzie B.; Cheng, Min; Selleck, Paul W.

    2011-04-01

    An Indoor Air Quality Study of residential dwellings was carried out in Melbourne, Australia, and a subset of the data was analysed to investigate the effect of proximity to major roads on indoor air quality (IAQ). Seven-day measurements of PM 10, NO 2, benzene, toluene, ethylbenzene and xylenes, along with continuous CO and PM 2.5 measurements were utilised. The measurements were made indoors and outdoors in 27 dwellings; 15 Near Road (300 m from a major road). Dwellings were sampled for one week each in Winter/Spring 2008 and Summer/Autumn 2009, over an eight month period. Analysis of 7-day measurements showed that NO 2 and toluene were elevated at the 5% significance level both indoors and outdoors at Near Road Dwellings compared to Far Road Dwellings. Indoor/Outdoor (I/O) ratios of NO 2 and toluene were not significantly different between Near and Far Road dwellings giving no evidence of any anomalous dominant indoor source for NO 2 and toluene in Near Road dwellings. Indoor NO 2 was significantly correlated to gas stovetop and oven use in both Near and Far Road dwellings. In the absence of gas cooking, indoor NO 2 was elevated in Near Road dwellings relative to Far Road dwellings by approximately 4 ppb and this can be attributed to infiltration of outdoor air. I/O ratios for NO 2 were 2 indicating that indoor sources dominate with minor contribution from outdoors. Hence the relative contribution of roadways to indoor NO 2 is potentially greater than the relative contribution of roadways to indoor toluene. Findings elsewhere suggest that a similar outdoor enhancement of traffic related NO 2 (˜5 ppb) increases risk of lung cancer and childhood asthma ( Brauer et al., 2000; Nyberg et al., 2000). A simple conceptual model indicated spatial and temporal variance in the concentrations was the biggest limitation in detecting roadway influence outside Near Road dwellings for PM 10, PM 2.5 and NO 2 while measurement uncertainty was also important for CO.

  12. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    Science.gov (United States)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly

  13. Modeling emission rates and exposures from outdoor cooking

    Science.gov (United States)

    Edwards, Rufus; Princevac, Marko; Weltman, Robert; Ghasemian, Masoud; Arora, Narendra K.; Bond, Tami

    2017-09-01

    Approximately 3 billion individuals rely on solid fuels for cooking globally. For a large portion of these - an estimated 533 million - cooking is outdoors, where emissions from cookstoves pose a health risk to both cooks and other household and village members. Models that estimate emissions rates from stoves in indoor environments that would meet WHO air quality guidelines (AQG), explicitly don't account for outdoor cooking. The objectives of this paper are to link health based exposure guidelines with emissions from outdoor cookstoves, using a Monte Carlo simulation of cooking times from Haryana India coupled with inverse Gaussian dispersion models. Mean emission rates for outdoor cooking that would result in incremental increases in personal exposure equivalent to the WHO AQG during a 24-h period were 126 ± 13 mg/min for cooking while squatting and 99 ± 10 mg/min while standing. Emission rates modeled for outdoor cooking are substantially higher than emission rates for indoor cooking to meet AQG, because the models estimate impact of emissions on personal exposure concentrations rather than microenvironment concentrations, and because the smoke disperses more readily outdoors compared to indoor environments. As a result, many more stoves including the best performing solid-fuel biomass stoves would meet AQG when cooking outdoors, but may also result in substantial localized neighborhood pollution depending on housing density. Inclusion of the neighborhood impact of pollution should be addressed more formally both in guidelines on emissions rates from stoves that would be protective of health, and also in wider health impact evaluation efforts and burden of disease estimates. Emissions guidelines should better represent the different contexts in which stoves are being used, especially because in these contexts the best performing solid fuel stoves have the potential to provide significant benefits.

  14. Indoor environmental health

    CSIR Research Space (South Africa)

    Parsons, S

    2010-01-01

    Full Text Available Indoor Environmental Health (IEH) is a comprehensive term that includes the effects of quantity of air, light and noise in a space and the physical, physiological and psychological aspects from colours, aesthetics, services, outdoor climate...

  15. Indoor environmental health

    CSIR Research Space (South Africa)

    Parsons, SA

    2010-04-01

    Full Text Available Indoor Environmental Health (IEH) is a comprehensive term that includes the effects of quantity of air, light and noise in a space and the physical, physiological and psychological aspects from colours, aesthetics, services, outdoor climate...

  16. Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study.

    Science.gov (United States)

    Ni, Kun; Carter, Ellison; Schauer, James J; Ezzati, Majid; Zhang, Yuanxun; Niu, Hongjiang; Lai, Alexandra M; Shan, Ming; Wang, Yuqin; Yang, Xudong; Baumgartner, Jill

    2016-09-01

    Cooking and heating with coal and biomass is the main source of household air pollution in China and a leading contributor to disease burden. As part of a baseline assessment for a household energy intervention program, we enrolled 205 adult women cooking with biomass fuels in Sichuan, China and measured their 48-h personal exposure to fine particulate matter (PM2.5) and carbon monoxide (CO) in winter and summer. We also measured the indoor 48-h PM2.5 concentrations in their homes and conducted outdoor PM2.5 measurements during 101 (74) days in summer (winter). Indoor concentrations of CO and nitrogen oxides (NO, NO2) were measured over 48-h in a subset of ~80 homes. Women's geometric mean 48-h exposure to PM2.5 was 80μg/m(3) (95% CI: 74, 87) in summer and twice as high in winter (169μg/m(3) (95% CI: 150, 190), with similar seasonal trends for indoor PM2.5 concentrations (winter: 252μg/m(3); 95% CI: 215, 295; summer: 101μg/m(3); 95% CI: 91, 112). We found a moderately strong relationship between indoor PM2.5 and CO (r=0.60, 95% CI: 0.46, 0.72), and a weak correlation between personal PM2.5 and CO (r=0.41, 95% CI: -0.02, 0.71). NO2/NO ratios were higher in summer (range: 0.01 to 0.68) than in winter (range: 0 to 0.11), suggesting outdoor formation of NO2 via reaction of NO with ozone is a more important source of NO2 than biomass combustion indoors. The predictors of women's personal exposure to PM2.5 differed by season. In winter, our results show that primary heating with a low-polluting fuel (i.e., electric stove or wood-charcoal) and more frequent kitchen ventilation could reduce personal PM2.5 exposures. In summer, primary use of a gaseous fuel or electricity for cooking and reducing exposure to outdoor PM2.5 would likely have the greatest impacts on personal PM2.5 exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Reducing health risks from indoor exposures in rapidly developing urban China.

    Science.gov (United States)

    Zhang, Yinping; Mo, Jinhan; Weschler, Charles J

    2013-07-01

    Over the past two decades there has been a large migration of China's population from rural to urban regions. At the same time, residences in cities have changed in character from single-story or low-rise buildings to high-rise structures constructed and furnished with many synthetic materials. As a consequence, indoor exposures (to pollutants with outdoor and indoor sources) have changed significantly. We briefly discuss the inferred impact that urbanization and modernization have had on indoor exposures and public health in China. We argue that growing adverse health costs associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. As documented by China's Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years. Evidence suggests that the population's exposure to air pollutants has contributed to increases in lung cancer, cardiovascular disease, pulmonary disease, and birth defects. Whether a pollutant has an outdoor or an indoor source, most exposure to the pollutant occurs indoors. Going forward, indoor exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building's initial design. Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health.

  18. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  19. Current implications of past DDT indoor spraying in Oman.

    Science.gov (United States)

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Impact of the 2011 Spanish smoking ban in hospitality venues: indoor secondhand smoke exposure and influence of outdoor smoking.

    Science.gov (United States)

    López, María J; Fernández, Esteve; Pérez-Rios, Mónica; Martínez-Sánchez, Jose M; Schiaffino, Anna; Galán, Iñaki; Moncada, Albert; Fu, Marcela; Montes, Agustín; Saltó, Esteve; Nebot, Manel

    2013-05-01

    The Spanish tobacco control law of 2006 was modified in January 2011, banning smoking in all hospitality venues. The objective of the study was to assess the impact of the 2011 Spanish smoking ban on secondhand smoke (SHS) exposure in hospitality venues, and to analyze the potential impact of outdoor smokers close to entrances on indoor SHS levels after the law came into force. Before-and-after evaluation study with repeated measures. The study was carried out in three regions of Spain (Catalonia, Galicia, and Madrid) and included a random sample of 178 hospitality venues. We measured vapor-phase nicotine and particulate matter 2.5 micrometers or less in diameter (PM2.5) as SHS markers at baseline (November-December 2010) and at follow-up (April-June 2011). We also recorded tobacco consumption variables such as the presence of butts, ashtrays, and smokers. In the posttest assessment, we also recorded the number of outdoor smokers close to the entrance. A total of 351 nicotine and 160 PM2.5 measurements were taken. Both nicotine and PM2.5 concentrations decreased by more than 90% (nicotine from 5.73 to 0.57 µg/m(3), PM2.5 from 233.38 to 18.82 µg/m(3)). After the law came into force, both nicotine and PM2.5 concentrations were significantly higher in venues with outdoor smokers close to the entrance than in those without outdoor smokers. All the observational tobacco consumption variables significantly decreased (p hospitality venues dramatically decreased after the 2011 Spanish smoking ban. SHS from outdoor smokers close to entrances seems to drift inside venues. Smoking control legislation should consider outdoor restrictions to ensure complete protection against SHS.

  1. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Directory of Open Access Journals (Sweden)

    Bartosz Szulczyński

    2017-03-01

    Full Text Available The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric, photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

  2. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    International Nuclear Information System (INIS)

    Matthews, T.G.; Fung, K.W.; Tromberg, B.J.; Hawthorne, A.R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH 2 O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH 2 O concentration, (2) CH 2 O emission rates from primary CH 2 O emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-space. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH 2 O concentrations from 0.07 to 0.27 ppM for seasonal T and RH conditions of 20 0 C, 30% RH and 29 0 C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH 2 O concentration models developed from laboratory studies of the environmental dependence of CH 2 O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies

  3. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    Background: Inadequate IAQ causes a loss of 2 million healthy life years annually in the EU. Europeans spend typically over 85–90% of their time indoors and the main factors that affect negatively the characteristics of the air they breathe are outdoor air used to ventilate indoor spaces and indoor...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should...

  4. Invited Article: Channel performance for indoor and outdoor terahertz wireless links

    Science.gov (United States)

    Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.

    2018-05-01

    One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.

  5. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Wadge, A.

    1995-01-01

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  6. Optimization of heat pump system in indoor swimming pool using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Shing; Kung, Chung-Kuan [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei (China)

    2008-09-15

    When it comes to indoor swimming pool facilities, a large amount of energy is required to heat up low-temperature outdoor air before it is being introduced indoors to maintain indoor humidity. Since water is evaporated from the pool surface, the exhausted air contains more water and specific enthalpy. In response to this indoor air, heat pump is generally used in heat recovery for indoor swimming pools. To reduce the cost in energy consumption, this paper utilizes particle swarm algorithm to optimize the design of heat pump system. The optimized parameters include continuous parameters and discrete parameters. The former consists of outdoor air mass flow and heat conductance of heat exchangers; the latter comprises compressor type and boiler type. In a case study, life cycle energy cost is considered as an objective function. In this regard, the optimized outdoor air flow and the optimized design for heating system can be deduced by using particle swarm algorithm. (author)

  7. An investigation of factors influencing indoor radon concentrations

    International Nuclear Information System (INIS)

    Majborn, B.; Soerensen, A.; Nielsen, S.P.; Boetter-Jensen, L.

    1988-05-01

    Variations in indoor radon concentrations and some influencing factors have been studied during a two-year period (1986-1987) in 16 almost identical single-family houses.The annual average radon concentration in the houses varied from about 50 to about 400 Bq/m 3 . Variations in soil characteristics and radon concentration in soil gas could not be directly related to the variations of the average indoor radon concentrations. Most of the houses showed a ''normal'' seasonal variation of the radon concentration with a maximum in the winter and minimum in the summer. A deviating seasonal variation was found in three of the houses. Hourly data obtained in one unoccupied house during a period of 2-1/2 months showed no or only weak correlations between the indoor radon concentration and meteorological factors. However, for most of the houses, the seasonal variation of the indoor radon concentration was well correlated with the average indoor-outdoor temperature difference on a 2-month basis. It was demonstrated that the radon concentration can be strongly reduced in the Risoe houses if a district-heating duct, which is connected to all the houses, is ventilated, so that a slightly lowered pressure is maintained in the duct. 5 taps., 24 ill. (author)

  8. The effect of deltamethrin-treated net fencing around cattle enclosures on outdoor-biting mosquitoes in Kumasi, Ghana.

    Directory of Open Access Journals (Sweden)

    Marta Ferreira Maia

    Full Text Available Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and -resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m(2 attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A - with cattle and no net; B - with cattle and protected by an untreated net; C - with cattle and protected by a deltamethrin-treated net; D - no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001 landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001 culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa.

  9. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  10. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  11. Indoor air quality of houses located in the urban environment of Agra, India.

    Science.gov (United States)

    Taneja, Ajay; Saini, Renuka; Masih, Amit

    2008-10-01

    Increased concern over the adverse health effects of air pollution has highlighted the need for air-pollution measurements, especially in urban areas, where many sources of air pollutants are normally monitored outdoors as part of obligations under the National Air Quality Strategies. Very little is known about air pollution indoors. In fact, the largest exposure to health-damaging indoor pollution probably occurs in the developing world, not in households, schools, and offices of developed countries where most research and control efforts have been focused to date. As a result much of the health impacts from air pollution worldwide seem to occur among the poorest and most vulnerable populations. The authors in their earlier studies have confirmed the importance of ambient air in determining the quality of air indoors. In this study an observation of air quality indoors and outdoors of domestic homes located in an urban environment from October 2004 to December 2005 in Agra, north central India, is performed. The purpose of this study was to characterize the indoor/outdoor (I/O) relationship of airborne pollutants and recognize their probable source in all three seasons, that is, winter, summer, and rainy season. Concentrations of SO(2), NO(2), CO(2), Cl(2), H(2)S, NH(3), RSPM, and PAH were monitored simultaneously and I/O ratios were calculated. In order to investigate the effect of seasonality on indoor and ambient air quality, winter to summer and winter to monsoon average ratios were calculated. It is apparent that there is a general pattern of increasing levels from monsoon to summer to winter, and similarly from outdoor to indoor air. Regressions analysis had been done to further investigate the influence of outdoor air-pollutant concentrations on indoor concentrations. The most probable categories of sources for these pollutants have been identified by using principal-component analysis. Indoor air pollution is a complex function of energy housing and

  12. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  13. Radon level in China and elevated indoor exposure in carbon brick and cave dwellings

    International Nuclear Information System (INIS)

    Wang Zuoyuan

    1992-01-01

    A nation wide survey of Chinese houses was conducted to determine the average annual effective dose to Chinese population from exposure to radon and its daughter products. The indoor and outdoor concentrations of radon and its daughters were measured using scintillation flask, two filter and carbon canister methods, as well as modified Tsivoglou methods for Rn daughters. Average Rn concentrations are 26.2Bqm -3 and 13.5Bqm -3 for indoor and outdoor environment, respectively. Potential alpha energy concentration, indoor is 744 x 10 -10 Jm -3 , outdoor is 511 x 10 -10 Jm -3 . Equilibrium Factor of Rn daughters are 0.49 (indoor) and 0.61 (outdoor). Occupancy Factor is 0.77 and 0.23. Using appropriate conversion factors, the annual average effective dose to Chinese population is 0.967 mSv. And also, the indoor Rn concentration and gamma dose rate were surveyed in two rural Provinces: Gansu and Jianxi. The fact was found that lung cancer mortality of population lived in high Rn level dwellings is higher than in control groups. An epidemiological retrospective case-control study is recommended in houses with high Rn level. (author)

  14. Summer indoor heat exposure and respiratory and cardiovascular distress calls in New York City, NY, U.S.

    Science.gov (United States)

    Uejio, C K; Tamerius, J D; Vredenburg, J; Asaeda, G; Isaacs, D A; Braun, J; Quinn, A; Freese, J P

    2016-08-01

    Most extreme heat studies relate outdoor weather conditions to human morbidity and mortality. In developed nations, individuals spend ~90% of their time indoors. This pilot study investigated the indoor environments of people receiving emergency medical care in New York City, NY, U.S., from July to August 2013. The first objective was to determine the relative influence of outdoor conditions as well as patient characteristics and neighborhood sociodemographics on indoor temperature and specific humidity (N = 764). The second objective was to determine whether cardiovascular or respiratory cases experience hotter and more humid indoor conditions as compared to controls. Paramedics carried portable sensors into buildings where patients received care to passively monitor indoor temperature and humidity. The case-control study compared 338 respiratory cases, 291 cardiovascular cases, and 471 controls. Intuitively, warmer and sunnier outdoor conditions increased indoor temperatures. Older patients who received emergency care tended to occupy warmer buildings. Indoor-specific humidity levels quickly adjusted to outdoor conditions. Indoor heat and humidity exposure above a 26 °C threshold increased (OR: 1.63, 95% CI: 0.98-2.68, P = 0.056), but not significantly, the proportion of respiratory cases. Indoor heat exposures were similar between cardiovascular cases and controls. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure.

    Science.gov (United States)

    Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Kizlauskas, Markus; Müller, Josef

    2013-07-01

    Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds. Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5ng/m(3) for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa.

    Science.gov (United States)

    Naicker, Nisha; Teare, June; Balakrishna, Yusentha; Wright, Caradee Yael; Mathee, Angela

    2017-11-18

    Ambient and indoor temperature affects thermal comfort and human health. In a changing climate with a predicted change in temperature extremes, understanding indoor temperatures, both hot and cold, of different housing types is important. This study aimed to assess the hourly, daily and monthly variation in indoor temperatures in different housing types, namely formal houses, informal houses, flats, government-built low-cost houses and old, apartheid era low-cost housing, in five impoverished urban communities in Johannesburg, South Africa. During the cross-sectional survey of the Health, Environment and Development study data loggers were installed in 100 homes (20 per suburb) from February to May 2014. Indoor temperature and relative humidity were recorded on an hourly basis. Ambient outdoor temperatures were obtained from the nearest weather station. Indoor and outdoor temperature and relative humidity levels were compared; and an inter-comparison between the different housing types were also made. Apparent temperature was calculated to assess indoor thermal comfort. Data from 59 retrieved loggers showed a significant difference in monthly mean indoor temperature between the five different housing types ( p informal settlement houses had the greatest variation in temperature and experienced temperatures between 4 and 5 °C warmer than outdoor temperatures. Housing types occupied by poor communities experienced indoor temperature fluctuations often greater than that observed for ambient temperatures. Families living in government-built low-cost and informally-constructed homes are the most at risk for indoor temperature extremes. These types of housing should be prioritised for interventions aimed at assisting families to cope with extreme temperatures, gaining optimal thermal comfort and preventing temperature-related health effects.

  17. Indoor Temperatures in Low Cost Housing in Johannesburg, South Africa

    Directory of Open Access Journals (Sweden)

    Nisha Naicker

    2017-11-01

    Full Text Available Ambient and indoor temperature affects thermal comfort and human health. In a changing climate with a predicted change in temperature extremes, understanding indoor temperatures, both hot and cold, of different housing types is important. This study aimed to assess the hourly, daily and monthly variation in indoor temperatures in different housing types, namely formal houses, informal houses, flats, government-built low-cost houses and old, apartheid era low-cost housing, in five impoverished urban communities in Johannesburg, South Africa. During the cross-sectional survey of the Health, Environment and Development study data loggers were installed in 100 homes (20 per suburb from February to May 2014. Indoor temperature and relative humidity were recorded on an hourly basis. Ambient outdoor temperatures were obtained from the nearest weather station. Indoor and outdoor temperature and relative humidity levels were compared; and an inter-comparison between the different housing types were also made. Apparent temperature was calculated to assess indoor thermal comfort. Data from 59 retrieved loggers showed a significant difference in monthly mean indoor temperature between the five different housing types (p < 0.0001. Low cost government-built houses and informal settlement houses had the greatest variation in temperature and experienced temperatures between 4 and 5 °C warmer than outdoor temperatures. Housing types occupied by poor communities experienced indoor temperature fluctuations often greater than that observed for ambient temperatures. Families living in government-built low-cost and informally-constructed homes are the most at risk for indoor temperature extremes. These types of housing should be prioritised for interventions aimed at assisting families to cope with extreme temperatures, gaining optimal thermal comfort and preventing temperature-related health effects.

  18. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  19. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments.

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0-2,000 mg kg(-1)] for salinity and [0-4.0 mg kg(-1)] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg(-1) available Cd and 778.6 mg kg(-1) salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Blower door method in radon diagnostics

    International Nuclear Information System (INIS)

    Fronka, A.; Moucka, L.

    2004-01-01

    The idea of the radon transfer factor is commonly presented as the ratio of the building indoor radon concentration to the subsoil radon concentration. Ventilation and the pressure field over the whole building envelope, which varies in a time over a very wide range even in the same building, poses a major problem. Therefore a new approach based on the controlled conditions determining the soil air infiltration was developed. Radon in soil gas infiltrates into the building indoor environment particularly through cracks and other leakages in the structure providing the building contact with its subsoil. The infiltration is driven by the air pressure difference on the two sides of the structure. The pressure difference is caused by the stack effect and its value ranges from 1-2 Pa in family houses to some tens of Pa in higher buildings. Unfortunately, the pressure difference is very unstable under normal conditions, being affected by a host of parameters such as the height of the building, distribution and geometry of leakages, outdoor-indoor temperature difference, etc. Wind direction and velocity of the wind plays a major role. In our research the blower door method was applied in combination with a monitoring of the indoor radon concentration. The indoor-outdoor pressure difference and the pressure difference at the two sides of the screen shutter of the blower door fan are also measured. The blower door ensures a constant, evaluable air exchange rate. The fan power is regulated to provide a stable pressure difference within the range of roughly 5-100 Pa. This approach provides very well defined conditions allowing us to apply a constant ventilation-constant radon supply model. In such circumstances the dynamical changes of radon concentrations are very fast, and therefore a unique continual radon monitor was applied. The radon supply rate is evaluated from the radon steady state of the time course of radon concentration. The dependence of the radon supply rate on

  1. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  2. Radon concentration in outdoor occupational environments in Aomori Prefecture, Japan

    International Nuclear Information System (INIS)

    Iyogi, T.; Ueda, S.; Hisamatsu, S.; Sakurai, N.; Inaba, J.

    2004-01-01

    The 222 Rn concentration in outdoor workplaces were measured in Aomori Prefecture, Japan as a part of a program on measurement of natural radiation background dose to people in the prefecture where Japan's first nuclear fuel cycling facilities are now under construction. 222 Rn concentrations were measured in 116 outdoor workplaces by passive Rn detectors for 10 months, which represented agricultural, forestry, fishery and construction/transportation workplaces. The 222 Rn concentrations in outdoor workplaces were generally lower than those in indoor environments. The dose to workers was estimated by using the results of the passive detectors as well as diurnal variation of 222 Rn and equilibrium factor measured with active-type detectors. The average dose from 222 Rn and its progenies to people in Aomori Prefecture was estimated as 0.39 mSv x y -1 based on the obtained results and results in indoor environments. The contribution of 222 Rn in outdoor workplaces to the total dose was 3.3% because of low occupancy ratio. (author)

  3. Roof radiation in indoor and covered outdoor skating rinks; Deckenstrahlung in Eishallen und ueberdeckten Ausseneisfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Gachnang, F. [Eta Energietechnik GmbH, Winterthur (Switzerland); Mayer, H. [Gabathuler AG, Diessenhofen (Switzerland); Schweizer, A. [Baumgartner und Partner AG, Duebendorf (Switzerland); Krieg, J. [Zuercher Hochschule Winterthur, Winterthur (Switzerland)

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of three measurement projects that examined the effect of low-emission materials mounted under the roofing in three different ice rinks on the energy consumption for the refrigeration and air-conditioning installations. In the first object, an indoor ice-hockey rink in Duebendorf, Switzerland, the effect of an aluminium cladding installed and the measurements made concerning the reduction of energy consumption are discussed. Their relevance to further covered ice rinks is examined. The second part takes a look at the effect of soiling and oxidation examined at a further skating rink in Kreuzlingen, Switzerland. The third part of the report examines three different roofing constructions newly installed over an outdoor rink. The findings of the three projects are discussed and recommendations are made.

  4. An indoor chemical cocktail

    Science.gov (United States)

    Gligorovski, Sasho; Abbatt, Jonathan P. D.

    2018-02-01

    In the past 50 years, many of the contaminants and chemical transformations that occur in outdoor waters, soils, and air have been elucidated. However, the chemistry of the indoor environment in which we live most of the time—up to 90% in some societies—is not nearly as well studied. Recent work has highlighted the wealth of chemical transformations that occur indoors. This chemistry is associated with 3 of the top 10 risk factors for negative health outcomes globally: household air pollution from solid fuels, tobacco smoking, and ambient particulate matter pollution (1). Assessments of human exposure to indoor pollutants must take these reactive processes into consideration.

  5. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production.

    Science.gov (United States)

    Feng, Pingzhong; Yang, Kang; Xu, Zhongbin; Wang, Zhongming; Fan, Lu; Qin, Lei; Zhu, Shunni; Shang, Changhua; Chai, Peng; Yuan, Zhenhong; Hu, Lei

    2014-12-01

    In an effort to identify suitable microalgal species for biodiesel production, seven species were isolated from various habitats and their growth characteristics were compared. The results demonstrated that a green alga Scenedesmus obliquus could grow more rapidly and synthesize more lipids than other six microalgal strains. S. obliquus grew well both indoors and outdoors, and reached higher μmax indoors than that outdoors. However, the cells achieved higher dry weight (4.36 g L(-1)), lipid content (49.6%) and productivity (183 mg L(-1) day(-1)) outdoors than in indoor cultures. During the 61 days semi-continuous cultivation outdoors, high biomass productivities (450-550 mg L(-1) day(-1)) and μmax (1.05-1.44 day(-1)) were obtained. The cells could also achieve high lipid productivities (151-193 mg L(-1) day(-1)). These results indicated that S. obliquus was promising for lipids production in semi-continuous cultivation outdoors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  7. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment

    Science.gov (United States)

    Defiana, Ima; Teddy Badai Samodra, FX; Setyawan, Wahyu

    2018-03-01

    The problem in the night-time for warm humid tropic housing estate is thermal discomfort. Heat gains accumulation from building envelope, internal heat gains and activities of occupants influence indoor thermal comfort. Ventilation is needed for transfer or removes heat gains accumulation to outdoor. This study describes the role of an inner courtyard to promote pressure difference. Pressure difference as a wind driven force to promote wind velocity thereby could transfer indoor heat gains accumulation to outdoor of building. A simulation used as the research method for prediction wind velocity. Purposive sampling used as the method to choose building sample with similar inner courtyards. The field survey was conducted to obtain data of inner courtyard typologies and two housing were used as model simulation. Furthermore, the simulation is running in steady state mode, at 05.00 pm when the occupants usually close window. But the window should be opened in the night-time to transfer indoor heat gain to outdoor. The result shows that the factor influencing physiological cooling as consequences of inner courtyard are height to width ratio, the distance between inner courtyard to windward, window configuration and the inner courtyard design-the proportion between the length, the width, and the height.

  9. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Torres

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  10. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Víctor P. Gil Jiménez

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible 2×2 (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  11. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    Science.gov (United States)

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  13. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  14. Sensitization to Indigenous Pollen and Molds and Other Outdoor and Indoor Allergens in Allergic Patients From Saudi Arabia, United Arab Emirates, and Sudan

    Science.gov (United States)

    2012-01-01

    Background Airborne allergens vary from one climatic region to another. Therefore, it is important to analyze the environment of the region to select the most prevalent allergens for the diagnosis and treatment of allergic patients. Objective To evaluate the prevalence of positive skin tests to pollen and fungal allergens collected from local indigenous plants or isolated molds, as well as other outdoor and indoor allergens in allergic patients in 6 different geographical areas in the Kingdom of Saudi Arabia (KSA), the United Arab Emirates, and Sudan. Materials and methods Four hundred ninety-two consecutive patients evaluated at different Allergy Clinics (276 women and 256 men; mean age, 30 years) participated in this study. The selection of indigenous allergens was based on research findings in different areas from Riyadh and adjoining areas. Indigenous raw material for pollen grains was collected from the desert near the capital city of Riyadh, KSA. The following plants were included: Chenopodium murale, Salsola imbricata, Rumex vesicarius, Ricinus communis, Artiplex nummularia, Amaranthus viridis, Artemisia monosperma, Plantago boissieri, and Prosopis juliflora. Indigenous molds were isolated from air sampling in Riyadh and grown to obtain the raw material. These included the following: Ulocladium spp., Penicillium spp., Aspergillus fumigatus, Cladosporium spp., and Alternaria spp. The raw material was processed under Good Manufacturing Practices for skin testing. Other commercially available outdoor (grass and tree pollens) and indoor (mites, cockroach, and cat dander) allergens were also tested. Results The highest sensitization to indigenous pollens was detected to C. murale (32%) in Khartoum (Sudan) and S. imbricata (30%) and P. juliflora (24%) in the Riyadh region. The highest sensitization to molds was detected in Khartoum, especially to Cladosporium spp. (42%), Aspergillus (40%), and Alternaria spp. (38%). Sensitization to mites was also very prevalent

  15. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  16. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  17. D Reconstruction of Cultural Tourism Attractions from Indoor to Outdoor Based on Portable Four-Camera Stereo Vision System

    Science.gov (United States)

    Shao, Z.; Li, C.; Zhong, S.; Liu, B.; Jiang, H.; Wen, X.

    2015-05-01

    Building the fine 3D model from outdoor to indoor is becoming a necessity for protecting the cultural tourism resources. However, the existing 3D modelling technologies mainly focus on outdoor areas. Actually, a 3D model should contain detailed descriptions of both its appearance and its internal structure, including architectural components. In this paper, a portable four-camera stereo photographic measurement system is developed, which can provide a professional solution for fast 3D data acquisition, processing, integration, reconstruction and visualization. Given a specific scene or object, it can directly collect physical geometric information such as positions, sizes and shapes of an object or a scene, as well as physical property information such as the materials and textures. On the basis of the information, 3D model can be automatically constructed. The system has been applied to the indooroutdoor seamless modelling of distinctive architecture existing in two typical cultural tourism zones, that is, Tibetan and Qiang ethnic minority villages in Sichuan Jiuzhaigou Scenic Area and Tujia ethnic minority villages in Hubei Shennongjia Nature Reserve, providing a new method and platform for protection of minority cultural characteristics, 3D reconstruction and cultural tourism.

  18. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  19. Individual Differences and Possible Effects from Outdoor Education: Long Time and Short Time Benefits

    Science.gov (United States)

    Fiskum, Tove Anita; Jacobsen, Karl

    2012-01-01

    This study explores differences in the children's outcomes from outdoor education. The results revealed different outcomes within different subgroups: The children with an easy or a withdrawal temperament are good functioning both indoor and outdoor. Their outcomes from outdoor education are an increased vitality, which might be seen as a short…

  20. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    Science.gov (United States)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  1. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland.

    Science.gov (United States)

    Błaszczyk, Ewa; Rogula-Kozłowska, Wioletta; Klejnowski, Krzysztof; Kubiesa, Piotr; Fulara, Izabela; Mielżyńska-Švach, Danuta

    2017-01-01

    More than 80% of people living in urban areas who monitor air pollution are exposed to air quality levels that exceed limits defined by the World Health Organization (WHO). Although all regions of the world are affected, populations in low-income cities are the most impacted. According to average annual levels of fine particulate matter (PM2.5, ambient particles with aerodynamic diameter of 2.5 μm or less) presented in the urban air quality database issued by WHO in 2016, as many as 33 Polish cities are among the 50 most polluted cities in the European Union (EU), with Silesian cities topping the list. The aim of this study was to characterize the indoor air quality in Silesian kindergartens based on the concentrations of gaseous compounds (SO 2 , NO 2 ), PM2.5, and the sum of 15 PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), including PM2.5-bound benzo(a)pyrene (BaP), as well as the mutagenic activity of PM2.5 organic extracts in Salmonella assay (strains: TA98, YG1024). The assessment of the indoor air quality was performed taking into consideration the pollution of the atmospheric air (outdoor). I/O ratios (indoor/outdoor concentration) for each investigated parameter were also calculated. Twenty-four-hour samples of PM2.5, SO 2 , and NO 2 were collected during spring in two sites in southern Poland (Silesia), representing urban and rural areas. Indoor samples were taken in naturally ventilated kindergartens. At the same time, in the vicinity of the kindergarten buildings, the collection of outdoor samples of PM2.5, SO 2 , and NO 2 was carried out. The content of BaP and the sum of 15 studied PAHs was determined in each 24-h sample of PM2.5 (indoor and outdoor). In the urban site, statistically lower concentrations of SO 2 and NO 2 were detected indoors compared to outdoors, whereas in the rural site, such a relationship was observed only for NO 2 . No statistically significant differences in the concentrations of PM2.5, PM2.5-bound BaP, and Σ15 PAHs

  2. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    Science.gov (United States)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in

  3. Predicting Use of Outdoor Fall Prevention Strategies: Considerations for Prevention Practices.

    Science.gov (United States)

    Chippendale, Tracy

    2018-01-01

    Outdoor falls are just as common as indoor falls, but have received less attention in research and practice. Behavioral strategies play an important role in outdoor fall prevention. The purpose of this study was to examine predictors of strategy use. Backward stepwise regression was used to study factors associated with use of outdoor fall prevention strategies among a random sample ( N = 120) of community-dwelling seniors. Significant negative predictors of strategy use included higher education levels ( p outdoor fallers and nonfallers in the use of three different types of strategies ( ps outdoor fall prevention strategies. Further study of additional factors is warranted.

  4. A survey exploring self-reported indoor and outdoor footwear habits, foot problems and fall status in people with stroke and Parkinson's.

    Science.gov (United States)

    Bowen, Catherine; Ashburn, Ann; Cole, Mark; Donovan-Hall, Margaret; Burnett, Malcolm; Robison, Judy; Mamode, Louis; Pickering, Ruth; Bader, Dan; Kunkel, Dorit

    Ill-fitting shoes have been implicated as a risk factor for falls but research to date has focused on people with arthritis, diabetes and the general older population; little is known about people with neurological conditions. This survey for people with stroke and Parkinson's explored people's choice of indoor and outdoor footwear, foot problems and fall history. Following ethical approval, 1000 anonymous postal questionnaires were distributed to health professionals, leads of Parkinson's UK groups and stroke clubs in the wider Southampton area, UK. These collaborators handed out survey packs to people with a confirmed diagnosis of stroke or Parkinson's. Three hundred and sixty three completed surveys were returned (218 from people with Parkinson's and 145 from people with stroke). Most respondents wore slippers indoors and walking shoes outdoors and considered comfort and fit the most important factors when buying footwear. Foot problems were reported by 43 % (95 % confidence intervals 36 to 52 %; stroke) and 53 % (95 % confidence interval 46 to 59 %; Parkinson's) of respondents; over 50 % had never accessed foot care support. Fifty percent of all respondents reported falls. In comparison to non-fallers, a greater proportion of fallers reported foot problems (57 %), with greater proportions reporting problems impacting on balance and influencing choice of footwear ( p  footwear habits and choice of footwear; however many did not receive foot care support. These findings highlight that further exploration of footwear and foot problems in these populations is warranted to provide evidence based advice on safe and appropriate footwear to support rehabilitation and fall prevention.

  5. Workload comparison between hiking and indoor physical activity.

    Science.gov (United States)

    Fattorini, Luigi; Pittiglio, Giancarlo; Federico, Bruno; Pallicca, Anastasia; Bernardi, Marco; Rodio, Angelo

    2012-10-01

    Walking is a physical activity able to maintain and improve aerobic fitness. This activity can easily be performed in all seasons both outdoors and indoors, but when it is performed in its natural environment, the use of specific equipment is required. In particular, it has been demonstrated that the use of trekking boots (TBs) induces a larger workload than those used indoors. Because an adequate fitness level is needed to practice hiking in safety, it is useful to know the energy demand of such an activity. This research aims at defining the metabolic engagement of hiking on natural paths with specific equipment at several speeds and comparing this with indoor ones (on a treadmill). This can thence be used to define the load that better reflects the one required to walk on natural paths. The walking energy cost (joules per kilogram per meter) at several speeds (0.28, 0.56, 0.84, 1.11, and 1.39 m·s(-1))-on level natural terrain while wearing suitable footwear (TBs) and on a treadmill at various raising slopes (0, 1, 2, 3, 4%) while wearing running shoes-was measured in 14 healthy young men (age 23.9 ± 2.9 years, stature 1.75 ± 0.04 m, and body mass 72.9 ± 6.3 kg). A physiological evaluation of all the subjects was performed before energy cost measurements. The results showed that outdoors, the oxygen uptake was consistently less than the ventilatory threshold at all speeds tested and that a 3% slope on the treadmill best reflects the outdoor walking energy expenditure. These findings will prove useful to plan proper training for hiking activity or mixed (outdoors and indoors) training program.

  6. Residential indoor air quality guideline : carbon monoxide

    International Nuclear Information System (INIS)

    2010-01-01

    Carbon monoxide (CO) is a tasteless, odourless, and colourless gas that can be produced by both natural and anthropogenic processes, but is most often formed during the incomplete combustion of organic materials. In the indoor environment, CO occurs directly as a result of emissions from indoor sources or as a result of infiltration from outdoor air containing CO. Studies have shown that the use of specific sources can lead to increased concentrations of CO indoors. This residential indoor air quality guideline examined the factors influencing the introduction, dispersion and removal of CO indoors. The health effects of exposure to low and higher concentrations of CO were discussed. Residential maximum exposure limits for CO were presented. Sources and concentrations in indoor environments were also examined. 17 refs., 2 tabs.

  7. A study on seasonal variations of indoor gamma dose in Bangladesh

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2005-01-01

    Monthly variation of gamma dose rate measured in indoor air of buildings of Bangladesh was found to vary cosinusoidally through a period of 1 year. Significant seasonal variations were observed. Maximum dose rate, however, was observed in January and a minimum in July. Dose rate in January was 32% higher than the annual average, whereas dose rate in July was 50% lower. Seasonally varied ventilation and air exchange rates of the houses might play an important role in the observed variation. The average reduction with respect to winter dose was 59% in summer. Because of lower ventilation and air exchange rates between indoor and outdoor atmosphere, it is expected that the indoor dose rate would be higher in basements than that of upper floors. Monthly dose rate was also found to be influenced by the meteorological conditions. Correlations between dose rate and temperature (r 2 =0.85), rainfall (r=-0.83) and atmospheric pressure (r=0.92) were obtained, but no significant correlation (r=-0.45) was seen between dose rate and humidity. The results show that the seasonal variations of indoor dose rates should be taken into account to estimate annual effective dose equivalent. (author)

  8. Indoor NO{sub 2} levels in homes with different sources of air pollution - traffic, gas-use, smoking

    Energy Technology Data Exchange (ETDEWEB)

    Rudnai, P.; Farkas, I.; Bacskai, J.; Sarkany, E. [Bela Johan National Inst. of Hygiene, Budapest (Hungary); Somogyi, J. [Public Health Inst. of County Gyor-Moson-Sopron, Gyor (Hungary)

    1993-12-31

    Outdoor and indoor levels of NO{sub 2} in and around the homes of 300 children living in different parts of two Hungarian towns, Gyor and Sopron, were measured. Possible sources of NO{sub 2} pollution were assessed by questionnaires. NO{sub 2} levels in homes without any further known sources (like gas use for cooking and/or heating and smoking) varied according to the outdoor levels mainly depending on traffic density. Gas heaters had the strongest influence on the indoor NO{sub 2} levels measured in the children`s bedrooms while gas use for cooking and smoking proved to be the second and third most important source of indoor NO{sub 2} pollution. Different outdoor and indoor NO{sub 2} sources should be taken into account when planning the heating and ventilation systems of new buildings. (author)

  9. Indoor Thermal Environment in Tropical Climate Residential Building

    Directory of Open Access Journals (Sweden)

    Jamaludin Nazhatulzalkis

    2014-01-01

    Full Text Available Indoor thermal environment is one of the criteria in sustainable building. This criterion is important in ensuring a healthy indoor environment for the occupants. The consideration of environmental concerns at the early design stage would effectively integrate the sustainability of the building environment. Global climate changes such as global warming do affect human comfort since people spend most of their time and activities in the building. The increasing of urban population required additional housing for households, as well as places to shop, office and other facilities. Occupants are now more conscious the importance of sustainability for a better quality of life. Good thermal environment is essential for human wellness and comfort. A residential environment will influence residents’ health and safety. The global warming increase the earth’s temperature and greenhouse emission to the atmosphere cause adverse effects to the outdoor environment. Residential developments modify the materials, structure and energy balance in urban climate effects of human economic activities. As an indoor environment is influenced by the outdoor condition, the factors affecting indoor thermal environment are crucial in improving a comfortable and healthy environment in residential building. The microclimatic of a site such as temperature and relative humidity, and wind movement led to the variation of indoor thermal environment in the building.

  10. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    Science.gov (United States)

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  11. TOWARDS A FAST, LOW-COST INDOOR MAPPING AND POSITIONING SYSTEM FOR CIVIL PROTECTION AND EMERGENCY TEAMS

    Directory of Open Access Journals (Sweden)

    E. Angelats

    2017-11-01

    Full Text Available Civil protection and emergency teams work usually under very risky conditions that endanger their lives. One of the factors contributing to such risks is the lack of knowledge about their physical environment, especially when working indoors. Mapping and location indoor and outdoor technologies exist; for outdoors, very good levels of precision and accuracy may be obtained using offthe- shelf equipment; on the other side, and although good solutions for indoor environments are available, these require some extra pre-deployed infrastructure in the area to navigate, which is unacceptable in the case of emergency teams. It may be said, then, that no mature indoor + outdoor integrated solution providing the appropriate precision and accuracy for the purposes of emergency teams exist. In this paper, the assessment of a set of currently available sensors (IMUs, RGB-D cameras, GNSS receivers and algorithms is presented to show that it is already possible to build such a solution relying on them – providing that appropriate (indoor lightning and texture conditions exist.

  12. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project)

    DEFF Research Database (Denmark)

    Asikainen, Arja; Carrer, Paolo; Kephalopoulos, Stylianos

    2016-01-01

    ), approximately 90 % of EU citizens live in areas where the World Health Organization (WHO) guidelines for air quality of particulate matter sized PM2.5) are not met. Since sources of pollution reside in both indoor and outdoor air, selecting the most appropriate ventilation strategy is not a simple...... matter (PM2.5), outdoor bioaerosols, volatile organic compounds (VOC), carbon oxide (CO) radon and dampness was estimated. The analysis was based on scenario comparison, using an outdoor-indoor mass-balance model and varying the ventilation rates. Health effects were estimated with burden of diseases (Bo...... air; and (iii) indoor source control, showed that all three approaches are able to provide substantial reductions in the health risks, varying from approximately 20 % to 44 %, corresponding to 400 000 and 900 000 saved healthy life years in EU-26. PM2.5 caused majority of the health effects in all...

  13. Risk of HIV infection among indoor and street sex workers and their use of health services in Belgrade, Serbia.

    Science.gov (United States)

    Ilić, Dragan; Sipetić, Sandra; Bjegović, Vesna

    2010-01-01

    HIV in Serbia is most often transmitted through sexual contact, and therefore numerous prevention activities are geared towards sex workers (SW). To analyse the differences in knowledge, attitudes and risky behaviour between indoor and street SW in Belgrade; to examine the accessibility of health services to this vulnerable group. In this behavioural cross-sectional study, 113 street and 78 indoor SW were included. The sampling method used was snowball samples. Data were gathered through structured questionnaires. Around 15% of respondents used drugs intravenously. Around 60% of SW used a condom during the last sexual intercourse with their private partner, and around 90% with a commercial partner. Indoor SW had lower levels of education more often than outdoor SW, and they used marijuana, sedatives and painkillers on a daily basis. A significantly higher number of indoor SW were informed about HIV, HBV and HCV testing, and that the risk for HIV infection is not lower ifa condom is used exclusively for vaginal sex. Indoor SW reported using health services and testing and counselling for HIV, HBV and HCV more frequently than outdoor SW. Outdoor SW had significantly more sex partners in the previous month than indoor SW. Indoor SW recognized more frequently that providing sex services posed a higher risk for HIV infection. The results of this research study show that even though outdoor SW had higher levels of education than indoor SW, their level of knowledge about HIV transmission was lower and they reported more risky behaviour than indoor SW. Data show that both groups reported not taking care of their health.

  14. Scalable Continuous Range Monitoring of Moving Objects in Symbolic Indoor Space

    DEFF Research Database (Denmark)

    Yang, Bin; Lu, Hua; Jensen, Christian Søndergaard

    2009-01-01

    Indoor spaces accommodate large populations of individuals. The continuous range monitoring of such objects can be used as a foundation for a wide variety of applications, e.g., space planning, way finding, and security. Indoor space differs from outdoor space in that symbolic locations, e...

  15. THERMAL ADAPTATION, CAMPUS GREENING AND OUTDOOR USE IN LAUTECH CAMPUS, OGBOMOSO, NIGERIA

    Directory of Open Access Journals (Sweden)

    Joseph Adeniran ADEDEJI

    2011-12-01

    Full Text Available The interwoven relationship between the use of indoors and outdoors in the tropics as means of thermal adaptation has long been recognized. In the case of outdoors, this is achieved by green intervention of shading trees as adaptive mechanisms through behavioural thermoregulation. Unfortunately, the indoor academic spaces of LAUTECH campus was not provided with necessary outdoor academic learning environment in the general site planning of the campus for use at peak indoor thermal dissatisfaction period considering the tropical climatic setting of the university. The students’ departmental and faculty associations tried to provide parks for themselves as alternatives which on casual observation are of substandard quality and poorly maintained because of lack of institutional coordination and low funding. This study examined the quality and use of these parks for thermal comfort through behavioral adjustment from subjective field evidence with the goal of improvement. To achieve this, twelve parks were selected within the campus. Questionnaires containing use and quality variables were administered randomly upon 160 users of these parks. The data obtained was subjected to descriptive statistical analysis. Results show that the quality of the parks, weather condition, period of the day, and personal psychological reasons of users has great influence on the use of the parks. The study concludes with policy recommendations on improvement of the quality of the parks and the campus outdoors and greenery in general.

  16. ‘Getting Children Outdoors again’ - Outdoor Play for children in a rural North West of Ireland setting: A civic engagement Project

    OpenAIRE

    McGonagle, Michelle

    2017-01-01

    Children’s’ Outdoor play nowadays is the preferred approach to playing indoors which has become a constant focus of influences and powers of technology. Children spend hours on social media sites, isolated playing video games and lost in technologically powered screens (Larson et al, 2011). As a results of this disengagement with outdoors activities, children fall victims to many problems including obesity, social exclusion, and in some cases behavioural issues Fresh air and exercise are prob...

  17. Changes to indoor air quality as a result of relocating families from slums to public housing

    Science.gov (United States)

    Burgos, Soledad; Ruiz, Pablo; Koifman, Rosalina

    2013-05-01

    One largely unstudied benefit of relocating families from slums to public housing is the potential improvement in indoor air quality (IAQ). We compared families that moved from slums to public housing with those that remained living in slums in Santiago, Chile in terms of fine particulate matter (PM2.5) as main indicator of change. A cross-sectional study of 98 relocated families and 71 still living in slums was carried out, obtaining indoor and outdoor samples by a Personal Environmental Monitor. Home characteristics, including indoor air pollution sources were collected through questionnaires. Multivariate regression models included the intervention (public housing or slum), indoor pollution sources, outdoor PM2.5 and family characteristics as predictors. Indoor PM2.5 concentrations were higher in slums (77.8 μg m-3 [SD = 35.7 μg m-3]) than in public housing (55.7 μg m-3 [SD = 34.6 μg m-3], p slum houses. The multivariate analysis showed that housing intervention significantly decreased indoor PM2.5 (10.4 μg m-3) after adjusting by the other predictors. Outdoor PM2.5 was the main predictor of indoor PM2.5. Other significant factors were water heating fuels and indoor smoking. Having infants 1-23 months was associated with a lowering of indoor PM2.5. Our results suggest that a public housing program that moves families from slums to public housing improves indoor air quality directly and also indirectly through air pollution sources.

  18. [Indoor air pollution in southeast Santiago, Chile].

    Science.gov (United States)

    Pino, P; Oyarzún, M; Walter, T; von Baer, D; Romieu, I

    1998-04-01

    Indoor air pollution could play an important role in the susceptibility to respiratory diseases of vulnerable individuals, such as elders and infants. To evaluate indoor air pollution in a low income population of South East Santiago. A domiciliary survey of contaminant sources was carried out in the bouses of a cohort of 522 children less than one year old. Using a case-control design, 121 children consulting for respiratory diseases were considered as cases and 131 healthy infants of the same age and sex were considered as controls. In the houses of both groups, active monitors for particulate matter (PM10) and passive monitors for NO2 were installed. Forty two percent of fathers and 30% of mothers were smokers, and in two thirds of the families there was at least one smoker. Eighty five percent used portable heaters in winter. Of these, 77% used kerosene as fuel. Only 27% had water heating appliances. The rest heated water on the kitchen store or on bonfires. Most kitchen stoves used liquid gas as fuel. Twenty four hour PM10 was 109 +/- 3.2 micrograms/m3. Mean indoor and outdoor NO2 in 24 h was 108 +/- 76.3 and 84 +/- 53.6 micrograms/m3 respectively. Indoor NO2 levels were related to the use of heating devices and smoking. No differences in PM10 and NO2 levels were observed between cases and controls. There is a clear relationship between indoor pollution and contaminating sources. Indoor NO2 levels are higher than outdoors.

  19. Outdoor exercise, well-being and connectedness to nature = Exercício físico outdoor, bem-estar e conectividade com a natureza = Ejercicio físico outdoor, bienestar y conectividad con la naturaleza

    Directory of Open Access Journals (Sweden)

    Loureiro, Ana

    2014-01-01

    Full Text Available Os benefícios do contacto com a natureza no bem-estar são suportados pela pesquisa sobre ambientes restauradores. Estudos na área do exercício físico reconhecem igualmente benefícios físicos e psicológicos do exercício outdoor, particularmente em ambientes naturais. Combinando estas duas áreas, pretendemos estudar a relação entre o exercício físico outdoor e o bem-estar, e o papel da conectividade com a natureza nessa relação. Participam 282 praticantes de exercício físico, que responderam a um questionário relatando o nível de actividade física, a experiência subjectiva com o exercício, o estado afectivo e a conectividade com a natureza. Os resultados mostram que os praticantes de exercício outdoor e indoor relatam mais emoções positivas e melhor bem-estar associado ao exercício que os praticantes apenas indoor. Além disso, a conectividade com a natureza é um preditor do bem-estar naquele grupo de praticantes. Discutem-se as implicações dos benefícios do exercício outdoor na promoção de estilos de vida saudáveis

  20. A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentration and air exchange rate in a residence.

    Science.gov (United States)

    Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will

    2004-01-01

    A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but

  1. Risk evaluation and control strategies for indoor radon: a brief discussion

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1994-01-01

    Average risks of death estimated for radon are larger than those for many exposures in the outdoor environment, but similar to some in industrial settings. However, the indoor environment differs in regard to cost, benefit, responsibility, and distribution of risks from the outdoor and occupational settings, where frameworks for setting risk-limiting objectives and strategies have already been developed substantially. This indicates the need to develop a conceptual framework for evaluating risks in the indoor environment, within which the objectives of radon control strategies can be sensibly chosen. Nevertheless, the range of estimated radon risks and of recent radon control strategies suggest near-term elements of any strategy, i.e. accurate and effective public information, as well as reliable monitoring and control capabilities, and a focus on areas where most high residential levels occur. Developing a conceptual framework for evaluating indoor risks will permit the formulation of suitable aims on average indoor exposures and lower exposure situations. (author)

  2. Modelling of indoor exposure to nitrogen dioxide in the UK

    Science.gov (United States)

    Dimitroulopoulou, C.; Ashmore, M. R.; Byrne, M. A.; Kinnersley, R. P.

    A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO 2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5-21 ppb for homes with no source, and 21-27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO 2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.

  3. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  4. Risk of HIV infection among indoor and street sex workers and their use of health services in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Ilić Dragan

    2010-01-01

    Full Text Available Introduction. HIV in Serbia is most often transmitted through sexual contact, and therefore numerous prevention activities are geared towards sex workers (SW. Objective. To analyze the differences in knowledge, attitudes and risky behaviour between indoor and street SW in Belgrade; to examine the accessibility of health services to this vulnerable group. Methods. In this behavioural cross-sectional study, 113 street and 78 indoor SW were included. The sampling method used was snowball samples. Data were gathered through structured questionnaires. Results. Around 15% of respondents used drugs intravenously. Around 60% of SW used a condom during the last sexual intercourse with their private partner, and around 90% with a commercial partner. Indoor SW had lower levels of education more often than outdoor SW, and they used marijuana, sedatives and painkillers on a daily basis. A significantly higher number of indoor SW were informed about HIV, HBV and HCV testing, and that the risk for HIV infection is not lower if a condom is used exclusively for vaginal sex. Indoor SW reported using health services and testing and counseling for HIV, HBV and HCV more frequently than outdoor SW. Outdoor SW had significantly more sex partners in the previous month than indoor SW. Indoor SW recognized more frequently that providing sex services posed a higher risk for HIV infection. Conclusion. The results of this research study show that even though outdoor SW had higher levels of education than indoor SW, their level of knowledge about HIV transmission was lower and they reported more risky behaviour than indoor SW. Data show that both groups reported not taking care of their health.

  5. Indoor Air Pollution

    OpenAIRE

    Kirk R. Smith

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  6. Source apportionment for indoor PM2.5 and elemental concentrations using by a positive matrix factorization and an instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lim, Jong Myoung; Moon, Jong Hwa; Chung, Yong Sam; Jung, Byoung Won; Lee, Jin Hong

    2009-01-01

    Airborne particulate matters, especially the PM2.5 (aerodynamic equivalent diameter, AED, less than 2.5 μm) fraction has been important. This is because of their potential for deposition on to the human respiratory system being accompanied by many harmful trace metals (such as As, Cd, Cr, Cu, Mn, Pb, Se, and Zn). The indoor air quality has become a great concern since late 1980s, because the population spends a majority of their time in various indoor environments. The indoor particulate matter may be influenced from outdoor environment and indoor sources such as environmental tobacco smoke (ETS), combustion devices, cooking, etc. In this study, we undertake the measurements of about 26 elements using instrumental neutron activation analysis (INAA). Based on our measurement data, we characterize concentration status and mutual relationship between indoor and adjacent outdoor air quality. Next, sources at indoor/outdoor environment were identified and the contributions of each source were quantified by positive matrix factorization (PMF)

  7. Indoor environment and allergy except housedust mite; Jukankyo to allergy ni kansuru dani igai no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, F.; Nishima, S.

    1998-05-31

    Pathopoiesis factors of allergic diseases include immune antibody productivity sthenia reacting with antigens such as mite or the like in allergy reaction which is regarded as based on genetic fact (atopic diathesis), and environmental factors as external factors. The environmental factors are further classified into specific factors (antigens) and nonspecific factors. The former factors include the indoor factors such as mite, mould, animals bred indoor, etc., and outdoor factors such as pollen and so on. The latter factors include indoor factors such as passive smoking, carbon monoxide, nitrogen oxides, formaldehyde, etc., and outdoor factors such as sulfur oxides, nitrogen oxides, airborne particles and so on. In this paper, the environmental factors in relation to allergic diseases expect mite are introduced. Besides mould, cockroach/insect, fur dust and dandruff of animals, adjustment of room temperature/humidity, smoking, indoor and outdoor air pollution are mentioned as the environmental factors expect mite, and the cause-effect relations thereof are explained. 24 refs., 3 figs., 7 tabs.

  8. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  9. Teachers’ intentions with outdoor teaching in school forests: Skills and knowledge teachers want students to develop

    Directory of Open Access Journals (Sweden)

    Birgitta Wilhelmsson

    2012-06-01

    Full Text Available There is an interest among Swedish teachers to locate teaching outdoors. This study focuses on four teachers in grades 4-6, to explore their intentions and objectives with regular teaching outdoors. Datasources consist of semi-structured interviews, descriptions on successful activities, and reflections on metaphors. The use of intentional analysis and Bloom’s revised taxonomy on teachers’ objectives show that the teachers stress the out-of-school learning that draws on the actual world and concrete material. Yet their objectives with these authentic experiences are diverse. Two teachers have mainly cognitive objectives with a holistic view of knowledge where outdoor and indoor interact. To become knowledgeable, each individual student needs teaching in this proper context. The other two teachers primarily have affective objectives, in a dichotomy between learning theoretical knowledge indoors, and learning practical, concrete knowledge outdoors. They consider the outdoor arena as crucial for students with learning difficulties.

  10. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    Science.gov (United States)

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the

  11. Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: The Seven Northeastern Cities (SNEC) Study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fan, E-mail: liufan-sky@163.com [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning Province 110001 (China); Zhao, Yang, E-mail: zhaoyang_cmu@126.com [Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province 110001 (China); Liu, Yu-Qin, E-mail: xinxin_lyq@163.com [Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province 110001 (China); Liu, Yang, E-mail: liuyang071506@126.com [Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province 110001 (China); Sun, Jing, E-mail: sunjingjl_2007@126.com [Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province 110001 (China); Huang, Mei-Meng, E-mail: gghuangmeimeng@163.com [Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning Province 110001 (China); Liu, Yi, E-mail: liuyi256@126.com [Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning Province 110001 (China); Dong, Guang-Hui, E-mail: donggh5@mail.sysu.edu.cn [Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080 (China)

    2014-11-01

    Background: Both the levels and patterns of outdoor and indoor air pollutants have changed dramatically during the last decade in China. However, few studies have evaluated the effects of the present air pollution on the health of Chinese children. This study examines the association between outdoor and indoor air pollution and respiratory diseases among children living in Liaoning, a heavy industrial province of China. Methods: A cross-sectional study of 23,326 Chinese children aged 6 to 13 years was conducted in 25 districts of 7 cities in Northeast China during 2009. Three-year (2006–2008) average concentrations of particles with an aerodynamic diameter of ≤ 10 μm (PM{sub 10}), sulfur dioxide (SO{sub 2}), nitrogen dioxides (NO{sub 2}), and ozone (O{sub 3}) were calculated from monitoring stations in each of the 25 districts. We used two-level logistic regression models to examine the effects of yearly variations in exposure to each pollutant, controlling for important covariates. Results: The prevalence of respiratory symptoms was higher for those dwelling close to a busy road, those living near smokestacks or factories, those living with smokers, those living in one-story houses typically with small yards, and those with home renovation, bedroom carpet or pets. Ventilation device use was associated with decreased odds of asthma in children. The adjusted odds ratio for diagnosed-asthma was 1.34 (95% confidence interval [CI], 1.24–1.45) per 31 μg/m{sup 3} increase in PM{sub 10}, 1.23 (95%CI, 1.14–1.32) per 21 μg/m{sup 3} increase in SO{sub 2}, 1.25 (95%CI, 1.16–1.36) per 10 μg/m{sup 3} increase in NO{sub 2}, and 1.31 (95%CI, 1.21–1.41) per 23 μg/m{sup 3} increase in O{sub 3}, respectively. Conclusion: Outdoor and indoor air pollution was associated with an increased likelihood of respiratory morbidity among Chinese children. - Highlights: • We studied air pollution and respiratory health in 23,326 Chinese children. • Home renovation, carpet

  12. Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: The Seven Northeastern Cities (SNEC) Study

    International Nuclear Information System (INIS)

    Liu, Fan; Zhao, Yang; Liu, Yu-Qin; Liu, Yang; Sun, Jing; Huang, Mei-Meng; Liu, Yi; Dong, Guang-Hui

    2014-01-01

    Background: Both the levels and patterns of outdoor and indoor air pollutants have changed dramatically during the last decade in China. However, few studies have evaluated the effects of the present air pollution on the health of Chinese children. This study examines the association between outdoor and indoor air pollution and respiratory diseases among children living in Liaoning, a heavy industrial province of China. Methods: A cross-sectional study of 23,326 Chinese children aged 6 to 13 years was conducted in 25 districts of 7 cities in Northeast China during 2009. Three-year (2006–2008) average concentrations of particles with an aerodynamic diameter of ≤ 10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxides (NO 2 ), and ozone (O 3 ) were calculated from monitoring stations in each of the 25 districts. We used two-level logistic regression models to examine the effects of yearly variations in exposure to each pollutant, controlling for important covariates. Results: The prevalence of respiratory symptoms was higher for those dwelling close to a busy road, those living near smokestacks or factories, those living with smokers, those living in one-story houses typically with small yards, and those with home renovation, bedroom carpet or pets. Ventilation device use was associated with decreased odds of asthma in children. The adjusted odds ratio for diagnosed-asthma was 1.34 (95% confidence interval [CI], 1.24–1.45) per 31 μg/m 3 increase in PM 10 , 1.23 (95%CI, 1.14–1.32) per 21 μg/m 3 increase in SO 2 , 1.25 (95%CI, 1.16–1.36) per 10 μg/m 3 increase in NO 2 , and 1.31 (95%CI, 1.21–1.41) per 23 μg/m 3 increase in O 3 , respectively. Conclusion: Outdoor and indoor air pollution was associated with an increased likelihood of respiratory morbidity among Chinese children. - Highlights: • We studied air pollution and respiratory health in 23,326 Chinese children. • Home renovation, carpet, and pet were associated with increased ORs of asthma

  13. A Study on Public Opinion Poll and Policy on Indoor Air Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Lee, H.S.; Kong, S.Y.; Ku, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The purpose of this study is to review previous studies on indoor air pollution and to propose national strategies and policy measures for protecting public health from indoor air pollution based on the results of public survey research. Indoor air has the potential to be polluted by hazardous materials that might lead to serious health problems. It is well known that the indoor spaces are more polluted than outdoor ones, which can be a major health problem for those that live in urban areas who spend most of their time indoors. In Korea, studies on indoor air pollution are usually conducted under the auspices of academic research, which only focus on particular types of indoor spaces and certain concepts of indoor air quality. Thus, at present, the studies on the policies or policy measures concerning indoor air quality management are difficult to find in the country. The governmental agencies that are presently involved in the management of indoor air quality include: the Ministry of Health and Welfare, Ministry of Construction and Transportation, Ministry of Education and Human Resources Development, and Ministry of Environment. However, due to differing regulatory standards between the concerned agencies, the national management of indoor air quality has so far proven to be ineffective. Although the Ministry of Environment recently proposed a law to manage indoor air quality, it is only focuses on managing particular types of indoor spaces not regulated by other governmental bodies and is not effective in the effort towards a national managing system for indoor air pollution. According to a survey conducted by the Korea Environment Institute (KEI), the residents of the Seoul metropolitan area have been felt that environmental pollution negatively affects their health, and especially consider outdoor air pollution to be the most harmful type of pollution. Although these urban residents spend more than 20 hours a day indoors, the survey shows that they do not

  14. Commuters’ Personal Exposure to Ambient and Indoor Ozone in Athens, Greece

    Directory of Open Access Journals (Sweden)

    Krystallia K. Kalimeri

    2017-07-01

    Full Text Available This pilot study aimed to monitor the residential/office indoor, outdoor, and personal levels of ozone for people living, working, and commuting in Athens, Greece. Participants (16 persons of this study worked at the same place. Passive sampling analysis results did not indicate any limit exceedance (Directive 2008/50/EC: 120 µg/m3, World Health Organization (WHO Air Quality Guidelines 2005: 100 µg/m3. The highest “house-outdoor” concentration was noticed for participants living in the north suburbs of Athens, confirming the photochemical ozone formation at the northern parts of the basin during southwestern prevailing winds. The residential indoor to outdoor ratio (I/O was found to be significantly lower than unity, underlying the outdoor originality of the pollutant. The highest “office-indoor” concentration was observed in a ground-level building, characterized by the extensive use of photocopy machines and printers. Personal ozone levels were positively correlated only with indoor-office concentrations. A clear correlation of personal ozone levels to the time spent by the individuals during moving/staying outdoors was observed. On the other hand, no correlation was observed when focusing only on commuting time, due to the fact that transit time includes both on-foot and in-vehicle time periods, therefore activities associated with increased exposure levels, but also with pollutants removal by recirculating air filtering systems, respectively.

  15. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska-Szynkiewicz

    2016-09-01

    Full Text Available Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  16. Providing better indoor environmental quality brings economicbenefits

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Seppanen, Olli

    2007-06-01

    This paper summarizes the current scientific evidence that improved indoor environmental quality can improve work performance and health. The review indicates that work and school work performance is affected by indoor temperature and ventilation rate. Pollutant source removal can sometimes improve work performance. Based on formal statistical analyses of existing research results, quantitative relationships are provided for the linkages of work performance with indoor temperature and outdoor air ventilation rate. The review also indicates that improved health and related financial savings are obtainable from reduced indoor tobacco smoking, prevention and remediation of building dampness, and increased ventilation. Example cost-benefit analyses indicate that many measures to improve indoor temperature control and increase ventilation rates will be highly cost effective, with benefit-cost ratios as high as 80 and annual economic benefits as high as $700 per person.

  17. Indoor-outdoor particle effects on health in middle-aged and elderly

    DEFF Research Database (Denmark)

    Karottki, Dorina Gabriela; Bekö, Gabriel; Hemmingsen, Jette G.

    2016-01-01

    support detrimental effect of UFP from traffic on vascular function. Indoor UFP and PM2.5 might contribute to cardiovascular risk through endothelial damage and vascular dysfunction, respectively, whereas indoor UFP dominated by candle burning appears to have adverse lung effects. The biomarkers provided...

  18. Potential exposures associated with indoor marijuana growing operations.

    Science.gov (United States)

    Martyny, John W; Serrano, Kate A; Schaeffer, Joshua W; Van Dyke, Mike V

    2013-01-01

    We entered a total of 30 indoor marijuana grow operations (IMGO) with law enforcement investigators in order to determine potential exposures to first responders. Samples for airborne fungal spores, volatile organic compounds, carbon dioxide, carbon monoxide, and delta-9-tetrahydrocannabinol (THC) were obtained as well as the identification of chemicals utilized in the IMGO. The chemicals utilized within the IMGOs were primarily pesticides and fertilizers with none showing high toxicity. Although several of the IMGOs had CO2 enrichment processes involving combustion, CO levels were not elevated. THC levels were identified on surfaces within the IMGOs and on the hands of the investigators. Surface levels ranged from indoor and outdoor samples with Cladosporium sp. the predominant outdoor species and Penicillium sp. the predominant indoor species. We concluded that the potential increase in fungal spore concentrations associated with the investigation and especially removal of the marijuana plants could potentially expose responders to levels of exposure consistent with those associated with mold remediation processes and that respiratory protection is advisable.

  19. Long term and equilibrium factor indoor radon measurements

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Navarrete, M.; Cabrera, L.; Ramirez, A.; Elizarraras, V.

    1998-01-01

    This paper presents the annual radon gas concentrations obtained during the 1994-1995 monitoring campaign using passive electret system (type E-PERM). Radon levels were measured in 154 single family dwellings, in normal occupancy conditions (open house condition) in the metropolitan zone of Mexico City. At the same time radon monitoring was performed outdoors. The results show the general log-normal distribution of integrated indoor radon concentration with an annual indoor mean of 3.8 pCi x l -1 . The seasonal variations show the minimum mean values in the summer season which are 39% lower than that in autumn. Equilibrium factors (F) were measured in 12 typical houses both in autumn and winter using a continuous working level monitor for short-lived radon decay products and H-chamber loaded with a short term electret (HST, E-PERM) for radon gas. The obtained total mean equilibrium factors are: F=0.41±0.17 and F=0.29±0.04 for indoor and outdoor, respectively. A quality program was also improved. (author)

  20. Indoor environmental quality in French dwellings and building characteristics

    Science.gov (United States)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  1. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure.

    Science.gov (United States)

    Morawska, L; Ayoko, G A; Bae, G N; Buonanno, G; Chao, C Y H; Clifford, S; Fu, S C; Hänninen, O; He, C; Isaxon, C; Mazaheri, M; Salthammer, T; Waring, M S; Wierzbicka, A

    2017-11-01

    It has been shown that the exposure to airborne particulate matter is one of the most significant environmental risks people face. Since indoor environment is where people spend the majority of time, in order to protect against this risk, the origin of the particles needs to be understood: do they come from indoor, outdoor sources or both? Further, this question needs to be answered separately for each of the PM mass/number size fractions, as they originate from different sources. Numerous studies have been conducted for specific indoor environments or under specific setting. Here our aim was to go beyond the specifics of individual studies, and to explore, based on pooled data from the literature, whether there are generalizable trends in routes of exposure at homes, schools and day cares, offices and aged care facilities. To do this, we quantified the overall 24h and occupancy weighted means of PM 10 , PM 2.5 and PN - particle number concentration. Based on this, we developed a summary of the indoor versus outdoor origin of indoor particles and compared the means to the WHO guidelines (for PM 10 and PM 2.5 ) and to the typical levels reported for urban environments (PN). We showed that the main origins of particle metrics differ from one type of indoor environment to another. For homes, outdoor air is the main origin of PM 10 and PM 2.5 but PN originate from indoor sources; for schools and day cares, outdoor air is the source of PN while PM 10 and PM 2.5 have indoor sources; and for offices, outdoor air is the source of all three particle size fractions. While each individual building is different, leading to differences in exposure and ideally necessitating its own assessment (which is very rarely done), our findings point to the existence of generalizable trends for the main types of indoor environments where people spend time, and therefore to the type of prevention measures which need to be considered in general for these environments. Copyright © 2017 The

  2. An Efficient Shortest Path Routing Algorithm for Directed Indoor Environments

    Directory of Open Access Journals (Sweden)

    Sultan Alamri

    2018-03-01

    Full Text Available Routing systems for outdoor space have become the focus of many research works. Such routing systems are based on spatial road networks where moving objects (such as cars are affected by the directed roads and the movement of traffic, which may include traffic jams. Indoor routing, on the other hand, must take into account the features of indoor space such as walls and rooms. In this paper, we take indoor routing in a new direction whereby we consider the features that a building has in common with outdoor spaces. Inside some buildings, there may be directed floors where moving objects must move in a certain direction through directed corridors in order to reach a certain location. For example, on train platforms or in museums, movement in the corridors may be directed. In these directed floor spaces, a routing system enabling a visitor to take the shortest path to a certain location is essential. Therefore, this work proposes a new approach for buildings with directed indoor spaces, where each room can be affected by the density of the moving objects. The proposed system obtains the shortest path between objects or rooms taking into consideration the directed indoor space and the capacity of the objects to move within each room/cell.

  3. Using PIV to determine relative pressures in a stenotic phantom under steady flow based on the pressure-poisson equation.

    Science.gov (United States)

    Khodarahmi, Iman; Shakeri, Mostafa; Sharp, M; Amini, Amir A

    2010-01-01

    Pressure gradient across a Gaussian-shaped 87% area stenosis phantom was estimated by solving the pressure Poisson equation (PPE) for a steady flow mimicking the blood flow through the human iliac artery. The velocity field needed to solve the pressure equation was obtained using particle image velocimetry (PIV). A steady flow rate of 46.9 ml/s was used, which corresponds to a Reynolds number of 188 and 595 at the inlet and stenosis throat, respectively (in the range of mean Reynolds number encountered in-vivo). In addition, computational fluid dynamics (CFD) simulation of the same flow was performed. Pressure drops across the stenosis predicted by PPE/PIV and CFD were compared with those measured by a pressure catheter transducer. RMS errors relative to the measurements were 17% and 10% for PPE/PIV and CFD, respectively.

  4. Indoor air quality in the Greater Beirut area: a characterization and modeling assessment

    International Nuclear Information System (INIS)

    El-Fadel, Mutasem; El-Hougeiri, Nisrine; Oulabi, Mawiya

    2003-01-01

    This report presents the assessment of IAQ at various environments selected from different geographic categories from the Greater Beirut area (GBA) in Lebanon. For this purpose, background information about indoor air quality was reviewed, existing conditions were characterized, an air-sampling program was implemented and mathematical modeling was conducted. Twenty-eight indoor buildings were selected from various geographic categories representing different environments (commercial and residential...). Indoor and outdoor air samples were collected and analyzed using carbon monoxide (CO), particulate matter (TSP), nitrogen dioxide (NO 2 ) and total volatile organic compounds (TVOC) as indicators of indoor air pollution (IAP).Samples were further analyzed using the energy dispersive x-ray fluorescence technique (EDXRF) for the presence of major priority metals including iron (Fe), calcium (Ca), zinc (Zn), lead (Pb), manganese (Mn), copper (Cu) and bromine (Br). Indoor and outdoor measured levels were compared to the American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) and health-based National Ambient Air Quality standards (NAAQS), respectively. For the priority metals, on the other hand, indoor measured values were compared to occupational standards recommended by the National Institute of Occupational Safety and Health (NIOSH) and Occupational Safety and Health Administration (OSHA)

  5. Radon survey in outdoor workplaces of the Tsugaru area

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    We previously surveyed indoor Rn concentration in homes throughout Aomori Prefecture from 1991 to 1995, and found a mean Rn concentration of 9 Bq m -3 . For accurate evaluation of radiation dose from Rn, its concentration not only in the home but also in workplaces and schools is important, since workers and students spend approximately one-third of the day in these places. Then, we obtained indoor Rn concentrations in several indoor workplaces and schools in Aomori Prefecture. Now, measurements of Rn in outdoor workplaces have been planned for the prefecture during a two-year period. Results for half the prefecture, the Tsugaru area, are described here. Passive Rn detectors using polycarbonate film were employed for long-term monitoring. Diurnal variations of Rn and its daughter nuclides were measured by an active Rn detector with an ionization chamber and a working level meter, respectively. The mean Rn concentration obtained with the passive detectors was approximately 6 Bq m -3 in the outdoor workplaces, and lower than that in the indoor workplaces and school (14 Bq m -3 ). The Rn concentrations for fishing boats and harbors were slightly lower than typical values and some data for forests were higher than other workplaces. The diurnal variations, i.e. higher concentrations at night and lower ones during the day, were observed by the active detectors. (author)

  6. Myopic shift and outdoor activity among primary school children: one-year follow-up study in Beijing.

    Directory of Open Access Journals (Sweden)

    Yin Guo

    Full Text Available PURPOSE: To assess whether a change in myopia related oculometric parameters of primary school children in Beijing was associated with indoors and outdoors activity. METHODS: The longitudinal school-based study included school children who were examined in 2011 and who were re-examined in 2012. The children underwent a comprehensive eye examination including ocular biometry by optical low-coherence reflectometry and non-cycloplegic refractometry. Parents and children had a detailed interview including questions on time spent indoors and outdoors. RESULTS: Out of 681 students examined at baseline, 643 (94.4% returned for follow-up examination. Within the one-year period, mean time spent daily outdoors increased by 0.4±0.9 hours, mean axial length by 0.26±0.49 mm, the ratio of axial length divided by anterior corneal curvature (AL/CC by 0.03±0.06, and myopic refractive error by -0.06±0.89 diopters. In multivariate analysis, elongation of axial length was significantly associated with less total time spent outdoors (P = 0.02; standardized coefficient beta -0.12 and more time spent indoors with studying (P = 0.007; beta: 0.14 after adjustment for maternal myopia (P = 0.02; beta: 0.12. An increase in AL/CC was significantly associated with less time spent outdoors (P = 0.01; beta:-0.12 after adjustment for paternal myopia (P = 0.003; beta: 0.15 and if region of habitation was excludedors for leisure (P = 0.006; beta:-0.13, with less total time spent outdoors (P = 0.04; beta:-0.10, or with more time spent i. An increase in myopic refractive error, after adjustment for age, was significantly associated with less time spent outdo ndoors with studying (P = 0.005; beta: 0.13. CONCLUSIONS: A change in oculometric parameters indicating an increase in myopia was significantly associated with less time spent outdoors and more time spent indoors in school children in Greater Beijing within a study period of one year. Our

  7. Impact of intentionally introduced sources on indoor VOC levels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.S. [BOVAR Environmental, Downsview, Ontario (Canada); Otson, R. [Health Canada, Ottawa, Ontario (Canada). Environmental Health Centre

    1997-12-31

    The concentrations of 33 target volatile organic compounds (VOC) were measured in outdoor air and in indoor air before and after the introduction of dry-cleaned clothes, and consumer products into two suburban homes. Emissions from the household products (air fresheners, furniture polishes, mothballs, and dry-cleaned clothes), showering, and two paints were analyzed to obtain source profiles. There were measurable increases in the 24 h average concentrations for 10 compounds in one house and 8 compounds in the second house after introduction of the sources. A contribution by showering to indoor VOC was not evident although the impact of the other sources and outdoor air could be discerned, based on results for the major constituents of source emissions. Also, contributions by paints, applied three to six weeks prior to the monitoring, to indoor VOC concentrations were evident. The pattern of concentrations indicated that sink effects need to be considered in explaining the indoor concentrations that result when sources are introduced into homes. Quantitative estimates of the relative contributions of the sources to indoor VOC levels were not feasible through the use of chemical mass balance since the number of tracer species detected (up to 6) and that could be used for source apportionment was similar to the number of sources to be apportioned (up to 7).

  8. INDOOR LOCALIZATION USING WI-FI BASED FINGERPRINTING AND TRILATERATION TECHIQUES FOR LBS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Chan

    2012-06-01

    Full Text Available The past few years have seen wide spread adoption of outdoor positioning services, mainly GPS, being incorporated into everyday devices such as smartphones and tablets. While outdoor positioning has been well received by the public, its indoor counterpart has been mostly limited to private use due to its higher costs and complexity for setting up the proper environment. The objective of this research is to provide an affordable mean for indoor localization using wireless local area network (WLAN Wi-Fi technology. We combined two different Wi-Fi approaches to locate a user. The first method involves the use of matching the pre-recorded received signal strength (RSS from nearby access points (AP, to the data transmitted from the user on the fly. This is commonly known as "fingerprint matching". The second approach is a distance-based trilateration approach using three known AP coordinates detected on the user's device to derive the position. The combination of the two steps enhances the accuracy of the user position in an indoor environment allowing location-based services (LBS such as mobile augmented reality (MAR to be deployed more effectively in the indoor environment. The mapping of the RSS map can also prove useful to IT planning personnel for covering locations with no Wi-Fi coverage (ie. dead spots. The experiments presented in this research helps provide a foundation for the integration of indoor with outdoor positioning to create a seamless transition experience for users.

  9. Indoor Localization Using Wi-Fi Based Fingerprinting and Trilateration Techiques for Lbs Applications

    Science.gov (United States)

    Chan, S.; Sohn, G.

    2012-06-01

    The past few years have seen wide spread adoption of outdoor positioning services, mainly GPS, being incorporated into everyday devices such as smartphones and tablets. While outdoor positioning has been well received by the public, its indoor counterpart has been mostly limited to private use due to its higher costs and complexity for setting up the proper environment. The objective of this research is to provide an affordable mean for indoor localization using wireless local area network (WLAN) Wi-Fi technology. We combined two different Wi-Fi approaches to locate a user. The first method involves the use of matching the pre-recorded received signal strength (RSS) from nearby access points (AP), to the data transmitted from the user on the fly. This is commonly known as "fingerprint matching". The second approach is a distance-based trilateration approach using three known AP coordinates detected on the user's device to derive the position. The combination of the two steps enhances the accuracy of the user position in an indoor environment allowing location-based services (LBS) such as mobile augmented reality (MAR) to be deployed more effectively in the indoor environment. The mapping of the RSS map can also prove useful to IT planning personnel for covering locations with no Wi-Fi coverage (ie. dead spots). The experiments presented in this research helps provide a foundation for the integration of indoor with outdoor positioning to create a seamless transition experience for users.

  10. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  11. Natural indoor gamma background in Coonoor environment of South India

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikand, N.; Raghunath, V.M.

    2002-01-01

    Indoor natural radiation dose existing in dwellings of Coonoor have been estimated using thermoluminescent dosimeters. TLDs are displayed in indoors and are replaced after three-month period. The seasonal averages of the dose rate and the annual effective dose equivalent are calculated from the measured results. Geographical and seasonal variations as well as the differences between indoor to outdoor dose rates have also been studied. Very good correlation exists between the indoor dose rates measured by LTD and environmental radiation dosimeter with correlation coefficient of 0.91. The annual effective dose equivalent to the Coonoor population due to indoor gamma radiation was estimated to be 970 μSv/y for the period of 1997-1998. (author)

  12. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    Science.gov (United States)

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight

  13. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru

    Directory of Open Access Journals (Sweden)

    Lindsay J. Underhill

    2015-10-01

    Full Text Available The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5, nitrogen dioxide (NO2, and black carbon (BC were measured OPEN ACCESS Int. J. Environ. Res. Public Health 2015, 12 13467 during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM2.5: 20.0 vs. 16.9 μg/m3, BC: 7.6 vs. 8.1 μg/m3, NO2: 7.3 vs. 7.5 ppb, and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM2.5 (rs = −0.42, p = 0.01 and NO2 (rs = −0.36, p = 0.03, and outdoor BC concentrations in the winter (rs = −0.51, p = 0.03. Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.

  14. Education for sustainable development using indoor and outdoor activities

    Science.gov (United States)

    Žigon, Lenka

    2016-04-01

    Environmental education became an important part of our development in the last years. We put a lot of effort into a task how to improve students'values, skills, understanding and how to significantly enhance their learning and achievements regarding ecological problems. At the same time we also know that environmental learning is easier when our students have the opportunity to feel, see, touch, taste and smell the nature. Therefore teachers in my school develop regular access to the outdoors as a learning resource. Students understand the impact of their activities on the environment and they also like to participate in the nature protection. My school (Biotechnical Centre)is an example of educational centre where different research and development programes are strongly oriented to the sustainable development. Students are educated to become experts in biotechnology, agronomy, food technology and horticulture. At the same time they are educated how to care for the nature. The institution itself cooperates with different fields of economy (farms, food - baker industry, floristry, country design etc.). For these reasons the environmental education is an essential dimension of basic education focused on a sphere of interaction that lies at the root of personal and social development. We try to develop different outdoor activities through all the school year. These activities are: analyse the water quality; research waste water treatment plants; exploration of new food sources (like aquaponics - where fish and plants grow together); collecting plants with medical activities; care for the plants in the school yard; growing new plants in the poly tunnel; learning about unknown plants - especially when visiting national and regional parks; selling different things in the school shop - also for local citizens; participating in the world wide activity - "Keep the country tidy" etc. Students and teachers enjoy to participate in different outdoor activities; we both

  15. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups.

    Science.gov (United States)

    Pilidis, Georgios A; Karakitsios, Spyros P; Kassomenos, Pavlos A; Kazos, Elias A; Stalikas, Constantine D

    2009-03-01

    In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants.

  16. Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications.

    Science.gov (United States)

    Dieng, Hamady; Saifur, Rahman G M; Hassan, Ahmad Abu; Salmah, M R Che; Boots, Michael; Satho, Tomomitsu; Jaal, Zairi; AbuBakar, Sazaly

    2010-07-27

    The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities. In a series of experiments involving outdoors and indoors breeding populations, we found that Ae. albopictus lives longer in the indoor environment. We also observed increased nighttime biting activity and lifetime fecundity in indoor/domestic adapted females, although they were similar to recently colonized females in body size. Taken together these data suggest that accommodation of Ae. albopictus to indoor/domestic environment may increase its lifespan, blood feeding success, nuisance and thus vectorial capacity (both in terms of increased vector-host contacts and vector population density). These changes in the breeding behavior of Ae. albopictus, a potential vector of several human pathogens including dengue viruses, require special attention.

  17. Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2017-07-01

    Full Text Available Over 70% of a pupil’s school life is spent inside a classroom, and indoor air quality has a significant impact on students’ attendance and learning potential. Therefore, the indoor air quality in primary school buildings is highly important. This empirical study investigates the indoor air quality in four naturally ventilated schools in China, with a focus on four parameters: PM2.5, PM10, CO2, and temperature. The correlations between the indoor air quality and the ambient air pollution, building defects, and occupants’ activities have been identified and discussed. The results indicate that building defects and occupants’ activities have a significant impact on indoor air quality. Buildings with better air tightness have a relatively smaller ratio of indoor particulate matter (PM concentrations to outdoor PM concentrations when unoccupied. During occupied periods, the indoor/outdoor (I/O ratio could be larger than 1 due to internal students’ activities. The indoor air temperature in winter is mainly determined by occupants’ activities and the adiabatic ability of a building’s fabrics. CO2 can easily exceed 1000 ppm on average due to the closing of windows and doors to keep the inside air warmer in winter. It is concluded that improving air tightness might be a way of reducing outdoor air pollutants’ penetration in naturally ventilated school buildings. Mechanical ventilation with air purification could be also an option on severely polluted days.

  18. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Meijer, Arjen; Demou, Evangelia

    2015-01-01

    of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking...

  19. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  20. Language Learning in Outdoor Environments: Perspectives of preschool staff

    Directory of Open Access Journals (Sweden)

    Martina Norling

    2015-03-01

    Full Text Available Language environment is highlighted as an important area in the early childhood education sector. The term language environment refers to language-promoting aspects of education, such as preschool staff’s use of verbal language in interacting with the children. There is a lack of research about language learning in outdoor environments; thus children’s language learning is mostly based on the indoor physical environment. The aim of this study is therefore to explore, analyse, and describe how preschool staff perceive language learning in outdoor environments. The data consists of focus-group interviews with 165 preschool staff members, conducted in three cities in Sweden. The study is meaningful, thus results contribute knowledge regarding preschool staffs’ understandings of language learning in outdoor environments and develop insights to help preschool staff stimulate children’s language learning in outdoor environments.

  1. Radon parameters in outdoor air

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Zock, Ch.; Wendt, J.; Reineking, A.

    2002-01-01

    For dose estimation by inhalation of the short lived radon progeny in outdoor air, the equilibrium factor (F), the unattached fraction (f p ), and the activity size distribution of the radon progeny were measured. Besides the radon parameter the meteorological parameter like temperature, wind speed, and rainfall intensity were registered. The measurements were carried out continuously for several weeks to find out the variation with time (day/night) and for different weather conditions. The radon gas, the unattached and aerosol-attached radon progenies were measured with an monitor developed for continuous measurements in outdoor air with low activity concentrations. For the determination of the activity size distribution a low pressure online alpha cascade impactor was used. The measured values of the equilibrium factor varied between 0.5-0.8 depending on weather conditions and time of the day. For high pressure weather conditions a diurnal variation of the F-factor was obtained. A lower average value (F=0.25) was registered during rainy days. The obtained f p -values varied between 0.04 and 0.12. They were higher than expected. The measured activity size distribution of the radon progeny averaged over a measurement period of three weeks can be approximated by a sum of three log-normal distributions. The greatest activity fraction is adsorbed on aerosol particles in the accumulation size range (100-1000 nm) with activity median diameters and geometric standard deviation values between 250-450 nm and 1.5-3.0, respectively. The activity median diameter of this accumulation mode in outdoor air was significantly greater than in indoor air (150-250 nm). An influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements in houses a small but significant fraction of the radon progeny (average value: 2%) is attached on coarse particles (>1000 nm). This fraction varied between 0-10%. 20

  2. Outdoor Learning: Supervision Is More than Watching Children Play

    Science.gov (United States)

    Olsen, Heather; Thompson, Donna; Hudson, Susan

    2011-01-01

    Early childhood programs strive to provide good-quality care and education as young children develop their physical, emotional, social, and intellectual skills. In order to provide children with positive, developmentally appropriate learning opportunities, educators ensure the safety and security of children, indoors and outdoors. The outdoor…

  3. Radon Concentration in Outdoors and Indoors Around the Flare in Oil Mine Sites; Konsentrasi Gas Radon di Udara di Luar dan Dalam Rumah Sekitar Nyala-api Kawasan Tambang Minyak

    Energy Technology Data Exchange (ETDEWEB)

    Sutarman,; Wahyudi, [Centre for Research and Development of Radiation Safety and Nuclear Biomedicine, National Nuclear Energy Agency, Jakarta (Indonesia); Luhantara, [University of Indonesia, Jakarta (Indonesia)

    2003-03-15

    The flares are much found at the oil exploration areas which appear the combustion gases emission to the environment that pass through a pipe at about 8 m high from the ground level. The flare is released into the environment together with the hydrocarbon and radon gases. This study has been carried out the measurement of the radon gas concentration only. Radon is a radioactive gas which comes from the natural radioactive decay of uranium ({sup 238}U). The outdoor radon concentrations were measured in 23 locations with the two-filter method. The locations were determined by a circle which the flare as the point center. The outdoor radon concentrations were measured in 74 houses (more than distance of 600 m from the flare) with the alpha track detector (CR-39) placed in the living rooms for about three months. The measurements of the radon concentrations were carried out in Cepu, Cirebon, and Prabumulih oil mine sites. The results showed that the outdoor radon concentrations a range of 108 Bq/m{sup 3} to 256 Bq/m{sup 3} in Cepu, 248 Bq/m{sup 3} to 3525 Bq/m{sup 3} in Cirebon, and 51 Bq/m{sup 3} to 114 Bq/m{sup 3} in Prabumulih. The results showed that the indoor radon concentrations a range of 11 Bq/m{sup 3} to 38 Bq/m{sup 3} in Cepu, 28 Bq/m{sup 3} to 184 Bq/m{sup 3} in Cirebon, and 12 Bq/m{sup 3} to 38 Bq/m{sup 3} in Prabumulih. The data of the maximum radon concentration in outdoor air was higher than an actual level which recommended by International Atomic Energy Agency (IAEA) for workplaces. The maximum radon concentration in indoor air was lower than an actual level which recommended by IAEA for dwellings. IAEA recommends the actual level of 1000 Bq/m{sup 3} for workplaces and 200 Bq/m{sup 3} for dwellings. These data will be used for the baseline data of the environmental radioactivity in Indonesia. (author)

  4. Car indoor air pollution - analysis of potential sources

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-12-01

    Full Text Available Abstract The population of industrialized countries such as the United States or of countries from the European Union spends approximately more than one hour each day in vehicles. In this respect, numerous studies have so far addressed outdoor air pollution that arises from traffic. By contrast, only little is known about indoor air quality in vehicles and influences by non-vehicle sources. Therefore the present article aims to summarize recent studies that address i.e. particulate matter exposure. It can be stated that although there is a large amount of data present for outdoor air pollution, research in the area of indoor air quality in vehicles is still limited. Especially, knowledge on non-vehicular sources is missing. In this respect, an understanding of the effects and interactions of i.e. tobacco smoke under realistic automobile conditions should be achieved in future.

  5. Outdoor stocking density in free-range laying hens: effects on behaviour and welfare.

    Science.gov (United States)

    Campbell, D L M; Hinch, G N; Downing, J A; Lee, C

    2017-06-01

    Free-range laying hen systems are increasing within Australia and research is needed to determine optimal outdoor stocking densities. Six small (n=150 hens) experimental flocks of ISA Brown laying hens were housed with access to ranges simulating one of three outdoor stocking densities with two pen replicates per density: 2000 hens/ha, 10 000 hens/ha or 20 000 hens/ha. Birds were provided daily range access from 21 to 36 weeks of age and the range usage of 50% of hens was tracked using radio-frequency identification technology. Throughout the study, basic external health assessments following a modified version of the Welfare Quality® protocol showed most birds were in visibly good condition (although keel damage was increasingly present with age) with few differences between stocking densities. Toenail length at 36 weeks of age was negatively correlated with hours spent ranging for all pens of birds (all r⩾-0.23, P⩽0.04). At 23 weeks of age, there were no differences between outdoor stocking densities in albumen corticosterone concentrations (P=0.44). At 35 weeks of age, density effects were significant (Prange and indoors showed more dust bathing and foraging (scratching followed by ground-pecking) was performed outdoors, but more resting indoors (all Prange but the most resting outdoors, with hens from the 20 000 hens/ha densities showing the least amount of resting outdoors (all Pfree-range system management practices.

  6. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI to Other Outdoor Thermal Comfort Indices

    Directory of Open Access Journals (Sweden)

    Iacopo Golasi

    2016-07-01

    Full Text Available Outdoor thermal comfort is an essential factor of people’s everyday life and deeply affects the habitability of outdoor spaces. However the indices used for its evaluation were usually developed for indoor environments assuming still air conditions and absence of solar radiation and were only later adapted to outdoor spaces. For this reason, in a previous study the Mediterranean Outdoor Comfort Index (MOCI was developed, which is an empirical index able to estimate the thermal perception of people living in the Mediterranean area. In this study it was compared numerically (by using the data obtained through a field survey with other selected thermal indices. This comparison, performed in terms of Spearman’s rho correlation coefficient, association Gamma, percentage of correct predictions and cross-tabulation analysis, led to identify the MOCI as the most suitable index to examine outdoor thermal comfort in the interested area. As a matter of fact it showed a total percentage of correct predictions of 35.5%. Good performances were reported even in thermophysiological indices as the Physiological Equivalent Temperature (PET and Predicted Mean Vote (PMV. Moreover it was revealed that adaptation and acclimatization phenomena tend to have a certain influence as well.

  7. Indoor Air Quality Assessment of Elementary Schools in Curitiba, Brazil

    International Nuclear Information System (INIS)

    Godoi, R. H. M.; Avigo, D.; Campos, V. P.; Tavares, T. M.; Marchi, M. R. R. de; Grieken, R. Van; Godoi, A. F. L.

    2009-01-01

    The promotion of good indoor air quality in schools is of particular public concern for two main reasons: (1) school-age children spend at least 30% of their time inside classrooms and (2) indoor air quality in urban areas is substantially influenced by the outdoor pollutants, exposing tenants to potentially toxic substances. Two schools in Curitiba, Brazil, were selected to characterize the gaseous compounds indoor and outdoor of the classrooms. The concentrations of benzene, toluene, ethylbenzene, and the isomers xylenes (BTEX); NO 2 ; SO 2 ; O 3 ; acetic acid (HAc); and formic acid (HFor) were assessed using passive diffusion tubes. BTEX were analyzed by gas chromatography-ion trap mass spectrometry and other collected gasses by ion chromatography. The concentration of NO 2 varied between 9.5 and 23 μg m -3 , whereas SO 2 showed an interval from 0.1 to 4.8 μg m -3 . Within the schools, BTEX concentrations were predominant. Formic and acetic acids inside the classrooms revealed intermediate concentrations of 1.5 μg m -3 and 1.2 μg m -3 , respectively.

  8. Indoor air in school environment and the impact on children’s health

    International Nuclear Information System (INIS)

    Krajcova, D.; Vondrova, D.; Hirosova, K.; Sevcikova, L.

    2014-01-01

    More attention is paid to assessing the quality of not only outdoor but also indoor air. Since children spend large part of their time at schools, several studies are aimed at indoor air monitoring in schools. These studies confirmed association between poor quality of indoor environment and the incidence of asthma and other respiratory diseases of children. The most serious indoor air pollutants includes dust particles, inorganic and volatile organic compounds, components of tobacco smoke, mold and dust mites. Providing healthy school environment should be one of the basic methods to protect and support physical and mental health and development of children. (author)

  9. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  10. Characterization of Indoor Air Quality in Different Archives – Possible Implications for Books and Manuscripts.

    Czech Academy of Sciences Publication Activity Database

    Mašková, Ludmila; Smolík, Jiří; Ďurovič, M.

    2017-01-01

    Roč. 120, August 1 (2017), s. 77-84 ISSN 0360-1323 R&D Projects: GA MK DF11P01OVV020 Keywords : indoor environment * gaseous pollution * indoor/outdoor ratio Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.053, year: 2016

  11. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    Science.gov (United States)

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  12. Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications.

    Directory of Open Access Journals (Sweden)

    Hamady Dieng

    Full Text Available BACKGROUND: The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities. METHODOLOGY/PRINCIPAL FINDINGS: In a series of experiments involving outdoors and indoors breeding populations, we found that Ae. albopictus lives longer in the indoor environment. We also observed increased nighttime biting activity and lifetime fecundity in indoor/domestic adapted females, although they were similar to recently colonized females in body size. CONCLUSION/SIGNIFICANCE: Taken together these data suggest that accommodation of Ae. albopictus to indoor/domestic environment may increase its lifespan, blood feeding success, nuisance and thus vectorial capacity (both in terms of increased vector-host contacts and vector population density. These changes in the breeding behavior of Ae. albopictus, a potential vector of several human pathogens including dengue viruses, require special attention.

  13. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  14. Moulds and indoor air quality - a man-made problem

    International Nuclear Information System (INIS)

    Langvad, Finn

    2002-01-01

    In the 1970s and 1980s, many house owners in Norway, in order to save energy, insulated their houses by injecting torn-up mineral wool into the entire cavity of the wall. This made the house warmer to live in, but it also created serious condensation problems followed by rot and mould. The extensive use of gypsum boards is also alarming. If gypsum becomes really wet because of a water leakage, it becomes a ticking bomb from the micro-biologic point of view as it provides growth conditions for some of the most dangerous indoor mould fungi known, the Stachybotrys chart arum. The article discusses the danger of this fungus and surveys some of the ways that mould affect human health. There is at present no definition of a normal number of fungus spores per unit volume of air. But the following principles can be taken as guidelines: (1) The concentration of spores indoor must be lower than outdoors. Otherwise extra spores have been generated in the house. (2) The species composition of the air must be approximately the same indoors and outdoors

  15. Quantitative assessments of indoor air pollution and the risk of childhood acute leukemia in Shanghai

    International Nuclear Information System (INIS)

    Gao, Yu; Zhang, Yan; Kamijima, Michihiro; Sakai, Kiyoshi; Khalequzzaman, Md; Nakajima, Tamie; Shi, Rong; Wang, Xiaojin; Chen, Didi; Ji, Xiaofan; Han, Kaiyi; Tian, Ying

    2014-01-01

    We investigated the association between indoor air pollutants and childhood acute leukemia (AL). A total of 105 newly diagnosed cases and 105 1:1 gender-, age-, and hospital-matched controls were included. Measurements of indoor pollutants (including nitrogen dioxide (NO 2 ) and 17 types of volatile organic compounds (VOCs)) were taken with diffusive samplers for 64 pairs of cases and controls. Higher concentrations of NO 2 and almost half of VOCs were observed in the cases than in the controls and were associated with the increased risk of childhood AL. The use of synthetic materials for wall decoration and furniture in bedroom was related to the risk of childhood AL. Renovating the house in the last 5 years, changing furniture in the last 5 years, closing the doors and windows overnight in the winter and/or summer, paternal smoking history and outdoor pollutants affected VOC concentrations. Our results support the association between childhood AL and indoor air pollution. - Highlights: • We firstly assessed the effects of indoor air pollution on childhood AL in China. • Indoor air pollutants were assessed by questionnaire and quantitative measurements. • NO 2 and 17 types of VOCs were measured in bedrooms of both cases and controls. • Higher concentrations of indoor air pollutants increased the risk of childhood AL. • Indoor behavioral factors and outdoor pollution might affect indoor air pollution. - Higher concentrations of indoor air pollutants were related to an elevated risk of childhood AL

  16. Reflections on the history of indoor air science, focusing on the last 50 years.

    Science.gov (United States)

    Sundell, J

    2017-07-01

    The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word "indoor" as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: "did indoor air pose a threat to health as did outdoor air?" Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust-mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold-associated allergies and today's concern with "modern exposures-modern diseases." Ventilation, thermal comfort, indoor air chemistry, semi-volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Indoor fine particles: the role of terpene emissions from consumer products.

    Science.gov (United States)

    Sarwar, Golam; Olson, David A; Corsi, Richard L; Weschler, Charles J

    2004-03-01

    Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.

  18. Dynamics of Rn transport from the cellar to the living area in an unheated house

    International Nuclear Information System (INIS)

    Furrer, D.; Crameri, R.; Burkart, W.

    1991-01-01

    Environmental parameters such as temperature and wind, occupant activities, and house-specific parameters such as subsoil geology, leakiness of the substructure to soil gas, and air exchange rate are the main factors influencing Rn entry into a building and its subsequent indoor behavior. Experiments performed in an unheated, uninhabited house showed a reproducible diurnal fluctuation of the indoor concentration of Rn decay products. Strong, long-term correlations between temperature differences indoor-outdoor (indoor temperature minus outdoor temperature) and pressure differences outdoor-indoor (outdoor pressure minus indoor pressure) were found. At positive temperature differences inside-outside, an average airflow velocity of about 0.05 m s-1 between ground floor and first floor was detected. This air movement was able to vertically transport Rn at a rate of approximately 11 kBq h-1 in a volume of air of about 5.5 m3 through a cross-sectional area of only 0.03 m2. For this specific house, stack effects were identified as the main driving force for Rn migration from the cellular to higher floors. The diurnal fluctuation of Rn progeny concentrations in the living area can be explained by temporal variations in the amount of Rn-rich air transported vertically from the cellar into the building as a consequence of stack effects

  19. Indoor Air Pollution in Non Ac Passenger Bus

    Science.gov (United States)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  20. Indoor Air Pollution in Non Ac Passenger Bus

    Directory of Open Access Journals (Sweden)

    El Husna Iksiroh

    2018-01-01

    Full Text Available Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR. The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  1. Defining indoor heat thresholds for health in the UK.

    Science.gov (United States)

    Anderson, Mindy; Carmichael, Catriona; Murray, Virginia; Dengel, Andy; Swainson, Michael

    2013-05-01

    It has been recognised that as outdoor ambient temperatures increase past a particular threshold, so do mortality/morbidity rates. However, similar thresholds for indoor temperatures have not yet been identified. Due to a warming climate, the non-sustainability of air conditioning as a solution, and the desire for more energy-efficient airtight homes, thresholds for indoor temperature should be defined as a public health issue. The aim of this paper is to outline the need for indoor heat thresholds and to establish if they can be identified. Our objectives include: describing how indoor temperature is measured; highlighting threshold measurements and indices; describing adaptation to heat; summary of the risk of susceptible groups to heat; reviewing the current evidence on the link between sleep, heat and health; exploring current heat and health warning systems and thresholds; exploring the built environment and the risk of overheating; and identifying the gaps in current knowledge and research. A global literature search of key databases was conducted using a pre-defined set of keywords to retrieve peer-reviewed and grey literature. The paper will apply the findings to the context of the UK. A summary of 96 articles, reports, government documents and textbooks were analysed and a gap analysis was conducted. Evidence on the effects of indoor heat on health implies that buildings are modifiers of the effect of climate on health outcomes. Personal exposure and place-based heat studies showed the most significant correlations between indoor heat and health outcomes. However, the data are sparse and inconclusive in terms of identifying evidence-based definitions for thresholds. Further research needs to be conducted in order to provide an evidence base for threshold determination. Indoor and outdoor heat are related but are different in terms of language and measurement. Future collaboration between the health and building sectors is needed to develop a common

  2. The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources

    Science.gov (United States)

    Taylor, J; Shrubsole, C; Davies, M; Biddulph, P; Das, P; Hamilton, I; Vardoulakis, S; Mavrogianni, A; Jones, B; Oikonomou, E

    2014-01-01

    A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5, with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. PMID:24713025

  3. Ozone's impact on public health: Contributions from indoor exposures to ozone and products of ozone-initiated chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2006-01-01

    OBJECTIVES: The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related heal...

  4. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review.

    Science.gov (United States)

    Leung, Marcus H Y; Lee, Patrick K H

    2016-05-24

    Recent high-throughput sequencing technology has led to an expansion of knowledge regarding the microbial communities (microbiome) across various built environments (BEs). The microbiome of the BE is dependent upon building factors and conditions that govern how outdoor microbes enter and persist in the BE. Additionally, occupants are crucial in shaping the microbiome of the BE by releasing human-associated microorganisms and resuspending microbes on floors and surfaces. Therefore, both the outdoors and occupants act as major sources of microorganisms found in the BE. However, most characterizations of the microbiome of the BE have been conducted in the Western world. Notably, outdoor locations and population groups present geographical variations in outdoor and human microbiomes, respectively. Given the influences of the outdoor and human microbiomes on BE microbiology, and the geographical variations in outdoor and human microbiomes, it is likely that the microbiomes of BEs also vary by location. The summation of microbiomes between BEs contribute to a potential BE pan-microbiome, which will both consist of microbes that are ubiquitous in indoor environments around the world, and microbes that appear to be endemic to particular geographical locations. Importantly, the BE pan-microbiome can potentially question the global application of our current views on indoor microbiology. In this review, we first provide an assessment on the roles of building and occupant properties on shaping the microbiome of the BE. This is then followed by a description of geographical variations in the microbiomes of the outdoors and humans, the two main sources of microbes in BEs. We present evidence of differences in microbiomes of BEs around the world, demonstrating the existence of a global pan-microbiome of the BE that is larger than the microbiome of any single indoor environment. Finally, we discuss the significance of understanding the BE pan-microbiome and identifying universal

  5. Fighting against indoor pollution; Comment lutter contre la pollution interieure des locaux?

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, G.; Blay, F. de; Krieger, P.; Bessot, J.C. [Hopitaux Universitaires de Strasbourg, 67 (France)

    1998-06-01

    Two types of indoor pollution have been identified: chemical pollution and biological pollution. The principal chemical pollutants are NO{sub 2}, VOCs (volatile organic compounds and formaldehyde), ozone and SO{sub 2}. Indoor NO{sub 2} is essentially produced by gas-heaters, stoves and fire-places, at levels that can be higher than those reached outdoors. Epidemiologic studies and NO{sub 2} provocation tests in asthmatics show that indoor NO{sub 2} is capable of triggering asthma either by direct effect or by potentiating bronchial reactivity to allergens. VOCs and formaldehyde are liberated by urea-formol foams and will only have bronchial effects at levels rarely found in domestic environment. Ozone is an outdoor pollutant essentially, and the concentrations found indoors do not exceed 50% of those measured outdoors. Concentration of SO{sub 2} can reach significant levels with the use of coal heaters, yet bronchial response will only be induced at levels rarely found indoors. The first way to fight against those pollutants is to eliminate their sources (gas, coal or kerosene heaters), and to increase ventilation. In contrast, as far as ozone is concerned, it is recommended to keep windows shot during summer pollution peaks, in order to prevent it from entering the home. Biological pollution -if we except endotoxins- is mainly represented by allergenic pollution: allergens of mites, pets, cockroaches, moulds... As far as mites are concerned, the different measures suggested should often be combined: they are methods to reduce relative humidity by increasing ventilation, physical methods consisting in eliminating textiles, vacuum cleaning, using anti-mite bed covers, and chemical methods (acaricides, tannic acid..). Palliative measures are possible. For example for cat allergen: humidification of fur, limiting secondary textile reservoirs, use of vacuum cleaners and air purifiers fitted with HEPA filters. As far as cockroaches are concerned, their eviction is

  6. Factors controlling indoor radon levels. Annual report, June 1983-May 1984

    International Nuclear Information System (INIS)

    Harley, N.H.

    1984-01-01

    The factors which contribute to indoor radon levels were investigated. Soil moisture content appears to be such a factor and influences indoor radon levels in a subtle way. The single family dwelling studied here is a typical suburban home, with a full basement, two living levels and a full attic. Seasonal data for 1981 to 1983 are shown by hour (about 90 hours in each average) for the basement, first floor and outdoors. A twenty-five story, 225 apartment, high rise building has been under study for about the same time interval. The apartment has five rooms, and is on the 24th floor. Continuous monitors are located in a work room and outdoors on a terrace. Data are available from the summer of 1981. 2 references, 12 figures, 9 tables

  7. Reducing Health Risks from Indoor Exposures in Rapidly Developing Urban China

    DEFF Research Database (Denmark)

    Zhang, Yinping; Mo, Jinhan; Weschler, Charles J.

    2013-01-01

    associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. Discussion: As documented by China's Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years...... exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building's initial design. Conclusions......: Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health....

  8. Usability analysis of indoor map application in a shopping centre

    Science.gov (United States)

    Dewi, R. S.; Hadi, R. K.

    2018-04-01

    Although indoor navigation is still new in Indonesia, its future development is very promising. Similar to the outdoor one, the indoor navigation technology provides several important functions to support route and landmark findings. Furthermore, there is also a need that indoor navigation can support the public safety especially during disaster evacuation process in a building. It is a common that the indoor navigation technologies are built as applications where users can access this technology using their smartphones, tablets, or personal computers. Therefore, a usability analysis is important to ensure the indoor navigation applications can be operated by users with highest functionality. Among several indoor map applications which were available in the market, this study chose to analyse indoor Google Maps due to its availability and popularity in Indonesia. The experiments to test indoor Google Maps was conducted in one of the biggest shopping centre building in Surabaya, Indonesia. The usability was measured by employing System Usability Scale (SUS) questionnaire. The result showed that the SUS score of indoor Google Maps was below the average score of other cellular applications to indicate the users still had high difficulty in operating and learning the features of indoor Google Maps.

  9. A sensitivity study of parameters in the Nazaroff-Cass IAQ model with respect to indoor concentrations of O3, NO, NO2

    International Nuclear Information System (INIS)

    Drakou, G.; Zerefos, C.; Ziomas, I.

    2000-01-01

    The indoor O 3 , NO, NO 2 concentrations and their corresponding indoor/outdoor (I/O) concentration ratios are predicted in this paper for some representative buildings, using the Nazaroff-Cass indoor air quality models. This paper presents and systemises the relationship between indoor and air pollution concentrations and the buildings' design, use and operation. The building parameters which are determined to be main factors affecting the air pollutant concentrations are: the physical dimensions of the building and the materials of construction, the buildings' air exchange rate with outdoors and the indoor air pollutant sources. Changes of ultraviolet photon fluxes, of temperatures and of relative humidity indoors, have little effect on indoor O 3 , NO and NO 2 concentrations, for air exchange rates above 0.5 ach. Special attention must be given when a building has a very low air exchange rate, under which conditions the effect of a small change in any of the factors determining the indoor air quality of the building will be much more noticeable than in a building with high air exchange rate. (Author)

  10. Indoor air pollution levels in public buildings in Thailand and exposure assessment.

    Science.gov (United States)

    Klinmalee, Aungsiri; Srimongkol, Kasama; Kim Oanh, Nguyen Thi

    2009-09-01

    Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people

  11. Radon survey in outdoor workplaces of the Nanbu area

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shunichi; Sakurai, Naoyuki; Koyama, Kenji

    1999-01-01

    We previously surveyed indoor Rn concentration in homes throughout Aomori Prefecture from 1991 to 1995, and found a mean Rn concentration of 9 Bq m -3 . For accurate evaluation of radiation dose from Rn, its concentration not only in the home but also in workplaces and schools is important, since workers and students spend approximately one-third of the day in these places. Then, we obtained indoor Rn concentrations in several workplaces and schools in Aomori Prefecture. Now, measurements of outdoor Rn in workplaces have been planned for the prefecture during a two year period. The results for half the prefecture, the Nanbu area are described here. Passive Rn detectors using polycarbonate film were employed for long-term monitoring. Diurnal variations of Rn and its daughter nuclides were measured by an active Rn detector with an ionization chamber and a working level meter, respectively. The geometric mean Rn concentration obtained with the passive detectors was approximately 3 Bq m -3 in the outdoor workplaces, and lower than that in the indoor workplaces and school (14 Bq m -3 ). The Rn concentrations in fishing boats and harbors were slightly lower than typical values and some data for forests were higher than other workplaces. The diurnal variations which were higher at night and lower during the day were observed by the active detectors. (author)

  12. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammadyan

    2017-04-01

    Full Text Available Background: The hospital environment requires special attention to provide healthful indoor air quality for protecting patients and healthcare workers against the occupational diseases. The aim of this study was to determine the concentrations of respirable particles indoor and ambient air of two hospitals in Kashan. Materials and Method: This cross-sectional study was conducted during 3 months (Marth 2014 to May 2015. Indoor and outdoor PM10 and PM2.5 concentrations were measured four times a week in the operating room, pediatric and ICU2 (Intensive Care Unit wards using a real time dust monitor at two hospitals. A total number of 480 samples (80 samples indoors and 40 outdoors from wards were collected. Results: The highest mean PM2.5 and PM10 for indoors were determined 57.61± 68.57 µg m-3 and 212.36±295.49 µg m-3, respectively. The results showed a significant relationship between PM2.5 and PM10 in the indoor and ambient air of two hospitals (P<0.05. PM2.5 and PM10 concentrations were different in all of the selected wards (P<0.05. Conclusion: The respirable particle concentrations in the indoor and ambient air in both hospitals were higher than the 24-hours WHO and US-EPA standards. Thence, utilizing sufficient and efficient air conditioning systems in hospitals can be useful in improving indoor air quality and reducing the respirable particle concentrations.

  13. An Innovative Gateway for Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Marias Giannis F

    2006-01-01

    Full Text Available Enabling the pervasive paradigm requires the incorporation of location information. Retrieving location data has been a field of ongoing research for both the outdoor and indoor wireless systems. The results in the cellular scenario are already mature and location architectures have been standardized. Recent research is ongoing for indoor-positioning mechanisms, resulting in implementations that vary. A platform that enables the deployment of location-based services in heterogeneous indoor and WLAN-based communication systems will address difficulties in cooperating with different positioning systems. For that purpose, we have designed a novel entity, called Gateway WLAN Location Center (GWLC, which hides the heterogeneous functions of the indoor positioning architectures, incorporating a unified framework for retrieving location data of users and objects. The GWLC platform has been designed to meet objectives such as modularity, scalability, as well as portability, and to facilitate open interfaces. In this contribution, we elaborate on the design principles and the functionality of GWLC. We also provide performance results, obtained through real experiments.

  14. Trimble LaserAce 1000 Accuracy Evaluation for Indoor Data Acquisition

    DEFF Research Database (Denmark)

    Jamali, Ali; Antón Castro, Francesc/François; Boguslawski, Pawel

    2014-01-01

    Surveying can be done using several sciences and techniques for outdoor and indoor data acquisition like photogrammetry, land surveying, remote sensing, Global Positioning System (GPS) and laser scanning. Electronic Distance Measurement (EDM) is a reliable and frequently used technique. Laser sca...

  15. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity.

    Science.gov (United States)

    Segers, Frank J J; van Laarhoven, Karel A; Huinink, Hendrik P; Adan, Olaf C G; Wösten, Han A B; Dijksterhuis, Jan

    2016-09-01

    Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state (unchanging conditions) has

  16. The effect of an outdoor setting on the transfer of earth science concepts

    Science.gov (United States)

    Simmons, Jerry Marvin

    The ability of students to transfer concepts learned in school to future learning and employment settings is critical to their academic and career success. Concept transfer can best be studied by defining it as a process rather than an isolated event. Preparation for future learning (PFL) is a process definition of transfer which recognizes the student's ability to draw from past experiences, make assumptions, and generate potential questions and strategies for problem resolution. The purpose of this study was to use the PFL definition of concept transfer to examine whether a knowledge-rich outdoor setting better prepares students for future learning of science concepts than the classroom setting alone does. The research hypothesis was that sixth-grade students experiencing a geology-rich outdoor setting would be better prepared to learn advanced earth science concepts than students experiencing classroom learning only. A quasi-experimental research design was used for this study on two non-equivalent, self-contained sixth-grade rural public school classes. After a pretest was given on prior geology knowledge, the outdoor treatment group was taken on a geology-rich field excursion which introduced them to the concepts of mineral formation and mining. The indoor treatment group received exposure to the same concepts in the classroom setting via color slides and identification of mineral specimens. Subsequently, both groups received direct instruction on advanced concepts about mineral formation and mining. They were then given a posttest, which presented the students with a problem-solving scenario and questions related to concepts covered in the direct instruction. A t-test done on pretest data revealed that the indoor treatment group had previously learned classroom geology material significantly better than the outdoor treatment group had. Therefore an analysis of covariance was performed on posttest data which showed that the outdoor treatment group was better

  17. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres

    Science.gov (United States)

    Madureira, Joana; Paciência, Inês; Rufo, João Cavaleiro; Pereira, Cristiana; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-05-01

    Until now the influence of risk factors resulting from exposure to biological agents in indoor air has been far less studied than outdoor pollution; therefore the uncertainty of health risks, and how to effectively prevent these, remains. This study aimed (i) to quantify airborne cultivable bacterial and fungal concentrations in four different types of indoor environment as well as to identify the recovered fungi; (ii) to assess the impact of outdoor bacterial and fungal concentrations on indoor air; (iii) to investigate the influence of carbon dioxide (CO2), temperature and relative humidity on bacterial and fungal concentrations; and (iv) to estimate bacterial and fungal dose rate for children (3-5 years old and 8-10 years old) in comparison with the elderly. Air samples were collected in 68 homes, 9 child day-care centres, 20 primary schools and 22 elderly care centres, in a total of 264 rooms with a microbiological air sampler and using tryptic soy agar and malt extract agar culture media for bacteria and fungi growth, respectively. For each building, one outdoor representative location were identified and simultaneously studied. The results showed that child day-care centres were the indoor microenvironment with the highest median bacterial and fungal concentrations (3870 CFU/m3 and 415 CFU/m3, respectively), whereas the lowest median concentrations were observed in elderly care centres (222 CFU/m3 and 180 CFU/m3, respectively). Indoor bacterial concentrations were significantly higher than outdoor concentrations (p < 0.05); whereas the indoor/outdoor ratios for the obtained fungal concentrations were approximately around the unit. Indoor CO2 levels were associated with the bacterial concentration, probably due to occupancy and insufficient ventilation. Penicillium and Cladosporium were the most frequently occurring fungi. Children's had two times higher dose rate to biological pollutants when compared to adult individuals. Thus, due to children

  18. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air......, this study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves....... The study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  19. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  20. Indoor air quality and infiltration in multifamily naval housing

    International Nuclear Information System (INIS)

    Parker, G.B.; Wilfert, G.L.; Dennis, G.W.

    1984-11-01

    Measurements of indoor air quality and air infiltration were taken in three units of a multifamily housing complex at the Naval Submarine base in Bangor, Washington, over 5 consecutive days during the heating season of 1983. Three dwelling units of identical size constructed in 1978 were monitored, each in a separate two-story four-unit complex. One unit was a downstairs unit and the other two units were upstairs units. Two of the units were occupied by smokers (one downstairs and one upstairs). None of the units had combustion appliances. Pollutants monitored indoors included radon, formaldehyde, carbon monoxide, particulate matter, and nitrogen dioxide. Indoor and outdoor temperature and windspeed were also recorded. Outdoor formaldehyde and nitrogen dioxide were also measured. Air exchange was measured about three times during each 24-h period, using a perfluorocarbon tracer with automatic tracer sampling. The daily average air exchange rate ranged from 0.22 to 0.91 air changes per hour (ACH). Pollutant concentrations were generally low except for particulate matter in the units with smokers, which were two to four times higher than in the unit with nonsmokers. Levels of carbon monoxide were also slightly elevated in one of the units with a smoker compared to the unit with nonsmokers. 5 references, 4 figures, 4 tables

  1. Developing an audit checklist to assess outdoor falls risk.

    Science.gov (United States)

    Curl, Angela; Thompson, Catharine Ward; Aspinall, Peter; Ormerod, Marcus

    2016-06-01

    Falls by older people (aged 65+) are linked to disability and a decrease in mobility, presenting a challenge to active ageing. As such, older fallers represent a vulnerable road user group. Despite this there is little research into the causes and prevention of outdoor falls. This paper develops an understanding of environmental factors causing falls or fear of falling using a walk-along interview approach with recent fallers to explore how older people navigate the outdoor environment and which aspects of it they perceived facilitate or hinder their ability to go outdoors and fear of falling. While there are a number of audit checklists focused on assessing the indoor environment for risk or fear of falls, nothing exists for the outdoor environment. Many existing street audit tools are focused on general environmental qualities and have not been designed with an older population in mind. We present a checklist that assesses aspects of the environment most likely to encourage or hinder those who are at risk of falling outdoors, developed through accounting for the experiences and navigational strategies of elderly individuals. The audit checklist can assist occupational therapists and urban planners, designers and managers in working to reduce the occurrence of outdoor falls among this vulnerable user group.

  2. Air Quality and Indoor Environmental Exposures: Clinical ...

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  3. Review of the health risks associated with nitrogen dioxide and sulfur dioxide in indoor air

    International Nuclear Information System (INIS)

    Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K.S.; Rich, R.; Teschke, K.

    2002-01-01

    The scientific literature on the health effects of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ) were reviewed with particular focus on the chemical and physical properties of the 2 gases and the toxicological characteristics identified in animal studies at exposure concentrations near the rate of ambient human exposures. The study also examined the expected levels of non-industrial indoor exposure of Canadians compared to other regions with similar climates. The sources of indoor pollution were also reviewed, along with the contribution of outdoor pollution to indoor levels. Results from epidemiological studies of indoor exposures in homes, offices and schools were also presented. For each pollutant, the study identified anthropogenic sources, indoor sources, toxicological characteristics, biochemistry, pulmonary effects, immune response, and other effects. Indoor sources of NO 2 include gas-fired appliances, pilot lights, hot water heaters, kerosene heaters, and tobacco smoke. The impact of ventilation on both NO 2 and SO 2 levels was also examined. Outdoor sources such as traffic can also contribute to indoor levels, particularly in urban areas. In the case of SO 2 , coal heating and cooling appear to be associated in increased indoor levels. The epidemiological studies that were reviewed failed in general to indicate an association between NO 2 exposure and a wide range of health impacts. The studies, however, indicate that asthmatics are more susceptible to the effects of NO 2 exposure. In the case of SO 2 , evidence suggests that it has a chronic effect on lung function and respiratory symptoms and disease. 243 refs., 13 tabs

  4. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  5. Indoor acrolein emission and decay rates resulting from domestic cooking events

    Science.gov (United States)

    Seaman, Vincent Y.; Bennett, Deborah H.; Cahill, Thomas M.

    2009-12-01

    Acrolein (2-propenal) is a common constituent of both indoor and outdoor air, can exacerbate asthma in children, and may contribute to other chronic lung diseases. Recent studies have found high indoor levels of acrolein and other carbonyls compared to outdoor ambient concentrations. Heated cooking oils produce considerable amounts of acrolein, thus cooking is likely an important source of indoor acrolein. A series of cooking experiments were conducted to determine the emission rates of acrolein and other volatile carbonyls for different types of cooking oils (canola, soybean, corn and olive oils) and deep-frying different food items. Similar concentrations and emission rates of carbonyls were found when different vegetable oils were used to deep-fry the same food product. The food item being deep-fried was generally not a significant source of carbonyls compared to the cooking oil. The oil cooking events resulted in high concentrations of acrolein that were in the range of 26.4-64.5 μg m -3. These concentrations exceed all the chronic regulatory exposure limits and many of the acute exposure limits. The air exchange rate and the decay rate of the carbonyls were monitored to estimate the half-life of the carbonyls. The half-life for acrolein was 14.4 ± 2.6 h, which indicates that indoor acrolein concentrations can persist for considerable time after cooking in poorly-ventilated homes.

  6. Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP.

    Science.gov (United States)

    Liu, Yangsheng; Chen, Rui; Shen, Xingxing; Mao, Xiaoling

    2004-04-01

    From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.

  7. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors

    International Nuclear Information System (INIS)

    Palermo, E; Patanè, F; Cappa, P; Rossi, S

    2014-01-01

    Magnetic inertial measurement unit systems (MIMU) offer the potential to perform joint kinematics evaluation as an alternative to optoelectronic systems (OS). Several studies have reported the effect of indoor magnetic field disturbances on the MIMU's heading output, even though the overall effect on the evaluation of lower limb joint kinematics is not yet fully explored. The aim of the study is to assess the influence of indoor magnetic field distortion on gait analysis trials conducted with a commercial MIMU system. A healthy adult performed gait analysis sessions both indoors and outdoors. Data collected indoors were post-processed with and without a heading correction methodology performed with OS at the start of the gait trial. The performance of the MIMU system is characterized in terms of indices, based on the mean value of lower limb joint angles and the associated ROM, quantifying the system repeatability. We find that the effects of magnetic field distortion, such as the one we experienced in our lab, were limited to the transverse plane of each joint and to the frontal plane of the ankle. Sagittal plane values, instead, showed sufficient repeatability moving from outdoors to indoors. Our findings provide indications to clinicians on MIMU performance in the measurement of lower limb kinematics. (paper)

  9. Conference particulate matter and indoor environment, I.N.E.R.I.S.; Particulate matter and indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Comprehensive characterisation of indoor and outdoor air as well as pollution emission sources Integrated health and environmental risk assessment Scientific and technical basis for airborne pollution management and control Fine and coarse particles. The sources of indoor air pollution are originate separately, are transported separately, are removed from atmosphere by different mechanisms, have different optical properties, have different chemical properties, require different control techniques. for the health effects due to particles, they decrease the lung function, increase respiratory symptoms, increase chronic obstructive pulmonary diseases, increased cardiovascular disease, increased mortality. The different sources contributing to the highest concentrations are: concentrations: tobacco smoking, cooking, vacuuming, dusting and sweeping, heaters, stoves, fireplaces and some other non identified sources. In the future we want more focus on fine and ultra fine particles, investigate source apportionment of particles, better understanding and quantification of exposure, to implement guidelines for particle concentration in indoor air and find better cleaning technologies. (N.C.)

  10. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO 2 , CO, SO 2 , and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  11. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    Science.gov (United States)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  12. INDOOR POSITIONING AND NAVIGATION BASED ON CONTROL SPHERECAL PANORAMIC IMAGES

    Directory of Open Access Journals (Sweden)

    T.-C. Huang

    2016-06-01

    Full Text Available Continuous indoor and outdoor positioning and navigation is the goal to achieve in the field of mobile mapping technology. However, accuracy of positioning and navigation will be largely degraded in indoor or occluded areas, due to receiving weak or less GNSS signals. Targeting the need of high accuracy indoor and outdoor positioning and navigation for mobile mapping applications, the objective of this study is to develop a novel method of indoor positioning and navigation with the use of spherical panoramic image (SPI. Two steps are planned in the technology roadmap. First, establishing a control SPI database that contains a good number of well-distributed control SPIs pre-acquired in the target space. A control SPI means an SPI with known exterior orientation parameters, which can be solved with a network bundle adjustment of SPIs. Having a control SPI database, the target space will be ready to provide the service of positioning and navigation. Secondly, the position and orientation of a newly taken SPI can be solved by using overlapped SPIs searched from the control SPI database. The method of matching SPIs and finding conjugate image features will be developed and tested. Two experiments will be planned and conducted in this paper to test the feasibility and validate the test results of the proposed methods. Analysis of appropriate number and distribution of needed control SPIs will also be included in the experiments with respect to different test cases.

  13. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    Science.gov (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  15. Dairy cow preference for different types of outdoor access.

    Science.gov (United States)

    Smid, Anne-Marieke C; Weary, Daniel M; Costa, Joao H C; von Keyserlingk, Marina A G

    2018-02-01

    Dairy cows display a partial preference for being outside, but little is known about what aspects of the outdoor environment are important to cows. The primary aim of this study was to test the preference of lactating dairy cattle for pasture versus an outdoor sand pack during the night. A secondary aim was to determine whether feeding and perching behavior changed when cows were provided outdoor access. A third objective was to investigate how the lying behavior of cows changed when given access to different outdoor areas. Ninety-six lactating pregnant cows were assigned to 8 groups of 12 animals each. After a baseline phase of 2 d in which cows were kept inside the freestall barn, cows were habituated to the outdoor areas by providing them access to each of the 2 options for 24 h. Cows were then given access, in random order by group, to either the pasture (pasture phase) or the sand pack (sand phase). As we tested the 2 outdoor options using space allowances consistent with what would be practical on commercial dairy farms, the space provided on pasture was larger (21,000 m 2 ) than that provided on the sand pack (144 m 2 ). Cows were tested at night (for 2 nights in each condition), from 2000 h until morning milking at approximately 0800 h, as preference to be outdoors is strongest at this time. During the next 3 nights cows were given access to both outside options simultaneously (choice phase). Feeding and perching behaviors were recorded when cows were indoors during the day and night periods. Lying behavior was automatically recorded by HOBO data loggers (Onset, Bourne, MA). Cows spent more time outside in the pasture phase (90.0 ± 5.9%) compared with the sand phase (44.4 ± 6.3%). When provided simultaneous access to both options, cows spent more time on pasture than on the sand pack (90.5 ± 2.6% vs. 0.8 ± 0.5%, respectively). Time spent feeding indoors during the day did not change regardless of what type of outdoor access was provided, but there was a

  16. Perceptions of indoor vs. outdoor tanning risks among melanoma patients who have a history of indoor UV tanning: an international internet survey

    OpenAIRE

    Nergard, Jennifer; Caldwell, Chauncey; Barr, Morgan; Dellavalle, Robert P; Solomon, James A

    2016-01-01

    IntroductionA new U.S. FDA regulation categorizes tanning beds as category II¹, and similar global regulatory action require informing users of the “risk of skin cancer” as methods to reverse the growing trend of indoor tanning. However, little is known from the patient’s perspective on whether or not knowledge of risk of cancer is a deterrent to indoor tanning. Also, there is conflicting literature on the relationship between frequency of indoor tanning, age of onset and characteristics of p...

  17. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo; Kobayashi, Sadayoshi

    1988-01-01

    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  18. The effects of an energy efficiency retrofit on indoor air quality.

    Science.gov (United States)

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Survey of occupant behaviour and control of indoor environment in Danish dwellings

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Toftum, Jørn; Andersen, Klaus Kaae

    2009-01-01

    separately by means of multiple logistic regression in order to quantify factors influencing occupants’ behaviour. The window opening behaviour was strongly related to the outdoor temperature. The perception of the environment and factors concerning the dwelling also impacted the window opening behaviour......Repeated surveys of occupant control of the indoor environment were carried out in Danish dwellings from September to October 2006 and again from February to March 2007. The summer survey comprised 933 respondents and the winter survey 636 respondents. The surveys were carried out by sending out....... The proportion of dwellings with the heating turned on was strongly related to the outdoor temperature and the presence of a wood burning stove. The solar radiation, dwelling ownership conditions and the perception of the indoor environment also affected the use of heating. The results of the statistical...

  20. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    Science.gov (United States)

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  1. Exposure to indoor tanning without burning and melanoma risk by sunburn history.

    Science.gov (United States)

    Vogel, Rachel Isaksson; Ahmed, Rehana L; Nelson, Heather H; Berwick, Marianne; Weinstock, Martin A; Lazovich, DeAnn

    2014-06-01

    Indoor tanning is carcinogenic to humans. Individuals report that they tan indoors before planning to be in the sun to prevent sunburns, but whether skin cancer is subsequently reduced is unknown. Using a population-based case-control study, we calculated the association between melanoma and indoor tanning after excluding exposed participants reporting indoor tanning-related burns, stratified by their number of lifetime sunburns (0, 1-2, 3-5, >5). Confounding was addressed using propensity score analysis methods. All statistical tests were two-sided. We observed increased risk of melanoma across all sunburn categories for participants who had tanned indoors without burning compared with those who never tanned indoors, including those who reported zero lifetime sunburns (odds ratio = 3.87; 95% confidence interval = 1.68 to 8.91; P = .002). These data provide evidence that indoor tanning is a risk factor for melanoma even among persons who reported never experiencing burns from indoor tanning or outdoor sun exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada.

    Science.gov (United States)

    Zhang, Xianming; Diamond, Miriam L; Robson, Matthew; Harrad, Stuart

    2011-04-15

    Indoor air concentrations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) measured in 20 locations in Toronto ranged 0.008-16 ng·m(-3) (median 0.071 ng·m(-3)) and 0.8-130.5 ng·m(-3) (median 8.5 ng·m(-3)), respectively. PBDE and PCB air concentrations in homes tended to be lower than that in offices. Principal component analysis of congener profiles suggested that electrical equipment was the main source of PBDEs in locations with higher concentrations, whereas PUF furniture and carpets were likely sources to locations with lower concentrations. PCB profiles in indoor air were similar to Aroclors 1248, 1232, and 1242 and some exterior building sealant profiles. Individual PBDE and PCB congener concentrations in air were positively correlated with colocated dust concentrations, but total PBDE and total PCB concentrations in these two media were not correlated. Equilibrium partitioning between air and dust was further examined using log-transformed dust/air concentration ratios for which lower brominated PBDEs and all PCBs were correlated with K(OA). This was not the case for higher brominated BDEs for which the measured ratios fell below those based on K(OA) suggesting the air-dust partitioning process could be kinetically limited. Total emissions of PBDEs and PCBs to one intensively studied office were estimated at 87-550 ng·h(-1) and 280-5870 ng·h(-1), respectively, using the Multimedia Indoor Model of Zhang et al. Depending on the air exchange rate, up to 90% of total losses from the office could be to outdoors by means of ventilation. These results support the hypotheses that dominant sources of PBDEs differ according to location and that indoor concentrations and hence emissions contribute to outdoor concentrations due to higher indoor than outdoor concentrations along with estimates of losses via ventilation.

  3. Behaviors of radon in indoor environment

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu; Shimo, Michikuni.

    1987-01-01

    The source of radon ( 222 Rn) in the atmosphere is radioactive nuclide, uranium ( 238 U), which exists fairly common throughout the earth's crust. Radium ( 226 Ra) descended from uranium produce radon ( 222 Rn) of noble gas by decay. After formation in the ground, radon diffuses into the atmosphere. Without exception radon decay products are heavy metals which soon become attached to natural aerosols. Therefore, radon and its daughters (decay products) appear also in indoor environment, and generally, their concentration levels become higher than that of outdoor air due to build-up effects in the closed indoor environments. With the progress of the study on the influence of radon and its daughers on human health, it has become clear that they act effectively as an exciting cause of lung cancer. So, the study on the risk evaluation of them in room air has become to be very important. Concequently, the behaviors of radon and its daughters in indoor environment, first of all, should be studied in detail for the accurate estimation of the risk caused by them. In this special edition, fundamental characteristics of radon and its daughters, some measuring methods, theoretical considerations and some observational evidences obtained from various circumstances of indoor environment are described inorder to grasp and understand the behaviors of radon and its daughters in the indoor environment. (author)

  4. Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor

    International Nuclear Information System (INIS)

    Li, Baoren; Gao, Longlong; Yang, Gang

    2013-01-01

    Highlights: ► A novel energy saving high-pressure electro-pneumatic servo valve is presented. ► An evaluated method for steady gas flow forces on pneumatic valves is proposed. ► Gas jet angles at the orifices for the valve are larger than 69° commonly used. ► The steady gas flow force is strongly nonlinear with valve opening. ► The steady gas flow force is compensated and the aim at energy saving is realized. - Abstract: A novel voice coil motor (VCM) direct drive single stage high-pressure pneumatic servo valve is designed, and then the steady gas flow force acting on the spool of the servo valve is investigated by numerical simulation and experimental methods in this paper. At present, many studies about flow force are concentrated mainly on hydraulic valves, but rarely on pneumatic valves. However, the velocity of gas is up to sonic when high-pressure gas flows through the servo valve orifice. And therefore, the steady gas flow force, generated by high pressure and high speed gas flow, cannot be neglected and is an important disturbance for the VCM direct-drive single stage high-pressure pneumatic servo valve. Consequently, the numerical simulation with computational fluid dynamics (CFD) is adopted to analyze the flow filed, jet angles, and steady gas flow forces for the servo valve with different valve openings and inlet pressures. The experimental study is performed to evaluate and confirm the numerical analysis. Then the compensated approach is proposed to reduce the steady gas flow force for the servo valve, changing the angle of non-metering port designed in the valve sleeve to the spool axis. The results demonstrate that the presented numerical analysis method is validated, the gas jet angle for the servo valve orifice is more than 69° and varies with different spool openings, and the steady gas flow force is nonlinear with valve opening and linear with inlet pressure when the outlet boundary is atmospheric pressure. Moreover, the steady gas

  5. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    Science.gov (United States)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  6. Indoor Environmental Factors and Occurrence of Lung Function Decline in Adult Residents in Summer in Southwest China.

    Science.gov (United States)

    Jie, Yu; Kebin, Li; Yin, Tang; Jie, Xu

    2016-11-01

    There is conflicting reports on the respiratory health effects of indoor risk factor exposure. The aim of this study was to assess the association of indoor environmental factors to pulmonary function in an adult population in Zunyi City of Southwest China. Between July and Sep 2012, we conducted a cross-sectional survey of people aged ≥18 yr in 11 inner-city areas of Zunyi. Data on asthma and asthma-related symptoms and selected home environmental factors were assessed by questionnaire. Lung function measurements, including FVC, FEV 1 , FEV 1 /FVC and PEFR, were assessed and compared. Exposure to indoor and outdoor PM 2.5 was monitored by measurement of PM 2.5 emission relative concentration. Cooking oil fumes, environmental tobacco smoke (ETS) and coal fuel use were associated with impaired lung function among adults in summer season ( P oil fumes, pest in kitchen, mosquito repellent, fluffy blanket, pets, visible mold in bedroom and ETS (active and passive smoking) tended to exhibit greater decreases in FVC, FEV 1 and PEFR values compared with their non-exposed counterparts ( P kitchen, sleeping area and outdoor were 486.0cpm, 463.0cpm and 459.0cpm, respectively. PM 2.5 relative concentration in indoor kitchen and sleeping area were significant higher than outdoor ( P kitchen, sleeping area risk factors and ETS exposure and a reduction in lung function in summer was revealed in Zunyi.

  7. A Pilot Study to Understand the Variation in Indoor Air Quality in Different Economic Zones of Delhi University

    Science.gov (United States)

    Garg, Abhinav; Ghosh, Chirashree

    Today, one of the most grave environmental health problems being faced by the urban population is the poor air quality one breathes in. To testify the above statement, the recent survey report, World health statistics (WHO, 2012) reflects the fact that childhood mortality ratio from acute respiratory infection is one of the top leading causes of death in developing countries like India. Urban areas have a complex social stratification which ultimately results in forming different urban economic zones. This research attempts to understand the Indoor Air Quality (IAQ) by taking into consideration different lifestyle of occupants inhabiting these economic zones. The Study tries to evaluate the outdoor and indoor air quality by understanding the variation of selected pollutants (SPM, SOx, NOx) for the duration of four months - from October, 2012-January, 2013. For this, three economic zones (EZ) of Delhi University’s North Campus, were selected - Urban Slum (EZ I), Clerical (EZ II) and Faculty residence (EZ III). The statistical study indicates that Urban Slum (EZ I) was the most polluted site reporting maximum concentration of outdoor pollutants, whereas no significant difference in pollution load was observed in EZ II and EZ III. Further, the indoor air quality was evaluated by quantifying the indoor and outdoor pollution concentration ratios that shows EZ III have most inferior indoor air quality, followed by EZ I and EZ II. Moreover, it was also observed that ratio (phenomenon of infiltration) was dominant at the EZ II but was low for the EZ I and EZ III. With the evidence of high Indoor air pollution, the risk of pulmonary diseases and respiratory infections also increases, calling for an urgent requisite for making reforms to improve IAQ. Key words: Urban Area, Slum, IAQ, SOx, NOx, SPM

  8. Rethinking Indoor Localization Solutions Towards the Future of Mobile Location-Based Services

    Science.gov (United States)

    Guney, C.

    2017-11-01

    Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user's location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.

  9. RETHINKING INDOOR LOCALIZATION SOLUTIONS TOWARDS THE FUTURE OF MOBILE LOCATION-BASED SERVICES

    Directory of Open Access Journals (Sweden)

    C. Guney

    2017-11-01

    Full Text Available Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user’s location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.

  10. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo

    2016-01-01

    Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...... per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building......-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier...

  11. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    Science.gov (United States)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-05-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  12. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    Science.gov (United States)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  13. Literature survey on how different factors influence human comfort in indoor environments

    DEFF Research Database (Denmark)

    Frontczak, Monika Joanna; Wargocki, Pawel

    2011-01-01

    examined the extent to which other factors unrelated to the indoor environment, such as individual characteristics of building occupants, building-related factors and outdoor climate including seasonal changes, influence whether the indoor environment is evaluated as comfortable or not. The results suggest...... environmental conditions influencing comfort in the built environment were surveyed: thermal, visual and acoustic, as well as air quality. The literature was surveyed to determine which of these conditions were ranked by building users as being the most important determinants of comfort. The survey also...... quality. Thermal comfort is ranked by building occupants to be of greater importance compared with visual and acoustic comfort and good air quality. It also seems to influence to a higher degree the overall satisfaction with indoor environmental quality compared with the impact of other indoor...

  14. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference?

    Science.gov (United States)

    Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA

    2016-01-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245

  15. Activity size distributions of some naturally occurring radionuclides 7Be, 40K and 212Pb in indoor and outdoor environments

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    The activity size distributions of natural radionuclides 7 Be and 40 K were measured outdoor in El-Minia city, Egypt by means of gamma spectroscopy. A low-pressure Berner cascade impactor was used as a sampling device. The activity size distribution of both 7 Be and 40 K was described by one log-normal distribution, which was represented by the accumulation mode. The activity median aerodynamic diameter (AMAD) of 7 Be and 40 K was determined to be 530 and 1550nm with a relative geometric standard deviation (δ, which was defined as the dispersion of the peak) of 2.4 and 2, respectively. The same sampling device (Berner impactor) and a screen diffusion battery were used to measure the activity size distribution, activity concentration and unattached fraction (f P ) of 212 Pb in indoor air of El-Minia City, Egypt. The mean activity median aerodynamic diameter (AMAD) of the accumulation mode for attached 212 Pb was determined to be 250nm with a mean geometric standard deviation (δ) of 2.6. The mean value of the specific concentration of 212 Pb associated with that mode was determined to be 460+/-20mBqm -3 . The activity median thermodynamic diameter (AMTD) of unattached 212 Pb was determined to be 1.25nm with δ of 1.4. A mean unattached fraction (f p ) of 0.13+/-0.02 was obtained at a mean aerosol particle concentration of 1.8x10 3 cm -3 . The mean activity concentration of unattached 212 Pb was found to be 19+/-3mBqm -3 . It was found that the aerosol concentration played an important role in varying the unattached, attached activity concentration and unattached fraction (f P )

  16. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  17. A comparative study on indoor air quality in a low cost and a green ...

    African Journals Online (AJOL)

    user

    A statistical correlation analysis of indoor concentration levels with outdoor concentrations was carried ... New studies around the world on the health effects of air pollution ... benefits at all levels from using green affordable housing practices ...

  18. A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

    International Nuclear Information System (INIS)

    Yang, Jie; Zhou, Bo; Jin, Maozhu; Wang, Jun; Xiong, Feng

    2016-01-01

    Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the

  19. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  20. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  1. Indoor air pollution (PM2.5) due to secondhand smoke in selected hospitality and entertainment venues of Karachi, Pakistan.

    Science.gov (United States)

    Nafees, Asaad Ahmed; Taj, Tahir; Kadir, Muhammad Masood; Fatmi, Zafar; Lee, Kiyoung; Sathiakumar, Nalini

    2012-09-01

    To determine particulate matter smaller than 2.5 μm (PM(2.5)) levels at various hospitality and entertainment venues of Karachi, Pakistan. This was a descriptive cross-sectional study conducted at various locations in Karachi, during July 2009. Sampling was performed at 20 enclosed public places, including hospitality (restaurants and cafés) and entertainment (snooker/billiard clubs and gaming zones) venues. PM(2.5) levels were measured using an aerosol monitor. All entertainment venues had higher indoor PM(2.5) levels as compared to the immediate outdoors. The indoor PM(2.5) levels ranged from 25 to 390 μg/m(3) and the outdoor PM(2.5) levels ranged from 18 to 96 μg/m(3). The overall mean indoor PM(2.5) level was 138.8 μg/m(3) (± 112.8). Among the four types of venues, the highest mean indoor PM(2.5) level was reported from snooker/billiard clubs: 264.7 μg/m(3) (± 85.4) and the lowest from restaurants: 66.4 μg/m(3) (± 57.6) while the indoor/outdoor ratio ranged from 0.97 to 10.2, highest being at the snooker/billiard clubs. The smoking density ranged from 0.21 to 0.57, highest being at gaming zones. The indoor PM(2.5) concentration and smoking density were not significantly correlated (Spearman's correlation coefficient = 0.113; p = 0.636). This study demonstrates unacceptably high levels of PM(2.5) exposure associated with secondhand smoke (SHS) at various entertainment venues of Karachi even after 8 years since the promulgation of smoke-free ordinance (2002) in Pakistan; however, better compliance may be evident at hospitality venues. The results of this study call for effective implementation and enforcement of smoke-free environment at public places in the country.

  2. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  3. Core public health functions for BC : evidence review : air quality-indoor

    Energy Technology Data Exchange (ETDEWEB)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M. [British Columbia Ministry of Health, Victoria, BC (Canada)

    2006-04-15

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs.

  4. Core public health functions for BC : evidence review : air quality-indoor

    International Nuclear Information System (INIS)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M.

    2006-04-01

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs

  5. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  6. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alarifi

    2016-05-01

    Full Text Available In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  7. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  8. Long-term exposure to indoor air pollution and wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Hermansen, M.N.; Loland, L.

    2010-01-01

    Long-term exposure to air pollution is suspected to cause recurrent wheeze in infants. The few previous studies have had ambiguous results. The objective of this study was to estimate the impact of measured long-term exposure to indoor air pollution on wheezing symptoms in infants. We monitored......-point 'any symptom-day' (yes/no) and by standard linear regression with the end-point 'number of symptom-days'. The results showed no systematic association between risk for wheezing symptoms and the levels of these air pollutants with various indoor and outdoor sources. In conclusion, we found no evidence...... of an association between long-term exposure to indoor air pollution and wheezing symptoms in infants, suggesting that indoor air pollution is not causally related to the underlying disease. Practical Implications Nitrogen oxides, formaldehyde and fine particles were measured in the air in infants' bedrooms...

  9. Indoor air quality in preschools (3- to 5-year-old children) in the Northeast of Portugal during spring-summer season: pollutants and comfort parameters.

    Science.gov (United States)

    Oliveira, Marta; Slezakova, Klara; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2017-01-01

    Indoor air quality at schools (elementary, primary) has been the subject of many studies; however, there are still relative few data regarding preschool (3- to 5-year-old children) environments. This investigation determined the concentrations of particulate matter (PM) 2.5 , total volatile organic compounds (TVOC), formaldehyde, carbon monoxide (CO), and ozone (O 3 ) as well as the levels of carbon dioxide (CO 2 ), temperature, and relative humidity (RH) in the indoor and outdoor air of two preschools situated in different geographical regions of Portugal. The indoor concentrations of TVOC, CO, O 3 , and CO 2 were predominantly higher at the end of school day compared to early morning periods. The TVOC and CO 2 concentrations were higher indoors than outdoors suggesting predominantly an indoor origin. Outdoor air infiltrations were the major contributing source of CO and O 3 to indoor air in both preschools. The concentrations of all pollutants were within the limits defined by national regulations and international organizations, except for TVOC that exceeded 8-12-fold higher than the recommendation of 0.2 mg/m 3 proposed by European Commission. The levels of CO 2 were below the protective guideline of 2250 mg/m 3 (Portuguese legislation); however, the observed ranges exceeded the Portuguese margin of tolerance (2925 mg/m 3 ) at the end of school days, indicating the impact of occupancy rates particularly at one of the preschools. Regarding comfort parameters, temperature exerted a significant influence on O 3 concentrations, while RH values were significantly correlated with TVOC levels in indoor air of preschools, particularly during the late afternoon periods.

  10. Effects of Outdoor Housing of Piglets on Behavior, Stress Reaction and Meat Characteristics

    Directory of Open Access Journals (Sweden)

    Tomohiro Yonezawa

    2012-06-01

    Full Text Available Well-designed housing systems are important from the viewpoint of animal welfare and improvement of meat production. In this study, we investigated the effects of outdoor housing of pigs on their behavior, cortisol levels, and meat characteristics. Two groups that were born and raised in a spacious outdoor pen (4×10 m for every two sows or a minimum-sized standard pen in a piggery (1.9×2.2 m for every sow were studied. When their behaviors at the age of 2 to 3 wk were observed, the number of rooting episodes tended to be larger (p = 0.0509 and the total time of rooting tended to be longer (p = 0.0640 in the outdoor-housed piglets although the difference was not significant. Basal salivary cortisol levels of the outdoor piglets at the age of 4 wk were significantly lower than those of the indoor piglets (5.0±0.59 ng/ml vs. 11.6±0.91 ng/ml, 30 min after treatment, although their plasma cortisol levels were similar (53.3±3.54 ng/ml vs. 59.9±4.84 ng/ml, 30 min after treatment. When the ears were pierced at weaning, plasma and salivary cortisol levels were increased in both groups, even at 15 min after piercing. However, the increase in the outdoor-housed group was significantly less than that in the indoor-housed group. Throughout their lives, body weight and daily gain of the pigs were not significantly different between the two groups. In a meat taste preference test taken by 20 panelists, saltiness, flavor, and color of the outdoor-housed pork were found to be more acceptable. Moreover, when an electronic taste-sensing device was utilized, the C00 and CPA-C00 outputs (3.78±0.07 and −0.20±0.023, which correspond to compounds of bitterness and smells, respectively, were significantly lower in the outdoor-housed pork (5.03±0.16 and −0.13±0.009. Our results demonstrate that the outdoor housing system for piglets induces natural behaviors such as rooting and suppresses the strongest stress reaction of piglets, which could be important

  11. Evaluation of the Impact of Indoor Smoking Bans on Air Quality in Australian Licensed Clubs

    Science.gov (United States)

    Davidson, Margaret Elissa

    .5 particulates with a special calibration factor for environmental tobacco smoke calibration factor of 0.32 (PM2.5 (0.32)) was undertaken in the second group of clubs and monthly monitoring following the bans was undertaken in Clubs 9 and 11. There was a significant reduction in the mean airborne concentrations of PM2.5, PM1.0, PM2.5 (0.32), PPAH, CO and nicotine at all clubs following the implementation of the smoking bans. Of note was the increase in the mean outdoor PM2.5 concentrations at 6 clubs, and the significant increase in the number of outdoor smokers at 8 venues. The greatest change was an increase in the frequency of outdoor PM2.5 concentrations exceeding 25 mum m-3 which is the Australian PM2.5 advisory standard for ambient air (24 hours). Weak to strong significant correlations (R2=0.402-0.757 p=0.000-0.022) were identified between outdoor smokers and indoor PM2.5 concentrations (3 clubs), and a significant correlation (R2=1.000 p=0.000) between nicotine and indoor pollutants at one club. The results of this study indicate that indoor smoking bans may not fully protect the health of the public and workers in venues because of the possible infiltration of environmental tobacco smoke (ETS) identified at three clubs, as well as outdoor exposure to ETS associated with an increase in smoking activity. The lack of current indoor air quality standards makes the interpretation of the post ban air quality data difficult. Although, the mean concentration of contaminants were all below recommended limits for ambient air. The potential infiltration of ETS inside some clubs indicates that air quality may still represent both an occupational and public health risk because ETS has no safe exposure limit (WHO, 2000). (Abstract shortened by ProQuest.).

  12. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    Science.gov (United States)

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  13. Indoor radon levels in selected hot spring hotels in Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Zhang Boyou; Wang Xinming; Gong Jingping; Chan, Daniel; Bernett, John; Lee, S.C.

    2005-01-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L -1 in the hot spring water and 17.2-190.9 Bq m -3 in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10 -4 to 5.0x10 -3 . Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation

  14. The airborne metagenome in an indoor urban environment.

    Directory of Open Access Journals (Sweden)

    Susannah G Tringe

    Full Text Available The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

  15. Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration

    Directory of Open Access Journals (Sweden)

    James D. Carswell

    2013-06-01

    Full Text Available Modern smartphones are a great platform for Location Based Services (LBS. While outdoor LBS for smartphones has proven to be very successful, indoor LBS for smartphones has not yet fully developed due to the lack of an accurate positioning technology. In this paper we present an accurate indoor positioning approach for commercial off-the-shelf (COTS smartphones that uses the innate ability of mobile phones to produce ultrasound, combined with Time-Difference-of-Arrival (TDOA asynchronous trilateration. We evaluate our indoor positioning approach by describing its strengths and weaknesses, and determine its absolute accuracy. This is accomplished through a range of experiments that involve variables such as position of control point microphones, position of phone within the room, direction speaker is facing and presence of user in the signal path. Test results show that our Lok8 (locate mobile positioning system can achieve accuracies better than 10 cm in a real-world environment.

  16. The Airborne Metagenome in an Indoor Urban Environment

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah; Zhang, Tao; Liu, Xuguo; Yu, Yiting; Lee, Wah Heng; Yap, Jennifer; Yao, Fei; Suan, Sim Tiow; Ing, Seah Keng; Haynes, Matthew; Rohwer, Forest; Wei, Chia Lin; Tan, Patrick; Bristow, James; Rubin, Edward M.; Ruan, Yijun

    2008-02-12

    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

  17. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  18. Indoor Air Quality Assessment and Study of Different VOC Contributions within a School in Taranto City, South of Italy

    Directory of Open Access Journals (Sweden)

    Annalisa Marzocca

    2017-03-01

    Full Text Available Children spend a large amount of time in school environments and when Indoor Air Quality (IAQ is poor, comfort, productivity and learning performances may be affected. The aim of the present study is to characterize IAQ in a primary school located in Taranto city (south of Italy. Because of the proximity of a large industrial complex to the urban settlement, this district is one of the areas identified as being at high environmental risk in Italy. The study carried out simultaneous monitoring of indoor and outdoor Volatile Organic Compounds (VOC concentrations and assessed different pollutants’ contributions on the IAQ of the investigated site. A screening study of VOC and determination of Benzene, Toluene, Ethylbenzene, Xylenes (BTEX, sampled with Radiello® diffusive samplers suitable for thermal desorption, were carried out in three classrooms, in the corridor and in the yard of the school building. Simultaneously, Total VOC (TVOC concentration was measured by means of real-time monitoring, in order to study the activation of sources during the monitored days. The analysis results showed a prevalent indoor contribution for all VOC except for BTEX which presented similar concentrations in indoor and outdoor air. Among the determined VOC, Terpenes and 2-butohxyethanol were shown to be an indoor source, the latter being the indoor pollutant with the highest concentration.

  19. Knowledge, behavioral practices, and experiences of outdoor fallers: Implications for prevention programs.

    Science.gov (United States)

    Chippendale, Tracy; Raveis, Victoria

    2017-09-01

    Although the epidemiology and prevention of falls has been well studied, the focus has been on indoor rather than outdoor falls. Older adults' knowledge of outdoor risk factors and their outdoor fall prevention practices have not been examined. To fill this gap, and to inform the development of a prevention program, we sought to explore the experiences and fall prevention knowledge and practices of older adults who had sustained an outdoor fall. A cross-sectional study using random digit telephone dialing was used to survey community dwelling seniors (N=120) across the five boroughs of New York City. We used the Outdoor Falls Questionnaire (OFQ), a valid and reliable tool as the survey instrument. Perceived outdoor fall risks, strategies used for prevention, and outdoor fall experiences were examined. SPSS version 21 was used for descriptive analysis of participant characteristics and to determine frequencies of perceived outdoor fall risks and strategies used for prevention. Phenomenological analysis was used with the qualitative data. Qualitative and quantitative data were analyzed separately and a mixed methods matrix was used to interpret and integrate the findings. Analysis revealed diverse unmet education and training needs including the importance of using single vision glasses, understanding the fall risks associated with recreational areas and parking lots, safe outdoor walking strategies, safe carrying of items on level and uneven surfaces, as well as when walking up and down stairs, and safety in opening/closing doors. Study findings are informative for outdoor fall prevention programs as well as practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments.

    Science.gov (United States)

    Sepahvand, Asghar; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Jahanshiri, Zahra; Jamali, Mojdeh; Razzaghi-Abyaneh, Mehdi

    2011-11-01

    In the present study, genetic diversity and mycotoxin profiles of Aspergillus flavus isolated from air (indoors and outdoors), levels (surfaces), and soils of five hospitals in Southwest Iran were examined. From a total of 146 Aspergillus colonies, 63 isolates were finally identified as A. flavus by a combination of colony morphology, microscopic criteria, and mycotoxin profiles. No Aspergillus parasiticus was isolated from examined samples. Chromatographic analyses of A. flavus isolates cultured on yeast extract-sucrose broth by tip culture method showed that approximately 10% and 45% of the isolates were able to produce aflatoxin B(1) (AFB(1)) and cyclopiazonic acid (CPA), respectively. Around 40% of the isolates produced sclerotia on Czapek-Dox agar. The isolates were classified into four chemotypes based on the ability to produce AF and CPA that majority of them (55.5%) belonged to chemotype IV comprising non-mycotoxigenic isolates. Random amplified polymorphic DNA (RAPD) profiles generated by a combination of four selected primers were used to assess genetic relatedness of 16 selected toxigenic and non-toxigenic isolates. The resulting dendrogram demonstrated the formation of two separate clusters for the A. flavus comprised both mycotoxigenic and non-toxigenic isolates in a random distribution. The obtained results in this study showed that RAPD profiling is a promising and efficient tool to determine intra-specific genetic variation among A. flavus populations from hospital environments. A. flavus isolates, either toxigenic or non-toxigenic, should be considered as potential threats for hospitalized patients due to their obvious role in the etiology of nosocomial aspergillosis.

  1. In- and outdoor reproduction of first generation common sole Solea solea under a natural photothermal regime: Temporal progression of sexual maturation assessed by monitoring plasma steroids and gonadotropin mRNA expression.

    Science.gov (United States)

    Palstra, A P; Blok, M C; Kals, J; Blom, E; Tuinhof-Koelma, N; Dirks, R P; Forlenza, M; Blonk, R J W

    2015-09-15

    Reproduction of many temperate fishes is seasonal and maturation and spawning of gametes are under photothermal control. Reproductive success of first generation (G1) common sole Solea solea in captivity has been low. In this study, the sexual maturation status has been assessed during the prespawning months in G1 sole that were housed (a) outdoor under the natural photoperiod and temperature, or (b) indoor under artificial photothermal induction. Maturation was assessed in male and female G1 broodstock in November as controls, after which the remaining population was divided over two outdoor flow-through tanks placed in a pond and two indoor recirculating aquaculture system (RAS) tanks. Subsequently, maturation status (gonadosomatic index GSI and plasma levels of testosterone T and 17β-estradiol E2) was assessed in one tank for each condition in January, February and during spawning in early April, while fish in the other tank were not disturbed in achieving reproductive success. Quantitative real-time PCR was performed to determine species-specific gonadotropin mRNA expression in females. Successful G1 spawning and egg fertilisation occurred in all experimental tanks. Gonadal development was similar under both conditions. Higher E2 and T levels were found in indoor housed females. Gonadotropin expression revealed similar profiles between outdoor and indoor housed females. G1 sole could be reproduced in the outdoor tanks under the natural photoperiod and in the indoor tanks under artificial simulation of this regime that includes a potentially crucial chilling period of 2-3 months at 5-7 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Reevaluation of time spent indoors used for exposure dose assessment

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Fujimoto, Kenzo

    2016-01-01

    A time spent indoors of sixteen hours per day (indoor occupancy factor: 0.67) has been used to assess the radiation dose of residents who spend daily life in the area contaminated due to the nuclear accident in Japan. However, much longer time is considered to be spent indoors for recent modern life. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has been used an indoor occupancy factor of 0.8 since 1977 and a few reports suggested much higher indoor occupancy factors. Therefore it is important to reevaluate the indoor occupancy factor using current available survey data in Japan, such as 'NHK 2010 National Time Use Survey' and 'Survey on Time Use and Leisure Activities' of Statistics Bureau with certain assumption of time spent indoors in each daily activity. The total time spent indoors in a day is calculated to be 20.2 hours and its indoor occupancy factor is 0.84. Much lower indoor occupancy factors were derived from the survey data by Statistics Bureau for 10 to 14 and 15 to 19 years old groups and farmers who spend most of their time outdoors although present estimated indoor occupancy factor of 0.84 is still lower than those found in some of the relevant reports. A rounded indoor occupancy factor of 0.80 might be the appropriate conservative reference value to be used for the dose estimation of people who live in radioactively contaminated areas and for other relevant purposes of exposure assessment, taken into consideration the present results and values reported in United States Environmental Protection Agency (US EPA) and UNSCEAR. (author)

  3. Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting

    Energy Technology Data Exchange (ETDEWEB)

    Mihci, Metin [Iller Bankasi, Etud Plan ve Yol Dairesi, Opera, 06053 Ankara (Turkey); Buyuksarac, Aydin [Canakkale Onsekiz Mart University, Department of Geophysical Engineering, 17020, Canakkale (Turkey); Aydemir, Attila, E-mail: aydemir@tpao.gov.t [Turkiye Petrolleri A.O. Mustafa, Kemal Mah. 2. Cad. No: 86, 06100 Sogutozu, Ankara (Turkey); Celebi, Nilgun [Cekmece Nuclear Research and Training Centre (CNAEM), Cekmece, Istanbul (Turkey)

    2010-11-15

    Indoor and soil gas Radon ({sup 222}Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor {sup 222}Rn gas concentration values. In the second stage, soil gas {sup 222}Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although {sup 222}Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas {sup 222}Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.

  4. Ozone and limonene in indoor air: a source of submicron particle exposure.

    Science.gov (United States)

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer.

  5. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  6. Impact of operating wood-burning fireplace ovens on indoor air quality.

    Science.gov (United States)

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    Science.gov (United States)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  8. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor 222 Rn and in 222 Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house 222 Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater 222 Rn concentration than the measured outdoor 222 Rn. Apartment dwellers generally represent a low risk group regarding 222 Rn exposure. The following sections describe the main projects in some detail

  9. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing.

    Science.gov (United States)

    Zuo, JinXing; Ji, Wei; Ben, YuJie; Hassan, Muhammad Azher; Fan, WenHong; Bates, Liam; Dong, ZhaoMin

    2018-05-19

    Due to time- and expense- consuming of conventional indoor PM 2.5 (particulate matter with aerodynamic diameter of less than 2.5 μm) sampling, the sample size in previous studies was generally small, which leaded to high heterogeneity in indoor PM 2.5 exposure assessment. Based on 4403 indoor air monitors in Beijing, this study evaluated indoor PM 2.5 exposure from 15th March 2016 to 14th March 2017. Indoor PM 2.5 concentration in Beijing was estimated to be 38.6 ± 18.4 μg/m 3 . Specifically, the concentration in non-heating season was 34.9 ± 15.8 μg/m 3 , which was 24% lower than that in heating season (46.1 ± 21.2 μg/m 3 ). A significant correlation between indoor and ambient PM 2.5 (p < 0.05) was evident with an infiltration factor of 0.21, and the ambient PM 2.5 contributed approximately 52% and 42% to indoor PM 2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor (I/O) ratio was estimated to be 0.73 ± 0.54. Finally, the adjusted PM 2.5 exposure level integrating the indoor and outdoor impact was calculated to be 46.8 ± 27.4 μg/m 3 , which was approximately 42% lower than estimation only relied on ambient PM 2.5 concentration. This study is the first attempt to employ big data from commercial air monitors to evaluate indoor PM 2.5 exposure and risk in Beijing, which may be instrumental to indoor PM 2.5 pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Uric acid association with pulsatile and steady components of central and peripheral blood pressures.

    Science.gov (United States)

    Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi

    2018-03-01

    Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.

  11. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  12. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    International Nuclear Information System (INIS)

    Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)

  13. Elementary Science Indoors and Out: Teachers, Time, and Testing

    Science.gov (United States)

    Carrier, Sarah J.; Tugurian, Linda P.; Thomson, Margareta M.

    2013-10-01

    In this article, we present the results from a mixed-methods research study aimed to document indoor and outdoor fifth grade science experiences in one school in the USA in the context of accountability and standardized testing. We used quantitative measures to explore students' science knowledge, environmental attitudes, and outdoor comfort levels, and via qualitative measures, we examined views on science education and environmental issues from multiple sources, including the school's principal, teachers, and students. Students' science knowledge in each of the four objectives specified for grade 5 significantly improved during the school year. Qualitative data collected through interviews and observations found limited impressions of outdoor science. Findings revealed that, despite best intentions and a school culture that supported outdoor learning, it was very difficult in practice for teachers to supplement their classroom science instruction with outdoor activities. They felt constrained by time and heavy content demands and decided that the most efficient way of delivering science instruction was through traditional methods. Researchers discuss potentials and obstacles for the science community to consider in supporting teachers and preparing elementary school teachers to provide students with authentic experiential learning opportunities. We further confront teachers' and students' perceptions that science is always best and most efficiently learned inside the classroom through traditional text-driven instruction.

  14. Three Tier Indoor Localization System for Digital Forensics

    OpenAIRE

    Dennis L. Owuor; Okuthe P. Kogeda; Johnson I. Agbinya

    2017-01-01

    Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the impl...

  15. Perceived impact on student engagement when learning middle school science in an outdoor setting

    Science.gov (United States)

    Abbatiello, James

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes outdoors for regular classroom instruction. This study identified the potential impacts that learning in an outdoor setting might have on student engagement when learning middle school science. One sixth-grade middle school class participated in this case study, and students participated in outdoor intervention lessons where the instructional environment was a courtyard on the middle school campus. The outdoor lessons consisted of the same objectives and content as lessons delivered in an indoor setting during a middle school astronomy unit. Multiple sources of data were collected including questionnaires after each lesson, a focus group, student work samples, and researcher observations. The data was triangulated, and a vignette was written about the class' experiences learning in an outdoor setting. This study found that the feeling of autonomy and freedom gained by learning in an outdoor setting, and the novelty of the outdoor environment did increase student engagement for learning middle school science. In addition, as a result of this study, more work is needed to identify how peer to peer relationships are impacted by learning outdoors, how teachers could best utilize the outdoor setting for regular science instruction, and how learning in an outdoor setting might impact a feeling of stewardship for the environment in young adults.

  16. Performance of introducing outdoor cold air for cooling a plant production system with artificial light

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2016-03-01

    Full Text Available The commercial use of a plant production system with artificial light (PPAL is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each was maintained at 25ºC and 20ºC during light and dark periods, respectively, for lettuce production. In one PPAL (PPALe, an air exchanger (air flow rate: 250 m3 h-1 was used along with a heat pump (cooling capacity: 3.2 kW to maintain the indoor air temperature at the set-point. The other PPAL (PPALc with only a heat pump (cooling capacity: 3.2 kW was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP, electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2°C to 30.0°C: 1 the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; 2 hourly electric-energy consumption in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; 3 daily supply of CO2 in the PPALe reduced from 0.15 kg to 0.04 kg compared with that in the PPALc; 4 no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL.

  17. Modeling of indoor/outdoor fungi relationships in forty-four homes

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, M.J.

    1996-12-31

    From April through October 1994, a study was conducted in the Moline, Illinois-Bettendorf, Iowa area to measure bioaerosol concentrations in 44 homes housing a total of 54 asthmatic individuals. Air was sampled 3 to 10 times at each home over a period of seven months. A total of 852 pairs of individual samples were collected indoors at up to three locations (basement, kitchen, bedroom, or living room) and outside within two meters of each house.

  18. Log-normality of indoor radon data in the Walloon region of Belgium

    International Nuclear Information System (INIS)

    Cinelli, Giorgia; Tondeur, François

    2015-01-01

    The deviations of the distribution of Belgian indoor radon data from the log-normal trend are examined. Simulated data are generated to provide a theoretical frame for understanding these deviations. It is shown that the 3-component structure of indoor radon (radon from subsoil, outdoor air and building materials) generates deviations in the low- and high-concentration tails, but this low-C trend can be almost completely compensated by the effect of measurement uncertainties and by possible small errors in background subtraction. The predicted low-C and high-C deviations are well observed in the Belgian data, when considering the global distribution of all data. The agreement with the log-normal model is improved when considering data organised in homogeneous geological groups. As the deviation from log-normality is often due to the low-C tail for which there is no interest, it is proposed to use the log-normal fit limited to the high-C half of the distribution. With this prescription, the vast majority of the geological groups of data are compatible with the log-normal model, the remaining deviations being mostly due to a few outliers, and rarely to a “fat tail”. With very few exceptions, the log-normal modelling of the high-concentration part of indoor radon data is expected to give reasonable results, provided that the data are organised in homogeneous geological groups. - Highlights: • Deviations of the distribution of Belgian indoor Rn data from the log-normal trend. • 3-component structure of indoor Rn: subsoil, outdoor air and building materials. • Simulated data generated to provide a theoretical frame for understanding deviations. • Data organised in homogeneous geological groups; better agreement with the log-normal

  19. Pilot study on indoor climate investigation and computer simulation in historical museum building: Amerongen Castle, the Netherlands

    Directory of Open Access Journals (Sweden)

    Raha Sulaiman

    2010-12-01

    Full Text Available The indoor climate is one of the most important factors contributing to climate-induced damage to the building materials and cultural collections of a monumental building. The Dutch monumental building - Amerongen Castle, and the collections housed in it show severe deterioration caused by inappropriate historical indoor environment. Assessments of the indoor climate, especially on the room temperature and relative humidity, are necessary to analyze the causes and impacts of climate change. As the building was flooded in year 1993 and 1996, extra attention is paid to investigate the effects of flooding to it. This pilot study was aimed to identify the buildup linkages between the known past, historical data on indoor environment and indoor climate performance in the building through simulation based-prediction. This paper focuses on the methodology of indoor climate investigation from the past to the current situation. A hypothesis was developed on backcasting-based prediction simulation which can be used to identify the accepted historical indoor climate where during those times there probably was no damage to the building and the collection. A simulation method based on heat, air and moisture transport is used with the HAMBase program. The computer model representing the Grand Salon of Amerongen Castle was calibrated by comparing real measurements to simulation results. It shows that the differences were only to the minimum of -1.8C and maximum of 3.2C. The data for the historical outdoor weather files was obtained by interpolating outdoor ancient climatology constructed by MATLAB. Based on archival research, indoor thermal history was gathered as input for the profiles used in simulation. Further, the calibrated computer model can be used to simulate past indoor climate and investigate the process of the deterioration of the room and the collections mainly due to the fluctuation of indoor temperature and relative humidity. At the end

  20. Reducing indoor radon concentrations by passive subslab ventilation

    International Nuclear Information System (INIS)

    Jiranek, M.

    2005-01-01

    The primary objective of our study was to establish whether passive soil ventilation systems installed under existing houses have an effect on indoor radon concentrations. Experiments were conducted in two single-family houses. The soil ventilation under each house consists of the network of flexible perforated pipes laid into the layer of coarse gravel of the minimal thickness 150 mm. Soil air from the perforated pipes is ventilated by means of the vertical exhaust pipe that runs through the heated part of the house and ends above the roof of the house. At the top of the vertical exhaust a wind turbine is mounted in order to improve the stack effect during the windy weather .In addition to the soil ventilation both houses were provided with new floors composed of concrete slab and radon proof insulation made of LDPE membrane. The efficiency of passive soil ventilation systems varies within the year in dependence on the temperature gradient and wind speed. Preliminary results indicate that temperature gradient predominates. However the maximum under-pressure at the base of the vertical exhaust pipe caused by temperature differences is not so high. During one-year observation period the maximum temperature related under-pressure was only -8 Pa. The wind effect starts to be noticeable for speeds higher than 5 m/s and more apparent becomes for speeds above 10 m/s. The maximum values of under-pressure due to wind forces were measured within the range - 20 Pa and -30 Pa for wind speeds from 20 m/s to 25 m/s. Quite significant variations of the subslab under-pressure within one day were observed. The maximum under pressure was measured at late night or early morning when the outdoor temperature was the lowest. Annual variations were also confirmed. During the winter the temperature gradient is higher than in the summer time and thus the subslab under-pressure is consistently higher in the winter. Preliminary results indicate that passive soil ventilation systems with