New statistical potential for quality assessment of protein models and a survey of energy functions
Directory of Open Access Journals (Sweden)
Rykunov Dmitry
2010-03-01
Full Text Available Abstract Background Scoring functions, such as molecular mechanic forcefields and statistical potentials are fundamentally important tools in protein structure modeling and quality assessment. Results The performances of a number of publicly available scoring functions are compared with a statistical rigor, with an emphasis on knowledge-based potentials. We explored the effect on accuracy of alternative choices for representing interaction center types and other features of scoring functions, such as using information on solvent accessibility, on torsion angles, accounting for secondary structure preferences and side chain orientation. Partially based on the observations made, we present a novel residue based statistical potential, which employs a shuffled reference state definition and takes into account the mutual orientation of residue side chains. Atom- and residue-level statistical potentials and Linux executables to calculate the energy of a given protein proposed in this work can be downloaded from http://www.fiserlab.org/potentials. Conclusions Among the most influential terms we observed a critical role of a proper reference state definition and the benefits of including information about the microenvironment of interaction centers. Molecular mechanical potentials were also tested and found to be over-sensitive to small local imperfections in a structure, requiring unfeasible long energy relaxation before energy scores started to correlate with model quality.
International Nuclear Information System (INIS)
Holttinen, H.; Tammelin, B.; Hyvoenen, R.
1997-01-01
The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)
Statistical investigation of expected wave energy and its reliability
International Nuclear Information System (INIS)
Ozger, M.; Altunkaynak, A.; Sen, Z.
2004-01-01
The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S. (author)
Statistical investigation of expected wave energy and its reliability
International Nuclear Information System (INIS)
Oezger, Mehmet; Altunkaynak, Abduesselam; Sen, Zekai
2004-01-01
The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S
Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional
International Nuclear Information System (INIS)
Aymard, Francois
2015-01-01
and beyond. At densities above two-three times saturation, other degrees of freedom are expected to appear, which potentially lead to other consistency problems but this issue will not be treated in this thesis. The thesis is divided into three parts. In part I, we present the Nuclear Statistical Equilibrium model based on the grand canonical statistics and non-relativistic Skyrme interactions. Results at β-equilibrium are shown and the importance of the clusters distribution as well as a realistic treatment for the free energy model is discussed. Part II investigates the functional behavior of the baryonic energy in the Wigner-Seitz cell within the Extended-Thomas-Fermi approximation. In particular, both bulk and surface in-medium effects are studied, and their dependence on cluster size and asymmetry as well as gas densities and asymmetry is investigated. A preliminary result of in-medium surface effects is presented within some approximations in the case of β-equilibrated matter. In part III, we develop approximations in order to obtain a reliable analytical expression of the mass formula, directly linked to the functional form and parameters of the Skyrme interaction. In this part, we mainly focus on nuclei in vacuum, and analyse the different binding energy components in terms of bulk and surface properties, as well as isovector and isoscalar properties. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
International Nuclear Information System (INIS)
Anon.
1994-01-01
For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources
Energy statistics yearbook 2002
International Nuclear Information System (INIS)
2005-01-01
The Energy Statistics Yearbook 2002 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-sixth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Energy statistics yearbook 2001
International Nuclear Information System (INIS)
2004-01-01
The Energy Statistics Yearbook 2001 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-fifth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Energy statistics yearbook 2000
International Nuclear Information System (INIS)
2002-01-01
The Energy Statistics Yearbook 2000 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-third in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
International Nuclear Information System (INIS)
Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )
2009-01-01
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics
Energy Statistics Manual; Manual Statistik Energi
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
Australian energy statistics - Australian energy update 2005
Energy Technology Data Exchange (ETDEWEB)
Donaldson, K.
2005-06-15
ABARE's energy statistics include comprehensive coverage of Australian energy consumption, by state, by industry and by fuel. Australian Energy Update 2005 provides an overview of recent trends and description of the full coverage of the dataset. There are 14 Australian energy statistical tables available as free downloads (product codes 13172 to 13185).
Key world energy statistics. 2004 edition
International Nuclear Information System (INIS)
2004-01-01
Key World Energy Statistics from the IEA contains timely, clearly-presented data on the supply, transformation and consumption of all major energy sources. The IEA energy balances and statistics databases on CD-Rom provide annual historical energy data extracted from four IEA/OECD data bases: energy statistics and energy balances, which contain data for most of the OECD countries for the years 1960 to 2002 and energy statistics and balances for more than 100 non-OECD countries for the years 1971 to 2002. The CDs and/or hard-copies and PDFs can be purchased individually: Energy Balances of OECD Countries 2004; Energy Statistics of OECD Countries 2004; Energy Balances of Non OECD Countries 2004; Energy Statistics of Non-OECD Countries 2004
Statistical measurement of the gamma-ray source-count distribution as a function of energy
Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.
2017-01-01
Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.
International Nuclear Information System (INIS)
2003-01-01
This report has 12 chapters. The first chapter includes world energy reserves, the second chapter is about world primary energy production and consumption condition. Other chapters include; world energy prices, energy reserves in Turkey, Turkey primary energy production and consumption condition, Turkey energy balance tables, Turkey primary energy reserves production, consumption, imports and exports conditions, sectoral energy consumptions, Turkey secondary electricity plants, Turkey energy investments, Turkey energy prices.This report gives world and Turkey statistics on energy
International Nuclear Information System (INIS)
2002-10-01
This document summarizes in a series of tables the energy statistical data for France: consumption since 1973; energy supplies (production, imports, exports, stocks) and uses (refining, power production, internal uses, sectoral consumption) for coal, petroleum, gas, electricity, and renewable energy sources; national production and consumption of primary energy; final consumption per sector and per energy source; general indicators (energy bill, US$ change rate, prices, energy independence, internal gross product); projections. Details (resources, uses, prices, imports, internal consumption) are given separately for petroleum, natural gas, electric power and solid mineral fuels. (J.S.)
Energy Statistics Manual [Arabic version
Energy Technology Data Exchange (ETDEWEB)
NONE
2011-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
Energy Statistics Manual; Handbuch Energiestatistik
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
A no extensive statistical model for the nucleon structure function
International Nuclear Information System (INIS)
Trevisan, Luis A.; Mirez, Carlos
2013-01-01
We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.
Key China Energy Statistics 2012
Energy Technology Data Exchange (ETDEWEB)
Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2012-05-01
The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.
Key China Energy Statistics 2011
Energy Technology Data Exchange (ETDEWEB)
Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2012-01-15
The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.
International Nuclear Information System (INIS)
Anon.
1989-01-01
World data from the United Nation's latest Energy Statistics Yearbook, first published in our last issue, are completed here. The 1984-86 data were revised and 1987 data added for world commercial energy production and consumption, world natural gas plant liquids production, world LP-gas production, imports, exports, and consumption, world residual fuel oil production, imports, exports, and consumption, world lignite production, imports, exports, and consumption, world peat production and consumption, world electricity production, imports, exports, and consumption (Table 80), and world nuclear electric power production
Functional statistics and related fields
Bongiorno, Enea; Cao, Ricardo; Vieu, Philippe
2017-01-01
This volume collects latest methodological and applied contributions on functional, high-dimensional and other complex data, related statistical models and tools as well as on operator-based statistics. It contains selected and refereed contributions presented at the Fourth International Workshop on Functional and Operatorial Statistics (IWFOS 2017) held in A Coruña, Spain, from 15 to 17 June 2017. The series of IWFOS workshops was initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008. Since then, many of the major advances in functional statistics and related fields have been periodically presented and discussed at the IWFOS workshops. .
International Nuclear Information System (INIS)
2000-10-01
Denmark's gross energy consumption increased in 1999 with almost 0,5% while the CO 2 emission decreased with 1,4%. Energy Statistics 1999 shows that the energy consumption in households and the production industries was the same as the year before. The consumption in the trade and service sectors and for transportation increased. The Danish production of petroleum, natural gas and renewable energy increased in 1999 to 1000 PJ which is an increase of 17% compared to 1998. The degree of self-supply increased to 118%, which means that the energy production was 18% higher than the energy consumption in 1999. This was primarily due to a very high increase of production of petroleum of 26%. (LN)
International Nuclear Information System (INIS)
2007-01-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2006. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2006 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons
International Nuclear Information System (INIS)
2005-01-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2004. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2004 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons
International Nuclear Information System (INIS)
2006-01-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2005. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2005 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons
International Nuclear Information System (INIS)
2004-01-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2003. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2003 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons
International Nuclear Information System (INIS)
2003-01-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2002. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2002 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons
Wind power statistics and an evaluation of wind energy density
Energy Technology Data Exchange (ETDEWEB)
Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)
1995-11-01
In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)
A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson
International Nuclear Information System (INIS)
Datta, Nilanjana; Kunz, Herve
2004-01-01
We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals
Wind energy statistics 2012; Vindkraftsstatistik 2012
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-04-15
The publication 'Wind Energy Statistics' is an annual publication. Since 2010, the reported statistics of installed power, number of plants and regional distribution, even semi-annually, and in tabular form on the Agency's website. The publication is produced in a new way this year, which will result in some data differ from previous publications. Due to the certificate system there is basically full statistics on wind energy in this publication which are presented in different styles. Here we present the regional distribution, ie. how the number of turbines and installed capacity is allocated to counties and municipalities. The electricity produced divided by county, where for reasons of confidentiality possible, are also reported. The wind power is becoming increasingly important in the Swedish energy system which provides an increased demand for statistics and other divisions than that presented in the official statistics. Therefore, this publication, which are not official statistics, has been developed.
The buildings networks' energy statistics 2003; Bygningsnettverkets energistatistikk 2003
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
The report presents analyses and statistics for the energy consumption in various types of building, mostly commercial buildings. It shows how the energy consumption varies with the type of heating system, cooling, size of building, age etc. Also shown are figures for the energy consumption in relation to function, such as number of students in schools, number of people in nursing homes etc. The climate in Norway was the 6th warmest in 137 years. Energy consumption is given for different climatic zones.
The statistical error of Green's function Monte Carlo
International Nuclear Information System (INIS)
Ceperley, D.M.
1986-01-01
The statistical error in the ground state energy as calculated by Green's Function Monte Carlo (GFMC) is analyzed and a simple approximate formula is derived which relates the error to the number of steps of the random walk, the variational energy of the trial function, and the time step of the random walk. Using this formula it is argued that as the thermodynamic limit is approached with N identical molecules, the computer time needed to reach a given error per molecule increases as N/sup n/ where 0.5 < b < 1.5 and as the nuclear charge Z of a system is increased the computer time necessary to reach a given error grows as Z/sup 5.5/. Thus GFMC simulations will be most useful for calculating the properties of low Z elements. The implications for choosing the optimal trial function from a series of trial functions is also discussed
Energy Statistics Manual; Manuel sur les statistiques de l'energie
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
1992 Energy statistics Yearbook
International Nuclear Information System (INIS)
1994-01-01
The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from annual questionnaires distributed by the United Nations Statistical Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistical Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)
Wind energy statistics 2011; Vindkraftsstatistik 2011
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-11-01
Wind energy statistics 2011 is the fifth publication in the annual series. The report's focus is on regional distribution, i e the number of plants and installed capacity allocated to counties and municipalities. The publication also reports a division between sea- and land-based plants and the size of wind farms in Sweden in terms of installed capacity. The publication is published in spring in report form and since 2010 statistics on number of plants, installed capacity, and regional distribution semi-annually are also presented on the Swedish Energy Agency's website. The statistics relating to installed capacity, number of wind farms and location in this publication is taken from the electricity certificate system, introduced in May 2003. Thanks to the electricity certificate system there is in principle comprehensive statistics of wind energy which in this publication is presented in different intersections. Statistics related to electricity production is taken from the Swedish Kraftnaets [Swedish national grid's] registry Cesar.
Energy statistics: A manual for developing countries
International Nuclear Information System (INIS)
1991-01-01
Considerable advances have been made by developing countries during the last 20 years in the collection and compilation of energy statistics. the present Manual is a guide, which it is hoped will be used in countries whose system of statistics is less advanced to identify the main areas that should be developed and how this might be achieved. The generally accepted aim is for countries to be able to compile statistics annually on the main characteristics shown for each fuel, and for energy in total. These characteristics are mainly concerned with production, supply and consumption, but others relating to the size and capabilities of the different energy industries may also be of considerable importance. The initial task of collecting data from the energy industries (mines, oil producers, refineries and distributors, electrical power stations, etc.) may well fall to a number of organizations. ''Energy'' from a statistical point of view is the sum of the component fuels, and good energy statistics are therefore dependent on good fuel statistics. For this reason a considerable part of this Manual is devoted to the production of regular, comprehensive and reliable statistics relating to individual fuels. Chapters V to IX of this Manual are concerned with identifying the flows of energy, from production to final consumption, for each individual fuel, and how data on these flows might be expected to be obtained. The very different problems concerned with the collection of data on the flows for biomass fuels are covered in chapter X. The data needed to complete the picture of the national scene for each individual fuel, more concerned with describing the size, capabilities and efficiency of the industries related to that fuel, are discussed in chapter XI. Annex I sets out the relationships between the classifications of the various types of fuels. The compilation of energy balances from the data obtained for individual fuels is covered in chapter XIII. Finally, chapter
Parametric Statistics of Individual Energy Levels in Random Hamiltonians
Smolyarenko, I. E.; Simons, B. D.
2002-01-01
We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.
Energy Statistics Manual; Manual de Estadisticas Energeticas
Energy Technology Data Exchange (ETDEWEB)
NONE
2007-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
Energy Statistics Manual; Enerji Istatistikleri El Kitabi
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
Detailed, complete, timely and reliable statistics are essential to monitor the energy situation at a country level as well as at an international level. Energy statistics on supply, trade, stocks, transformation and demand are indeed the basis for any sound energy policy decision. For instance, the market of oil -- which is the largest traded commodity worldwide -- needs to be closely monitored in order for all market players to know at any time what is produced, traded, stocked and consumed and by whom. In view of the role and importance of energy in world development, one would expect that basic energy information to be readily available and reliable. This is not always the case and one can even observe a decline in the quality, coverage and timeliness of energy statistics over the last few years.
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-07-01
The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.
Swiss overall energy statistics 1979
International Nuclear Information System (INIS)
Anon.
1980-01-01
The comprehensive statistics are produced by the Federal Department of Energy and the Swiss National Committee of the World Energy Conference, and are divided into three sections, (1) Consumption of energy in 1979, (2) Development of the energy balance-sheet from 1974 to 1979, and (3) Comments relative to the energy balance-sheet. Appendices are also included giving tables of energy consumption in the year 1950 and for the period 1960 - 1979, and the energy consumption by industry and other branches in 1979. (A.G.P.)
Energy statistics France; Statistiques energetiques France
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-04-01
This document presents statistical data on energy accounting in France compared to other european countries. Many tables and charts on energy consumption, energy invoice and prices are provided by sectors. (A.L.B.)
Key World Energy Statistics 2012
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-07-01
Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.
Energy statistics: Fourth quarter, 1989
International Nuclear Information System (INIS)
Anon.
1989-01-01
This volume contains 100 tables compiling data into the following broad categories: energy, drilling, natural gas, gas liquids, oil, coal, peat, electricity, uranium, and business indicators. The types of data that are given include production and consumption statistics, reserves, imports and exports, prices, fossil fuel and nuclear power generation statistics, and price indices
Statistical modelling with quantile functions
Gilchrist, Warren
2000-01-01
Galton used quantiles more than a hundred years ago in describing data. Tukey and Parzen used them in the 60s and 70s in describing populations. Since then, the authors of many papers, both theoretical and practical, have used various aspects of quantiles in their work. Until now, however, no one put all the ideas together to form what turns out to be a general approach to statistics.Statistical Modelling with Quantile Functions does just that. It systematically examines the entire process of statistical modelling, starting with using the quantile function to define continuous distributions. The author shows that by using this approach, it becomes possible to develop complex distributional models from simple components. A modelling kit can be developed that applies to the whole model - deterministic and stochastic components - and this kit operates by adding, multiplying, and transforming distributions rather than data.Statistical Modelling with Quantile Functions adds a new dimension to the practice of stati...
Study of developing a database of energy statistics
Energy Technology Data Exchange (ETDEWEB)
Park, T.S. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)
1997-08-01
An integrated energy database should be prepared in advance for managing energy statistics comprehensively. However, since much manpower and budget is required for developing an integrated energy database, it is difficult to establish a database within a short period of time. Therefore, this study sets the purpose in drawing methods to analyze existing statistical data lists and to consolidate insufficient data as first stage work for the energy database, and at the same time, in analyzing general concepts and the data structure of the database. I also studied the data content and items of energy databases in operation in international energy-related organizations such as IEA, APEC, Japan, and the USA as overseas cases as well as domestic conditions in energy databases, and the hardware operating systems of Japanese databases. I analyzed the making-out system of Korean energy databases, discussed the KEDB system which is representative of total energy databases, and present design concepts for new energy databases. In addition, I present the establishment directions and their contents of future Korean energy databases, data contents that should be collected by supply and demand statistics, and the establishment of data collection organization, etc. by analyzing the Korean energy statistical data and comparing them with the system of OECD/IEA. 26 refs., 15 figs., 11 tabs.
International Nuclear Information System (INIS)
Morfeldt, Johannes; Silveira, Semida
2014-01-01
Energy efficiency indicators used for evaluating industrial activities at the national level are often based on statistics reported in international databases. In the case of the Swedish iron and steel sector, energy consumption statistics published by Odyssee, Eurostat, the IEA (International Energy Agency), and the United Nations differ, resulting in diverging energy efficiency indicators. For certain years, the specific energy consumption for steel is twice as high if based on Odyssee statistics instead of statistics from the IEA. The analysis revealed that the assumptions behind the allocation of coal and coke used in blast furnaces as energy consumption or energy transformation are the major cause for these differences. Furthermore, the differences are also related to errors in the statistical data resulting from two different surveys that support the data. The allocation of coal and coke has implications when promoting resource as well as energy efficiency at the systems level. Eurostat's definition of energy consumption is more robust compared to the definitions proposed by other organisations. Nevertheless, additional data and improved energy efficiency indicators are needed to fully monitor the iron and steel sector's energy system and promote improvements towards a greener economy at large. - Highlights: • Energy statistics for the iron and steel sector diverge in international databases. • Varying methods have implications when monitoring energy and resource efficiency. • Allocation of blast furnaces as transformation activities is behind the differences. • Different statistical surveys and human error also contribute to diverging results
Energy statistics. France. August 2001
International Nuclear Information System (INIS)
2001-08-01
This document summarizes in a series of tables the statistical data relative to the production, consumption, supplies, resources, and prices of energies in France: 1 - all energies (coal, oil, gas, electric power, renewable energies): supplies, uses per sector, national production and consumption of primary energies, final consumption, general indicators (energy bill, US$ change rate, prices index, prices of imported crude oil, energy independence, internal gross product, evolution between 1973 and 2000, and projections for 2020). 2 - detailed data per energy source (petroleum, natural gas, electric power, solid mineral fuels): resources, uses, and prices. An indicative comparison is made with the other countries of the European Union. (J.S.)
Accuracy and reliability of China's energy statistics
Energy Technology Data Exchange (ETDEWEB)
Sinton, Jonathan E.
2001-09-14
Many observers have raised doubts about the accuracy and reliability of China's energy statistics, which show an unprecedented decline in recent years, while reported economic growth has remained strong. This paper explores the internal consistency of China's energy statistics from 1990 to 2000, coverage and reporting issues, and the state of the statistical reporting system. Available information suggests that, while energy statistics were probably relatively good in the early 1990s, their quality has declined since the mid-1990s. China's energy statistics should be treated as a starting point for analysis, and explicit judgments regarding ranges of uncertainty should accompany any conclusions.
Key World Energy Statistics 2013
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-01
The IEA produced its first handy, pocket-sized summary of key energy data in 1997 and every year since then it has been more and more successful. Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.
International Nuclear Information System (INIS)
2008-01-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2007. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2007 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power
International Nuclear Information System (INIS)
2001-01-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2000. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2000 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power
International Nuclear Information System (INIS)
2002-01-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2001. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2001 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
The Manual is written in a question-and-answer format. The points developed are introduced with a basic question, such as: What do people mean by 'fuels' and 'energy'? What units are used to express oil? How are energy data presented? Answers are given in simple terms and illustrated by graphs, charts and tables. More technical explanations are found in the annexes. The Manual contains seven chapters. The first one presents the fundamentals of energy statistics, five chapters deal with the five different fuels (electricity and heat; natural gas; oil; solid fuels and manufactured gases; renewables and waste) and the last chapter explains the energy balance. Three technical annexes and a glossary are also included. For the five chapters dedicated to the fuels, there are three levels of reading: the first one contains general information on the subject, the second one reviews issues which are specific to the joint IEA/OECD-Eurostat-UNECE questionnaires and the third one focuses on the essential elements of the subject. 43 figs., 22 tabs., 3 annexes.
High energy behaviour of particles and unified statistics
International Nuclear Information System (INIS)
Chang, Y.
1984-01-01
Theories and experiments suggest that particles at high energy appear to possess a new statistics unifying Bose-Einstein and Fermi-Dirac statistics via the GAMMA distribution. This hypothesis can be obtained from many models, and agrees quantitatively with scaling, the multiplicty, large transverse momentum, the mass spectrum, and other data. It may be applied to scatterings at high energy, and agrees with experiments and known QED's results. The Veneziano model and other theories have implied new statistics, such as, the B distribution and the Polya distribution. They revert to the GAMMA distribution at high energy. The possible inapplicability of Pauli's exclusion principle within the unified statistics is considered and associated to the quark constituents
1984 Statistical symposium on national energy issues: proceedings
International Nuclear Information System (INIS)
Kinnison, R.; Doctor, P.
1985-07-01
The 1984 Statistical Symposium on National Energy Issues was the tenth in a series of annual symposia bringing together statisticians and other interested parties who are actively engaged in the pursuit of solving the nation's energy problems. Initially the symposium was sponsored by US Department of Energy (DOE) and named the DOE Statistical Symposium. The symposium is organized by a steering committee made up of representatives from the national laboratories. The 1984 symposium was hosted by Pacific Northwest Laboratory, and it was organized around four special topical sessions: (1) assessing and assuring high reliability, (2) spatial statistical, (3) quantification of informed opinion, and (4) health effects of energy technologies. These were chosen by the steering committee as topics currently of high importance in energy research and data analysis. Several contributed papers were also presented. Separate abstracts have been prepared for 17 papers for inclusion in the Energy Data Base
Energy statistics. France; Statistiques energetiques. France
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-10-01
This document summarizes in a series of tables the energy statistical data for France: consumption since 1973; energy supplies (production, imports, exports, stocks) and uses (refining, power production, internal uses, sectoral consumption) for coal, petroleum, gas, electricity, and renewable energy sources; national production and consumption of primary energy; final consumption per sector and per energy source; general indicators (energy bill, US$ change rate, prices, energy independence, internal gross product); projections. Details (resources, uses, prices, imports, internal consumption) are given separately for petroleum, natural gas, electric power and solid mineral fuels. (J.S.)
International Nuclear Information System (INIS)
2011-01-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2010. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2010 and energy use in various sectors are presented. The Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. In the third chapter, details are given related to each energy carrier. The final chapter deals with economical and environmental aspects
Recent advances in statistical energy analysis
Heron, K. H.
1992-01-01
Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.
Foundation of statistical energy analysis in vibroacoustics
Le Bot, A
2015-01-01
This title deals with the statistical theory of sound and vibration. The foundation of statistical energy analysis is presented in great detail. In the modal approach, an introduction to random vibration with application to complex systems having a large number of modes is provided. For the wave approach, the phenomena of propagation, group speed, and energy transport are extensively discussed. Particular emphasis is given to the emergence of diffuse field, the central concept of the theory.
International Nuclear Information System (INIS)
Arnold, V.I.
2006-03-01
To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected components of the level hypersurface of the function. For a Morse function, such a graph is a tree. Generically, it has T triple vertices, T + 2 endpoints, 2T + 2 vertices and 2T + 1 arrows. The main goal of the present paper is to study the statistics of the graphs, corresponding to T triple points: what is the growth rate of the number φ(T) of different graphs? Which part of these graphs is representable by the polynomial functions of corresponding degree? A generic polynomial of degree n has at most (n - 1) 2 critical points on R 2 , corresponding to 2T + 2 = (n - 1) 2 + 1, that is to T = 2k(k - 1) saddle-points for degree n = 2k
A statistical mechanical approach to restricted integer partition functions
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-05-01
The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.
Functional integral approach to classical statistical dynamics
International Nuclear Information System (INIS)
Jensen, R.V.
1980-04-01
A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose
We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.
Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism
Vojta, Günter; Vojta, Matthias
Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
Oil and gas journal energy database's energy statistics sourcebook, 5th edition
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is a library of energy industry data in a single volume. It's the fastest way to get the information you need to analyze your market, make intelligent and informed decisions, develop various economic scenarios and prepare crucial business plans. And it's researched by energy professionals who know how to save you time and money. International, national and state statistics in monthly and/or annual formats are detailed. Current through 1989, most tables show from 15 to 50 years of data. Key statistical indicators for analyzing energy industry trends have been compiled by industry divisions such as: Exploration and drilling, production, reserves, refining, stocks, demands/consumption, imports and exports, energy, financial, offshore and transportation
Information Geometry, Inference Methods and Chaotic Energy Levels Statistics
Cafaro, Carlo
2008-01-01
In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.
Functional summary statistics for the Johnson-Mehl model
DEFF Research Database (Denmark)
Møller, Jesper; Ghorbani, Mohammad
The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....
World offshore energy loss statistics
International Nuclear Information System (INIS)
Kaiser, Mark J.
2007-01-01
Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 1970-2004. The impact of the 2004-2005 hurricane season in the Gulf of Mexico is summarized
International Nuclear Information System (INIS)
Levine, R.D.
1988-01-01
Statistical considerations are applied to quantum mechanical amplitudes. The physical motivation is the progress in the spectroscopy of highly excited states. The corresponding wave functions are strongly mixed. In terms of a basis set of eigenfunctions of a zeroth-order Hamiltonian with good quantum numbers, such wave functions have contributions from many basis states. The vector x is considered whose components are the expansion coefficients in that basis. Any amplitude can be written as a dagger x x. It is argued that the components of x and hence other amplitudes can be regarded as random variables. The maximum entropy formalism is applied to determine the corresponding distribution function. Two amplitudes a dagger x x and b dagger x x are independently distributed if b dagger x a = 0. It is suggested that the theory of quantal measurements implies that, in general, one can one determine the distribution of amplitudes and not the amplitudes themselves
Dependence of the giant dipole strength function on excitation energy
International Nuclear Information System (INIS)
Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.
1982-01-01
Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy
Gordon, Sheldon P.; Gordon, Florence S.
2010-01-01
One of the most important applications of the definite integral in a modern calculus course is the mean value of a function. Thus, if a function "f" is defined on an interval ["a", "b"], then the mean, or average value, of "f" is given by [image omitted]. In this note, we will investigate the meaning of other statistics associated with a function…
Directory of Open Access Journals (Sweden)
P.Kostrobii
2006-01-01
Full Text Available Nonequilibrium properties of an inhomogeneous electron gas are studied using the method of the nonequilibrium statistical operator by D.N. Zubarev. Generalized transport equations for the mean values of inhomogeneous operators of the electron number density, momentum density, and total energy density for weakly and strongly nonequilibrium states are obtained. We derive a chain of equations for the Green's functions, which connects commutative time-dependent Green's functions "density-density", "momentum-momentum", "enthalpy-enthalpy" with reduced Green's functions of the generalized transport coefficients and with Green's functions for higher order memory kernels in the case of a weakly nonequilibrium spatially inhomogeneous electron gas.
Signals of dynamical and statistical process from IMF-IMF correlation function
Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.
2017-11-01
In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.
Statistical considerations in the development of injury risk functions.
McMurry, Timothy L; Poplin, Gerald S
2015-01-01
We address 4 frequently misunderstood and important statistical ideas in the construction of injury risk functions. These include the similarities of survival analysis and logistic regression, the correct scale on which to construct pointwise confidence intervals for injury risk, the ability to discern which form of injury risk function is optimal, and the handling of repeated tests on the same subject. The statistical models are explored through simulation and examination of the underlying mathematics. We provide recommendations for the statistically valid construction and correct interpretation of single-predictor injury risk functions. This article aims to provide useful and understandable statistical guidance to improve the practice in constructing injury risk functions.
The statistics of galaxies: beyond correlation functions
International Nuclear Information System (INIS)
Lachieze-Rey, M.
1988-01-01
I mention some normalization problems encountered when estimating the 2-point correlation functions in samples of galaxies of different average densities. I present some aspects of the void probability function as a statistical indicator, free of such normalization problems. Finally I suggest a new statistical approach to give an account in a synthetic way of those aspects of the galaxy distribution that a conventional method is unable to characterize
Statistical learning in high energy and astrophysics
International Nuclear Information System (INIS)
Zimmermann, J.
2005-01-01
This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a
Statistical learning in high energy and astrophysics
Energy Technology Data Exchange (ETDEWEB)
Zimmermann, J.
2005-06-16
This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot
Statistical models describing the energy signature of buildings
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Thavlov, Anders
2010-01-01
Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA......-values, time constants of the building, and other parameters related to the heat dynamics. A method for selecting the most appropriate model for a given building is outlined and finally a perspective of the applications is given. Aknowledgements to the Danish Energy Saving Trust and the Interreg IV ``Vind i...
Watt-Lite; Energy Statistics Made Tangible
DEFF Research Database (Denmark)
Jönsson, Li; Broms, Loove; Katzeff, Cecilia
2011-01-01
of consumers its consequences are poorly understood. In order to better understand how we can use design to increase awareness of electricity consumption in everyday life, we will discuss the design of Watt-Lite, a set of three oversized torches projecting real time energy statistics of a factory...... in the physical environments of its employees. The design of Watt-Lite is meant to explore ways of representing, understanding and interacting with electricity in industrial workspaces. We discuss three design inquiries and their implications for the design of Watt-Lite: the use of tangible statistics...
Statistical Characterization of 18650-Format Lithium-Ion Cell Thermal Runaway Energy Distributions
Walker, William Q.; Rickman, Steven; Darst, John; Finegan, Donal; Bayles, Gary; Darcy, Eric
2017-01-01
Effective thermal management systems, designed to handle the impacts of thermal runaway (TR) and to prevent cell-to-cell propagation, are key to safe operation of lithium-ion (Li-ion) battery assemblies. Critical factors for optimizing these systems include the total energy released during a single cell TR event and the fraction of the total energy that is released through the cell casing vs. through the ejecta material. A unique calorimeter was utilized to examine the TR behavior of a statistically significant number of 18650-format Li-ion cells with varying manufacturers, chemistries, and capacities. The calorimeter was designed to contain the TR energy in a format conducive to discerning the fractions of energy released through the cell casing vs. through the ejecta material. Other benefits of this calorimeter included the ability to rapidly test of large quantities of cells and the intentional minimization of secondary combustion effects. High energy (270 Wh/kg) and moderate energy (200 Wh/kg) 18650 cells were tested. Some of the cells had an imbedded short circuit (ISC) device installed to aid in the examination of TR mechanisms under more realistic conditions. Other variations included cells with bottom vent (BV) features and cells with thin casings (0.22 1/4m). After combining the data gathered with the calorimeter, a statistical approach was used to examine the probability of certain TR behavior, and the associated energy distributions, as a function of capacity, venting features, cell casing thickness and temperature.
Full-counting statistics of energy transport of molecular junctions in the polaronic regime
International Nuclear Information System (INIS)
Tang, Gaomin; Yu, Zhizhou; Wang, Jian
2017-01-01
We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson–Holstein model in the polaronic regime. Using the two-time quantum measurement scheme, the generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a sudden switch-on of the coupling between the dot and the leads towards the stationary state. The steady state energy current cumulant GF in the long time limit is obtained in the energy domain as well. Universal relations for steady state energy current FCS are derived under a finite temperature gradient with zero bias and this enabled us to express the equilibrium energy current cumulant by a linear combination of lower order cumulants. The behaviors of energy current cumulants in steady state under temperature gradient and external bias are numerically studied and explained. The transient dynamics of energy current cumulants is numerically calculated and analyzed. Universal scaling of normalized transient energy cumulants is found under both temperature gradient and external bias. (paper)
On the efficiency of high-energy particle identification statistical methods
International Nuclear Information System (INIS)
Chilingaryan, A.A.
1982-01-01
An attempt is made to analyze the statistical methods of making decisions on the high-energy particle identification. The Bayesian approach is shown to provide the most complete account of the primary discriminative information between the particles of various tupes. It does not impose rigid requirements on the density form of the probability function and ensures the account of the a priori information as compared with the Neyman-Pearson approach, the mimimax technique and the heristic rules of the decision limits construction in the variant region of the specially chosen parameter. The methods based on the concept of the nearest neighbourhood are shown to be the most effective one among the local methods of the probability function density estimation. The probability distances between the training sample classes are suggested to make a decision on selecting the high-energy particle detector optimal parameters. The method proposed and the software constructed are tested on the problem of the cosmic radiation hadron identification by means of transition radiation detectors (the ''PION'' experiment)
Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data
International Nuclear Information System (INIS)
Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.
2016-01-01
Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg"2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. Lastly, we discuss prospects for future peak statistics analysis with upcoming DES data.
Applications of Dirac's Delta Function in Statistics
Khuri, Andre
2004-01-01
The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…
Aftershock Energy Distribution by Statistical Mechanics Approach
Daminelli, R.; Marcellini, A.
2015-12-01
The aim of our work is to research the most probable distribution of the energy of aftershocks. We started by applying one of the fundamental principles of statistical mechanics that, in case of aftershock sequences, it could be expressed as: the greater the number of different ways in which the energy of aftershocks can be arranged among the energy cells in phase space the more probable the distribution. We assume that each cell in phase space has the same possibility to be occupied, and that more than one cell in the phase space can have the same energy. Seeing that seismic energy is proportional to products of different parameters, a number of different combinations of parameters can produce different energies (e.g., different combination of stress drop and fault area can release the same seismic energy). Let us assume that there are gi cells in the aftershock phase space characterised by the same energy released ɛi. Therefore we can assume that the Maxwell-Boltzmann statistics can be applied to aftershock sequences with the proviso that the judgment on the validity of this hypothesis is the agreement with the data. The aftershock energy distribution can therefore be written as follow: n(ɛ)=Ag(ɛ)exp(-βɛ)where n(ɛ) is the number of aftershocks with energy, ɛ, A and β are constants. Considering the above hypothesis, we can assume g(ɛ) is proportional to ɛ. We selected and analysed different aftershock sequences (data extracted from Earthquake Catalogs of SCEC, of INGV-CNT and other institutions) with a minimum magnitude retained ML=2 (in some cases ML=2.6) and a time window of 35 days. The results of our model are in agreement with the data, except in the very low energy band, where our model resulted in a moderate overestimation.
A New Statistical Tool: Scalar Score Function
Czech Academy of Sciences Publication Activity Database
Fabián, Zdeněk
2011-01-01
Roč. 2, - (2011), s. 109-116 ISSN 1934-7332 R&D Projects: GA ČR GA205/09/1079 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistics * inference function * data characteristics * point estimates * heavy tails Subject RIV: BB - Applied Statistics, Operational Research
Pairwise contact energy statistical potentials can help to find probability of point mutations.
Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S
2017-01-01
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Statistical learning methods in high-energy and astrophysics analysis
Energy Technology Data Exchange (ETDEWEB)
Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)
2004-11-21
We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.
Statistical learning methods in high-energy and astrophysics analysis
International Nuclear Information System (INIS)
Zimmermann, J.; Kiesling, C.
2004-01-01
We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-08-15
This comprehensive report made by the Swiss Federal Office of Energy (SFOE) presents the statistics on total energy production and usage in Switzerland for the year 2008. First of all, an overview of Switzerland's energy consumption in 2008 is presented. Details are noted of the proportions of consumption of oil-fuels for heating, oil products for mobility, electricity, gas and various other fuels. The development of consumption over the years 1910 to 2008 is illustrated graphically. A second chapter takes a look at energy flow from production (and import) to the consumer and export. An extensive collection of illustrative flow diagrams, tables and graphical representations of energy flows, statistics for various energy carriers and of the various uses of energy in Switzerland is presented.
International Nuclear Information System (INIS)
Chen Shuqin; Li Nianping; Guan Jun
2008-01-01
The purpose of this research is to find a statistical methodology to investigate the national energy consumption in the public buildings sector in China, in order to look into the actuality of the national energy consumption of public buildings and to provide abundant data for building energy efficiency work. The frame of a national statistical system of energy consumption for public buildings is presented in this paper. The statistical index system of energy consumption is constituted, which refers to the general characteristics of public buildings, their possession and utilization of energy consumption equipment and their energy consumption quantities. Sequentially, a set of statistical report forms is designed to investigate the energy consumption of cities, provinces and the country, respectively. On this base, the above statistical methodology is used to gather statistics of a public building for annual energy consumption
Study of energy fluctuation effect on the statistical mechanics of equilibrium systems
International Nuclear Information System (INIS)
Lysogorskiy, Yu V; Wang, Q A; Tayurskii, D A
2012-01-01
This work is devoted to the modeling of energy fluctuation effect on the behavior of small classical thermodynamic systems. It is known that when an equilibrium system gets smaller and smaller, one of the major quantities that becomes more and more uncertain is its internal energy. These increasing fluctuations can considerably modify the original statistics. The present model considers the effect of such energy fluctuations and is based on an overlapping between the Boltzmann-Gibbs statistics and the statistics of the fluctuation. Within this o verlap statistics , we studied the effects of several types of energy fluctuations on the probability distribution, internal energy and heat capacity. It was shown that the fluctuations can considerably change the temperature dependence of internal energy and heat capacity in the low energy range and at low temperatures. Particularly, it was found that, due to the lower energy limit of the systems, the fluctuations reduce the probability for the low energy states close to the lowest energy and increase the total average energy. This energy increasing is larger for lower temperatures, making negative heat capacity possible for this case.
Statistical Modeling of Energy Production by Photovoltaic Farms
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.
2011-01-01
Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy
Pergamenshchik, V. M.; Vozniak, A. B.
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.
Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R
2007-12-01
After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.
Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P
1999-01-01
Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149
Towards consistent and reliable Dutch and international energy statistics for the chemical industry
International Nuclear Information System (INIS)
Neelis, M.L.; Pouwelse, J.W.
2008-01-01
Consistent and reliable energy statistics are of vital importance for proper monitoring of energy-efficiency policies. In recent studies, irregularities have been reported in the Dutch energy statistics for the chemical industry. We studied in depth the company data that form the basis of the energy statistics in the Netherlands between 1995 and 2004 to find causes for these irregularities. We discovered that chemical products have occasionally been included, resulting in statistics with an inconsistent system boundary. Lack of guidance in the survey for the complex energy conversions in the chemical industry in the survey also resulted in large fluctuations for certain energy commodities. The findings of our analysis have been the basis for a new survey that has been used since 2007. We demonstrate that the annual questionnaire used for the international energy statistics can result in comparable problems as observed in the Netherlands. We suggest to include chemical residual gas as energy commodity in the questionnaire and to include the energy conversions in the chemical industry in the international energy statistics. In addition, we think the questionnaire should be explicit about the treatment of basic chemical products produced at refineries and in the petrochemical industry to avoid system boundary problems
Energy statistics and balances of non-OECD countries 1991-1992
International Nuclear Information System (INIS)
1994-01-01
Contains a compilation of energy production and consumption statistics for 85 non-OECD countries and regions, including developing countries, Central and Eastern European countries and the former Soviet Union. Data are expressed in original units and in common units for coal, oil, gas, electricity and heat. Historical tables for both individual countries and regions summarize data on coal, gas and electricity production and consumption since 1971. Similar data for OECD are available in the IEA publications Energy Statistics and Energy Balances of OECD Countries
Methods library of embedded R functions at Statistics Norway
Directory of Open Access Journals (Sweden)
Øyvind Langsrud
2017-11-01
Full Text Available Statistics Norway is modernising the production processes. An important element in this work is a library of functions for statistical computations. In principle, the functions in such a methods library can be programmed in several languages. A modernised production environment demand that these functions can be reused for different statistics products, and that they are embedded within a common IT system. The embedding should be done in such a way that the users of the methods do not need to know the underlying programming language. As a proof of concept, Statistics Norway soon has established a methods library offering a limited number of methods for macro-editing, imputation and confidentiality. This is done within an area of municipal statistics with R as the only programming language. This paper presents the details and experiences from this work. The problem of fitting real word applications to simple and strict standards is discussed and exemplified by the development of solutions to regression imputation and table suppression.
A review of Ghana’s energy sector national energy statistics and policy framework
Samuel Asumadu-Sarkodie; Phebe Asantewaa Owusu
2016-01-01
In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward...
Energy statistics France - June 2008; Statistiques energetiques France - juin 2008
Energy Technology Data Exchange (ETDEWEB)
NONE
2008-07-01
This document summarizes in a series of tables and graphics the energy statistics for France for the last decades and up to 2007: resources, uses, prices, net imports and domestic market consumption for petroleum, natural gas, electricity, and solid mineral fuels (coal, lignite, coke). 2007 statistics are presented separately for each energy source (availability, uses). The evolution of the domestic energy production and consumption and the end-use consumption per sector is also summarized for the last decades. Some primary consumption forecasts are given for 2030. (J.S.)
Statistical calculation of complete events in medium-energy nuclear collisions
International Nuclear Information System (INIS)
Randrup, J.
1984-01-01
Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed
Energy statistics and balances of non-OECD countries 1993-1994
International Nuclear Information System (INIS)
1996-01-01
Contains a compilation of energy supply and consumption statistics for more than 100 non-OECD countries and regions, including developing countries Central and Eastern European countries and the former USSR. Data are expressed in original units and in common units for coal, oil, gas, electricity, heat and combustible renewable and waste. Historical tables for both individual countries and regions summarize data on coal, oil, gas and electricity production, trade and consumption as well as main energy and economic indicators since 1971. Each issue includes definitions of products and flows and notes on the individual countries as well as conversion factors from original units to common energy units. Similar data for OECD are available in the IEA Energy Statistics and Energy Balances of OECD Countries. (author)
International Nuclear Information System (INIS)
Shafieloo, Arman
2012-01-01
By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties
Robust functional statistics applied to Probability Density Function shape screening of sEMG data.
Boudaoud, S; Rix, H; Al Harrach, M; Marin, F
2014-01-01
Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.
Annual Bulletin of General Energy Statistics for Europe. V. 23, 1990
International Nuclear Information System (INIS)
1992-01-01
The purpose of the Bulletin is to provide basic data on the energy situation as a whole in European countries, Canada and the United States of America. This publication is purely statistical in character. As from the 1980 edition of the bulletin the scope of statistics comprises production of energy by form, overall energy balance sheets and deliveries of petroleum products for inland consumption. While less details are given for solid and gaseous fuels as sources of energy than in previous editions of the bulletin, more information is available for liquid fuels and nuclear, hydro- and geothermal energy
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-04-20
Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2011-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.
DEFF Research Database (Denmark)
Mischke, Peggy
2013-01-01
for research and policy analysis. An improved understanding of the quality and reliability of Chinese economic and energy data is becoming more important to to understanding global energy markets and future greenhouse gas emissions. China’s national statistical system to track such changes is however still...... developing and, in some instances, energy data remain unavailable in the public domain. This working paper discusses China’s energy and economic statistics in view of identifying suitable indicators to develop a simplified regional energy systems for China from a variety of publicly available data. As China......’s national statistical system continuous to be debated and criticised in terms of data quality, comparability and reliability, an overview of the milestones, status and main issues of China’s energy statistics is given. In a next step, the energy balance format of the International Energy Agency is used...
Predicting energy performance of a net-zero energy building: A statistical approach
International Nuclear Information System (INIS)
Kneifel, Joshua; Webb, David
2016-01-01
Highlights: • A regression model is applied to actual energy data from a net-zero energy building. • The model is validated through a rigorous statistical analysis. • Comparisons are made between model predictions and those of a physics-based model. • The model is a viable baseline for evaluating future models from the energy data. - Abstract: Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid Climate Zone, and compares these
Statistical and extra-statistical considerations in differential item functioning analyses
Directory of Open Access Journals (Sweden)
G. K. Huysamen
2004-10-01
Full Text Available This article briefly describes the main procedures for performing differential item functioning (DIF analyses and points out some of the statistical and extra-statistical implications of these methods. Research findings on the sources of DIF, including those associated with translated tests, are reviewed. As DIF analyses are oblivious of correlations between a test and relevant criteria, the elimination of differentially functioning items does not necessarily improve predictive validity or reduce any predictive bias. The implications of the results of past DIF research for test development in the multilingual and multi-cultural South African society are considered. Opsomming Hierdie artikel beskryf kortliks die hoofprosedures vir die ontleding van differensiële itemfunksionering (DIF en verwys na sommige van die statistiese en buite-statistiese implikasies van hierdie metodes. ’n Oorsig word verskaf van navorsingsbevindings oor die bronne van DIF, insluitend dié by vertaalde toetse. Omdat DIF-ontledings nie die korrelasies tussen ’n toets en relevante kriteria in ag neem nie, sal die verwydering van differensieel-funksionerende items nie noodwendig voorspellingsgeldigheid verbeter of voorspellingsydigheid verminder nie. Die implikasies van vorige DIF-navorsingsbevindings vir toetsontwikkeling in die veeltalige en multikulturele Suid-Afrikaanse gemeenskap word oorweeg.
International Nuclear Information System (INIS)
Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.
2012-01-01
Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry’s energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry’s total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry’s final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them useable for reliable monitoring of energy efficiency improvements of the chemical industry. -- Highlights: ► An advanced model was developed to estimate German chemical industry’s energy use. ► For the base year (2000), model covers 88% of the sector’s total final energy use. ► Sector’s energy efficiency improved between 2.2 and 3.5%/yr between 1995 and 2008. ► Improved energy statistics are required for accurate monitoring of improvements.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Numerical evaluation of the statistical properties of a potential energy landscape
International Nuclear Information System (INIS)
Nave, E La; Sciortino, F; Tartaglia, P; Michele, C De; Mossa, S
2003-01-01
The techniques which allow the numerical evaluation of the statistical properties of the potential energy landscape for models of simple liquids are reviewed and critically discussed. Expressions for the liquid free energy and its vibrational and configurational components are reported. Finally, a possible model for the statistical properties of the landscape, which appears to describe correctly fragile liquids in the region where equilibrium simulations are feasible, is discussed
Proposal to Include Electrical Energy in the Industrial Return Statistics
2003-01-01
At its 108th session on the 20 June 1997, the Council approved the Report of the Finance Committee Working Group on the Review of CERN Purchasing Policy and Procedures. Among other topics, the report recommended the inclusion of utility supplies in the calculation of the return statistics as soon as the relevant markets were deregulated, without reaching a consensus on the exact method of calculation. At its 296th meeting on the 18 June 2003, the Finance Committee approved a proposal to award a contract for the supply of electrical energy (CERN/FC/4693). The purpose of the proposal in this document is to clarify the way electrical energy will be included in future calculations of the return statistics. The Finance Committee is invited: 1. to agree that the full cost to CERN of electrical energy (excluding the cost of transport) be included in the Industrial Service return statistics; 2. to recommend that the Council approves the corresponding amendment to the Financial Rules set out in section 2 of this docum...
Nonextensive statistical mechanics and high energy physics
Directory of Open Access Journals (Sweden)
Tsallis Constantino
2014-04-01
Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2004. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2004 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons.
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2005. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2005 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons.
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2003. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2003 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons.
Energy Technology Data Exchange (ETDEWEB)
NONE
2007-07-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2006. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2006 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons.
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2002. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2002 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons.
Electron Energy Level Statistics in Graphene Quantum Dots
De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.
2008-01-01
Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the
Energy statistics of pre-revolutionary Russia
Directory of Open Access Journals (Sweden)
N. S. Simonov
2017-01-01
Full Text Available The article is devoted to the problem of creation and development of the energy statistics of the Russian Empire of the initial stage of electrification and the formation of the energy economy, which is related to: 1 the economic upsurge of the 1890s; 2 the new economic recovery of 1907–1913 and 3 the militarization of industry in 1914–1916. The real technical and economic indicators and complex statistical data of the pre-revolutionary electric power industry were either hushed up or deliberately distorted during the Soviet era. Even in the encyclopaedic literature it was considered that pre-revolutionaryRussia“was on one of the last places in the world” for the production of electricity. The author analyzes statistical surveys (censuses of the manufacturing industry for 1900 and 1908 (the “varzar censuses”, which gave the first material on the state of its energy sector, namely: the composition, quantity and power of primary engines and electric motors. For the first time in historiography, the data of the “energy censuses” of the Ministry of Finance for 1905 and 1913 on the number and capacity of central public power stations and private power stations (block stations of industrial enterprises, organizations and institutions are cited. The data of the census were conducted with the participation of the apparatus of factory and factory inspections in 1906 and in1916 inall provinces of the Russian Empire, with the exception of six provinces of the frontline zone. A lot of work was done to record electricity production / consumption, which was conducted by the Russian electrotechnical community. According to incomplete data published in 1917 by the Secretariat of the Standing Committee of the VII All-Russia Electrotechnical Congress, from 1905 to 1913 (that is, for 8 years the total number of power stations in the Russian Empire increased by 1.7 times, and the amount of electricity produced by them Has grown in 3,8 times. The
Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition
Energy Technology Data Exchange (ETDEWEB)
Canali, C M
1995-09-01
We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson`s mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) {approx} A/2 ln{sup 2}(is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A < 1. By performing systematic Monte Carlo simulations on the plasma model, we compute all the relevant statistical properties of the RME with weak confinement. For A{sub c} approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A{sub c}, the RME eigenvalue-number variance is linear and its slope is equal to 0.32 {+-} 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs.
International Nuclear Information System (INIS)
1996-01-01
This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydroelectric energy, petroleum, natural gas and coal. It also contains data on ethyl alcohol derived of sugar cane since it is of special importance in Brazil's energy scenario. Domestic production, petroleum and petroleum product imports, as well as natural gas production statistics are furnished in this bulletin
Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition
International Nuclear Information System (INIS)
Canali, C.M.
1995-09-01
We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson's mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) ∼ A/2 ln 2 (is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A c approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A c , the RME eigenvalue-number variance is linear and its slope is equal to 0.32 ± 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs
FADTTS: functional analysis of diffusion tensor tract statistics.
Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H
2011-06-01
The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.
Watt-Lite; Energy Statistics Made Tangible
DEFF Research Database (Denmark)
Jönsson, Li; Broms, Loove; Katzeff, Cecilia
2011-01-01
Increasing our knowledge of how design affects behaviour in the workplace has a large potential for reducing electricity consumption. This would be beneficial for the environment as well as for industry and society at large. In Western society energy use is hidden and for the great mass...... in the physical environments of its employees. The design of Watt-Lite is meant to explore ways of representing, understanding and interacting with electricity in industrial workspaces. We discuss three design inquiries and their implications for the design of Watt-Lite: the use of tangible statistics...
Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy
Energy Technology Data Exchange (ETDEWEB)
Tamain, B.; Bocage, F.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Assenard, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Auger, G.; Benlliure, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Bacri, C.O.; Borderie, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bisquer, E. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others
1997-12-31
Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4{pi} devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author) 53 refs.
Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy
International Nuclear Information System (INIS)
Tamain, B.; Bocage, F.; Bougault, R.; Brou, R.; Bacri, C.O.; Borderie, B.; Bisquer, E.
1997-01-01
Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4π devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author)
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Enerdata statistical yearbook. ''the key-data of energy worldwide''. 1999 data
International Nuclear Information System (INIS)
2000-01-01
The new edition of the Enerdata statistical yearbook provides the most recent statistical data on energy (oil, gas, coal and power production) and CO 2 emissions worldwide for the 1994-1999 period of time. These data cover 52 countries and 12 geographic areas and are presented in the form of tables and graphs (production, foreign exchanges, consumptions, market shares, sectoral consumption, 1999 energy status, long-term tendencies). More data for a longer period (1970-1999) and for all countries worldwide are available on the CD-Rom version of the yearbook. (J.S.)
Dynamics of EEG functional connectivity during statistical learning.
Tóth, Brigitta; Janacsek, Karolina; Takács, Ádám; Kóbor, Andrea; Zavecz, Zsófia; Nemeth, Dezso
2017-10-01
Statistical learning is a fundamental mechanism of the brain, which extracts and represents regularities of our environment. Statistical learning is crucial in predictive processing, and in the acquisition of perceptual, motor, cognitive, and social skills. Although previous studies have revealed competitive neurocognitive processes underlying statistical learning, the neural communication of the related brain regions (functional connectivity, FC) has not yet been investigated. The present study aimed to fill this gap by investigating FC networks that promote statistical learning in humans. Young adults (N=28) performed a statistical learning task while 128-channels EEG was acquired. The task involved probabilistic sequences, which enabled to measure incidental/implicit learning of conditional probabilities. Phase synchronization in seven frequency bands was used to quantify FC between cortical regions during the first, second, and third periods of the learning task, respectively. Here we show that statistical learning is negatively correlated with FC of the anterior brain regions in slow (theta) and fast (beta) oscillations. These negative correlations increased as the learning progressed. Our findings provide evidence that dynamic antagonist brain networks serve a hallmark of statistical learning. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Fyodorov, Yan V; Bouchaud, Jean-Philippe
2008-01-01
We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)
2008-09-19
We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)
Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions
International Nuclear Information System (INIS)
Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya
1994-01-01
Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)
Effective control of complex turbulent dynamical systems through statistical functionals.
Majda, Andrew J; Qi, Di
2017-05-30
Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.
Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)
1994-07-01
Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).
Nonlocal kinetic energy functionals by functional integration
Mi, Wenhui; Genova, Alessandro; Pavanello, Michele
2018-05-01
Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.
A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity.
Zhu, Yingying; Zhu, Xiaofeng; Kim, Minjeong; Yan, Jin; Wu, Guorong
2017-06-01
Functional connectivity (FC) has been widely investigated in many imaging-based neuroscience and clinical studies. Since functional Magnetic Resonance Image (MRI) signal is just an indirect reflection of brain activity, it is difficult to accurately quantify the FC strength only based on signal correlation. To address this limitation, we propose a learning-based tensor model to derive high sensitivity and specificity connectome biomarkers at the individual level from resting-state fMRI images. First, we propose a learning-based approach to estimate the intrinsic functional connectivity. In addition to the low level region-to-region signal correlation, latent module-to-module connection is also estimated and used to provide high level heuristics for measuring connectivity strength. Furthermore, sparsity constraint is employed to automatically remove the spurious connections, thus alleviating the issue of searching for optimal threshold. Second, we integrate our learning-based approach with the sliding-window technique to further reveal the dynamics of functional connectivity. Specifically, we stack the functional connectivity matrix within each sliding window and form a 3D tensor where the third dimension denotes for time. Then we obtain dynamic functional connectivity (dFC) for each individual subject by simultaneously estimating the within-sliding-window functional connectivity and characterizing the across-sliding-window temporal dynamics. Third, in order to enhance the robustness of the connectome patterns extracted from dFC, we extend the individual-based 3D tensors to a population-based 4D tensor (with the fourth dimension stands for the training subjects) and learn the statistics of connectome patterns via 4D tensor analysis. Since our 4D tensor model jointly (1) optimizes dFC for each training subject and (2) captures the principle connectome patterns, our statistical model gains more statistical power of representing new subject than current state
International Nuclear Information System (INIS)
1989-01-01
This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It contains data on ethyl alcohol derived from sugar cane and some aspects about nuclear energy in Brazil. Graphs, annual statistics and historical data of electric power, petroleum and petroleum products, natural gas, coal and alcohol are also included. 17 figs., 12 tabs
Dynamical and statistical aspects of intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Knoll, J.
1987-01-01
The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)
On China's energy intensity statistics: Toward a comprehensive and transparent indicator
International Nuclear Information System (INIS)
Wang Xin
2011-01-01
A transparent and comprehensive statistical system in China would provide an important basis for enabling a better understanding of the country. This paper focuses on energy intensity (EI), which is one of the most important indicators of China. It firstly reviews China's GDP and energy statistics, showing that China has made great improvements in recent years. The means by which EI data are released and adjusted are then explained. It shows that EI data releases do not provide complete data for calculating EI and constant GDP, which may reduce policy transparency and comprehensiveness. This paper then conducts an EI calculation method that is based on official sources and that respects the data availability of different data release times. It finds that, in general, China's EI statistics can be considered as reliable because most of the results generated by author's calculations match the figures in the official releases. However, two data biases were identified, which may necessitate supplementary information on related constant GDP values used in the official calculation of EI data. The paper concludes by proposing short- and long-term measures for improving EI statistics to provide a transparent and comprehensive EI indicator. - Highlights: → This paper examines data release and adjustment process of energy intensity (EI) target of China. → New insights on the comprehensiveness and transparency of EI data. → Potential data bias between author's calculation and official data due to lack of constant GDP data. → Proposition for improving short- and long-term EI statistical works.
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Energy Technology Data Exchange (ETDEWEB)
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
International Nuclear Information System (INIS)
Lü, Xiaoshu; Lu, Tao; Kibert, Charles J.; Viljanen, Martti
2015-01-01
Highlights: • This paper presents a new modeling method to forecast energy demands. • The model is based on physical–statistical approach to improving forecast accuracy. • A new method is proposed to address the heterogeneity challenge. • Comparison with measurements shows accurate forecasts of the model. • The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated. - Abstract: Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the random nature of weather conditions, energy consumption and loads are stochastic and difficult to predict. This paper presents a new methodology for energy demand forecasting that addresses the heterogeneity challenges in energy modeling of buildings. The new method is based on a physical–statistical approach designed to account for building heterogeneity to improve forecast accuracy. The physical model provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then stochastic parameters are introduced into the physical model and the statistical time series model is formulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model generalization based on a convex hull technique is further derived to parameterize the individual-level model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy for heterogeneous buildings. The proposed method and its validation are presented in detail for four different sports buildings with field measurements. The results show that the proposed methodology and model can provide a considerable improvement in forecasting accuracy
Energy-level statistics and time relaxation in quantum systems
International Nuclear Information System (INIS)
Gruver, J.L.; Cerdeira, H.A.; Aliaga, J.; Mello, P.A.; Proto, A.N.
1997-05-01
We study a quantum-mechanical system, prepared, at t = 0, in a model state, that subsequently decays into a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An important quantity is the survival probability P(t), defined as the probability, at time t, to find the system in the original model state. Our main purpose is to analyze the influence of the discreteness and statistical properties of the spectrum on the behavior of P(t). Since P(t) itself is a statistical quantity, we restrict our attention to its ensemble average , which is calculated analytically using random-matrix techniques, within certain approximations discussed in the text. We find, for , an exponential decay, followed by a revival, governed by the two-point structure of the statistical spectrum, thus giving a nonzero asymptotic value for large t's. The analytic result compares well with a number of computer simulations, over a time range discussed in the text. (author). 17 refs, 1 fig
GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes
Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.
2016-01-01
Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be
A Statistical Model for Energy Intensity
Directory of Open Access Journals (Sweden)
Marjaneh Issapour
2012-12-01
Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.
Statistical properties of the zeros of zeta functions - beyond the Riemann case
International Nuclear Information System (INIS)
Bogomolny, E.; Leboeuf, P.
1993-09-01
The statistical distribution of the zeros of Dirichlet L-functions is investigated both analytically and numerically. Using the Hardy-Littlewood conjecture about the distribution of primes it is shown that the two-point correlation function of these zeros coincides with that for eigenvalues of the Gaussian unitary ensemble of random matrices, and that the distributions of zeros of different L-functions are statistically independent. Applications of these results to Epstein's zeta functions are shortly discussed. (authors) 30 refs., 3 figs., 1 tab
International Nuclear Information System (INIS)
1988-01-01
This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It contains data on ethyl alcohol derived from sugar cane and some information about the Brazilian Action Plan for the petroleum sector, nuclear energy, ecology and Chernobyl. Graphs, annual statistics and long range data of electric power, petroleum and derivates, natural gas, coal and alcohol are also included. 19 figs., 15 tabs
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Statistical issues in searches for new phenomena in High Energy Physics
Lyons, Louis; Wardle, Nicholas
2018-03-01
Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.
The world energy consumption in 2001. Statistical yearbook ENERDATA 2002
International Nuclear Information System (INIS)
2002-01-01
Statistical data on the world energy consumption are given to illustrate the following situation in 2001: the deceleration of the world economic growth and the high prices of oil slowed down the progression of the energy consumption: 0,7 % in 2001; stagnation of the gas and oil consumption and strong progression for coal and electricity in 2001; the deceleration for gas marks a strong inflection compared to the past trends. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
NONE
2011-07-01
This report is an assessment of the current model and presentation form of bio energy statistics. It appears proposed revision and enhancement of both collection and data representation. In the context of market development both in general for energy and particularly for bio energy and government targets, a good bio energy statistics form the basis to follow up the objectives and means.(eb)
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
A review of Ghana’s energy sector national energy statistics and policy framework
Directory of Open Access Journals (Sweden)
Samuel Asumadu-Sarkodie
2016-12-01
Full Text Available In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward? The future research in Ghana cannot progress without consulting the past. In order to ensure access to affordable, reliable, sustainable, and modern energy for all, Ghana has begun expanding her economy with the growing Ghanaian population as a way to meet the SDG (1, which seeks to end poverty and improve well-being. There are a number of intervention strategies by Ghana’s Energy sector which provides new, high-quality, and cost-competitive energy services to poor people and communities, thus alleviating poverty. Ghana’s Energy sector has initiated the National Electrification Scheme, a Self-Help Electrification Program, a National Off-grid Rural Electrification Program, and a Renewable Energy Development Program (REDP. The REDP aims to: assess the availability of renewable energy resources, examine the technical feasibility and cost-effectiveness of promising renewable energy technologies, ensure the efficient production and use of the Ghana’s renewable energy resources, and develop an information base that facilitates the establishment of a planning framework for the rational development and the use of the Ghana’s renewable energy resources.
Virial-statistic method for calculation of atom and molecule energies
International Nuclear Information System (INIS)
Borisov, Yu.A.
1977-01-01
A virial-statistical method has been applied to the calculation of the atomization energies of the following molecules: Mo(CO) 6 , Cr(CO) 6 , Fe(CO) 5 , MnH(CO) 5 , CoH(CO) 4 , Ni(CO) 4 . The principles of this method are briefly presented. Calculation results are given for the individual contributions to the atomization energies together with the calculated and experimental atomization energies (D). For the Mo(CO) 6 complex Dsub(calc) = 1759 and Dsub(exp) = 1763 kcal/mole. Calculated and experimental combination heat values for carbonyl complexes are presented. These values are shown to be adequately consistent [ru
Energy statistical data (overseas). 1995 issue; Energy tokei shiryo (kaigaihen). 1995 nen ban
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-04-10
The energy statistical data (a 1995 overseas issue) were made public by the Energy Metrics Analysis Center, the Institute of Energy Economics. As for energy in general, described are the reserve/existing amount, a change of the production amount, the consumption amount of primary energy in the world, etc. As to oil, natural gas and coal, stated were the confirmed reserve, a change of the production amount, a change of the consumption amount, world import/export flows, etc. Concerning electric power, the paper deals with a change of the amount of electric power consumption in the world, constitution of the power generation amount by power source, a change of power generation capability, changes of capabilities of thermal, hydroelectric, and nuclear power, etc. With regard to data by country, a lot of data are included on the U.S., Canada, England, France, Germany, Italy, Australia, Russian Federation, and China. The paper also describes situations in OPEC countries, changes of the situation of Majors, and prices of crude oil, petroleum products, coal, natural gas and LPG, and electric power, etc.
Density dependence of the nuclear energy-density functional
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic
Directory of Open Access Journals (Sweden)
D.P. van der Nest
2015-03-01
Full Text Available This article explores the use by internal audit functions of audit sampling techniques in order to test the effectiveness of controls in the banking sector. The article focuses specifically on the use of statistical and/or non-statistical sampling techniques by internal auditors. The focus of the research for this article was internal audit functions in the banking sector of South Africa. The results discussed in the article indicate that audit sampling is still used frequently as an audit evidence-gathering technique. Non-statistical sampling techniques are used more frequently than statistical sampling techniques for the evaluation of the sample. In addition, both techniques are regarded as important for the determination of the sample size and the selection of the sample items
Analysis of room transfer function and reverberant signal statistics
DEFF Research Database (Denmark)
Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn
2008-01-01
For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...
International Nuclear Information System (INIS)
Gao, Li-Na; Liu, Fu-Hu; Lacey, Roy A.
2016-01-01
Experimental results of the transverse-momentum distributions of φ mesons and Ω hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy-ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Moreover, the STAR experimental transverse-momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in Ω hyperon spectra is observed at 7.7 GeV. (orig.)
Green close-quote s function method with energy-independent vertex functions
International Nuclear Information System (INIS)
Tsay Tzeng, S.Y.; Kuo, T.T.; Tzeng, Y.; Geyer, H.B.; Navratil, P.
1996-01-01
In conventional Green close-quote s function methods the vertex function Γ is generally energy dependent. However, a model-space Green close-quote s function method where the vertex function is manifestly energy independent can be formulated using energy-independent effective interaction theories based on folded diagrams and/or similarity transformations. This is discussed in general and then illustrated for a 1p1h model-space Green close-quote s function applied to a solvable Lipkin many-fermion model. The poles of the conventional Green close-quote s function are obtained by solving a self-consistent Dyson equation and model space calculations may lead to unphysical poles. For the energy-independent model-space Green close-quote s function only the physical poles of the model problem are reproduced and are in satisfactory agreement with the exact excitation energies. copyright 1996 The American Physical Society
Energy end use statistics and estimations in the Polish household sector
International Nuclear Information System (INIS)
Gilecki, R.
1997-01-01
The energy statistics in Poland was in the past concentrated on energy production and industrial consumption, but little information was available on the households energy consumption. This data unavailability was an important barrier for the various analyses and forecasting of the energy balance developments. In the recent years some successful attempts were made to acquire a wider and more reliable picture of household energy consumption. The households surveys were made and some existing data were analyzed and verified. The better and more detailed picture of households energy use was in this way constructed. The breakdown of energy consumption by end-use categories (space heating, water heating, cooking, electrical appliances) was quite reliably estimated. Important international cooperation and guidance was used in the course of Polish households energy consumption research. (author). 6 refs
Energy end use statistics and estimations in the Polish household sector
Energy Technology Data Exchange (ETDEWEB)
Gilecki, R [Energy Information Centre, Warsaw (Poland)
1997-09-01
The energy statistics in Poland was in the past concentrated on energy production and industrial consumption, but little information was available on the households energy consumption. This data unavailability was an important barrier for the various analyses and forecasting of the energy balance developments. In the recent years some successful attempts were made to acquire a wider and more reliable picture of household energy consumption. The households surveys were made and some existing data were analyzed and verified. The better and more detailed picture of households energy use was in this way constructed. The breakdown of energy consumption by end-use categories (space heating, water heating, cooking, electrical appliances) was quite reliably estimated. Important international cooperation and guidance was used in the course of Polish households energy consumption research. (author). 6 refs.
Energy Technology Data Exchange (ETDEWEB)
NONE
2008-07-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2007. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2007 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power.
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-07-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2001. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2001 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2000. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2000 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power.
Statistical mechanical perturbation theory of solid-vapor interfacial free energy
Kalikmanov, Vitalij Iosifovitsj; Hagmeijer, Rob; Venner, Cornelis H.
2017-01-01
The solid–vapor interfacial free energy γsv plays an important role in a number of physical phenomena, such as adsorption, wetting, and adhesion. We propose a closed form expression for the orientation averaged value of this quantity using a statistical mechanical perturbation approach developed in
Statistical Mechanical Perturbation Theory of Solid−Vapor Interfacial Free Energy
Kalikmanov, V.I.; Hagmeijer, R.; Venner, C.H.
2017-01-01
The solid–vapor interfacial free energy γsv plays an important role in a number of physical phenomena, such as adsorption, wetting, and adhesion. We propose a closed form expression for the orientation averaged value of this quantity using a statistical mechanical perturbation approach developed in
Statistical and dynamical aspects of intermediate energy nuclear collisions
International Nuclear Information System (INIS)
Ghetti, R.
1997-01-01
Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs
Statistical and dynamical aspects of intermediate energy nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Ghetti, R.
1997-01-01
Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.
Statistical Analysis of Development Trends in Global Renewable Energy
Directory of Open Access Journals (Sweden)
Marina D. Simonova
2016-01-01
Full Text Available The article focuses on the economic and statistical analysis of industries associated with the use of renewable energy sources in several countries. The dynamic development and implementation of technologies based on renewable energy sources (hereinafter RES is the defining trend of world energy development. The uneven distribution of hydrocarbon reserves, increasing demand of developing countries and environmental risks associated with the production and consumption of fossil resources has led to an increasing interest of many states to this field. Creating low-carbon economies involves the implementation of plans to increase the proportion of clean energy through renewable energy sources, energy efficiency, reduce greenhouse gas emissions. The priority of this sector is a characteristic feature of modern development of developed (USA, EU, Japan and emerging economies (China, India, Brazil, etc., as evidenced by the inclusion of the development of this segment in the state energy strategies and the revision of existing approaches to energy security. The analysis of the use of renewable energy, its contribution to value added of countries-producers is of a particular interest. Over the last decade, the share of energy produced from renewable sources in the energy balances of the world's largest economies increased significantly. Every year the number of power generating capacity based on renewable energy is growing, especially, this trend is apparent in China, USA and European Union countries. There is a significant increase in direct investment in renewable energy. The total investment over the past ten years increased by 5.6 times. The most rapidly developing kinds are solar energy and wind power.
Nonlocal kinetic-energy-density functionals
International Nuclear Information System (INIS)
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.
1996-01-01
In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Aslan, B.; Zech, G.
2005-01-01
We introduce the novel concept of statistical energy as a statistical tool. We define statistical energy of statistical distributions in a similar way as for electric charge distributions. Charges of opposite sign are in a state of minimum energy if they are equally distributed. This property is used to check whether two samples belong to the same parent distribution, to define goodness-of-fit tests and to unfold distributions distorted by measurement. The approach is binning-free and especially powerful in multidimensional applications
Experimental investigation of statistical density function of decaying radioactive sources
International Nuclear Information System (INIS)
Salma, I.; Zemplen-Papp, E.
1991-01-01
The validity of the Poisson and the λ P(k) modified Poisson statistical density functions of observing k events in a short time interval is investigated experimentally in radioactive decay detection for various measuring times. The experiments to measure radioactive decay were performed with 89m Y, using a multichannel analyzer. According to the results, Poisson statistics adequately describes the counting experiment for short measuring times. (author) 13 refs.; 4 figs
Statistics and predictions of population, energy and environment problems
International Nuclear Information System (INIS)
Sobajima, Makoto
1999-03-01
In the situation that world's population, especially in developing countries, is rapidly growing, humankind is facing to global problems that they cannot steadily live unless they find individual places to live, obtain foods, and peacefully get energy necessary for living for centuries. For this purpose, humankind has to think what behavior they should take in the finite environment, talk, agree and execute. Though energy has been long respected as a symbol for improving living, demanded and used, they have come to limit the use making the global environment more serious. If there is sufficient energy not loading cost to the environment. If nuclear energy regarded as such one sustain the resource for long and has market competitiveness. What situation of realization of compensating new energy is now in the case the use of nuclear energy is restricted by the society fearing radioactivity. If there are promising ones for the future. One concerning with the study of energy cannot go without knowing these. The statistical materials compiled here are thought to be useful for that purpose, and are collected mainly from ones viewing future prediction based on past practices. Studies on the prediction is so important to have future measures that these data bases are expected to be improved for better accuracy. (author)
Craven, Galen T.; Nitzan, Abraham
2018-01-01
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Microscopically Based Nuclear Energy Functionals
International Nuclear Information System (INIS)
Bogner, S. K.
2009-01-01
A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.
Statistical thermodynamics understanding the properties of macroscopic systems
Fai, Lukong Cornelius
2012-01-01
Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th
Introducing linear functions: an alternative statistical approach
Nolan, Caroline; Herbert, Sandra
2015-12-01
The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Statistical properties of kinetic and total energy densities in reverberant spaces
DEFF Research Database (Denmark)
Jacobsen, Finn; Molares, Alfonso Rodriguez
2010-01-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...
Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions
Marcolli, Matilde; Cornelissen, Gunther
2014-01-01
The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory. We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium
Energy Technology Data Exchange (ETDEWEB)
Greenblatt, J.; Letschert, V. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hopkins, A. [Vermont Department of Public Service, Burlington, VT (United States); Blasnik, M. [Blasnik Consulting, Boston, MA (United States)
2013-02-15
Field-metered energy use data for 1,467 refrigerators and 185 freezers from seven studies conducted between 1992 and 2010 were used to calculate usage adjustment factors (UAFs), defined as the ratio of measured to tested annual energy use. Multiple regressions of UAFs against several household and climate variables were then performed to obtain separate predictive functions for primary (most-used) refrigerators, secondary (second most-used) refrigerators, and freezers, and residual differences between observed and modeled UAFs were fit to log normal distributions. These UAF functions were used to project energy use in the more than 4,000 households in the 2005 Residential Energy Consumption Survey, a statistical representation of US homes. These energy use projections formed the basis of calculating lifecycle energy savings for more efficient refrigerators and freezers, as well as national energy and cost savings. Results were compared with previous published work by the Department of Energy, demonstrating how UAFs impact energy and cost savings. Such an approach could be further improved with additional data and adapted for other appliances in future analyses.
Energy Technology Data Exchange (ETDEWEB)
Engeli, H.
2000-07-01
This report for the Swiss Federal Office of Energy presents comprehensive statistics on biogas installations for the year 2001. Data is presented on biogas installations on farms and in industry, in wastewater treatment facilities. Also, data is given on biogenic wastes and co-fermentation. Summaries are presented in table form of biogas production per installation category and the use of the biogas for the production of heat and electrical power. Also, figures are given on the production of biofuels. Development trends in the various areas of biogas production are reviewed and an example of a fermentation installation is briefly described.
The ICF has made a difference to functioning and disability measurement and statistics.
Madden, Rosamond H; Bundy, Anita
2018-02-12
Fifteen years after the publication of the International Classification of Functioning, Disability and Health (ICF), we investigated: How ICF applications align with ICF aims, contents and principles, and how the ICF has been used to improve measurement of functioning and related statistics. In a scoping review, we investigated research published 2001-2015 relating to measurement and statistics for evidence of: a change in thinking; alignment of applications with ICF specifications and philosophy; and the emergence of new knowledge. The ICF is used in diverse applications, settings and countries, with processes largely aligned with the ICF and intended to improve measurement and statistics: new national surveys, information systems and ICF-based instruments; and international efforts to improve disability data. Knowledge is growing about the components and interactions of the ICF model, the diverse effects of the environment on functioning, and the meaning and measurement of participation. The ICF provides specificity and a common language in the complex world of functioning and disability and is stimulating new thinking, new applications in measurement and statistics, and the assembling of new knowledge. Nevertheless, the field needs to mature. Identified gaps suggest ways to improve measurement and statistics to underpin policies, services and outcomes. Implications for Rehabilitation The ICF offers a conceptualization of functioning and disability that can underpin assessment and documentation in rehabilitation, with a growing body of experience to draw on for guidance. Experience with the ICF reminds practitioners to consider all the domains of participation, the effect of the environment on participation and the importance of involving clients/patients in assessment and service planning. Understanding the variability of functioning within everyday environments and designing interventions for removing barriers in various environments is a vital part of
Statistical power as a function of Cronbach alpha of instrument questionnaire items.
Heo, Moonseong; Kim, Namhee; Faith, Myles S
2015-10-14
In countless number of clinical trials, measurements of outcomes rely on instrument questionnaire items which however often suffer measurement error problems which in turn affect statistical power of study designs. The Cronbach alpha or coefficient alpha, here denoted by C(α), can be used as a measure of internal consistency of parallel instrument items that are developed to measure a target unidimensional outcome construct. Scale score for the target construct is often represented by the sum of the item scores. However, power functions based on C(α) have been lacking for various study designs. We formulate a statistical model for parallel items to derive power functions as a function of C(α) under several study designs. To this end, we assume fixed true score variance assumption as opposed to usual fixed total variance assumption. That assumption is critical and practically relevant to show that smaller measurement errors are inversely associated with higher inter-item correlations, and thus that greater C(α) is associated with greater statistical power. We compare the derived theoretical statistical power with empirical power obtained through Monte Carlo simulations for the following comparisons: one-sample comparison of pre- and post-treatment mean differences, two-sample comparison of pre-post mean differences between groups, and two-sample comparison of mean differences between groups. It is shown that C(α) is the same as a test-retest correlation of the scale scores of parallel items, which enables testing significance of C(α). Closed-form power functions and samples size determination formulas are derived in terms of C(α), for all of the aforementioned comparisons. Power functions are shown to be an increasing function of C(α), regardless of comparison of interest. The derived power functions are well validated by simulation studies that show that the magnitudes of theoretical power are virtually identical to those of the empirical power. Regardless
Distribution function of excitations in systems with fractional statistics
International Nuclear Information System (INIS)
Protogenov, A.P.
1992-08-01
The distribution function of low-energy excitations in 2+1D systems has been considered. It is shown that in these systems the quantum distribution function differs from the usual one by having a finite value of the entropy of linked braids. (author). 47 refs
Statistical evaluation of Pacific Northwest Residential Energy Consumption Survey weather data
Energy Technology Data Exchange (ETDEWEB)
Tawil, J.J.
1986-02-01
This report addresses an issue relating to energy consumption and conservation in the residential sector. BPA has obtained two meteorological data bases for use with its 1983 Pacific Northwest Residential Energy Survey (PNWRES). One data base consists of temperature data from weather stations; these have been aggregated to form a second data base that covers the National Oceanographic and Atmospheric Administration (NOAA) climatic divisions. At BPA's request, Pacific Northwest Laboratory has produced a household energy use model for both electricity and natural gas in order to determine whether the statistically estimated parameters of the model significantly differ when the two different meteorological data bases are used.
Quantum mechanics as applied mathematical statistics
International Nuclear Information System (INIS)
Skala, L.; Cizek, J.; Kapsa, V.
2011-01-01
Basic mathematical apparatus of quantum mechanics like the wave function, probability density, probability density current, coordinate and momentum operators, corresponding commutation relation, Schroedinger equation, kinetic energy, uncertainty relations and continuity equation is discussed from the point of view of mathematical statistics. It is shown that the basic structure of quantum mechanics can be understood as generalization of classical mechanics in which the statistical character of results of measurement of the coordinate and momentum is taken into account and the most important general properties of statistical theories are correctly respected.
RAId_aPS: MS/MS analysis with multiple scoring functions and spectrum-specific statistics.
Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo
2010-11-16
Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an E-value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic E-value reported by any method into the textbook-defined E-value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific-values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign E-values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign E-values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page.
Black, Joshua A.; Knowles, Peter J.
2018-06-01
The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.
Consolidity analysis for fully fuzzy functions, matrices, probability and statistics
Directory of Open Access Journals (Sweden)
Walaa Ibrahim Gabr
2015-03-01
Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.
Construction of energy loss function for low-energy electrons in helium
Energy Technology Data Exchange (ETDEWEB)
Dayashankar, [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection
1976-02-01
The energy loss function for electrons in the energy range from 50 eV to 1 keV in helium gas has been constructed by considering separately the energy loss in overcoming the ionization threshold, the loss manifested as kinetic energy of secondary electrons and the loss in the discrete state excitations. This has been done by utilizing recent measurements of Opal et al. on the energy spectrum of secondary electrons and incorporating the experimental data on cross sections for twenty-four excited states. The present results of the energy loss function are in good agreement with the Bethe formula for energies above 500 eV. For lower energies, where the Bethe formula is not applicable, the present results should be particularly useful.
Quasiparticle features and level statistics of odd-odd nucleus
International Nuclear Information System (INIS)
Cheng Nanpu; Zheng Renrong; Zhu Shunquan
2001-01-01
The energy levels of the odd-odd nucleus 84 Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ 3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ 3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84 Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84 Y
Energy statistical data. Europe
International Nuclear Information System (INIS)
2002-04-01
This report summarizes in a series of tables the key energy data of 1999 for 9 European countries (Germany, Belgium, Denmark, Spain, France, Italy, Netherlands, UK, Sweden). Data concern: the energy intensity, the share of renewable energy sources in the total primary consumption, the structure of power production, the CO 2 emissions and their structure, and the end-use, primary consumption and energy prices per energy source. (J.S.)
Tucker Tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-03-09
In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in 3D. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential O(n^d) to a linear scaling O(drn), where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ||x-y||.
International Nuclear Information System (INIS)
Ichinose, Shoichi
2010-01-01
A geometric approach to general quantum statistical systems (including the harmonic oscillator) is presented. It is applied to Casimir energy and the dissipative system with friction. We regard the (N+1)-dimensional Euclidean coordinate system (X i ,τ) as the quantum statistical system of N quantum (statistical) variables (X τ ) and one Euclidean time variable (t). Introducing paths (lines or hypersurfaces) in this space (X τ ,t), we adopt the path-integral method to quantize the mechanical system. This is a new view of (statistical) quantization of the mechanical system. The system Hamiltonian appears as the area. We show quantization is realized by the minimal area principle in the present geometric approach. When we take a line as the path, the path-integral expressions of the free energy are shown to be the ordinary ones (such as N harmonic oscillators) or their simple variation. When we take a hyper-surface as the path, the system Hamiltonian is given by the area of the hyper-surface which is defined as a closed-string configuration in the bulk space. In this case, the system becomes a O(N) non-linear model. We show the recently-proposed 5 dimensional Casimir energy (ArXiv:0801.3064,0812.1263) is valid. We apply this approach to the visco-elastic system, and present a new method using the path-integral for the calculation of the dissipative properties.
Directory of Open Access Journals (Sweden)
Katy Denise Heath
2014-04-01
Full Text Available Predicting how species interactions evolve requires that we understand the mechanistic basis of coevolution, and thus the functional genotype-by-genotype interactions (G × G that drive reciprocal natural selection. Theory on host-parasite coevolution provides testable hypotheses for empiricists, but depends upon models of functional G × G that remain loosely tethered to the molecular details of any particular system. In practice, reciprocal cross-infection studies are often used to partition the variation in infection or fitness in a population that is attributable to G × G (statistical G × G. Here we use simulations to demonstrate that within-population statistical G × G likely tells us little about the existence of coevolution, its strength, or the genetic basis of functional G × G. Combined with studies of multiple populations or points in time, mapping and molecular techniques can bridge the gap between natural variation and mechanistic models of coevolution, while model-based statistics can formally confront coevolutionary models with cross-infection data. Together these approaches provide a robust framework for inferring the infection genetics underlying statistical G × G, helping unravel the genetic basis of coevolution.
Grosz, R; Stephanopoulos, G
1983-09-01
The need for the determination of the free energy of formation of biomass in bioreactor second law balances is well established. A statistical mechanical method for the calculation of the free energy of formation of E. coli biomass is introduced. In this method, biomass is modelled to consist of a system of biopolymer networks. The partition function of this system is proposed to consist of acoustic and optical modes of vibration. Acoustic modes are described by Tarasov's model, the parameters of which are evaluated with the aid of low-temperature calorimetric data for the crystalline protein bovine chymotrypsinogen A. The optical modes are described by considering the low-temperature thermodynamic properties of biological monomer crystals such as amino acid crystals. Upper and lower bounds are placed on the entropy to establish the maximum error associated with the statistical method. The upper bound is determined by endowing the monomers in biomass with ideal gas properties. The lower bound is obtained by limiting the monomers to complete immobility. On this basis, the free energy of formation is fixed to within 10%. Proposals are made with regard to experimental verification of the calculated value and extension of the calculation to other types of biomass.
Spatial Statistics and Spatio-Temporal Data Covariance Functions and Directional Properties
Sherman, Michael
2010-01-01
In the spatial or space-time context, specifying the correct covariance function is important to obtain efficient predictions and to understand the underlying physical process of interest. There have been several books in recent years in the general area of spatial statistics. This book focuses on covariance and variogram functions, their role in prediction, and the proper choice of these functions in data applications. Presenting recent methods from 2004-2007 alongside more established methodology of assessing the usual assumptions on such functions such as isotropy, separability and symmetry
International Nuclear Information System (INIS)
2002-06-01
This document summarizes in a series of tables and graphs the evolution of the world energy production, consumption, imports, exports and stock changes since 1996 with some details about the consumption per sector, per country, and per energy source (petroleum products, natural gas, coal and lignite, electricity). The evolution of the CO 2 emissions per country and since 1990 are also given. (J.S.)
Electrical energy statistics for France
International Nuclear Information System (INIS)
2009-07-01
). Sales of energy between actors of the power system made of sales of the Balance Responsible Entities, sales of generation capacity auctions and sales on Powernext Day-Ahead Market reached 385.1 TWh, an increase of 1.0 % compared with 2007 (381.4 TWh). The statistics concerning the quality of supply are marked in 2008 by an increase of the long outages mainly due to the incident happened in Provence-Alpes-Cote d'Azur after a violent storm on November 3, 2008. Contents: 1 - Electrical energy balances: Monthly balance of the electrical energy flows on the RTE network and in France 2 - Capacity and energy: Daily capacity curves, National consumption and temperature, Daily high and low energy and capacity figures for 2008; 3 - Networks: Lines and cables in operation, Substations, Transformers owned by RTE, Cross-border lines at HVB voltage excluding Corsica; 4 - Physical exchanges: Trend in the balance of physical exchanges - France, Monotone of export balance - France excluding Corsica, Monthly monitoring of physical exchanges on the borders of the RTE network; 5 - Market mechanism: Contractual electricity exchanges with foreign countries, Daily market coupling between Netherlands (NL), Belgium (BE) and France (FR), Balance Responsible Entities (BR), Use of the VPP, Energy sales on Powernext, Balancing mechanism; 6 - Consumption of electricity: Trend of national consumption of electricity in France, Annual breakdown of end customers connected to the RTE network, Consumption of Large-scale industry and SME/SMIs: annual breakdown per activity, Monotone of capacity values called by national consumption in 2008; 7 - Generation of electricity: Developments in generating facilities in France, Injections on the RTE network by connection voltage, Injections on the RTE network by installation type; 8 - Technical performance of RTE: Quality of supply, Safety of the electric system; 9 - Regional data: Administrative limits, Description of the RTE network and technical performance
International Nuclear Information System (INIS)
Koyumdjieva, N.
2006-01-01
A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Statistical Angles on the Lattice QCD Signal-to-Noise Problem
Wagman, Michael L.
The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD (LQCD) can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed LQCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of LQCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails associated with stable distributions and Levy flights are found to play a central role in the time evolution of baryon correlation functions. Building on these observations, a new statistical analysis technique called phase reweighting is introduced that allow energy levels to be extracted from large-time correlation functions with time-independent signal-to-noise ratios. Phase reweighting effectively includes dynamical refinement of source magnitudes but introduces a bias associated with the phase. This bias can be removed by performing an extrapolation, but at the expense of re-introducing a signal-to-noise problem. Lattice QCD calculations of the ρ+ and nucleon masses and of the ΞΞ(1S0) binding energy show consistency between standard results obtained using smaller-time correlation functions and phase-reweighted results using large-time correlation functions inaccessible to standard statistical analysis
International Nuclear Information System (INIS)
Barbeito, Inés; Zaragoza, Sonia; Tarrío-Saavedra, Javier; Naya, Salvador
2017-01-01
Highlights: • Intelligent web platform development for energy efficiency management in buildings. • Controlling and supervising thermal comfort and energy consumption in buildings. • Statistical quality control procedure to deal with autocorrelated data. • Open source alternative using R software. - Abstract: In this paper, a case study of performing a reliable statistical procedure to evaluate the quality of HVAC systems in buildings using data retrieved from an ad hoc big data web energy platform is presented. The proposed methodology based on statistical quality control (SQC) is used to analyze the real state of thermal comfort and energy efficiency of the offices of the company FRIDAMA (Spain) in a reliable way. Non-conformities or alarms, and the actual assignable causes of these out of control states are detected. The capability to meet specification requirements is also analyzed. Tools and packages implemented in the open-source R software are employed to apply the different procedures. First, this study proposes to fit ARIMA time series models to CTQ variables. Then, the application of Shewhart and EWMA control charts to the time series residuals is proposed to control and monitor thermal comfort and energy consumption in buildings. Once thermal comfort and consumption variability are estimated, the implementation of capability indexes for autocorrelated variables is proposed to calculate the degree to which standards specifications are met. According with case study results, the proposed methodology has detected real anomalies in HVAC installation, helping to detect assignable causes and to make appropriate decisions. One of the goals is to perform and describe step by step this statistical procedure in order to be replicated by practitioners in a better way.
Application of statistical parametric mapping in PET and SPECT brain functional imaging
International Nuclear Information System (INIS)
Guo Wanhua
2002-01-01
Regional of interest (ROI) is the method regularly used to analyze brain functional imaging. But, due to its obvious shortcomings such as subjectivity and poor reproducibility, precise analyzing the brain function was seriously limited. Therefore, statistical parametric mapping (SPM) as an automatic analyze software was developed based on voxel or pixel to resolve this problem. Using numerous mathematical models, it can be used to statistically assess the whole brain pixel. Present review introduces its main principle, modular composition and practical application. It can be concluded, with development of neuroscience, the SPM software will be used more widely in relative field, like neurobiology, cognition and neuropharmacology
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics
International Nuclear Information System (INIS)
Murthy, M.V.N.; Shankar, R.
1994-01-01
We show that the particles in the Calogero-Sutherland model obey fractional exclusion statistics as defined by Haldane. We construct anyon number densities and derive the energy distribution function. We show that the partition function factorizes in the form characteristic of an ideal gas. The virial expansion is exactly computable and interestingly it is only the second virial coefficient that encodes the statistics information
An enviro-economic function for assessing energy resources for district energy systems
International Nuclear Information System (INIS)
Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.
2014-01-01
District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system
Topics in statistical data analysis for high-energy physics
International Nuclear Information System (INIS)
Cowan, G.
2011-01-01
These lectures concert two topics that are becoming increasingly important in the analysis of high-energy physics data: Bayesian statistics and multivariate methods. In the Bayesian approach, we extend the interpretation of probability not only to cover the frequency of repeatable outcomes but also to include a degree of belief. In this way we are able to associate probability with a hypothesis and thus to answer directly questions that cannot be addressed easily with traditional frequentist methods. In multivariate analysis, we try to exploit as much information as possible from the characteristics that we measure for each event to distinguish between event types. In particular we will look at a method that has gained popularity in high-energy physics in recent years: the boosted decision tree. Finally, we give a brief sketch of how multivariate methods may be applied in a search for a new signal process. (author)
Energy statistics on one- and two-dwelling buildings in 1999
International Nuclear Information System (INIS)
2000-01-01
The survey of energy statistics on one- and two-dwelling buildings in 1999 is based on a sample of 8264 buildings. The survey was carried out as a mail survey in January 2000. The non-response was 20 percent. The presentation provides data on energy consumption, number of one- and two-dwelling buildings, and heated floor spaces for the total population and for various subdivisions. More than one third of the one- and two-dwelling buildings are heated by electricity. About 17 percent are heated by a combination of firewood and electricity, and about 14 percent are heated by oil only. All of these heating types are decreasing, while heating by firewood/wood chips/pellets, heat pumps and distant heating are increasing
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
Directory of Open Access Journals (Sweden)
Gleb Kichaev
2014-10-01
Full Text Available Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000 Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods, reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to 10.4 SNPs per locus (as compared to the next-best performing strategy. Furthermore, we introduce a cost-to-benefit optimization framework for determining the number of variants to be followed up in functional assays and assess its performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set from an average of 17.5 to 13.5 variants per locus in this data.
Experimental signature for statistical multifragmentation
International Nuclear Information System (INIS)
Moretto, L.G.; Delis, D.N.; Wozniak, G.J.
1993-01-01
Multifragment production was measured for the 60 MeV/nucleon 197 Au+ 27 Al, 51 V, and nat Cu reactions. The branching ratios for binary, ternary, quaternary, and quinary decays were determined as a function of the excitation energy E and are independent of the target. The logarithms of these branching ratios when plotted vs E -1/2 show a linear dependence that strongly suggests a statistical competition between the various multifragmentation channels. This behavior seems to relegate the role of dynamics to the formation of the sources, which then proceed to decay in an apparently statistical manner
The Coulomb gap and low energy statistics for Coulomb glasses
International Nuclear Information System (INIS)
Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M
2008-01-01
We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
Energy Level Statistics of SO(5) Limit of Super-symmetry U(6/4) in Interacting Boson-Fermion Model
International Nuclear Information System (INIS)
Bai Hongbo; Zhang Jinfu; Zhou Xianrong
2005-01-01
We study the energy level statistics of the SO(5) limit of super-symmetry U(6/4) in odd-A nucleus using the interacting boson-fermion model. The nearest neighbor spacing distribution (NSD) and the spectral rigidity (Δ 3 ) are investigated, and the factors that affect the properties of level statistics are also discussed. The results show that the boson number N is a dominant factor. If N is small, both the interaction strengths of subgroups SO B (5) and SO BF (5) and the spin play important roles in the energy level statistics, however, along with the increase of N, the statistics distribution would tend to be in Poisson form.
International Nuclear Information System (INIS)
Parvan, A.S.
2016-01-01
The Tsallis statistics was applied to describe the experimental data on the transverse momentum distributions of hadrons. We considered the energy dependence of the parameters of the Tsallis-factorized statistics, which is now widely used for the description of the experimental transverse momentum distributions of hadrons, and the Tsallis statistics for the charged pions produced in pp collisions at high energies. We found that the results of the Tsallis-factorized statistics deviate from the results of the Tsallis statistics only at low NA61/SHINE energies when the value of the entropic parameter is close to unity. At higher energies, when the value of the entropic parameter deviates essentially from unity, the Tsallis-factorized statistics satisfactorily recovers the results of the Tsallis statistics. (orig.)
Building a universal nuclear energy density functional
International Nuclear Information System (INIS)
Bertsch, G F
2007-01-01
This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes
On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere
Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto
2018-01-01
The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.
International Nuclear Information System (INIS)
2003-01-01
The energy statistical table is a selection of statistical data for energies and countries from 1997 to 2002. It concerns the petroleum, the natural gas, the coal, the electric power, the production, the external market, the consumption per sector, the energy accounting 2002 and graphs on the long-dated forecasting. (A.L.B.)
Shaikh, Muhammad Mujtaba; Memon, Abdul Jabbar; Hussain, Manzoor
2016-09-01
In this article, we describe details of the data used in the research paper "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques" [1]. The data presented in this paper is intended to show benefits of high efficiency electric motors over the standard efficiency motors of similar rating in the industrial sector of Pakistan. We explain how the data was collected and then processed by means of formulas to show cost effectiveness of energy efficient motors in terms of three important parameters: annual energy saving, cost saving and payback periods. This data can be further used to construct confidence bounds for the parameters using statistical techniques as described in [1].
Ing, Alex; Schwarzbauer, Christian
2014-01-01
Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.
International Nuclear Information System (INIS)
2001-06-01
This study presents the energy taxation, as an energy policy tool, applied to the fossil fuels and to the electric power. Taxes, tax revenue and taxation in function of the energy content or the carbon content are discussed. Many tables and statistical data illustrate this analysis and allow the comparison with other countries in Europe. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Baniassadi, Majid; Mortazavi, Behzad; Hamedani, Amani; Garmestani, Hamid; Ahzi, Said; Fathi-Torbaghan, Madjid; Ruch, David; Khaleel, Mohammad A.
2012-01-31
In this study, a previously developed reconstruction methodology is extended to three-dimensional reconstruction of a three-phase microstructure, based on two-point correlation functions and two-point cluster functions. The reconstruction process has been implemented based on hybrid stochastic methodology for simulating the virtual microstructure. While different phases of the heterogeneous medium are represented by different cells, growth of these cells is controlled by optimizing parameters such as rotation, shrinkage, translation, distribution and growth rates of the cells. Based on the reconstructed microstructure, finite element method (FEM) was used to compute the effective elastic modulus and effective thermal conductivity. A statistical approach, based on two-point correlation functions, was also used to directly estimate the effective properties of the developed microstructures. Good agreement between the predicted results from FEM analysis and statistical methods was found confirming the efficiency of the statistical methods for prediction of thermo-mechanical properties of three-phase composites.
Statistical studies of energetic electrons in the outer radiation belt
Energy Technology Data Exchange (ETDEWEB)
Johnstone, A.D.; Rodgers, D.J.; Jones, G.H. E-mail: g.h.jones@ic.ac.uk
1999-10-01
The medium electron A (MEA) instrument aboard the CRRES spacecraft provided data on terrestrial radiation belt electrons in the energy range from 153 to 1582 keV, during 1990-91. These data have previously been used to produce an empirical model of the radiation belts from L=1.1 to 8.9, ordered according to 17 energy bands, 18 pitch angle bins, and 5 Kp ranges. Empirical models such as this are very valuable, but are prone to statistical fluctuations and gaps in coverage. In this study, in order to smooth the data and make it more easy to interpolate within data gaps, the pitch angle distribution at each energy in the model was fitted with a Bessel function. This provided a way to characterize the pitch angle in terms of only two parameters for each energy. It was not possible to model fluxes reliably within the loss cone because of poor statistics. The fitted distributions give an indication of the way in which pitch angle diffusion varies in the outer radiation belts. The two parameters of the Bessel function were found to vary systematically with L value, energy and Kp. Through the fitting of a simple function to these systematic variations, the number of parameters required to describe the model could be reduced drastically.
Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji
2016-12-01
Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Kos Grabar Robina, Vlatka; Kinderman Lončarević, Alenka
2017-01-01
Highlights: • Improved way of collection of data on fuelwood consumption in households. • Quality and accuracy of statistical energy balance can be improved. • Accurate energy statistics is necessary for analysis of future energy demand. • Survey results and methods applied are presented for three selected countries. - Abstract: The aim of this paper is to present an improved way of collection and compilation of data about solid biomass consumption in households in order to improve accuracy of official energy statistics data. The accurate, timely and reliable energy data significantly contribute to the consistency in national energy statistics, energy balance, as well as for many other obligatory reporting procedures which are requested and prescribed by national and international standards. When compiling energy statistics, statistics on renewables, particularly biomass consumption, it is often the most questionable as little or no available official data exists in the country. According to the international standards and definitions, solid biomass covers organic, non-fossil material of biological origin which may be used as fuel for heat production or electricity generation. In households, the most commonly used biomass are fuelwood and wood residues. In the process of compiling national energy statistics, national institutions responsible for official energy statistics usually estimate biomass consumption based on the reports on fuelwood cuts in state forests and official biomass production, although it is known that consumption is much higher. Over the past two decades, Energy Institute Hrvoje Požar worked intensively on the energy consumption data collection and particularly on the development of the tailored-made surveying methods for different final energy consumption sectors, particularly for the household sector. The similar methods were recommended to national statistics institutes in the countries in the region when providing technical
Statistical model for expected un supplied energy; Statistisk modell for forventet ILE
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
Results from a statistical analysis of expected un supplied energy for Norwegian network companies are presented. The data are from the years 1996-2004. The estimation model includes several explanatory variables that together reflect the characteristics of the network, climatic aspects and other geographical conditions. The model has a high degree of accuracy when compared to the historical number of un supplied energy for about 90 percent of the network companies. But for 12 companies there are substantial, negative deviances that are not compatible with the available data. There is reason to believe that improved data for some types of variables can improve the accuracy of the model. In addition to establishing a norm for expected un supplied energy in the revenue estimations, the model can be used to reflect geographical constraints in NVEs (Norwegian Water and Energy directorate) efficiency analyses (ml)
Energy Technology Data Exchange (ETDEWEB)
Pontikis, V., E-mail: Vassilis.Pontikis@cea.f [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France); Gorse, D. [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France)
2009-10-01
A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.
International Nuclear Information System (INIS)
Pontikis, V.; Gorse, D.
2009-01-01
A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.
Functional materials discovery using energy-structure-function maps.
Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M
2017-03-30
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Kramers-Kronig transform for the surface energy loss function
International Nuclear Information System (INIS)
Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.
2005-01-01
A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function
International Nuclear Information System (INIS)
Garcia-Aldea, David; Alvarellos, J. E.
2008-01-01
We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved
A Statistical Framework for the Functional Analysis of Metagenomes
Energy Technology Data Exchange (ETDEWEB)
Sharon, Itai; Pati, Amrita; Markowitz, Victor; Pinter, Ron Y.
2008-10-01
Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements. They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.
Power flow as a complement to statistical energy analysis and finite element analysis
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies
Directory of Open Access Journals (Sweden)
Singh Varinderjit
2015-01-01
Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.
Canary, Jana D; Blizzard, Leigh; Barry, Ronald P; Hosmer, David W; Quinn, Stephen J
2016-05-01
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness-of-fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (TG), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer-Lemeshow (HL) and Pigeon-Heyse (J(2) ) statistics can be applied directly. In a simulation study, TG, HL, and J(2) were used to evaluate the fit of probit, log-log, complementary log-log, and log models, all calculated with a common grouping method. The TG statistic consistently maintained Type I error rates, while those of HL and J(2) were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, TG had more power than HL or J(2) . © 2015 John Wiley & Sons Ltd/London School of Economics.
Energy Technology Data Exchange (ETDEWEB)
Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)
2010-11-14
Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.
International Nuclear Information System (INIS)
Shamim, Md; Harbola, Manoj K
2010-01-01
Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.
Application of a Bayesian algorithm for the Statistical Energy model updating of a railway coach
DEFF Research Database (Denmark)
Sadri, Mehran; Brunskog, Jonas; Younesian, Davood
2016-01-01
into account based on published data on comparison between experimental and theoretical results, so that the variance of the theory is estimated. The Monte Carlo Metropolis Hastings algorithm is employed to estimate the modified values of the parameters. It is shown that the algorithm can be efficiently used......The classical statistical energy analysis (SEA) theory is a common approach for vibroacoustic analysis of coupled complex structures, being efficient to predict high-frequency noise and vibration of engineering systems. There are however some limitations in applying the conventional SEA...... the performance of the proposed strategy, the SEA model updating of a railway passenger coach is carried out. First, a sensitivity analysis is carried out to select the most sensitive parameters of the SEA model. For the selected parameters of the model, prior probability density functions are then taken...
A new quantum statistical evaluation method for time correlation functions
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a system of N identical interacting particles, which obey Fermi-Dirac or Bose-Einstein statistics, the authors derive new formulas for correlation functions of the type C(t) = i= 1 N A i (t) Σ j=1 N B j > (where B j is diagonal in the free-particle states) in the thermodynamic limit. Thereby they apply and extend a superoperator formalism, recently developed for the derivation of long-time tails in semiclassical systems. As an illustrative application, the Boltzmann equation value of the time-integrated correlation function C(t) is derived in a straight-forward manner. Due to exchange effects, the obtained t-matrix and the resulting scattering cross section, which occurs in the Boltzmann collision operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution
Disentangling interacting dark energy cosmologies with the three-point correlation function
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
Kinetic-energy density functional: Atoms and shell structure
International Nuclear Information System (INIS)
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.
1996-01-01
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society
Energy statistics for on one- and two-dwelling buildings in 2000
International Nuclear Information System (INIS)
2001-01-01
The survey of energy statistics on one- and two-dwelling buildings in 2000 is based on a sample of 6531 buildings. The survey was carried out as a mail survey in January 2001. The non-response was 21 percent. The presentation provides data on energy consumption, number of one- and two-dwelling buildings, and heated floor spaces for the total population and for various subdivisions. More than one third of the one- and two-dwelling buildings are heated by electricity. About 18 percent are heated by a combination of firewood and electricity, and about 13 percent are heated by oil only. All of these heating types are decreasing, while heating by firewood/wood chips/pellets, heat pumps and distant heating are increasing
E1 and M1 strength functions at low energy
Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas
2017-09-01
We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.
E1 and M1 strength functions at low energy
Directory of Open Access Journals (Sweden)
Schwengner Ronald
2017-01-01
Full Text Available We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.
Nishino, Ko; Lombardi, Stephen
2011-01-01
We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.
Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation
Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.
2018-05-01
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.
Statistical thermodynamics and energy exchanges
International Nuclear Information System (INIS)
Oudet, X.
1987-01-01
The probability of finding the energy of a particle in the vicinity of a given energy is determined, taking into account of the conservation of energy during the exchanges of energy. As a result the exchanges which determine the different probabilities also introduce a dependence between them, allowing a full calculation. The solution has the main properties of the distribution of Fermi-Dirac, with the mean energy per particle as variable in place of temperature. It allows to propose a localized model for the conduction electrons [fr
Functional derivative of noninteracting kinetic energy density functional
International Nuclear Information System (INIS)
Liu Shubin; Ayers, Paul W.
2004-01-01
Proofs from different theoretical frameworks, namely, the Hohenbergh-Kohn theorems, the Kohn-Sham scheme, and the first-order density matrix representation, have been presented in this paper to show that the functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the negative of the Kohn-Sham effective potential, arbitrary only to an additive orbital-independent constant. Key points leading to the current result as well as confusion about the quantity in the literature are briefly discussed
Boll, Torben
2012-10-01
In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.
International Nuclear Information System (INIS)
Urrego, J.P.; Cristancho, F.
2001-01-01
Full text: Fusion-evaporation heavy ion collisions have enable us to explore new regions of phase space E - I, particularly high spin and excitation energy regions, where level densities are so high that modern detectors are unable to resolve individual gamma-ray transitions and consequently the resulting spectrum is continuous and undoubtedly contains a lot of new physics. In spite of that, very few experiments have been designed to extract conclusions about behavior of nuclei in continuum, thus in order to obtain a continuum spectroscopy it is necessary to apply to numerical simulations. In this sense GAMBLE a Monte Carlo based code- is a powerful tool that with some modifications allows us to test a new method to analyze the outcome of experiments focused on the properties of phase space regions in nuclear continuum: The use of Energy-Ordered Spectra (EOS) . Let's suppose that in a experiment is collected all gamma radiation emitted by a specific nucleus in a fixed intrinsic excitation energy range and that the different EOS are constructed. Although it has been shown that comparisons between such EOS and Monte Carlo simulations give information about the level density and the strength function their interpretation is not too clear because the large number of input values needed in a code like GAMBLE. On the other hand, if we could have an analytical description of EOS, the understanding of the underlying physics would be more simple because one could control exactly the involved variables and eventually simulation would be unnecessary. Promissory advances in that direction come from mathematical theory of Order Statistics (OS) In this work it is described the modified code GAMBLE and some simulated EOS for 170 Hf are shown. The simulations are made with different formulations for both level density (Fermi Gas at constant and variable temperature) and gamma strength function (GDR, single particle). Further it is described in detail how OS are employed in the
Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu
2009-08-28
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.
Computer modelling of statistical properties of SASE FEL radiation
International Nuclear Information System (INIS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1997-01-01
The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY
Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.
2018-05-01
In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.
Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function
Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.
2011-01-01
In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.
Surface energy and work function of elemental metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Rosengaard, N. M.
1992-01-01
and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...
International Nuclear Information System (INIS)
Valcov, N.; Celarel, A.; Purghel, L.
1999-01-01
By using the statistical discrimination technique, the components of on ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a serially manufactured gamma-ray ratemeter was developed, as an intermediate step in the design of specialised nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method. The main characteristics of the functional model are the following: - dynamic range of measurement: >300: l; - simultaneous measurement of natural radiation background and gamma-ray fields; - accuracy (for equal exposure rates from gamma's and natural radiation background): 17%, for both radiation fields; - minimum detectable exposure rate: 2μR/h. (authors)
DEFF Research Database (Denmark)
Nielsen, Tine; Kreiner, Svend
Short abstract Motivated by experiencing with students’ psychological barriers for learning statistics we modified and extended the Statistical Anxiety Rating Scale (STARS) to develop a contemporary Danish measure of attitudes and relationship to statistics for use with higher education students...... with evidence of DIF in all cases: One TCA-item functioned differentially relative to age, one WS-item functioned differentially relative to statistics course (first or second), and two IA-items functioned differentially relative to statistics course and academic discipline (sociology, public health...
A statistical method to estimate low-energy hadronic cross sections
Balassa, Gábor; Kovács, Péter; Wolf, György
2018-02-01
In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
Corrected Statistical Energy Analysis Model for Car Interior Noise
Directory of Open Access Journals (Sweden)
A. Putra
2015-01-01
Full Text Available Statistical energy analysis (SEA is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure. For an acoustic space where significant absorptive materials are present, direct field component from the sound source dominates the total sound field rather than a reverberant field, where the latter becomes the basis in constructing the conventional SEA model. Such environment can be found in a car interior and thus a corrected SEA model is proposed here to counter this situation. The model is developed by eliminating the direct field component from the total sound field and only the power after the first reflection is considered. A test car cabin was divided into two subsystems and by using a loudspeaker as a sound source, the power injection method in SEA was employed to obtain the corrected coupling loss factor and the damping loss factor from the corrected SEA model. These parameters were then used to predict the sound pressure level in the interior cabin using the injected input power from the engine. The results show satisfactory agreement with the directly measured SPL.
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Lagrangian statistics in weakly forced two-dimensional turbulence.
Rivera, Michael K; Ecke, Robert E
2016-01-01
Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.
Zeta-function approach to Casimir energy with singular potentials
International Nuclear Information System (INIS)
Khusnutdinov, Nail R.
2006-01-01
In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed
International Nuclear Information System (INIS)
Tadaki, Kohtaro
2010-01-01
The statistical mechanical interpretation of algorithmic information theory (AIT, for short) was introduced and developed by our former works [K. Tadaki, Local Proceedings of CiE 2008, pp. 425-434, 2008] and [K. Tadaki, Proceedings of LFCS'09, Springer's LNCS, vol. 5407, pp. 422-440, 2009], where we introduced the notion of thermodynamic quantities, such as partition function Z(T), free energy F(T), energy E(T), statistical mechanical entropy S(T), and specific heat C(T), into AIT. We then discovered that, in the interpretation, the temperature T equals to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate by means of program-size complexity. Furthermore, we showed that this situation holds for the temperature T itself, which is one of the most typical thermodynamic quantities. Namely, we showed that, for each of the thermodynamic quantities Z(T), F(T), E(T), and S(T) above, the computability of its value at temperature T gives a sufficient condition for T is an element of (0,1) to satisfy the condition that the partial randomness of T equals to T. In this paper, based on a physical argument on the same level of mathematical strictness as normal statistical mechanics in physics, we develop a total statistical mechanical interpretation of AIT which actualizes a perfect correspondence to normal statistical mechanics. We do this by identifying a microcanonical ensemble in the framework of AIT. As a result, we clarify the statistical mechanical meaning of the thermodynamic quantities of AIT.
Renyi statistics in equilibrium statistical mechanics
International Nuclear Information System (INIS)
Parvan, A.S.; Biro, T.S.
2010-01-01
The Renyi statistics in the canonical and microcanonical ensembles is examined both in general and in particular for the ideal gas. In the microcanonical ensemble the Renyi statistics is equivalent to the Boltzmann-Gibbs statistics. By the exact analytical results for the ideal gas, it is shown that in the canonical ensemble, taking the thermodynamic limit, the Renyi statistics is also equivalent to the Boltzmann-Gibbs statistics. Furthermore it satisfies the requirements of the equilibrium thermodynamics, i.e. the thermodynamical potential of the statistical ensemble is a homogeneous function of first degree of its extensive variables of state. We conclude that the Renyi statistics arrives at the same thermodynamical relations, as those stemming from the Boltzmann-Gibbs statistics in this limit.
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Statistical and physical content of low-energy photons in nuclear medicine imaging
International Nuclear Information System (INIS)
Gagnon, D.; Pouliot, N.; Laperriere, L.; Harel, F.; Gregoire, J.; Arsenault, A.
1990-01-01
Limit in the energy resolution of present gamma camera technology prevents a total rejection of Compton events: inclusion of bad photons in the image is inescapable. Various methods acquiring data over a large portion of the spectrum have already been described. This paper investigates the usefulness of low energy photons using statistical and physical models. Holospectral Imaging, for instance, exploits correlation between energy frames to build an information related transformation optimizing primary photon image. One can also use computer simulation to show that a portion of low energy photons is detected at the same location (pixel) as pure primary photons. These events are for instance: photons undergoing scatter interaction in the crystal; photons undergoing a small angle backscatter or forwardscatter interaction in the medium, photons backscattered by the Pyrex into the crystal. For a 140 keV source in 10 cm of water and a 1/4 inch thick crystal, more than 6% of all the photons detected do not have the primary energy and still are located in the right 4 mm pixel. Similarly, it is possible to show that more than 5% of all the photons detected at 140 keV deposit their energy in more than one pixel. These results give additional support to techniques considering low energy photons and more sophisticated ways to segregate between good and bad events
International Nuclear Information System (INIS)
1998-01-01
The international office of energy information and studies (Enerdata), has published the second edition of its 1997 statistical yearbook which includes consolidated 1996 data with respect to the previous version from June 1997. The CD-Rom comprises the annual worldwide petroleum, natural gas, coal and electricity statistics from 1991 to 1996 with information about production, external trade, consumption, market shares, sectoral distribution of consumption and energy balance sheets. The world is divided into 12 zones (52 countries available). It contains also energy indicators: production and consumption tendencies, supply and production structures, safety of supplies, energy efficiency, and CO 2 emissions. (J.S.)
Zheng, Yinggan; Gierl, Mark J.; Cui, Ying
2010-01-01
This study combined the kernel smoothing procedure and a nonparametric differential item functioning statistic--Cochran's Z--to statistically test the difference between the kernel-smoothed item response functions for reference and focal groups. Simulation studies were conducted to investigate the Type I error and power of the proposed…
Lehoucq, R B; Sears, Mark P
2011-09-01
The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.
International Nuclear Information System (INIS)
Faust, H.; Koester, U.; Kessedjian, G.; Sage, C.; Chebboubi, A.
2013-01-01
We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)
Statistical fluctuations in heavy-charged-particle tracks
International Nuclear Information System (INIS)
Hamm, R.N.; Turner, J.E.; Wright, H.A.
1985-01-01
We present the results of the following Monte Carlo track-segment calculations for protons with energies of 1, 2, 5, and 10 MeV in liquid water: (1) radial dose around a long segment of a proton track; (2) energy-loss straggling distributions for protons of different energies in 1 μm of water; (3) the distribution in the average absorbed dose around track segments of various lengths; (4) the relative standard deviations in these distributions as functions of the length of the track segments. Calculations such as those presented here are useful for studying track phenomena on a microdosimetric scale, where statistical fluctuations are substantial
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Enhancement of biodiversity in energy farming: towards a functional approach
International Nuclear Information System (INIS)
Londo, M.; Dekker, J.
1997-01-01
When biomass is a substantial sustainable energy source, and special energy crops are grown on a large scale, land use and the environment of agriculture will be affected. Of these effects, biodiversity deserves special attention. The enhancement of biodiversity in energy farming via standard setting is the overall purpose of this project. In this study, the potential functionality of biodiversity in energy farming is proposed as a way of operationalising the rather abstract and broad concept of biodiversity. Functions of biodiversity are reviewed, and examples of functions are worked out, based on the current literature of nature in energy farming systems. (author)
Directory of Open Access Journals (Sweden)
Mehmet KURBAN
2007-01-01
Full Text Available In this paper, the wind energy potential of the region is analyzed with Weibull and Reyleigh statistical distribution functions by using the wind speed data measured per 15 seconds in July, August, September, and October of 2005 at 10 m height of 30-m observation pole in the wind observation station constructed in the coverage of the scientific research project titled "The Construction of Hybrid (Wind-Solar Power Plant Model by Determining the Wind and Solar Potential in the Iki Eylul Campus of A.U." supported by Anadolu University. The Maximum likelihood method is used for finding the parameters of these distributions. The conclusion of the analysis for the months taken represents that the Weibull distribution models the wind speeds better than the Rayleigh distribution. Furthermore, the error rate in the monthly values of power density computed by using the Weibull distribution is smaller than the values by Rayleigh distribution.
Functionalization of graphene for efficient energy conversion and storage.
Dai, Liming
2013-01-15
As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Functional materials for energy-efficient buildings
Directory of Open Access Journals (Sweden)
Ebert H.-P
2015-01-01
Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.
Functional materials for energy-efficient buildings
Ebert, H.-P.
2015-08-01
The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.
Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun
2018-01-01
To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.
Multi-functional energy plantation; Multifunktionella bioenergiodlingar
Energy Technology Data Exchange (ETDEWEB)
Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)
2002-02-01
There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the
Directory of Open Access Journals (Sweden)
John R. Speakman
2013-03-01
Full Text Available The epidemics of obesity and diabetes have aroused great interest in the analysis of energy balance, with the use of organisms ranging from nematode worms to humans. Although generating energy-intake or -expenditure data is relatively straightforward, the most appropriate way to analyse the data has been an issue of contention for many decades. In the last few years, a consensus has been reached regarding the best methods for analysing such data. To facilitate using these best-practice methods, we present here an algorithm that provides a step-by-step guide for analysing energy-intake or -expenditure data. The algorithm can be used to analyse data from either humans or experimental animals, such as small mammals or invertebrates. It can be used in combination with any commercial statistics package; however, to assist with analysis, we have included detailed instructions for performing each step for three popular statistics packages (SPSS, MINITAB and R. We also provide interpretations of the results obtained at each step. We hope that this algorithm will assist in the statistically appropriate analysis of such data, a field in which there has been much confusion and some controversy.
International Nuclear Information System (INIS)
Robinson, M.T.
1993-01-01
The MARLOWE program was used to study the statistics of sputtering on the example of 1- to 100-keV Au atoms normally incident on static (001) and (111) Au crystals. The yield of sputtered atoms was examined as a function of the impact point of the incident particles (''ions'') on the target surfaces. There were variations on two scales. The effects of the axial and planar channeling of the ions could be traced, the details depending on the orientation of the target and the energies of the ions. Locally, the sputtering yield was very sensitive to the impact point, small changes in position often producing large changes yield. Results indicate strongly that the sputtering yield is a random (''chaotic'') function of the impact point
A statistical theory of cell killing by radiation of varying linear energy transfer
International Nuclear Information System (INIS)
Hawkins, R.B.
1994-01-01
A theory is presented that provides an explanation for the observed features of the survival of cultured cells after exposure to densely ionizing high-linear energy transfer (LET) radiation. It starts from a phenomenological postulate based on the linear-quadratic form of cell survival observed for low-LET radiation and uses principles of statistics and fluctuation theory to demonstrate that the effect of varying LET on cell survival can be attributed to random variation of dose to small volumes contained within the nucleus. A simple relation is presented for surviving fraction of cells after exposure to radiation of varying LET that depends on the α and β parameters for the same cells in the limit of low-LET radiation. This relation implies that the value of β is independent of LET. Agreement of the theory with selected observations of cell survival from the literature is demonstrated. A relation is presented that gives relative biological effectiveness (RBE) as a function of the α and β parameters for low-LET radiation. Measurements from microdosimetry are used to estimate the size of the subnuclear volume to which the fluctuation pertains. 11 refs., 4 figs., 2 tabs
International Nuclear Information System (INIS)
Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.
2009-01-01
In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)
Kinetic-energy functionals studied by surface calculations
DEFF Research Database (Denmark)
Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.
1998-01-01
The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....
Statistical Method to Overcome Overfitting Issue in Rational Function Models
Alizadeh Moghaddam, S. H.; Mokhtarzade, M.; Alizadeh Naeini, A.; Alizadeh Moghaddam, S. A.
2017-09-01
Rational function models (RFMs) are known as one of the most appealing models which are extensively applied in geometric correction of satellite images and map production. Overfitting is a common issue, in the case of terrain dependent RFMs, that degrades the accuracy of RFMs-derived geospatial products. This issue, resulting from the high number of RFMs' parameters, leads to ill-posedness of the RFMs. To tackle this problem, in this study, a fast and robust statistical approach is proposed and compared to Tikhonov regularization (TR) method, as a frequently-used solution to RFMs' overfitting. In the proposed method, a statistical test, namely, significance test is applied to search for the RFMs' parameters that are resistant against overfitting issue. The performance of the proposed method was evaluated for two real data sets of Cartosat-1 satellite images. The obtained results demonstrate the efficiency of the proposed method in term of the achievable level of accuracy. This technique, indeed, shows an improvement of 50-80% over the TR.
Free energy distribution function of a random Ising ferromagnet
International Nuclear Information System (INIS)
Dotsenko, Victor; Klumov, Boris
2012-01-01
We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging
Energy expressions in density-functional theory using line integrals.
van Leeuwen, R.; Baerends, E.J.
1995-01-01
In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along
Statistical distribution of components of energy eigenfunctions: from nearly-integrable to chaotic
International Nuclear Information System (INIS)
Wang, Jiaozi; Wang, Wen-ge
2016-01-01
We study the statistical distribution of components in the non-perturbative parts of energy eigenfunctions (EFs), in which main bodies of the EFs lie. Our numerical simulations in five models show that deviation of the distribution from the prediction of random matrix theory (RMT) is useful in characterizing the process from nearly-integrable to chaotic, in a way somewhat similar to the nearest-level-spacing distribution. But, the statistics of EFs reveals some more properties, as described below. (i) In the process of approaching quantum chaos, the distribution of components shows a delay feature compared with the nearest-level-spacing distribution in most of the models studied. (ii) In the quantum chaotic regime, the distribution of components always shows small but notable deviation from the prediction of RMT in models possessing classical counterparts, while, the deviation can be almost negligible in models not possessing classical counterparts. (iii) In models whose Hamiltonian matrices possess a clear band structure, tails of EFs show statistical behaviors obviously different from those in the main bodies, while, the difference is smaller for Hamiltonian matrices without a clear band structure.
Energy Technology Data Exchange (ETDEWEB)
Vervisch, Luc; Domingo, Pascale; Lodato, Guido [CORIA - CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France); Veynante, Denis [EM2C - CNRS and Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)
2010-04-15
Large-Eddy Simulation (LES) provides space-filtered quantities to compare with measurements, which usually have been obtained using a different filtering operation; hence, numerical and experimental results can be examined side-by-side in a statistical sense only. Instantaneous, space-filtered and statistically time-averaged signals feature different characteristic length-scales, which can be combined in dimensionless ratios. From two canonical manufactured turbulent solutions, a turbulent flame and a passive scalar turbulent mixing layer, the critical values of these ratios under which measured and computed variances (resolved plus sub-grid scale) can be compared without resorting to additional residual terms are first determined. It is shown that actual Direct Numerical Simulation can hardly accommodate a sufficiently large range of length-scales to perform statistical studies of LES filtered reactive scalar-fields energy budget based on sub-grid scale variances; an estimation of the minimum Reynolds number allowing for such DNS studies is given. From these developments, a reliability mesh criterion emerges for scalar LES and scaling for scalar sub-grid scale energy is discussed. (author)
Proceedings of the 1980 DOE statistical symposium
International Nuclear Information System (INIS)
Truett, T.; Margolies, D.; Mensing, R.W.
1981-04-01
Separate abstracts were prepared for 8 of the 16 papers presented at the DOE Statistical Symposium in California in October 1980. The topics of those papers not included cover the relative detection efficiency on sets of irradiated fuel elements, estimating failure rates for pumps in nuclear reactors, estimating fragility functions, application of bounded-influence regression, the influence function method applied to energy time series data, reliability problems in power generation systems and uncertainty analysis associated with radioactive waste disposal. The other 8 papers have previously been added to the data base
International Nuclear Information System (INIS)
Foumakoye, Gado
2014-01-01
This order provides for the organization and attributions of divisions and departments of the Statistics Directorate of the Ministry of Energy and Oil. This direction has two divisions namely Division for Energy Statistics and Division for Oil Statistics . Energy Statistics Division includes the following services: Service collection and data analysis for energy statistics and the service of production, dissemination and conservation of energy statics. The division for Oil Statistics includes the Service collection and data analysis for energy statistics and the service of production, dissemination and conservation of energy statistics. [fr
International Nuclear Information System (INIS)
Ginevan, M.E.; Collins, J.J.; Brown, C.D.; Carnes, B.A.; Curtiss, J.B.; Devine, N.
1981-01-01
The present research develops new statistical methodology, mathematical models, and data bases of relevance to the assessment of health impacts of energy technologies, and uses these to identify, quantify, and pedict adverse health effects of energy related pollutants. Efforts are in five related areas including: (1) evaluation and development of statistical procedures for the analysis of death rate data, disease incidence data, and large scale data sets; (2) development of dose response and demographic models useful in the prediction of the health effects of energy technologies; (3) application of our method and models to analyses of the health risks of energy production; (4) a reanalysis of the Tri-State leukemia survey data, focusing on the relationship between myelogenous leukemia risk and diagnostic x-ray exposure; and (5) investigation of human birth weights as a possible early warning system for the effects of environmental pollution
Statistics for High Energy Physics
CERN. Geneva
2018-01-01
The lectures emphasize the frequentist approach used for Dark Matter search and the Higgs search, discovery and measurements of its properties. An emphasis is put on hypothesis test using the asymptotic formulae formalism and its derivation, and on the derivation of the trial factor formulae in one and two dimensions. Various test statistics and their applications are discussed. Some keywords: Profile Likelihood, Neyman Pearson, Feldman Cousins, Coverage, CLs. Nuisance Parameters Impact, Look Elsewhere Effect... Selected Bibliography: G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys.\\ Rev.\\ D {\\bf 57}, 3873 (1998). A. L. Read, Presentation of search results: The CL(s) technique,'' J.\\ Phys.\\ G {\\bf 28}, 2693 (2002). G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics,' Eur.\\ Phys.\\ J.\\ C {\\bf 71}, 1554 (2011) Erratum: [Eur.\\ Phys.\\ J.\\ C {\\bf 73}...
Statistical mechanics of directed models of polymers in the square lattice
International Nuclear Information System (INIS)
Rensburg, E J Janse van
2003-01-01
Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce partition functions and free energies, and then investigate these using the general framework of critical phenomena. Generating function and statistical mechanics approaches are closely related. For example, questions regarding the limiting free energy may be approached by considering the radius of convergence of a generating function, and the scaling properties of thermodynamic quantities are related to the asymptotic properties of the generating function. In this review the methods for obtaining generating functions and determining free energies in directed lattice path models of linear polymers is presented. These methods include decomposition methods leading to functional recursions, as well as the Temperley method (that is implemented by creating a combinatorial object, one slice at a time). A constant term formulation of the generating function will also be reviewed. The thermodynamic features and critical behaviour in models of directed paths may be
The statistical analysis of energy release in small-scale coronal structures
Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey
We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.
Transport Statistics - Transport - UNECE
Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6
New statistical function for the angular distribution of evaporation residues produced by heavy ions
International Nuclear Information System (INIS)
Rigol, J.
1994-01-01
A new statistical function has been found for modelling the angular distribution of evaporation residues produced by heavy ions. Experimental results are compared with the calculated ones. 11 refs.; 4 figs. (author)
Fermi-Dirac function and energy gap
Bondarev, Boris
2013-01-01
Medium field method is applied for studying valence electron behavior in metals. When different wave-vector electrons are attracted at low temperatures, distribution function gets discontinued. As a result, a specific energy gap occurs.
Cornillon, Pierre-Andre; Husson, Francois; Jegou, Nicolas; Josse, Julie; Kloareg, Maela; Matzner-Lober, Eric; Rouviere, Laurent
2012-01-01
An Overview of RMain ConceptsInstalling RWork SessionHelpR ObjectsFunctionsPackagesExercisesPreparing DataReading Data from FileExporting ResultsManipulating VariablesManipulating IndividualsConcatenating Data TablesCross-TabulationExercisesR GraphicsConventional Graphical FunctionsGraphical Functions with latticeExercisesMaking Programs with RControl FlowsPredefined FunctionsCreating a FunctionExercisesStatistical MethodsIntroduction to the Statistical MethodsA Quick Start with RInstalling ROpening and Closing RThe Command PromptAttribution, Objects, and FunctionSelectionOther Rcmdr PackageImporting (or Inputting) DataGraphsStatistical AnalysisHypothesis TestConfidence Intervals for a MeanChi-Square Test of IndependenceComparison of Two MeansTesting Conformity of a ProportionComparing Several ProportionsThe Power of a TestRegressionSimple Linear RegressionMultiple Linear RegressionPartial Least Squares (PLS) RegressionAnalysis of Variance and CovarianceOne-Way Analysis of VarianceMulti-Way Analysis of Varian...
International Nuclear Information System (INIS)
Carneiro, Alvaro Luiz Guimaraes; Santos, Francisco Carlos Barbosa dos
2007-01-01
Energy is an essential input for social development and economic growth. The production and use of energy cause environmental degradation at all levels, being local, regional and global such as, combustion of fossil fuels causing air pollution; hydropower often causes environmental damage due to the submergence of large areas of land; and global climate change associated with the increasing concentration of greenhouse gases in the atmosphere. As mentioned in chapter 9 of Agenda 21, the Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technologies were remain constant and if overall quantities were to increase substantially. All energy sources will need to be used in ways that respect the atmosphere, human health, and the environment as a whole. The energy in the context of sustainable development needs a set of quantifiable parameters, called indicators, to measure and monitor important changes and significant progress towards the achievement of the objectives of sustainable development policies. The indicators are divided into four dimensions: social, economic, environmental and institutional. This paper shows a methodology of analysis using Multivariate Statistical Technique that provide the ability to analyse complex sets of data. The main goal of this study is to explore the correlation analysis among the indicators. The data used on this research work, is an excerpt of IBGE (Instituto Brasileiro de Geografia e Estatistica) data census. The core indicators used in this study follows The IAEA (International Atomic Energy Agency) framework: Energy Indicators for Sustainable Development. (author)
Statistical equilibrium and symplectic geometry in general relativity
International Nuclear Information System (INIS)
Iglesias, P.
1981-09-01
A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr
Reason of method of density functional in classical and quantum statistical mechanisms
International Nuclear Information System (INIS)
Dinariev, O.Yu.
2000-01-01
Interaction between phenomenological description of a multi-component mixture on the basis of entropy functional with members, square in terms of component density gradients and temperature, on the one hand, and description in the framework of classical and quantum statistical mechanics, on the other hand, was investigated. Explicit expressions for the entropy functional in the classical and quantum theory were derived. Then a square approximation for the case of minor disturbances of uniform state was calculated. In the approximation the addends square in reference to the gradient were singlet out. It permits calculation of the relevant phenomenological coefficients from the leading principles [ru
Directory of Open Access Journals (Sweden)
Yichen Wang
2016-01-01
Full Text Available In this paper, we develop the statistical delay quality-of-service (QoS provisioning framework for the energy-efficient spectrum-sharing based wireless ad hoc sensor network (WAHSN, which is characterized by the delay-bound violation probability. Based on the established delay QoS provisioning framework, we formulate the nonconvex optimization problem which aims at maximizing the average energy efficiency of the sensor node in the WAHSN while meeting PU’s statistical delay QoS requirement as well as satisfying sensor node’s average transmission rate, average transmitting power, and peak transmitting power constraints. By employing the theories of fractional programming, convex hull, and probabilistic transmission, we convert the original fractional-structured nonconvex problem to the additively structured parametric convex problem and obtain the optimal power allocation strategy under the given parameter via Lagrangian method. Finally, we derive the optimal average energy efficiency and corresponding optimal power allocation scheme by employing the Dinkelbach method. Simulation results show that our derived optimal power allocation strategy can be dynamically adjusted based on PU’s delay QoS requirement as well as the channel conditions. The impact of PU’s delay QoS requirement on sensor node’s energy efficiency is also illustrated.
Energy statistics and the role of nuclear energy in Taiwan
International Nuclear Information System (INIS)
Tseng, T.T.; Chen, Y.B.
1995-01-01
Due to the very limited indigenous energy resources, Taiwan has to import over 95% of the energy from overseas to meet her need. In this paper, the supply and demand of various kind of major energies will be discussed. Also, in order to lessen the environmental burden and increase the energy independence for Taiwan, the so-called quasi-indigenous energy - nuclear energy, will play an important role in Taiwan's future energy mix. The optimal ratios of the mix in the year of 2005 in Taiwan area using multiobjective method by independent research Institute will also be discussed. (author)
Understanding advanced statistical methods
Westfall, Peter
2013-01-01
Introduction: Probability, Statistics, and ScienceReality, Nature, Science, and ModelsStatistical Processes: Nature, Design and Measurement, and DataModelsDeterministic ModelsVariabilityParametersPurely Probabilistic Statistical ModelsStatistical Models with Both Deterministic and Probabilistic ComponentsStatistical InferenceGood and Bad ModelsUses of Probability ModelsRandom Variables and Their Probability DistributionsIntroductionTypes of Random Variables: Nominal, Ordinal, and ContinuousDiscrete Probability Distribution FunctionsContinuous Probability Distribution FunctionsSome Calculus-Derivatives and Least SquaresMore Calculus-Integrals and Cumulative Distribution FunctionsProbability Calculation and SimulationIntroductionAnalytic Calculations, Discrete and Continuous CasesSimulation-Based ApproximationGenerating Random NumbersIdentifying DistributionsIntroductionIdentifying Distributions from Theory AloneUsing Data: Estimating Distributions via the HistogramQuantiles: Theoretical and Data-Based Estimate...
Energy Technology Data Exchange (ETDEWEB)
Sillem, E.
2011-06-15
As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging
Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials
International Nuclear Information System (INIS)
Hu Xuerang; Sun Yuekui; Yuan Jun
2008-01-01
Recently, an expression has been developed to take into account the complex dependence of the fine structure in core-level electron energy-loss spectroscopy (EELS) in anisotropic materials on specimen orientation and spectral collection conditions [Y. Sun, J. Yuan, Phys. Rev. B 71 (2005) 125109]. One application of this expression is the development of a phenomenological theory of magic-angle electron energy-loss spectroscopy (MAEELS), which can be used to extract the isotropically averaged spectral information for materials with arbitrary anisotropy. Here we use this expression to extract not only the isotropically averaged spectral information, but also the anisotropic spectral components, without the restriction of MAEELS. The application is based on a multivariate statistical analysis of core-level EELS for anisotropic materials. To demonstrate the applicability of this approach, we have conducted a study on a set of carbon K-edge spectra of multi-wall carbon nanotube (MWCNT) acquired with energy-loss spectroscopic profiling (ELSP) technique and successfully extracted both the averaged and dichroic spectral components of the wrapped graphite-like sheets. Our result shows that this can be a practical alternative to MAEELS for the study of electronic structure of anisotropic materials, in particular for those nanostructures made of layered materials
Towards improved local hybrid functionals by calibration of exchange-energy densities
International Nuclear Information System (INIS)
Arbuznikov, Alexei V.; Kaupp, Martin
2014-01-01
A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities
International Nuclear Information System (INIS)
Zhu Zhenghe; Luo Deli; Feng Kaiming
2013-01-01
The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)
International Nuclear Information System (INIS)
Qin Fang; Chen Jisheng
2010-01-01
We utilize the fractional exclusion statistics of the Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behaviour, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behaviour of the isochore heat capacity for a trapped unitary Fermi gas is also analysed.
Functional Modeling of Perspectives on the Example of Electric Energy Systems
DEFF Research Database (Denmark)
Heussen, Kai
2009-01-01
The integration of energy systems is a proven approach to gain higher overall energy efficiency. Invariably, this integration will come with increasing technical complexity through the diversification of energy resources and their functionality. With the integration of more fluctuating renewable ...... which enables a reflection on system integration requirements independent of particular technologies. The results are illustrated on examples related to electric energy systems.......The integration of energy systems is a proven approach to gain higher overall energy efficiency. Invariably, this integration will come with increasing technical complexity through the diversification of energy resources and their functionality. With the integration of more fluctuating renewable...... energies higher system flexibility will also be necessary. One of the challenges ahead is the design of control architecture to enable the flexibility and to handle the diversity. This paper presents an approach to model heterogeneous energy systems and their control on the basis of purpose and functions...
Swanson, C.; Jandovitz, P.; Cohen, S. A.
2018-02-01
We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.
Lyons, L.
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
Transport Coefficients from Large Deviation Functions
Directory of Open Access Journals (Sweden)
Chloe Ya Gao
2017-10-01
Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.
Transport Coefficients from Large Deviation Functions
Gao, Chloe; Limmer, David
2017-10-01
We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.
Prediction of transmission loss through an aircraft sidewall using statistical energy analysis
Ming, Ruisen; Sun, Jincai
1989-06-01
The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.
Nonlocal exchange and kinetic-energy density functionals for electronic systems
International Nuclear Information System (INIS)
Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.
1992-01-01
The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal
Expanded explorations into the optimization of an energy function for protein design
Huang, Yao-ming; Bystroff, Christopher
2014-01-01
Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706
Queensland Energy Advisory Council's, annual review and energy statistics, 1982
Energy Technology Data Exchange (ETDEWEB)
1982-01-01
Queensland Energy Advisory Council (QEAC) role covers all forms of energy including renewable, non-renewable, commercialised and non-commercialised energy forms or proposals. While coal developments and electricity matters are discussed and monitored at meetings, the Mines Department and the State Electricity Commission, respectively, retain responsibility for most aspects in these energy sectors. In such cases QEAC's expertise and role is limited and is advisory. In other areas such as energy conservation, management of liquid fuel emergencies, natural gas supply and demand, solar energy, coal conversion, and ethanol production, QEAC made a significant contribution to policy development in 1981/82.
Statistical analysis regarding energy supply and demand in the EU and Romania between 1990 and 2014
Directory of Open Access Journals (Sweden)
Evelina GRADINARU
2016-07-01
Full Text Available Climate changes and mankind’s unlimited needs in term of energy, in opposition with the limited nature of our planet energy sources, impose an all new approach regarding the way in which we produce our energy and how efficient we are using it. The European Union is a world leader in promoting sustainability in this field, and Romania, as part of this multi-state organization, follows the same path. We will see further in this paper the evolution of the main statistical indicators regarding energy, with a particular emphasis on electricity, for both the EU and Romania. The starting point will be primary energy production and demand, continuing with the sources of energy, and finishing with electricity and its relevant indicators regarding production and renewable sources. Finally, the relevant conclusions will be drawn.
Statistical analysis and dimensioning of a wind farm energy storage system
Directory of Open Access Journals (Sweden)
Waśkowicz Bartosz
2017-06-01
Full Text Available The growth in renewable power generation and more strict local regulations regarding power quality indices will make it necessary to use energy storage systems with renewable power plants in the near future. The capacity of storage systems can be determined using different methods most of which can be divided into either deterministic or stochastic. Deterministic methods are often complicated with numerous parameters and complex models for long term prediction often incorporating meteorological data. Stochastic methods use statistics for ESS (Energy Storage System sizing, which is somewhat intuitive for dealing with the random element of wind speed variation. The proposed method in this paper performs stabilization of output power at one minute intervals to reduce the negative influence of the wind farm on the power grid in order to meet local regulations. This paper shows the process of sizing the ESS for two selected wind farms, based on their levels of variation in generated power and also, for each, how the negative influences on the power grid in the form of voltage variation and a shortterm flicker factor are decreased.
Liver Function Status in some Nigerian Children with Protein Energy ...
African Journals Online (AJOL)
Objective: To ascertain functional status of the liver in Nigeria Children with Protein energy malnutrition. Materials and Methods: Liver function tests were performed on a total of 88 children with protein energy malnutrition (PEM). These were compared with 22 apparently well-nourished children who served as controls.
Inferring Parametric Energy Consumption Functions at Different Software Levels
DEFF Research Database (Denmark)
Liqat, Umer; Georgiou, Kyriakos; Kerrison, Steve
2016-01-01
The static estimation of the energy consumed by program executions is an important challenge, which has applications in program optimization and verification, and is instrumental in energy-aware software development. Our objective is to estimate such energy consumption in the form of functions...... on the input data sizes of programs. We have developed a tool for experimentation with static analysis which infers such energy functions at two levels, the instruction set architecture (ISA) and the intermediate code (LLVM IR) levels, and reflects it upwards to the higher source code level. This required...... the development of a translation from LLVM IR to an intermediate representation and its integration with existing components, a translation from ISA to the same representation, a resource analyzer, an ISA-level energy model, and a mapping from this model to LLVM IR. The approach has been applied to programs...
Solution of the statistical bootstrap with Bose statistics
International Nuclear Information System (INIS)
Engels, J.; Fabricius, K.; Schilling, K.
1977-01-01
A brief and transparent way to introduce Bose statistics into the statistical bootstrap of Hagedorn and Frautschi is presented. The resulting bootstrap equation is solved by a cluster expansion for the grand canonical partition function. The shift of the ultimate temperature due to Bose statistics is determined through an iteration process. We discuss two-particle spectra of the decaying fireball (with given mass) as obtained from its grand microcanonical level density
Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM
2003-01-01
The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising
Economic modelling of energy services: Rectifying misspecified energy demand functions
International Nuclear Information System (INIS)
Hunt, Lester C.; Ryan, David L.
2015-01-01
estimation of an aggregate energy demand function for the UK with data over the period 1960–2011. - Highlights: • Introduces explicit modelling of demands for energy services • Derives estimable energy demand equations from energy service demands • Demonstrates the implicit misspecification with typical energy demand equations • Empirical implementation using aggregate and individual energy source data • Illustrative empirical example using UK data and energy efficiency modelling
A wavenumber-partitioning scheme for two-dimensional statistical closures
International Nuclear Information System (INIS)
Bowman, J.C.
1994-11-01
One of the principal advantages of statistical closure approximations for fluid turbulence is that they involve smoothly varying functions of wavenumber. This suggests the possibility of modeling a flow by following the evolution of only a few representative wavenumbers. This work presents two new techniques for the implementation of two-dimensional isotropic statistical closures that for the first time allows the inertial-range scalings of these approximation to be numerically demonstrated. A technique of wavenumber partitioning that conserves both energy and enstrophy is developed for two-dimensional statistical closures. Coupled with a new time-stepping scheme based on a variable integrating factor, this advance facilitates the computation of energy spectra over seven wavenumber decades, a task that will clearly remain outside the realm of conventional numerical simulations for the foreseeable future. Within the context of the test-field model, the method is used to demonstrate Kraichnan's logarithmically-corrected scaling for the enstrophy inertial range and to make a quantitative assessment of the effect of replacing the physical Laplacian viscosity with an enhanced hyperviscosity
Statistical γ-ray multiplicity distributions in Dy and Yb nuclei
International Nuclear Information System (INIS)
Tveter, T.S.; Bergholt, L.; Guttormsen, M.; Rekstad, J.
1994-03-01
The statistical γ-ray multiplicity distributions following the reactions 163 Dy( 3 He,αxn) 162-x Dy and 173 Yb( 3 He,αxn) 172-x Yb have been studied. The mean value and standard deviation have been extracted as functions of excitation energy. The method is based on the probability distribution of k-fold events, where an α-particle is observed in coincidence with signals in k γ-ray detectors. Techniques for isolating statistical γ-rays and subtracting random background, cross-talk and neutron contributions are discussed. 22 refs., 10 figs., 3 tabs
International Nuclear Information System (INIS)
Musolino, V.; Pievatolo, A.; Tironi, E.
2011-01-01
In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.
Electron energy-distribution functions in gases
International Nuclear Information System (INIS)
Pitchford, L.C.
1981-01-01
Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected
Data analysis in high energy physics. A practical guide to statistical methods
International Nuclear Information System (INIS)
Behnke, Olaf; Schoerner-Sadenius, Thomas; Kroeninger, Kevin; Schott, Gregory
2013-01-01
This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers.
Directory of Open Access Journals (Sweden)
Peter W. Egolf
2018-02-01
Full Text Available The extended thermodynamics of Tsallis is reviewed in detail and applied to turbulence. It is based on a generalization of the exponential and logarithmic functions with a parameter q. By applying this nonequilibrium thermodynamics, the Boltzmann-Gibbs thermodynamic approach of Kraichnan to 2-d turbulence is generalized. This physical modeling implies fractional calculus methods, obeying anomalous diffusion, described by Lévy statistics with q < 5/3 (sub diffusion, q = 5/3 (normal or Brownian diffusion and q > 5/3 (super diffusion. The generalized energy spectrum of Kraichnan, occurring at small wave numbers k, now reveals the more general and precise result k−q. This corresponds well for q = 5/3 with the Kolmogorov-Oboukov energy spectrum and for q > 5/3 to turbulence with intermittency. The enstrophy spectrum, occurring at large wave numbers k, leads to a k−3q power law, suggesting that large wave-number eddies are in thermodynamic equilibrium, which is characterized by q = 1, finally resulting in Kraichnan’s correct k−3 enstrophy spectrum. The theory reveals in a natural manner a generalized temperature of turbulence, which in the non-equilibrium energy transfer domain decreases with wave number and shows an energy equipartition law with a constant generalized temperature in the equilibrium enstrophy transfer domain. The article contains numerous new results; some are stated in form of eight new (proven propositions.
High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies
International Nuclear Information System (INIS)
Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.
1989-02-01
Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)
Zhao, Liqin; Winklhofer, Sebastian; Yang, Zhenghan; Wang, Keyang; He, Wen
2016-03-01
The aim of this article was to study the influence of different adaptive statistical iterative reconstruction (ASIR) percentages on the image quality of dual-energy computed tomography (DECT) portal venography in portal hypertension patients. DECT scans of 40 patients with cirrhosis (mean age, 56 years) at the portal venous phase were retrospectively analyzed. Monochromatic images at 60 and 70 keV were reconstructed with four ASIR percentages: 0%, 30%, 50%, and 70%. Computed tomography (CT) numbers of the portal veins (PVs), liver parenchyma, and subcutaneous fat tissue in the abdomen were measured. The standard deviation from the region of interest of the liver parenchyma was interpreted as the objective image noise (IN). The contrast-noise ratio (CNR) between PV and liver parenchyma was calculated. The diagnostic acceptability (DA) and sharpness of PV margins were obtained using a 5-point score. The IN, CNR, DA, and sharpness of PV were compared among the eight groups with different keV + ASIR level combinations. The IN, CNR, DA, and sharpness of PV of different keV + ASIR groups were all statistically different (P ASIR and 70 keV + 0% ASIR (filtered back-projection [FBP]) combination, respectively, whereas the largest and smallest objective IN were obtained in the 60 keV + 0% ASIR (FBP) and 70 keV + 70% combination. The highest DA and sharpness values of PV were obtained at 50% ASIR for 60 keV. An optimal ASIR percentage (50%) combined with an appropriate monochromatic energy level (60 keV) provides the highest DA in portal venography imaging, whereas for the higher monochromatic energy (70 keV) images, 30% ASIR provides the highest image quality, with less IN than 60 keV with 50% ASIR. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Damage energy functions for compounds and alloys
International Nuclear Information System (INIS)
Parkin, D.M.; Coulter, C.A.
1977-01-01
The concept of the damage energy of an energetic primary knock-on atom in a material is a central component in the procedure used to calculate dpa for metals exposed to neutron and charged particle radiation. Coefficients for analytic fits to the calculated damage energy functions are given for Al 2 O 3 , Si 3 N 4 , Y 2 O 3 , and NbTi. Damage efficiencies are given for Al 2 O 3
Morgenstern Horing, Norman J
2017-01-01
This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...
Statistics and methodology of multiple cell upset characterization under heavy ion irradiation
International Nuclear Information System (INIS)
Zebrev, G.I.; Gorbunov, M.S.; Useinov, R.G.; Emeliyanov, V.V.; Ozerov, A.I.; Anashin, V.S.; Kozyukov, A.E.; Zemtsov, K.S.
2015-01-01
Mean and partial cross-section concepts and their connections to multiplicity and statistics of multiple cell upsets (MCUs) in highly-scaled digital memories are introduced and discussed. The important role of the experimental determination of the upset statistics is emphasized. It was found that MCU may lead to quasi-linear dependence of cross-sections on linear energy transfer (LET). A new form of function for interpolation of mean cross-section dependences on LET has been proposed
Statistics associated with an elemental analysis system of particles induced by X-ray emission
International Nuclear Information System (INIS)
Romo K, C.M.
1987-01-01
In the quantitative elemental analysis by X-ray techniques one has to use data spectra which present fluctuations of statistical nature both from the energy and from the number of counts accumulated. While processing the results for the obtainment of a quantitative result, a detailed knowledge of the associated statistics distributions is needed. In this work, l) the statistics associated with the system photon's counting as well as 2) the distribution of the results as a function of the energy are analyzed. The first one is important for the definition of the expected values and uncertainties and for the spectra simulation (Mukoyama, 1975). The second one is fundamental for the determination of the contribution for each spectral line. (M.R.) [es
International Nuclear Information System (INIS)
Berceanu, I.; Andronic, A.; Duma, M.
1998-01-01
Non-statistical fluctuations in the excitation functions (EF) of dissipative heavy ion collisions (DHIC) was rather unexpected due to the fact that cross sections are always obtained on a 'coarse cell' of TKEL and θ cm . The contribution of a large number of microchannels, N, is expected to attenuate the amplitude of such fluctuations as σ(E) has a χ 2 distribution with 2N degrees of freedom. In the framework of the Partially Overlapping Molecular Levels the observation of the fluctuations of the cross section as a function of the incident energy is explained by the fact that the levels of the dinuclear system formed in the first stage of a dissipative process are excited in a region of low density situated in the vicinity of the yrast line. The time evolution of dinuclear (DNS) system with different mass asymmetries with the total mass of the nuclear system 19 F + 27 Al system configuration and its time evolution, the excitation function for this system has been measured between 111.4 MeV and 136.9 MeV with a 250 keV energy step. Fluctuations with amplitude larger than the statistical errors were observed. Large Z and angular cross correlation coefficients show their nonstatistical nature. An average energy correlation width of 170±65 keV, to which corresponds a DNS lifetime τ int (3.9 ± 1.1)·10 -21 s, was obtained by the energy autocorrelation function (EAF). The experimental EAF secondary structure period agrees with that predicted by Kun model when the deformation of the outgoing fragments is taken into account. To get more insight in the reaction mechanism, the dependence of the charge distribution variance for two total kinetic energy loss windows, W1 = 20 ± 2.5 and W2 = 30 ± 2.5 MeV, was obtained as a function of E lab . The second moments of the experimental charge distributions have been calculated and the obtained values were represented for W1 and W2. Fluctuations with quite large amplitude are present. In a transport approach of deep inelastic
Mathematics and Statistics Research Department progress report for period ending June 30, 1976
International Nuclear Information System (INIS)
Gosslee, D.G.; Shelton, B.K.; Ward, R.C.; Wilson, D.G.
1976-10-01
Brief summaries of work done in mathematics and related fields are presented. Research in mathematics and statistics concerned statistical estimation, statistical testing, experiment design, probability, continuum mechanics, functional integration, matrices and other operators, and mathematical software. More applied studies were conducted in the areas of analytical chemistry, biological research, chemistry and physics research, energy research, environmental research, health physics research, materials research, reactor and thermonuclear research, sampling inspection, quality control, and life testing, and uranium resource evaluation research. Additional sections deal with educational activities, presentation of research results, and professional activities. 7 figures, 9 tables
Statistical aspects of nuclear structure
International Nuclear Information System (INIS)
Parikh, J.C.
1977-01-01
The statistical properties of energy levels and a statistical approach to transition strengths are discussed in relation to nuclear structure studies at high excitation energies. It is shown that the calculations can be extended to the ground state domain also. The discussion is based on the study of random matrix theory of level density and level spacings, using the Gaussian Orthogonal Ensemble (GOE) concept. The short range and long range correlations are also studied statistically. The polynomial expansion method is used to obtain excitation strengths. (A.K.)
Historical and economic aspects of energy issues
International Nuclear Information System (INIS)
Sander, M.
2000-01-01
The classical macro-economic aggregate production function considered that output as measured by Gross Domestic product (GDP) was the result of the factor inputs: land, labour and capital. The production function was given by: GDP=f(Land, Capital, Labour). We propose: GDP=function (LAND, CAPITAL, LABOUR, ENERGY, TECHNOLOGY, INFORMATION), GDP=function(Z, K, R, E, T, I). Measuring effects of these variables on growth of GDP over longer periods of time is difficult statistical and mathematical task. Mathematical relations are not derived but instead historical exposition with a selection of statistical data was given to prove validity of the production function relation. through long historical periods, energy was reduced to energy of animal and human muscles sometimes with a help of mechanical levers and mechanisms. With coal use in 18th century animal and human muscles are no more main energy sources but in substitute to them thermal machines (from steam reciprocating machines to Otto, diesel machines in combination with electric machines) startedto be main movers of industrial age with high energy intensity. Energy as general thermodynamic concept for availability or ability of substance to produce work was introduced. Between primary forms of energy crude oil like fuel with greatest energy or ability to produce mechanical work, specially in transport takes the dominant place in 20th and 21st century. Use of crude oil in gas turbines, internal combustion engines, reaches upper levels of efficiency, but in the same time there is no technology that could substitute it in the transport. Influence of crude oil on prices and all other forms of energy and as political and economic factor is considered. (author)
International Nuclear Information System (INIS)
Slowinski, B.
1987-01-01
A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)
Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude
2011-06-20
One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.
Directory of Open Access Journals (Sweden)
Martin Juliette
2011-06-01
Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.
Harris functional and related methods for calculating total energies in density-functional theory
International Nuclear Information System (INIS)
Averill, F.W.; Painter, G.S.
1990-01-01
The simplified energy functional of Harris has given results of useful accuracy for systems well outside the limits of weakly interacting fragments for which the method was originally proposed. In the present study, we discuss the source of the frequent good agreement of the Harris energy with full Kohn-Sham self-consistent results. A procedure is described for extending the applicability of the scheme to more strongly interacting systems by going beyond the frozen-atom fragment approximation. A gradient-force expression is derived, based on the Harris functional, which accounts for errors in the fragment charge representation. Results are presented for some diatomic molecules, illustrating the points of this study
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Mukunda, N.
1978-03-01
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two-point function identification of the excited modes in the wave field is found. The relative simplicity of the higher order correlation functions emerges as a by-product and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices aand of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited. 28 references
The statistical background to proposed ASME/MPC fracture toughness reference curves
International Nuclear Information System (INIS)
Oldfield, W.
1981-01-01
The ASME Pressure Vessel Codes define, in Sec. 11, lower bound fracture toughness curves. These curves are used to predict the lower bound fracture toughness on the basis of the RT test procedure. This test is used to remove heat to heat differences, by permitting the lower bound (reference) curve to be moved along the temperature scale according to the measured RT. Numerous objections have been raised to the procedure, and a Subcommittee (the ASME/MPC Working Group on Reference Toughness) is currently revising the codified procedures for fracture toughness prediction. The task has required a substantial amount of statistical work, since the new procedure are to have a statistical basis. Using initiation fracture toughness (J-Integral R curve procedures in the ductile domain) it was shown that when CVN energy data is properly transformed it is highly correlated with valid fracture toughness measurements. A single functional relationship can be used to predict the mean fracture toughness for a sample of steel from a set of CVN energy measurements, and the coefficients of the function tabulated. More importantly, the approximate lower statistical bounds to the initiation fracture toughness behaviour can be similarly predicted, and coefficients for selected bounds have also been tabulated. (orig.)
Statistical features of pre-compound processes in nuclear reactions
International Nuclear Information System (INIS)
Hussein, M.S.; Rego, R.A.
1983-04-01
Several statistical aspects of multistep compound processes are discussed. The connection between the cross-section auto-correlation function and the average number of maxima is emphasized. The restrictions imposed by the non-zero value of the energy step used in measuring the excitation fuction and the experimental error are discussed. Applications are made to the system 25 Mg( 3 He,p) 27 Al. (Author) [pt
Range-separated density-functional theory for molecular excitation energies
International Nuclear Information System (INIS)
Rebolini, E.
2014-01-01
Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)
Energy density functional analysis of shape coexistence in 44S
International Nuclear Information System (INIS)
Li, Z. P.; Yao, J. M.; Vretenar, D.; Nikšić, T.; Meng, J.
2012-01-01
The structure of low-energy collective states in the neutron-rich nucleus 44 S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.
The effect of work function changes on secondary ion energy spectra
International Nuclear Information System (INIS)
Wittmaack, K.
1983-01-01
The effect of work function changes on experimental secondary ion energy spectra is discussed. In agreement with theory the measured ion intensities frequently exhibit an exponential work function dependence. However, the predicted velocity dependence is only observed at fairly high secondary ion energies. In the absence of a velocity dependence of the degree of ionization measured shifts of energy spectra reflect work function changes directly. Various instrumental problems are shown to aggravate a detailed comparison between experiment and theory. Significant artefacts must be expected if the extraction field is of the order of or less than the lateral field induced by a work function difference between the bombarded spot and the surrounding sample surface. (Auth.)
Statistical techniques for modeling extreme price dynamics in the energy market
International Nuclear Information System (INIS)
Mbugua, L N; Mwita, P N
2013-01-01
Extreme events have large impact throughout the span of engineering, science and economics. This is because extreme events often lead to failure and losses due to the nature unobservable of extra ordinary occurrences. In this context this paper focuses on appropriate statistical methods relating to a combination of quantile regression approach and extreme value theory to model the excesses. This plays a vital role in risk management. Locally, nonparametric quantile regression is used, a method that is flexible and best suited when one knows little about the functional forms of the object being estimated. The conditions are derived in order to estimate the extreme value distribution function. The threshold model of extreme values is used to circumvent the lack of adequate observation problem at the tail of the distribution function. The application of a selection of these techniques is demonstrated on the volatile fuel market. The results indicate that the method used can extract maximum possible reliable information from the data. The key attraction of this method is that it offers a set of ready made approaches to the most difficult problem of risk modeling.
Excitation function of ''7''4Ge(n, α)''7''1''mZn reaction in the energy range 13.82-14.70 MeV
International Nuclear Information System (INIS)
Halim, M.A.; Hafiz, M.A.; Naher, K.; Miah, R.U.; Ullah, M.R.
2003-01-01
The excitation function of the reaction ''7''4Ge(n, α)''7''1''mZn is measured by activation technique using high resolution HPGe detector gamma ray spectroscopy. Monoenergetic neutrons are produced via D-T reaction at J-25 neutron generator facility of the Institute of Nuclear Science and Technology, AERE, Bangladesh. The neutron flux measurement was done at different energy position in the range 13.82-14.70 MeV using the monitor reaction ''2''7Al(n, α)''2''4Na. The measured cross section values along with the literature data are plotted as a function of neutron energy to get the excitation function of the reaction. A theoretical calculation is also performed to produce the excitation function of the investigated reaction using statistical code SINCROS-II. The measured data are to be found to be in good agreement with the literature data and the theoretical cross section values. (author)
Energy market integration and regional institutions in east Asia
International Nuclear Information System (INIS)
Aalto, Pami
2014-01-01
This article assesses the case made for energy market integration in East Asia by comparing the role of institutions in South East Asia and North East Asia. The types and functions of institutions and their overall structure are examined in light of global energy market trends. In South East Asia, the shift attempted by ASEAN towards more competitive markets is hampered by the remaining statist variants of the trade institution and bilateral energy diplomacy, which, as regards transaction cost functions, are sub-optimal. As for institutions with order-creating functions, the unresolved status of sovereignty within ASEAN hampers regulatory harmonisation; the great power management institution has since ASEAN's establishment reduced conflicts without providing decisive leadership conducive to integration. North East Asia's dependence on global energy markets overshadows the regional integration potential of the diverse liberalisation efforts and interconnection projects. Bilateral energy diplomacies, new trilateral institutions combined with ‘Track Two’ institutions and remaining great power competition co-exist. In both regions the institutional structure allows for step-wise, technical infrastructure integration. The environmental stewardship institution co-exists with statist energy security and development objectives while it supports cooperation on green energy. The overall structure of informal institutions constrains deeper energy market integration in several ways. - Highlights: • The structures of institutions explain East Asian energy market integration. • Transaction costs are increased by statist trade institutions and bilateralism. • Order-creating institutions are sub-optimal for energy market integration. • Multi-level great power management offers limited leadership for integration. • The environmental stewardship institution supports cooperation on green energy
New concept of statistical ensembles
International Nuclear Information System (INIS)
Gorenstein, M.I.
2009-01-01
An extension of the standard concept of the statistical ensembles is suggested. Namely, the statistical ensembles with extensive quantities fluctuating according to an externally given distribution is introduced. Applications in the statistical models of multiple hadron production in high energy physics are discussed.
Horn, Paul R; Head-Gordon, Martin
2016-02-28
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
CDFTBL: A statistical program for generating cumulative distribution functions from data
International Nuclear Information System (INIS)
Eslinger, P.W.
1991-06-01
This document describes the theory underlying the CDFTBL code and gives details for using the code. The CDFTBL code provides an automated tool for generating a statistical cumulative distribution function that describes a set of field data. The cumulative distribution function is written in the form of a table of probabilities, which can be used in a Monte Carlo computer code. A a specific application, CDFTBL can be used to analyze field data collected for parameters required by the PORMC computer code. Section 2.0 discusses the mathematical basis of the code. Section 3.0 discusses the code structure. Section 4.0 describes the free-format input command language, while Section 5.0 describes in detail the commands to run the program. Section 6.0 provides example program runs, and Section 7.0 provides references. The Appendix provides a program source listing. 11 refs., 2 figs., 19 tabs
Noel, Jean; Prieto, Juan C.; Styner, Martin
2017-03-01
Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.
Evaluation of the Effects of Different Energy Drinks and Coffee on Endothelial Function.
Molnar, Janos; Somberg, John C
2015-11-01
Endothelial function plays an important role in circulatory physiology. There has been differing reports on the effect of energy drink on endothelial function. We set out to evaluate the effect of 3 energy drinks and coffee on endothelial function. Endothelial function was evaluated in healthy volunteers using a device that uses digital peripheral arterial tonometry measuring endothelial function as the reactive hyperemia index (RHI). Six volunteers (25 ± 7 years) received energy drink in a random order at least 2 days apart. Drinks studied were 250 ml "Red Bull" containing 80 mg caffeine, 57 ml "5-hour Energy" containing 230 mg caffeine, and a can of 355 ml "NOS" energy drink containing 120 mg caffeine. Sixteen volunteers (25 ± 5 years) received a cup of 473 ml coffee containing 240 mg caffeine. Studies were performed before drink (baseline) at 1.5 and 4 hours after drink. Two of the energy drinks (Red Bull and 5-hour Energy) significantly improved endothelial function at 4 hours after drink, whereas 1 energy drink (NOS) and coffee did not change endothelial function significantly. RHI increased by 82 ± 129% (p = 0.028) and 63 ± 37% (p = 0.027) after 5-hour Energy and Red Bull, respectively. The RHI changed after NOS by 2 ± 30% (p = 1.000) and by 7 ± 30% (p = 1.000) after coffee. In conclusion, some energy drinks appear to significantly improve endothelial function. Caffeine does not appear to be the component responsible for these differences. Copyright © 2015 Elsevier Inc. All rights reserved.
Beyond quantum microcanonical statistics
International Nuclear Information System (INIS)
Fresch, Barbara; Moro, Giorgio J.
2011-01-01
Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.
Bayesian error estimation in density-functional theory
DEFF Research Database (Denmark)
Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund
2005-01-01
We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...
Energy harvesting with functional materials and microsystems
Bhaskaran, Madhu; Iniewski, Krzysztof
2013-01-01
For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growi
Generalized Hamiltonians, functional integration and statistics of continuous fluids and plasmas
International Nuclear Information System (INIS)
Tasso, H.
1985-05-01
Generalized Hamiltonian formalism including generalized Poisson brackets and Lie-Poisson brackets is presented in Section II. Gyroviscous magnetohydrodynamics is treated as a relevant example in Euler and Clebsch variables. Section III is devoted to a short review of functional integration containing the definition and a discussion of ambiguities and methods of evaluation. The main part of the contribution is given in Section IV, where some of the content of the previous sections is applied to Gibbs statistics of continuous fluids and plasmas. In particular, exact fluctuation spectra are calculated for relevant equations in fluids and plasmas. (orig.)
A Cellular Perspective on Brain Energy Metabolism and Functional Imaging
Magistretti, Pierre J.
2015-05-01
The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.
Neuroenergetics: How energy constraints shape brain function
CERN. Geneva
2016-01-01
The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...
Functional data analysis of sleeping energy expenditure
Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of ...
Adib, Artur B.
In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.
The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model
Verkley, Wim; Severijns, Camiel
2014-05-01
Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy
Minimal nuclear energy density functional
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas
2018-04-01
We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1981-01-01
We consider general expressions of factorized S-matrices with Abelian symmetry expressed in terms of theta-functions. These expressions arise from representations of the Heisenberg group. New examples of factorized S-matrices lead to a large class of completely integrable models of statistical mechanics which generalize the XYZ-model of the eight-vertex model. (orig.)
Single-particle energies and density of states in density functional theory
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
He, Ping
2012-01-01
The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.
Statistical distribution sampling
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
Analysis of the Bogoliubov free energy functional
DEFF Research Database (Denmark)
Reuvers, Robin
In this thesis, we analyse a variational reformulation of the Bogoliubov approximation that is used to describe weakly-interacting translationally-invariant Bose gases. For the resulting model, the `Bogoliubov free energy functional', we demonstrate existence of minimizers as well as the presence...
Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions
International Nuclear Information System (INIS)
Zhang Benwei; Wang, Enke; Wang Xinnian
2005-01-01
Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum
SOERP, Statistics and 2. Order Error Propagation for Function of Random Variables
International Nuclear Information System (INIS)
Cox, N. D.; Miller, C. F.
1985-01-01
1 - Description of problem or function: SOERP computes second-order error propagation equations for the first four moments of a function of independently distributed random variables. SOERP was written for a rigorous second-order error propagation of any function which may be expanded in a multivariable Taylor series, the input variables being independently distributed. The required input consists of numbers directly related to the partial derivatives of the function, evaluated at the nominal values of the input variables and the central moments of the input variables from the second through the eighth. 2 - Method of solution: The development of equations for computing the propagation of errors begins by expressing the function of random variables in a multivariable Taylor series expansion. The Taylor series expansion is then truncated, and statistical operations are applied to the series in order to obtain equations for the moments (about the origin) of the distribution of the computed value. If the Taylor series is truncated after powers of two, the procedure produces second-order error propagation equations. 3 - Restrictions on the complexity of the problem: The maximum number of component variables allowed is 30. The IBM version will only process one set of input data per run
Structure and potential energy function for Pu22+ ion
International Nuclear Information System (INIS)
Li Quan; Huang Hui; Li Daohua
2003-01-01
The theoretical study on Pu 2 2+ using density functional method shows that the molecular ion is metastable. Ground electronic state is 13 Σ g for Pu 2 2+ , the analytic potential energy function is in well agreement with the Z-W function, and the force constants and spectroscopic data have been worked out for the first time
The Bogoliubov free energy functional II
DEFF Research Database (Denmark)
Napiórkowski, Marcin; Reuvers, Robin; Solovej, Jan Philip
2018-01-01
We analyse the canonical Bogoliubov free energy functional at low temperatures in the dilute limit. We prove existence of a first order phase transition and, in the limit $a_0\\to a$, we determine the critical temperature to be $T_{\\rm{c}}=T_{\\rm{fc}}(1+1.49(\\rho^{1/3}a))$ to leading order. Here, $T......_{\\rm{fc}}$ is the critical temperature of the free Bose gas, $\\rho$ is the density of the gas, $a$ is the scattering length of the pair-interaction potential $V$, and $a_0=(8\\pi)^{-1}\\widehat{V}(0)$ its first order approximation. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee...
Total reflection coefficients of low-energy photons presented as universal functions
Directory of Open Access Journals (Sweden)
Ljubenov Vladan
2010-01-01
Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.
Energy vs. density on paths toward more exact density functionals.
Kepp, Kasper P
2018-03-14
Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-01
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis
Directory of Open Access Journals (Sweden)
WU Weiguo
2017-08-01
Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.
Development of multi-functional nano-paint for energy harvesting applications
Directory of Open Access Journals (Sweden)
Bir B. Bohara
2018-02-01
Full Text Available The multi-functionality of lead magnesium niobate-lead titanate/paint (PMN-PT/paint nanocomposite films for energy harvesting via piezoelectric and pyroelectric effects is described. PMN-PT/paint films have been fabricated by a conventional paint-brushing technique to provide a low-cost, low-temperature and low–energy route to create multi-functional films. The properties investigated included dielectric constants, ε' and ε'', as a function of temperature, frequency and composition. From these parameters, it is indicated that the dielectric constants and AC conductivity (σAC increase with an increase of filler content and temperature, implying an improvement of the functionality of the films. The results revealed that σAC obeyed the relation σAC = Aωs, and exponent s, was found to decrease by increasing the temperature. The correlated barrier hopping was the dominant conduction mechanism in the nanocomposite films. The efforts were made to investigate the performance of nanocomposite films to mechanical vibrations and thermal variations. A cantilever system was designed and examined to assess its performance as energy harvesters. The highest output voltage and power for a PMN-PT/paint based harvester with a broad frequency response operating in the -31-piezoelectric mode were 65 mV and 1 nW, respectively. Voltage and power were shown to be enhanced by application of thermal variations. Thus, films could be utilized for combined energy harvesting via piezoelectric and pyroelectric characteristics. Keywords: Dielectric, Pyroelectricity, Piezoelectricity, Nanocomposites, PMN-PT, Energy harvesting
A Game for Energy-Aware Allocation of Virtualized Network Functions
Directory of Open Access Journals (Sweden)
Roberto Bruschi
2016-01-01
Full Text Available Network Functions Virtualization (NFV is a network architecture concept where network functionality is virtualized and separated into multiple building blocks that may connect or be chained together to implement the required services. The main advantages consist of an increase in network flexibility and scalability. Indeed, each part of the service chain can be allocated and reallocated at runtime depending on demand. In this paper, we present and evaluate an energy-aware Game-Theory-based solution for resource allocation of Virtualized Network Functions (VNFs within NFV environments. We consider each VNF as a player of the problem that competes for the physical network node capacity pool, seeking the minimization of individual cost functions. The physical network nodes dynamically adjust their processing capacity according to the incoming workload, by means of an Adaptive Rate (AR strategy that aims at minimizing the product of energy consumption and processing delay. On the basis of the result of the nodes’ AR strategy, the VNFs’ resource sharing costs assume a polynomial form in the workflows, which admits a unique Nash Equilibrium (NE. We examine the effect of different (unconstrained and constrained forms of the nodes’ optimization problem on the equilibrium and compare the power consumption and delay achieved with energy-aware and non-energy-aware strategy profiles.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu
2015-05-27
Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.
Replacing leads by self-energies using non-equilibrium Green's functions
International Nuclear Information System (INIS)
Michael, Fredrick; Johnson, M.D.
2003-01-01
Open quantum systems consist of semi-infinite leads which transport electrons to and from the device of interest. We show here that within the non-equilibrium Green's function technique for continuum systems, the leads can be replaced by simple c-number self-energies. Our starting point is an approach for continuum systems developed by Feuchtwang. The reformulation developed here is simpler to understand and carry out than the somewhat unwieldly manipulations typical in the Feuchtwang method. The self-energies turn out to have a limited variability: the retarded self-energy Σ r depends on the arbitrary choice of internal boundary conditions, but the non-equilibrium self-energy or scattering function Σ which determines transport is invariant for a broad class of boundary conditions. Expressed in terms of these self-energies, continuum non-equilibrium transport calculations take a particularly simple form similar to that developed for discrete systems
Nuclear energy density functional from chiral pion-nucleon dynamics revisited
Kaiser, N.; Weise, W.
2009-01-01
We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...
Evaluation of NEB energy markets and supply monitoring function
International Nuclear Information System (INIS)
2003-09-01
Canada's National Energy Board regulates the exports of oil, natural gas, natural gas liquids and electricity. It also regulates the construction, operation and tolls of international and interprovincial pipelines and power lines. It also monitors energy supply and market developments in Canada. The Board commissioned an evaluation of the monitoring function to ensure the effectiveness and efficiency of the monitoring activities, to identify gaps in these activities and to propose recommendations. The objectives of the monitoring mandate are to provide Canadians with information regarding Canadian energy markets, energy supply and demand, and to ensure that exports of natural gas, oil, natural gas liquids and electricity do not occur at the detriment of Canadian energy users. The Board ensures that Canadians have access to domestically produced energy on terms that are as favourable as those available to export buyers. The following recommendations were proposed to improve the monitoring of energy markets and supply: (1) increase focus and analysis on the functioning of gas (first priority) and other commodity markets, (2) increase emphasis on forward-looking market analysis and issue identification, (3) demonstrate continued leadership by encouraging public dialogue on a wide range of energy market issues, (4) improve communication and increase visibility of the NEB within the stakeholder community, (5) build on knowledge management and organizational learning capabilities, (6) improve communication and sharing of information between the Applications and Commodities Business Units, and (7) enhance organizational effectiveness of the Commodities Business Unit. figs
AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK
Energy Technology Data Exchange (ETDEWEB)
Boyden, Ryan D.; Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Koch, Eric W.; Rosolowsky, Erik W., E-mail: soffner@astro.umass.edu [Department of Physics, University of Alberta, Edmonton, T6G 2E1 (Canada)
2016-12-20
All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations are at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
International Nuclear Information System (INIS)
Antonopoulos-Domis, M.; Mourtzanos, K.
1996-01-01
Estimators of the confidence limits of open loop transfer functions via Multivariate Auto-Regressive (MAR) modelling are not available in the literature. The statistics of open loop transfer functions obtained by MAR modelling are investigated via numerical experiments. A system of known open loop transfer functions is simulated digitally and excited by random number series. The digital signals of the simulated system are then MAR modelled and the open loop transfer functions are estimated. Performing a large number of realizations, mean values and variances of the open loop transfer functions are estimated. It is found that if the record length N of each realization is long enough then the estimates of open loop transfer functions follow normal distribution. The variance of the open loop transfer functions is proportional to 1/N. For MAR processes the asymptotic covariance matrix of the estimate of open loop transfer functions was found in agreement with theoretical prediction. (author)
Range and energy functions of interest in neutron dosimetry
International Nuclear Information System (INIS)
Bhatia, D.P.; Nagarajan, P.S.
1978-01-01
This report documents the energy and range functions generated and used in fast neutron interface dosimetry studies. The basic data of stopping power employed are the most recent. The present report covers a number of media mainly air, oxygen, nitrogen, polythene, graphite, bone and tissue, and a number of charged particles, namely protons, alphas, 9 Be, 11 B, 12 C, 13 C, 14 N and 16 O. These functions would be useful for generation of energy and range values for any of the above particles in any of the above media within +- 1% in any dosimetric calculations. (author)
Many-body theory and Energy Density Functionals
Energy Technology Data Exchange (ETDEWEB)
Baldo, M. [INFN, Catania (Italy)
2016-07-15
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)
Directory of Open Access Journals (Sweden)
Xiliang Zheng
2015-04-01
Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
The history and library statistics of JAEA library activities
Energy Technology Data Exchange (ETDEWEB)
Itabashi, Keizo [Japan Atomic Energy Agency, Intellectual Resources Dept., Tokai, Ibaraki (Japan)
2012-03-15
The history and library statistics of the Japan Atomic Energy Agency library activity were summarized. Former Japan Atomic Energy Research Institute and the former Japan Nuclear Cycle Development Institute merged in October, 2005, and Japan Atomic Energy Agency is established. Properly speaking, the library statistics of old two corporations should have been summarized, but statistics of the Japan Nuclear Cycle Development Institute is not yet obtained. Then, although it is stated as the Japan Atomic Energy Agency library, it limits to the description about the old Japan Atomic Energy Research Institute library before 2004. (author)
The history and library statistics of JAEA library activities
International Nuclear Information System (INIS)
Itabashi, Keizo
2012-03-01
The history and library statistics of the Japan Atomic Energy Agency library activity were summarized. Former Japan Atomic Energy Research Institute and the former Japan Nuclear Cycle Development Institute merged in October, 2005, and Japan Atomic Energy Agency is established. Properly speaking, the library statistics of old two corporations should have been summarized, but statistics of the Japan Nuclear Cycle Development Institute is not yet obtained. Then, although it is stated as the Japan Atomic Energy Agency library, it limits to the description about the old Japan Atomic Energy Research Institute library before 2004. (author)
Electrical Energy Statistics for France - 2010
International Nuclear Information System (INIS)
2011-06-01
consumption has risen by 14%. During 2010, a total of 20 new substations for various voltage levels were connected to the transmission network. Work carried out on the RTE network allowed underground circuits to be lengthened by 119 km, and the total length of overhead power lines to be cut by 64 km. RTE also reclaimed 3,825 km of circuits, mostly overhead, which previously belonged to SNCF, as well as 120 substations. On the distribution networks, extension was of the order of 8,000 km in 2010. Contractual exchanges with other countries are down by 7.2%, reaching a cumulative total value for exports and imports of 103.7 TWh (compared with 111.7 TWh in 2009). The sharp decrease in imports of 6.4 TWh (14.7%) and the decrease in exports of 1.6 TWh (2.5%) caused the balance of exchanges to rise by 4.8 TWh. The total figure comprising sales by Balance Responsible Entities via Block Exchange Notifications, sales of generation capacity at auctions, and energy sales on the EPEX SPOT market, reached 407.6 TWh, an increase of 4.6% compared with 2009 (389.6 TWh). Statistics on quality of electricity were characterized mainly in 2010 by some of the best ever results for short and long outage frequencies. In terms of the reliability of the power system, the number of significant events identified in 2010 was down by more than 10% compared with 2009. 2010 was however distinguished by two exceptional events: the Xynthia storm in February in west France, and the floods in June in the Var
International Nuclear Information System (INIS)
Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han
2015-01-01
The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)
PINGU and the neutrino mass hierarchy: Statistical and systematical aspects
International Nuclear Information System (INIS)
Capozzi, F.; Marrone, A.; Lisi, E.
2016-01-01
The proposed PINGU project (Precision IceCube Next Generation Upgrade) is supposed to determine neutrino mass hierarchy through matter effects of atmospheric neutrinos crossing the Earth core and mantle, which leads to variations in the events spectrum in energy and zenith angle. The presence of non-negligible (and partly unknown) systematics on the spectral shape can make the statistical analysis particularly challenging in the limit of high statistics. Assuming plausible spectral shape uncertainties at the percent level (due to effective volume, cross section, resolution functions, oscillation parameters, etc.), we obtain a significant reduction in the sensitivity to the hierarchy. The obtained results show the importance of a dedicated research program aimed at a better characterization and reduction of the uncertainties in future high-statistics experiments with atmospheric neutrinos.
Preliminary study of energy confinement data with a statistical analysis system in HL-2A tokamak
International Nuclear Information System (INIS)
Xu Yuan; Cui Zhengying; Ji Xiaoquan; Dong Chunfeng; Yang Qingwei; O J W F Kardaun
2010-01-01
Taking advantage of the HL-2A experimental data,an energy confinement database facing ITERL DB2.0 version has been originally established. As for this database,a world widely used statistical analysis system (SAS) has been adopted for the first time to analyze and evaluate the confinement data from HL-2A and the research on scaling laws of energy confinement time corresponding to plasma density is developed, some preliminary results having been achieved. Finally, through comparing with both ITER scaling law and previous ASDEX database, the investigation about L-mode confinement quality on HL-2A and influence of temperature on Spitzer resistivity will be discussed. (authors)
COULN, a program for evaluating negative energy Coulomb functions
International Nuclear Information System (INIS)
Noble, C.J.; Thompson, I.J.
1984-01-01
Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)
Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques
International Nuclear Information System (INIS)
Kantowski, R.; Milton, K.A.
1987-01-01
The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out
A Cellular Perspective on Brain Energy Metabolism and Functional Imaging
Magistretti, Pierre J.; Allaman, Igor
2015-01-01
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization
Ab initio derivation of model energy density functionals
International Nuclear Information System (INIS)
Dobaczewski, Jacek
2016-01-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)
Prediction of noise in ships by the application of “statistical energy analysis.”
DEFF Research Database (Denmark)
Jensen, John Ødegaard
1979-01-01
If it will be possible effectively to reduce the noise level in the accomodation on board ships, by introducing appropriate noise abatement measures already at an early design stage, it is quite essential that sufficiently accurate prediction methods are available for the naval architects...... or for a special noise abatement measure, e.g., increased structural damping. The paper discusses whether it might be possible to derive an alternative calculation model based on the “statistical energy analysis” approach (SEA). By considering the hull of a ship to be constructed from plate elements connected...
Transport Coefficients from Large Deviation Functions
Gao, Chloe Ya; Limmer, David T.
2017-01-01
We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate th...
The role of dual-energy computed tomography in the assessment of pulmonary function
Energy Technology Data Exchange (ETDEWEB)
Hwang, Hye Jeon [Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796 (Korea, Republic of); Hoffman, Eric A. [Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241 (United States); Lee, Chang Hyun; Goo, Jin Mo [Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Levin, David L. [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505 (Korea, Republic of)
2017-01-15
Highlights: • The dual-energy CT technique enables the differentiation of contrast materials with material decomposition algorithm. • Pulmonary functional information can be evaluated using dual-energy CT with anatomic CT information, simultaneously. • Pulmonary functional information from dual-energy CT can improve diagnosis and severity assessment of diseases. - Abstract: The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.
Balance Function in High-Energy Collisions
International Nuclear Information System (INIS)
Tawfik, A.; Shalaby, Asmaa G.
2015-01-01
Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik
2015-04-01
Background: The linear response of the nucleus to an external field contains unique information about the effective interaction, the correlations governing the behavior of the many-body system, and the properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or the nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). Methods: To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse-energy-weighted sum rule. Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse-energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method
Comment on 'Kinetic energy as a density functional'
International Nuclear Information System (INIS)
Holas, A.; March, N.H.
2002-01-01
In a recent paper, Nesbet [Phys. Rev. A 65, 010502(R) (2001)] has proposed dropping ''the widespread but unjustified assumption that the existence of a ground-state density functional for the kinetic energy, T s [ρ], of an N-electron system implies the existence of a density-functional derivative, δT s [ρ]/δρ(r), equivalent to a local potential function,'' because, according to his arguments, this derivative 'has the mathematical character of a linear operator that acts on orbital wave functions'. Our Comment demonstrates that the statement called by Nesbet an 'unjustified assumption' happens, in fact, to be a rigorously proven theorem. Therefore, his previous conclusions stemming from his different view of this derivative, which undermined the foundations of density-functional theory, can be discounted
Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J
2012-09-04
The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.
A statistical mechanics approach to mixing in stratified fluids
Venaille , Antoine; Gostiaux , Louis; Sommeria , Joël
2016-01-01
Accepted for the Journal of Fluid Mechanics; Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richard-son number and th...
On the low-energy behavior of the Adler function
International Nuclear Information System (INIS)
Nesterenko, A.V.
2009-01-01
The infrared behavior of the Adler function is examined by making use of a recently derived integral representation for the latter. The obtained result for the Adler function agrees with its experimental prediction in the entire energy range. The inclusive τ lepton decay is studied in the framework of the developed approach
International Nuclear Information System (INIS)
Dai, Wu-Sheng; Xie, Mi
2013-01-01
In this paper, we give a general discussion on the calculation of the statistical distribution from a given operator relation of creation, annihilation, and number operators. Our result shows that as long as the relation between the number operator and the creation and annihilation operators can be expressed as a † b=Λ(N) or N=Λ −1 (a † b), where N, a † , and b denote the number, creation, and annihilation operators, i.e., N is a function of quadratic product of the creation and annihilation operators, the corresponding statistical distribution is the Gentile distribution, a statistical distribution in which the maximum occupation number is an arbitrary integer. As examples, we discuss the statistical distributions corresponding to various operator relations. In particular, besides the Bose–Einstein and Fermi–Dirac cases, we discuss the statistical distributions for various schemes of intermediate statistics, especially various q-deformation schemes. Our result shows that the statistical distributions corresponding to various q-deformation schemes are various Gentile distributions with different maximum occupation numbers which are determined by the deformation parameter q. This result shows that the results given in much literature on the q-deformation distribution are inaccurate or incomplete. -- Highlights: ► A general discussion on calculating statistical distribution from relations of creation, annihilation, and number operators. ► A systemic study on the statistical distributions corresponding to various q-deformation schemes. ► Arguing that many results of q-deformation distributions in literature are inaccurate or incomplete
Of energy and the economy. Theory and evidence of their functional relationships
Energy Technology Data Exchange (ETDEWEB)
Chang, V.
2007-07-01
The author of the contribution under consideration offers a set of explicit functional relationships that link energy and the economy. Despite the reliance on energy permeating the whole economy, no such complete relationships had been presented before. The relevant questions are: (a) How related are energy and the economy? (b) What role does energy play in the economic growth? Under this aspect, the author theorizes the role of energy and then tests it with economic models, using data from 16 OECD countries from 1980 to 2001. The main results are the following: (a) Energy is a cross-country representative good whose prices are equalized when converted to a reference currency. Thus, energy prices satisfy the purchasing power parity. For all but one country, the half life of the real exchange rate is less than a year and as low as six months, shorter than those derived by other real exchange rate measures; (b) Considering energy a cross-time representative good, a country's utility function is inversely proportional to both its income share of energy and its energy price. The author obtains an explicit, unified two-dimensional (cross countries and time) production function with energy and non-energy as the two inputs; (c) The author concludes a cross-country parity relationship for income shares of energy, similar to that for energy prices. Furthermore, the author provides an intertemporal connection between the trajectory of the income share of energy and the productivity growth of the economy; (d) The author demonstrates the tradeoffs between energy efficiency and economic wellbeing, with the energy price being the medium of the tradeoffs.
Fabbri, A; Sinding-Larsen, R
1988-01-01
This volume contains the edited papers prepared by lecturers and participants of the NATO Advanced Study Institute on "Statistical Treatments for Estimation of Mineral and Energy Resources" held at II Ciocco (Lucca), Italy, June 22 - July 4, 1986. During the past twenty years, tremendous efforts have been made to acquire quantitative geoscience information from ore deposits, geochemical, geophys ical and remotely-sensed measurements. In October 1981, a two-day symposium on "Quantitative Resource Evaluation" and a three-day workshop on "Interactive Systems for Multivariate Analysis and Image Processing for Resource Evaluation" were held in Ottawa, jointly sponsored by the Geological Survey of Canada, the International Association for Mathematical Geology, and the International Geological Correlation Programme. Thirty scientists from different countries in Europe and North America were invited to form a forum for the discussion of quantitative methods for mineral and energy resource assessment. Since then, not ...
Rydberg energies using excited state density functional theory
International Nuclear Information System (INIS)
Cheng, C.-L.; Wu Qin; Van Voorhis, Troy
2008-01-01
We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.
International Nuclear Information System (INIS)
Grendel, M.
1981-01-01
Boundary conditions for distribution functions of quasiparticles scattered by an interface between two crystalline grains are presented. Contrary to former formulations where Maxwell-Boltzmann statistics was considered, the present boundary conditions take into account the quantum statistics (Fermi-Dirac or Bose-Einstein) of quasiparticles. Provided that small deviations only from thermodynamic equilibrium are present, the boundary conditions are linearized, and then their ''renormalization'' is investigated in case of elastic scattering. The final results of the renormalization, which are obtained for a simplified model of an interface, sugo.est that the portion of the Fermi (Bose)-quasiparticles reflected or transmitted specularly is decreased (increased) in comparison with the case of quasiparticles obeying Maxwell-Boltzmann statistics. (author)
International Nuclear Information System (INIS)
Gershberg, R.E.
1985-01-01
Accounting the observed power character of the energy spectrum of flares of the UV Cet-type stars, several statistical characterisitics of there stars are considered. It is shown that a mean amplitude of flares is mainly determined with an amplitude of the faintest flare that can be registered at the star under consideration and therefore - contrary to tradition - the mean flare amplitude cannot be used as a measure of a flare activity of the star. Mean frequencuy of flares registered at a flare star dependes statisticaally certainly ona an absolute magneitude of the star - contary to wide spread belief, true mean frequencies are higher at brighter stars. On the basis of the Cataloque of flare stars in Pleiades by Haro, Chavira and Gonzalez a luminosity function of therese stars is constructed. Using this function and the revealed dependence of flare mean frequencies on stellar absolute magnitudes, a distribution of flare stars in Pleiades along flare mean frequencies is constructed. This shows that the cluster contains flare stars with mean frequencies of photographically registered flares from 10 -4 to 10 -2 hour -1 or within even narrower interval of frequencies and the total number of such stars in the cluster exceeds 1100
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
Photon strength and the low-energy enhancement
Energy Technology Data Exchange (ETDEWEB)
Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Krtička, M. [Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, Prague 8 (Czech Republic); Allmond, J. M. [Department of Physics, University of Richmond, Virginia 23173 (United States); Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States)
2014-08-14
Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
On nonlinear statistical thermodynamics of boundary plasma with postactions
International Nuclear Information System (INIS)
Temko, S.W.; Temko, K.W.; Kuz'min, S.K.
1992-01-01
The authors use the statistical thermodynamics of small systems proposed before their publications for boundary weakly ionized plasma with postaction. Boundary properties of the plasma is taken into account by two ways: (1) suppose that only small number of very quick particles are able to leave the cloud having done entrance into outer medium work; (2) take into account the interaction between particles and inner surface of the cloud. Interactions in the boundary plasma are described by corresponding potential functions. The potential functions are mathematical models of real interactions in boundary plasma. Choosing of potential functions, their numerical parameters, geometrical form and dimensions of the cloud is made by using the methods of optimal experiment planning, maximum likelihood and computer experiment. Free energy of the cloud is a likelihood function. State of boundary plasma with admixtures is described by vector-density of particles distribution. Term ''distribution'' is used here in Sobolev-Schwartc sense. The authors obtain the vector-density of particles distribution in cloud which gives the condition minimum of free energy for every time moment under quasistatistical equilibrium. The system of conditions for free energy conditional minimizing for every time moment includes integral equilibrium equations, ''non-hard normalization'' and additional conditions taken as a result of analyzing physical and physical-chemical nature of boundary plasma. To obtain conditional minimum of free energy it is necessary to solve the system of conditions. First of all they solve equilibrium problem by the authors method. They obtain vector-density of particles distribution in the cloud. Then using method of random walk with postaction between sets of random walk process they build distribution function of random vector-density
Functionally graded biomimetic energy absorption concept development for transportation systems.
2014-02-01
Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...
Image Fusion Based on the \\({\\Delta ^{ - 1}} - T{V_0}\\ Energy Function
Directory of Open Access Journals (Sweden)
Qiwei Xie
2014-11-01
Full Text Available This article proposes a \\({\\Delta^{-1}}-T{V_0}\\ energy function to fuse a multi-spectral image with a panchromatic image. The proposed energy function consists of two components, a \\(TV_0\\ component and a \\(\\Delta^{-1}\\ component. The \\(TV_0\\ term uses the sparse priority to increase the detailed spatial information; while the \\({\\Delta ^{ - 1}}\\ term removes the block effect of the multi-spectral image. Furthermore, as the proposed energy function is non-convex, we also adopt an alternative minimization algorithm and the \\(L_0\\ gradient minimization to solve it. Experimental results demonstrate the improved performance of the proposed method over existing methods.
Experimental parameterization of an energy function for the simulation of unfolded proteins
DEFF Research Database (Denmark)
Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.
2008-01-01
The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...
International Nuclear Information System (INIS)
Rockney, B.H.
1982-01-01
Multiphoton ionization (MPI) appears in its first use as a probe of laser-induced photofragmentation. Specifically, MPI here reveals the internal and translational energy content of the nascent fragments from the infrared multiphoton dissociation (MPD) of nitromethane (CH 3 NO 2 ). The apparatus for this work consists of a pulsed supersonic molecular beam crossed by two pulsed and focused lasers - a CO 2 laser to induce collision-free unimolecular dissociation of CH 3 NO 2 , and a tunable dye laser following immediately to ionize selectively one of the pair of dissociation fragments for detection by a mass spectrometer and particle multiplier. A computer simulation of each fragment's MPI spectrum, a series of four photon resonances to members of the npsigma/sub u/ Rydberg state of NO 2 and three photon resonances to two vibrational members of the #betta# 1 Rydberg state of CH 3 , aids in determining the fragment's internal energy content. The dye laser is delayed and its focus is traced through a small quarter circle centered at the focus of the CO 2 laser. The flight times of the fragments from the point of dissociation and their laboratory scattering angular distributions at fixed ionizing laser wavelength provide their center of mass recoil velocity distributions. The energy deposited in the fragments evidences a striking mixture of statistical and dynamical energy partitioning. The statistical RRKM theory of unimolecular decomposition accurately predicts the amount of internal energy found in the fragments
International Nuclear Information System (INIS)
Kravtsov, V.E.; Yudson, V.I.
2011-01-01
Highlights: → Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. → Moments of inverse participation ratio are calculated. → Equation for generating function is derived at E = 0. → An exact solution for generating function at E = 0 is obtained. → Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/(λ E ) , where a is the lattice constant and λ E is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions ψ(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function Φ r (u, φ) (u and φ have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P r (φ)≡Φ r (u=0,φ) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component Φ(u, φ) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and φ. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for Φ(u, φ) explicitly in quadratures. Using this solution we computed moments I m = N 2m > (m ≥ 1) for a chain of the length N → ∞ and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the
Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman
2008-04-24
We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results
Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane
2016-05-01
Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun
2016-08-01
A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.
Analytical potential energy function for the Br + H2 system
International Nuclear Information System (INIS)
Kurosaki, Yuzuru
2001-01-01
Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H 2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)
Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.
Directory of Open Access Journals (Sweden)
Cedric E Ginestet
2014-05-01
Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.
Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional
Joubert, Daniel P.
2011-01-01
The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.
Statistically generated weighted curve fit of residual functions for modal analysis of structures
Bookout, P. S.
1995-01-01
A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.
Snow, M E; Crippen, G M
1991-08-01
The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.
International Nuclear Information System (INIS)
Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa
2014-01-01
Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the
Energy level alignment and quantum conductance of functionalized metal-molecule junctions
DEFF Research Database (Denmark)
Jin, Chengjun; Strange, Mikkel; Markussen, Troels
2013-01-01
We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density...... functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method...... predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close...
On approximation and energy estimates for delta 6-convex functions.
Saleem, Muhammad Shoaib; Pečarić, Josip; Rehman, Nasir; Khan, Muhammad Wahab; Zahoor, Muhammad Sajid
2018-01-01
The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted [Formula: see text]-norm.
Däne, Markus; Kim, Soo Kyung; Surh, Michael P; Åberg, Daniel; Benedict, Lorin X
2015-07-08
We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe(1-x)Co(x))(2)B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. The effect of lattice relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.
Interacting walkers on the Cayley tree, and polymer statistics
International Nuclear Information System (INIS)
Priezzhev, V.B.
1986-01-01
We obtain the generating function for an ensemble of random walkers on the Cayley tree of coordination number z. The pair interaction between walkers is taken into account. This forbids two walkers to occupy the same lattice point after an equal number of steps. Interacting polymer statistics results from this model if one associates time (or the number of steps) with an additional space coordinate. The limiting free energy appears in a form that corresponds to the phase transition of ''3/2 order.''
Statistical distance and the approach to KNO scaling
International Nuclear Information System (INIS)
Diosi, L.; Hegyi, S.; Krasznovszky, S.
1990-05-01
A new method is proposed for characterizing the approach to KNO scaling. The essence of our method lies in the concept of statistical distance between nearby KNO distributions which reflects their distinguishability in spite of multiplicity fluctuations. It is shown that the geometry induced by the distance function defines a natural metric on the parameter space of a certain family of KNO distributions. Some examples are given in which the energy dependences of distinguishability of neighbouring KNO distributions are compared in nondiffractive hadron-hadron collisions and electron-positron annihilation. (author) 19 refs.; 4 figs
Magnetic field effects on the quantum wire energy spectrum and Green's function
International Nuclear Information System (INIS)
Morgenstern Horing, Norman J.
2010-01-01
We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
On Nonextensive Statistics, Chaos and Fractal Strings
Castro, C
2004-01-01
Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...
Generalized $L-, M-$, and $R$-Statistics
Serfling, Robert J.
1984-01-01
A class of statistics generalizing $U$-statistics and $L$-statistics, and containing other varieties of statistic as well, such as trimmed $U$-statistics, is studied. Using the differentiable statistical function approach, differential approximations are obtained and the influence curves of these generalized $L$-statistics are derived. These results are employed to establish asymptotic normality for such statistics. Parallel generalizations of $M$- and $R$-statistics are noted. Strong converg...
An Update on Statistical Boosting in Biomedicine.
Mayr, Andreas; Hofner, Benjamin; Waldmann, Elisabeth; Hepp, Tobias; Meyer, Sebastian; Gefeller, Olaf
2017-01-01
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
Free energy functionals for polarization fluctuations: Pekar factor revisited.
Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V
2017-02-14
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).
Free energy functionals for polarization fluctuations: Pekar factor revisited
International Nuclear Information System (INIS)
Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.
2017-01-01
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. This separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom, within dielectric continuum models. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. We study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. But, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).
Non-extensive statistical effects in nuclear many-body problems
International Nuclear Information System (INIS)
Lavagno, A.; Quarati, P.
2007-01-01
Density and temperature conditions in many stellar core and in the first stage of relativistic heavy-ion collisions imply the presence of non-ideal plasma effects with memory and long-range interactions between particles. Recent progress in statistical mechanics indicates that Tsallis non-extensive thermostatistics could be the natural generalization of the standard classical and quantum statistics, when memory effects and long range forces are not negligible. In this framework, we show that in weakly non-ideal plasma non-extensive effects should be taken into account to derive the equilibrium distribution functions, the quantum fluctuations and correlations between the particles. The strong influence of these effects is discussed in the context of the solar plasma physics and in the high-energy nuclear-nuclear collision experiments. Although the deviation from Boltzmann-Gibbs statistics, in both cases, is very small, the stellar plasma and the hadronic gas are strongly influenced by the non-extensive feature and the discrepancies between experimental data and theoretical previsions are sensibly reduced. (authors)
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Energy statistics of OECD countries 1993-1994
International Nuclear Information System (INIS)
1996-01-01
This work contains a compilation of energy supply and consumption data in original units for coal, oil, gas, electricity, heat, renewable combustible and waste. Historical tables summarize data on production, trade and final consumption of hard coal, brown coal, oil, natural gas and electricity. Each issue includes definitions of products and flows and explanatory notes on the individual country data. The data contained in this publication are presented in comprehensive energy balances expressed in million tonnes of oil equivalent in Energy Balances of OECD Countries, 1993-1994, the sister volume of this publication. (authors). figs., tabs
Fitting Statistical Distributions Functions on Ozone Concentration Data at Coastal Areas
International Nuclear Information System (INIS)
Muhammad Yazid Nasir; Nurul Adyani Ghazali; Muhammad Izwan Zariq Mokhtar; Norhazlina Suhaimi
2016-01-01
Ozone is known as one of the pollutant that contributes to the air pollution problem. Therefore, it is important to carry out the study on ozone. The objective of this study is to find the best statistical distribution for ozone concentration. There are three distributions namely Inverse Gaussian, Weibull and Lognormal were chosen to fit one year hourly average ozone concentration data in 2010 at Port Dickson and Port Klang. Maximum likelihood estimation (MLE) method was used to estimate the parameters to develop the probability density function (PDF) graph and cumulative density function (CDF) graph. Three performance indicators (PI) that are normalized absolute error (NAE), prediction accuracy (PA), and coefficient of determination (R 2 ) were used to determine the goodness-of-fit criteria of the distribution. Result shows that Weibull distribution is the best distribution with the smallest error measure value (NAE) at Port Klang and Port Dickson is 0.08 and 0.31, respectively. The best score for highest adequacy measure (PA: 0.99) with the value of R 2 is 0.98 (Port Klang) and 0.99 (Port Dickson). These results provide useful information to local authorities for prediction purpose. (author)
Strangeness content and structure function of the nucleon in a statistical quark model
Trevisan, L A; Tomio, L
1999-01-01
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the new muon collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions. (27 refs).
Quantifying discrimination of Framingham risk functions with different survival C statistics.
Pencina, Michael J; D'Agostino, Ralph B; Song, Linye
2012-07-10
Cardiovascular risk prediction functions offer an important diagnostic tool for clinicians and patients themselves. They are usually constructed with the use of parametric or semi-parametric survival regression models. It is essential to be able to evaluate the performance of these models, preferably with summaries that offer natural and intuitive interpretations. The concept of discrimination, popular in the logistic regression context, has been extended to survival analysis. However, the extension is not unique. In this paper, we define discrimination in survival analysis as the model's ability to separate those with longer event-free survival from those with shorter event-free survival within some time horizon of interest. This definition remains consistent with that used in logistic regression, in the sense that it assesses how well the model-based predictions match the observed data. Practical and conceptual examples and numerical simulations are employed to examine four C statistics proposed in the literature to evaluate the performance of survival models. We observe that they differ in the numerical values and aspects of discrimination that they capture. We conclude that the index proposed by Harrell is the most appropriate to capture discrimination described by the above definition. We suggest researchers report which C statistic they are using, provide a rationale for their selection, and be aware that comparing different indices across studies may not be meaningful. Copyright © 2012 John Wiley & Sons, Ltd.
Energy functionals for medical image segmentation: choices and consequences
McIntosh, Christopher
2011-01-01
Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...
Zamani, Pouya
2017-08-01
Traditional ratio measures of efficiency, including feed conversion ratio (FCR), gross milk efficiency (GME), gross energy efficiency (GEE) and net energy efficiency (NEE) may have some statistical problems including high correlations with milk yield. Residual energy intake (REI) or residual feed intake (RFI) is another criterion, proposed to overcome the problems attributed to the traditional ratio criteria, but it does not account for production or intake levels. For example, the same REI value could be considerable for low producing and negligible for high producing cows. The aim of this study was to propose a new measure of efficiency to overcome the problems attributed to the previous criteria. A total of 1478 monthly records of 268 lactating Holstein cows were used for this study. In addition to FCR, GME, GEE, NEE and REI, a new criterion called proportional residual energy intake (PREI) was calculated as REI to net energy intake ratio and defined as proportion of net energy intake lost as REI. The PREI had an average of -0·02 and range of -0·36 to 0·27, meaning that the least efficient cow lost 0·27 of her net energy intake as REI, while the most efficient animal saved 0·36 of her net energy intake as less REI. Traditional ratio criteria (FCR, GME, GEE and NEE) had high correlations with milk and fat corrected milk yields (absolute values from 0·469 to 0·816), while the REI and PREI had low correlations (0·000 to 0·069) with milk production. The results showed that the traditional ratio criteria (FCR, GME, GEE and NEE) are highly influenced by production traits, while the REI and PREI are independent of production level. Moreover, the PREI adjusts the REI magnitude for intake level. It seems that the PREI could be considered as a worthwhile measure of efficiency for future studies.
On approximation and energy estimates for delta 6-convex functions
Directory of Open Access Journals (Sweden)
Muhammad Shoaib Saleem
2018-02-01
Full Text Available Abstract The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted L2 $L^{2}$-norm.
Rivera Landa, Rogelio; Cardenas Cardenas, Eduardo; Fossion, Ruben; Pérez Zepeda, Mario Ulises
2014-11-01
Technological advances in the last few decennia allow the monitoring of many physiological observables in a continuous way, which in physics is called a "time series". The best studied physiological time series is that of the heart rhythm, which can be derived from an electrocardiogram (ECG). Studies have shown that a healthy heart is characterized by a complex time series and high heart rate variability (HRV). In adverse conditions, the cardiac time series degenerates towards randomness (as seen in, e.g., fibrillation) or rigidity (as seen in, e.g., ageing), both corresponding to a loss of HRV as described by, e.g., Golberger et. al [1]. Cardiac and digestive rhythms are regulated by the autonomous nervous system (ANS), that consists of two antagonistic branches, the orthosympathetic branch (ONS) that accelerates the cardiac rhythm but decelerates the digestive system, and the parasympathetic brand (PNS) that works in the opposite way. Because of this reason, one might expect that the statistics of gastro-esophageal time series, as described by Gardner et. al. [2,3], reflects the health state of the digestive system in a similar way as HRV in the cardiac case, described by Minocha et. al. In the present project, we apply statistical methods derived from HRV analysis to time series of esophageal acidity (24h pHmetry). The study is realized on data from a large patient population from the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Our focus is on patients with functional disease (symptoms but no anatomical damage). We find that traditional statistical approaches (e.g. Fourier spectral analysis) are unable to distinguish between different degenerations of the digestive system, such as gastric esophageal reflux disease (GERD) or functional gastrointestinal disorder (FGID).
Energy Technology Data Exchange (ETDEWEB)
Huang, Q; Zhang, M; Chen, T; Yue, N; Zou, J [Rutgers University, New Brunswick, NJ (United States)
2016-06-15
Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Proton and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.
Czech Academy of Sciences Publication Activity Database
Andrey, Ladislav; Erzan, R.
2002-01-01
Roč. 52, č. 12 (2002), s. 1349-1356 ISSN 0011-4626 R&D Projects: GA ČR GA305/02/1487 Institutional research plan: AV0Z1030915 Keywords : nonlinear gain curve * gain-threshold dependence * non-monotone transfer function * statistical mechanics Subject RIV: BA - General Mathematics Impact factor: 0.311, year: 2002
Heterogeneous Rock Simulation Using DIP-Micromechanics-Statistical Methods
Directory of Open Access Journals (Sweden)
H. Molladavoodi
2018-01-01
Full Text Available Rock as a natural material is heterogeneous. Rock material consists of minerals, crystals, cement, grains, and microcracks. Each component of rock has a different mechanical behavior under applied loading condition. Therefore, rock component distribution has an important effect on rock mechanical behavior, especially in the postpeak region. In this paper, the rock sample was studied by digital image processing (DIP, micromechanics, and statistical methods. Using image processing, volume fractions of the rock minerals composing the rock sample were evaluated precisely. The mechanical properties of the rock matrix were determined based on upscaling micromechanics. In order to consider the rock heterogeneities effect on mechanical behavior, the heterogeneity index was calculated in a framework of statistical method. A Weibull distribution function was fitted to the Young modulus distribution of minerals. Finally, statistical and Mohr–Coulomb strain-softening models were used simultaneously as a constitutive model in DEM code. The acoustic emission, strain energy release, and the effect of rock heterogeneities on the postpeak behavior process were investigated. The numerical results are in good agreement with experimental data.
International Nuclear Information System (INIS)
Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E
2015-01-01
In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)
International Nuclear Information System (INIS)
1993-01-01
This eleventh edition of the Annual Energy Review (AER) presents the Energy Information Administration's historical energy statistics. For most series, statistics are given for every year from 1949 through 1992. Because coverage spans four decades, the statistics in this report are well-suited to tong-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, all major energy commodities, including fossil fuels and electricity. The AER also presents statistics on some renewable energy sources. For the most part, fuel-specific data are expressed in physical units such as barrels, cubic feet, and short tons. The integrated summary data in Section 1 are expressed in Btu. The Btu values are calculated using the conversion factors in Appendix A. Statistics expressed in Btu are valuable in that they allow for comparisons among different fuels and for the calculation of in the integrated summary statistics such as US consumption of Energy. The AER emphasizes domestic energy statistics
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Dynamic energy landscapes of riboswitches help interpret conformational rearrangements and function.
Directory of Open Access Journals (Sweden)
Giulio Quarta
Full Text Available Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant "downhill" pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the "new view" of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design.
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
The statistical mechanics of vortex-acoustic ion wave turbulence
International Nuclear Information System (INIS)
Giles, M.J.
1980-01-01
The equilibrium statistical mechanics of electrostatic ion wave turbulence is studied within the framework of a continuum ion flow with adiabatic electrons. The wave field consists in general of two components, namely ion-acoustic and ion vortex modes. It is shown that the latter can significantly affect the equilibria on account of their ability both to emit and to scatter ion sound. Exact equilibria for the vortex-acoustic wave field are given in terms of a canonical distribution and the correlation functions are expressed in terms of a generating functional. Detailed calculations are carried out for the case in which the dominant coupling is an indirect interaction of the vortex modes mediated by the sound field. An equation for the spectrum of the vortex modes is obtained for this case, which is shown to possess a simple exact solution. This solution shows that the spectrum of fluctuations changes considerably as the total energy increases. Condensed vortex states could occur in the plasma sheet of the earth's magnetosphere and it is shown that the predicted ratio of the mean ion energy to the mean electron energy is consistent with the trend of observed values. (author)
An Update on Statistical Boosting in Biomedicine
Directory of Open Access Journals (Sweden)
Andreas Mayr
2017-01-01
Full Text Available Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting. In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
Alberta oil and gas industry annual statistics for 1999
International Nuclear Information System (INIS)
2000-01-01
A compilation of statistical data from Alberta's oil and gas industry was presented to provide energy analysts and economists a single source of consistent energy-related data. Alberta is Canada's largest crude oil and natural gas producer. This report provides current monthly and historical annual energy data covering the last decade. Data is organized by energy type including butane, ethane, natural gas, natural gas liquids, oil, propane and sulphur. This CD-Rom also included statistical data on energy supply, energy production, disposition, and prices. tabs
Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B
2013-05-16
Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.
Energy absorption behaviors of nanoporous materials functionalized (NMF) liquids
Kim, Tae Wan
2011-01-01
For many decades, people have been actively investigating high-performance energy absorption materials, so as to develop lightweight and small-sized protective and damping devices, such as blast mitigation helmets, vehicle armors, etc. Recently, the high energy absorption efficiency of nanoporous materials functionalized (NMF) liquids has drawn considerable attention. A NMF liquid is usually a liquid suspension of nanoporous particles with large nanopore surface areas (100 - 2,000 m²/g). The ...
Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers
International Nuclear Information System (INIS)
Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang
2006-01-01
The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied
Energy Vulnerability and EU-Russia Energy Relations
Directory of Open Access Journals (Sweden)
Edward Hunter Christie
2009-08-01
Full Text Available The concept of energy vulnerability is reviewed and discussed with a focus on Russia’s foreign energy relations, in particular those with European countries. A definition and a conceptual framework for quantifying energy vulnerability are proposed in the context of a review of recent research on energy vulnerability indices. In particular it is suggested that source country diversification should be reflected using the expected shortfall measure used in financial economics, rather than the Herfindahl-Hirschman or Shannon-Wiener indices, and that the former should then enter a calibrated function in order to yield expected economic loss. The issues of asymmetric failure probabilities and accidental versus intentional supply disruptions are then discussed with examples of recent Russian actions. Energy vulnerability measurement and modelling should ultimately inform policy. In particular, member states should legislate that no energy infrastructure project by one or more member states may increase the energy vulnerability of another member state. Additionally, European environmental policies, notably the EU ETS, should be amended so as to account for induced changes in energy vulnerability. Finally, member states should increase the level of transparency and disclosure with respect to gas import statistics and gas supply contracts.
Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature
Osborn, H
2000-01-01
An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...
Nuclear response functions at large energy and momentum transfer
International Nuclear Information System (INIS)
Bertozzi, W.; Moniz, E.J.; Lourie, R.W.
1991-01-01
Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs
An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques
2018-01-09
100 kHz, 1 MHz 100 MHz–1 GHz 1 100 kHz 3. Statistical Processing 3.1 Statistical Analysis Statistical analysis is the mathematical science...quantitative terms. In commercial prognostics and diagnostic vibrational monitoring applications , statistical techniques that are mainly used for alarm...Balakrishnan N, editors. Handbook of statistics . Amsterdam (Netherlands): Elsevier Science; 1998. p 555–602; (Order statistics and their applications
Energy Technology Data Exchange (ETDEWEB)
None
2011-10-01
This twenty-ninth edition of the Annual Energy Review (AER) presents the U.S. Energy Information Administration’s (EIA) most comprehensive look at integrated energy statistics. The summary statistics on the Nation’s energy production, consumption, trade, stocks, and prices cover all major energy commodities and all energy-consuming sectors of the U.S. economy from 1949 through 2010. The AER is EIA’s historical record of energy statistics and, because the coverage spans six decades, the statistics in this report are well-suited to long-term trend analysis.