WorldWideScience

Sample records for static gravitational field

  1. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  2. A homogeneous static gravitational field and the principle of equivalence

    International Nuclear Information System (INIS)

    Chernikov, N.A.

    2001-01-01

    In this paper any gravitational field (both in the Einsteinian case and in the Newtonian case) is described by the connection, called gravitational. A homogeneous static gravitational field is considered in the four-dimensional area z>0 of a space-time with Cartesian coordinates x, y, z, and t. Such field can be created by masses, disposed outside the area z>0 with a density distribution independent of x, y, and t. Remarkably, in the four-dimensional area z>0, together with the primitive background connection, the primitive gravitational connection has been derived. In concordance with the Principle of Equivalence all components of such gravitational connection are equal to zero in the uniformly accelerated frame system, in which the gravitational force of attraction is balanced by the inertial force. However, all components of such background connection are equal to zero in the resting frame system, but not in the accelerated frame system

  3. The static gravitational field near spatial infinity

    International Nuclear Information System (INIS)

    Beig, R.

    1980-01-01

    A static solution to Einstein's equations, which is asymptotically flat near spatial infinity, is shown to be asymptotically Schwarzschildian. As an application of this result a technical lemma on the existence of asymptotically flat harmonic coordinates near infinity is proved. (author)

  4. Static axially symmetric gravitational fields with shell sources

    International Nuclear Information System (INIS)

    McCrea, J.D.

    1976-01-01

    Israel's (Israel, W., 1966, Nuovo Cim., vol.44, 1-14) method for treating surface layers in general relativity is applied to construct shell sources for exterior static axially symmetric gravitational fields. Consideration is restricted to cases in which the 3-cylinder representing the history of the shell is an equipotential surface of the exterior field and consequently the space-time inside this 3-cylinder is flat. (author)

  5. Gravitational field of static p -branes in linearized ghost-free gravity

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei

    2018-04-01

    We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.

  6. Static equilibria of the interstellar gas in the presence of magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Mouschovias, T.C.

    1975-01-01

    No exact self-consistent equilibrium calculations exist for (any model of) the system of the interstellar gas and the frozen-in magnetic field. On a large scale (approximately 1 kpc) this system is affected by the vertical galactic gravitational field, while on a small scale (approximately 1 pc) the self-gravitation of the gas comes into play and is responsible for the collapse of some clouds to form stars. Accessible equilibrium states are determined for the gas--field system on both of these scales. (U.S.)

  7. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    International Nuclear Information System (INIS)

    Fiedler, B.; Schimming, R.

    1983-01-01

    The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)

  8. Bound states of spin-half particles in a static gravitational field close to the black hole field

    Science.gov (United States)

    Spencer-Smith, A. F.; Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2013-03-01

    We consider the bound-state energy levels of a spin-1/2 fermion in the gravitational field of a near-black hole object. In the limit that the metric of the body becomes singular, all binding energies tend to the rest-mass energy (i.e. total energy approaches zero). We present calculations of the ground state energy for three specific interior metrics (Florides, Soffel and Schwarzschild) for which the spectrum collapses and becomes quasi-continuous in the singular metric limit. The lack of zero or negative energy states prior to this limit being reached prevents particle pair production occurring. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides and Soffel metrics the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the centre. The behaviour of the energy level spectrum is discussed in the context of the semi-classical approximation and using general properties of the metric.

  9. Energy levels of a scalar particle in a static gravitational field close to the black hole limit

    Science.gov (United States)

    Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2011-10-01

    The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.

  10. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  11. Astrophysically Satisfactory Solutions to Einstein's R-33 Gravitational Field Equations Exterior/Interior to Static Homogeneous Oblate Spheroidal Masses

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-10-01

    Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.

  12. Classification of Teleparallel Homothetic Vector Fields in Cylindrically Symmetric Static Space-Times in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)

  13. Comments on gravitoelectromagnetism of Ummarino and Gallerati in "Superconductor in a weak static gravitational field" vs other versions

    Science.gov (United States)

    Behera, Harihar

    2017-12-01

    Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.

  14. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  15. Gravitational peculiarities of a scalar field

    International Nuclear Information System (INIS)

    Kleber, A.; Fonseca Teixeira, A.F. da

    1979-11-01

    The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt

  16. Static axisymmetric discs and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, A.; Gregory, R.; Stewart, J.M.

    1987-09-08

    Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.

  17. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  18. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  19. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  20. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  1. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  2. Comments on gravitoelectromagnetism of Ummarino and Gallerati in ''Superconductor in a weak static gravitational field'' vs other versions

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Harihar [BIET Higher Secondary School, Physics Department, Dhenkanal, Odisha (India)

    2017-12-15

    Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c{sub g} (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields. (orig.)

  3. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  4. Gravitational field mass

    International Nuclear Information System (INIS)

    Penrose, R.

    1986-01-01

    The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented

  5. Republication of: New solutions to Einstein's equations of gravitation. B. Explicit determination of static, axially symmetric fields. By Rudolf Bach. With a supplement on the static two-body problem. By H. Weyl.

    Science.gov (United States)

    Bach, Rudolf; Weyl, Hermann

    2012-03-01

    This is the English translation of the third of a series of 3 papers by Hermann Weyl (the third one jointly with Rudolf Bach), first published in 1917-1922, in which the authors derived and discussed the now-famous Weyl two-body static axially symmetric vacuum solution of Einstein's equations. The English translations of the other two papers are published alongside this one. The papers have been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Gernot Neugebauer, David Petroff and Bahram Mashhoon, and by a brief biography of R. Bach, written by H. Goenner.

  6. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  7. Can static regular black holes form from gravitational collapse?

    International Nuclear Information System (INIS)

    Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo

    2015-01-01

    Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)

  8. Field theory approach to gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1978-01-01

    A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable

  9. Gravitation and bilocal field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1975-01-01

    The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de

  10. Topological quantization of gravitational fields

    International Nuclear Information System (INIS)

    Patino, Leonardo; Quevedo, Hernando

    2005-01-01

    We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships

  11. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  12. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  13. Forces in electromagnetic field and gravitational field

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  14. Generalized field theory of gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1976-01-01

    It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1

  15. Gravitational field of relativistic gyratons

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P [Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada)

    2007-05-15

    A gyraton is an object moving with the speed of light and having finite energy and internal angular momentum (spin). First we derive the gravitational field of a gyraton in the linear approximation. After this we study solutions of the vacuum Einstein equations for gyratons. We demonstrate that these solutions in 4 and higher dimensions reduce to two linear problems in a Euclidean space. A similar reduction is also valid for gyraton solutions of the Einstein-Maxwell gravity and in supergravity. Namely, we demonstrate that in the both cases the solutions in 4 and higher dimensions reduce to linear problems in a Euclidean space.

  16. Theory of gravitational-inertial field of universe. 2

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    Application of the equations of the gravitational-inertial field to the problem of free motion in the inertial field (to the cosmologic problem) leads to results according to which (1) all Galaxies in the Universe 'disperse' from each other according to Hubble's law, (2) the 'dispersion' of bodies represents a free motion in the inertial field and Hubble's law represents a law of motion of free body in the inertial field, (3) for arbitrary mean distribution densities of space masses different from zero the space is Lobachevskian. All critical systems (with Schwarzschild radius) are specific because they exist in maximal-inertial and gravitational potentials. The Universe represents a critical system, it exists under the Schwarzschild radius. In high-potential inertial and gravitational fields the material mass in a static state or in motion with deceleration is subject to an inertial and gravitational 'annihilation'. At the maximal value of inertial and gravitational potentials (= c 2 ) the material mass is being completely 'evaporated' transforming into radiation mass. The latter is being concentrated in the 'horizon' of the critical system. All critical systems-black holes-represent geon systems, i.e. local formations of gravitational-electromagnetic radiations, held together by their own gravitational and inertial fields. The Universe, being a critical system, is 'wrapped' in a geon crown. (author)

  17. Relativistic gravitation from massless systems of scalar and vector fields

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  18. Internal structure of multicomponent static spherical gravitating fluids

    International Nuclear Information System (INIS)

    Olson, E.; Bailyn, M.

    1975-01-01

    The Maxwell--Einstein equations for a fluid comprised of more than one type of particle are not a determinate system even if an equation of state is added. The problem of what the charge distribution is in such fluids is therefore also not determinate. To complete the definition of the problem, more equations are needed. We obtain these for the simple case of a static spherically symmetric multicomponent system (imbedded in a Minkowskian background) by minimizing the energy of the fluid with respect to variations in the number densities of the constituents, with the side conditions that the total number of each constituent is constant during the variations. This procedure results in a determinate set of hydrostatic equilibrium equations, the sum of which is the familiar Tolman--Oppenheimer--Volkoff equation. Some general conclusions can be drawn. For example, the necessary and sufficient condition for charge neutrality is that the mass-energy density be some (arbitrary) function of some (arbitrary) linear combination of the number densities. Thus, since it is well known that the electrons in a white dwarf star at absolute zero form a degenerate gas, there must be a charge imbalance throughout such a star. This imbalance can then be computed self-consistently. An over-all physical interpretation of the new equations is that in equilibrium at any point in the fluid the sum of the non-gravitational forces per unit energy is the same for constituent 1 as for constituent 2 and so on. This is the analog of the corresponding (Galilean) statement for gravitational forces that is valid even without equilibrium

  19. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  20. Gravitational instability of the inner static region of a Reissner-Nordstroem black hole

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Gustavo; Gleiser, Reinaldo J, E-mail: gdotti@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica (FaMAF), Universidad Nacional de Cordoba and Instituto de Fisica Enrique Gaviola, CONICET, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2010-09-21

    Reissner-Nordstroem black holes have two static regions: r > r{sub o} and 0 < r < r{sub i}, where r{sub i} and r{sub o} are the inner and outer horizon radii, respectively. The stability of the exterior static region was established a long time ago. In this work we prove that the interior static region is unstable under linear gravitational perturbations, by showing that field perturbations compactly supported within this region will generically excite a mode that grows exponentially in time. This result gives an alternative reason to mass inflation to consider the spacetime extension beyond the Cauchy horizon as physically irrelevant, and thus provides support to the strong cosmic censorship conjecture, which is also backed by recent evidence of a linear gravitational instability in the interior region of Kerr black holes found by the authors. The use of intertwiners to solve the evolution of initial data plays a key role, and adapts without a change to the case of super-extremal Reissner-Nordstroem black holes, allowing us to complete the proof of the linear instability of this naked singularity. A particular intertwiner is found such that the intertwined Zerilli field has a geometrical meaning-it is the first-order variation of a particular Riemann tensor invariant. Using this, calculations can be carried out explicitly for every harmonic number.

  1. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  2. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  3. On the field theoretic description of gravitation

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.

    2008-01-01

    Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the

  4. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  5. New Metrics from a Fractional Gravitational Field

    International Nuclear Information System (INIS)

    El-Nabulsi, Rami Ahmad

    2017-01-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)

  6. Physical optics in a uniform gravitational field

    Science.gov (United States)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  7. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  8. Relativity in Combinatorial Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Mao Linfan

    2010-04-01

    Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.

  9. Gravitationally induced neutrino oscillation phases in static spacetimes

    International Nuclear Information System (INIS)

    Bhattacharya, T.; Habib, S.; Mottola, E.

    1999-01-01

    We critically examine the recent claim of a 'new effect' of gravitationally induced quantum mechanical phases in neutrino oscillations. Because this claim has generated some discussion in the literature we present here a straightforward calculation of the phase and clarify some of the conceptual issues involved, particularly in relation to the equivalence principle. When expressed in terms of the asymptotic energy of the neutrinos E and Schwarzschild radial coordinates r, the lowest order at which such a gravitational effect appears is (GMΔm 4 /ℎE 3 )ln(r B /r A ). copyright 1999 The American Physical Society

  10. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  11. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  12. Liouvillian integrability of gravitating static isothermal fluid spheres

    International Nuclear Information System (INIS)

    Iacono, Roberto; Llibre, Jaume

    2014-01-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = −1 and n = −3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = −5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R 2 , and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = −1, −3, −5, which descend from the existence of invariant algebraic curves of degree one, and for n = −6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely

  13. Liouvillian integrability of gravitating static isothermal fluid spheres

    Energy Technology Data Exchange (ETDEWEB)

    Iacono, Roberto, E-mail: roberto.iacono@enea.it [ENEA-C. R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy); Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)

    2014-10-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R² and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.

  14. Generalization of Einstein's gravitational field equations

    Science.gov (United States)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  15. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  16. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  17. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  18. Induced forces in the gravitational field

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    In this paper the expression for the magnitude of the so-called induced force, acting on a mass particle, is deduced. The origin of this force is causally connected to the increase of the rest mass of the particle in the gravitational field. (orig.)

  19. Topological geons with self-gravitating phantom scalar field

    Science.gov (United States)

    Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.

    2017-12-01

    A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.

  20. Gravitational radiation from preheating with many fields

    International Nuclear Information System (INIS)

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier

    2010-01-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields

  1. Gravitational radiation from preheating with many fields

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  2. Topics in gravitation and gauge fields

    International Nuclear Information System (INIS)

    Leen, T.K.

    1982-01-01

    The theoretical studies presented here address three distinct topics. The first deals with quantum-mechanical effects of classical gravitational radiation. Specifically, the use of the interstellar medium itself as a remote quantum-mechanical detector of gravitational waves is investigated. This study is motivated by the presumed existence of atomic hydrogen in the vicinity of astrophysical sources of gravitational radiation. Space-time curvature produces uniquely identifiable shifts in atomic hydrogen energy levels. The oscillating level shifts induced by a passing gravitational wave could conceivably be detected spectroscopically. Accordingly the level shifts for both low-lying and highly excited states of single electron atoms immersed in gravitational radiation have been studied. The second two topics deal with the theory of quantized fields on curved space-times. In the first of these studies, a naive model of cosmological baryon synthesis is examined. The model incorporates a hard CP violation as well as a baryon (and lepton) non-conserving interaction and is thus capable of generating an excess of matter over antimatter. The time dependent background geometry of the early universe drives the interaction producing net excess of baryon/lepton pairs. In the final topic, the question of renormalizability of non-Abelian gauge fields theories in a general curved space-time is addressed. All modern theories of elementary particle physics are gauge theories and one would like to know if their perturbative expansions continue to be well defined (i.e. renormalizable) on curved backgrounds. In general, one is interested in knowing if field theories renormalizable in Minkowski space remain so in a general curved space-time

  3. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  4. GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS

    International Nuclear Information System (INIS)

    Zhang, T. X.

    2010-01-01

    A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

  5. Gravitational field of massive point particle in general relativity

    International Nuclear Information System (INIS)

    Fiziev, P.P.

    2003-10-01

    Using various gauges of the radial coordinate we give a description of the static spherically symmetric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist infinitely many such solutions to the Einstein equations which are physically different and only some of them describe the gravitational field of a single massive point particle. In particular, we show that the widespread Hilbert's form of Schwarzschild solution does not solve the Einstein equations with a massive point particle's stress-energy tensor. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravitational mass defect of a point particle and determine the dependence of the solutions on this mass defect. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. (author)

  6. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  7. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  8. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  9. Casimir apparatuses in a weak gravitational field

    DEFF Research Database (Denmark)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero

    2009-01-01

    We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...

  10. Matching tomographic IMRT fields with static photon fields

    International Nuclear Information System (INIS)

    Sethi, A.; Leybovich, L.; Dogan, N.; Emami, B.

    2001-01-01

    The matching of abutting radiation fields presents a challenging problem in radiation therapy. Due to sharp penumbra of linear accelerator beams, small (1-2 mm) errors in field positioning can lead to large (>30%) hot or cold spots in the abutment region. With head and neck immobilization devices (thermoplastic mask/aquaplast) an average setup error of 3 mm has been reported. Therefore hot or cold spots approaching 50% of the prescription dose may occur along the matchline. Although abutting radiation fields have been investigated for static fields, there is no reported study regarding matching of tomographic IMRT and static fields. Compared to static fields, the matching of tomographic IMRT fields with static fields is more complicated. Since IMRT and static fields are planned on separate treatment planning computers, the dose in the abutment region is not specified. In addition, commonly used techniques for matching fields, such as feathering of junctions, are not practical. We have developed a method that substantially reduces dose inhomogeneity in the abutment region. In this method, a 'buffer zone' around the matchline was created and was included as part of the target for both IMRT and static field plans. In both fields, a small dose gradient (≤3%/mm) in the buffer zone was created. In the IMRT plan, the buffer zone was divided into three sections with dose varying from 83% to 25% of prescription dose. The static field dose profile was modified using either a specially designed physical (hard) or a dynamic (soft) wedge. When these modified fields were matched, the combined dose in the abutment region varied by ≤10% in the presence of setup errors spanning 4 mm (±2 mm) when the hard wedge was used and 10 mm (±5 mm) with the soft wedge

  11. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  12. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  13. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  14. Large Field Inflation and Gravitational Entropy

    DEFF Research Database (Denmark)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion

    2016-01-01

    species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....

  15. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  16. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  17. On the relativistic particle dynamics in external gravitational fields

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Naumov, N.D.

    1977-01-01

    On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields

  18. Symmetries in tetrad theories. [of gravitational fields and general relativity

    Science.gov (United States)

    Chinea, F. J.

    1988-01-01

    The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.

  19. The Rainich problem for coupled gravitational and scalar meson fields

    International Nuclear Information System (INIS)

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  20. On the effects of gravitational fields on the electrical properties of matter

    International Nuclear Information System (INIS)

    Opat, G.I.

    1993-01-01

    A discussion of the electrical state of a conducting solid in a static gravitational field is presented. The analysis of the stress-gravitational force balance inside the solid is complicated, however, outside the solid, in the evanescent electron field, the analysis of such a balance simplifies greatly. As a consequence of this external analysis, an expression for the electric field external to the body is presented which includes the direct effect of gravity on the electrons, as well as the indirect effect due to the stress induced by gravity acting on the bulk solid. Such fields are an important determinant of the gravitational motion of charged particles within metallic shields. 4 refs., 1 fig

  1. Gravitational consequences of modern field theories

    Science.gov (United States)

    Horowitz, Gary T.

    1989-01-01

    Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.

  2. Dyons in presence of gravitation and symmetrized field equations

    International Nuclear Information System (INIS)

    Rawat, A.S.; Negi, O.P.S.

    1999-01-01

    Combined theory of gravitation and electromagnetism associated with particles carrying electric and magnetic charges has been established from an invariant action principle. Corresponding field equations, equation of motion and Einstein Maxwell's equations are obtained in unique and consistent way. It is shown that weak field approximation of slowly moving particle in gravitational field leads the symmetry between electromagnetic and linear gravitational fields. Postulation of the existence of gravimagnetic monopole leads structural symmetry between generalized electromagnetic and gravielectromagnetic fields. Corresponding quantization conditions and angular momentum are also analysed. (author)

  3. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  4. Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2010-01-01

    We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.

  5. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case

    Science.gov (United States)

    Herrera, L.

    2018-02-01

    We put forward a new definition of complexity, for static and spherically symmetric self-gravitating systems, based on a quantity, hereafter referred to as complexity factor, that appears in the orthogonal splitting of the Riemann tensor, in the context of general relativity. We start by assuming that the homogeneous (in the energy density) fluid, with isotropic pressure is endowed with minimal complexity. For this kind of fluid distribution, the value of complexity factor is zero. So, the rationale behind our proposal for the definition of complexity factor stems from the fact that it measures the departure, in the value of the active gravitational mass (Tolman mass), with respect to its value for a zero complexity system. Such departure is produced by a specific combination of energy density inhomogeneity and pressure anisotropy. Thus, zero complexity factor may also be found in self-gravitating systems with inhomogeneous energy density and anisotropic pressure, provided the effects of these two factors, on the complexity factor, cancel each other. Some exact interior solutions to the Einstein equations satisfying the zero complexity criterium are found, and prospective applications of this newly defined concept, to the study of the structure and evolution of compact objects, are discussed.

  6. Microcanonical functional integral for the gravitational field

    International Nuclear Information System (INIS)

    Brown, J.D.; York, J.W. Jr.

    1993-01-01

    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function

  7. Interaction of gravitational waves with magnetic and electric fields

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P. A.

    2010-01-01

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  8. Gravitational time dilation and length contraction in fields exterior to ...

    African Journals Online (AJOL)

    Here, we use our new metric tensor exterior to a massiv3e oblate spheroid to study the gravitational phenomena of time dilation and length contraction. It turns out most profoundly that, the above phenomena hold good in the gravitational field exterior to an oblate spheroid. We then use the oblate spheroidal Earth to ...

  9. Influence of tides on the gravitational field of Jupiter

    International Nuclear Information System (INIS)

    Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.

    1975-01-01

    The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)

  10. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  11. Photonic chiral current and its anomaly in a gravitational field

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Khriplovich, I.B.; Vajnshtejn, A.I.; Zakharov, V.I.

    1988-01-01

    The notion of chirality for electromagnetic field which is conserved in interactions with gravitons is formulated. The correponding chiral current is the one-particle-state analogue of the Pauli-Lubansky vector. The anomaly of this current in an external gravitational field is found. The results obtained are used for the calculation of the electromagnetic radiative correction to the fermionic chiral anomaly in a gravitational field

  12. Scalar field vacuum expectation value induced by gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  13. Gravitational waves from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  14. Space-time algebra for the generalization of gravitational field ...

    Indian Academy of Sciences (India)

    the analogy in formulation between massive gravitational theory and electromagnetism has ... as the dual mass, gravitomagnetic charge (monopole) or magnetic mass [7]. ... cation in the definitions of the GEM fields in the following manner:.

  15. Backwards time travel induced by combined magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Novello, M.; Svaiter, N.F.; Guimaraes, M.E.X.

    1990-01-01

    We analyse the behaviour of an elementary microscopic particle submitted to combined Magnetic and Gravitational Fields on Goedel's Universe. The exam is made in a local Gaussian system of coordinates. (author)

  16. Fast static field CIPT mapping of unpatterned MRAM film stacks

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Henrichsen, Henrik Hartmann

    2015-01-01

    Current In-Plane Tunneling (CIPT) method measures both RA and TMR, but the usefulness for uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time. Thus, we develop and demonstrate a fast complementary static magnetic field method focused only on measurement of RA. We...... compare the static field method to the standard CIPT method and find perfect agreement between the extracted RA values and measurement repeatability while the static field method is several times faster. The static field CIPT method is demonstrated for 200 mm wafer mapping showing radial as well...

  17. Hamiltonian structure of gravitational field theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1992-01-01

    Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations

  18. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  19. Tolman temperature gradients in a gravitational field

    OpenAIRE

    Santiago, Jessica; Visser, Matt

    2018-01-01

    Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...

  20. Excitations of the gravitational field-I

    International Nuclear Information System (INIS)

    Novello, M.

    1978-01-01

    The geometry of spacetime is treated as a stochastic variable. Fluctuations induce a deviation from Einstein's system of equations for the average geometry. A model is presented to deal with the fluctuations by expanding the perturbations on a series in the average geometry. As a consequence, some qualitatively new features appear. The influences on galaxy formation and on the propagation of gravitational waves are analyzed [pt

  1. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  2. Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...

    Indian Academy of Sciences (India)

    field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.

  3. Quantum gravitational optics in the field of a gravitomagnetic monopole

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, N [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of); Khoeini-Moghaddam, S [Department of Physics, Sharif University of Technology, P O Box 19365-9161, Tehran (Iran, Islamic Republic of); Nouri-Zonoz, M [Department of Physics, North Karegar Avenue, University of Tehran, P O Box 14395-547, Tehran (Iran, Islamic Republic of)

    2007-05-15

    Vacuum polarization in QED in a background gravitational field induces interactions which effectively modify the classical picture of light rays as the null geodesies of spacetime. After a short introduction on the main aspects of the quantum gravitational optics, as a nontrivial example, we study this effect in the background of NUT space characterizing the spacetime of a spherical mass endowed with a gravitomagnetic monopole charge, the so called NUT factor.

  4. Gravitational interaction of massless higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A

    1987-04-30

    We show that, despite a widespread belief, the gravitational interaction of massless higher-spin fields (s>2) does exist at least in the first nontrivial order. The principal novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. Our construction is based on an infinite-dimensional higher-spin superalgebra proposed previously that leads to an infinite system of all spins s>1.

  5. Weak-field limit of Kaluza-Klein models with spherically symmetric static scalar field. Observational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)

    2017-11-15

    In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)

  6. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  7. Theory of a gauge gravitational field at localization of the Einstein group

    International Nuclear Information System (INIS)

    Tunyak, V.N.

    1985-01-01

    Theory of a gauge gravitational field when localizing a group of movements of the Einstein homogeneous static Universe (the R x SO Einstein group (4)) has been formulated. Proceeding from tetrade components of the Einstein Universe the relation between the Riemann metrics and gauge fields of the Einstein group has been established. Metric coherence with torsion transforming to the Kristoffel coherence of the Einstein Universe has been found when switching out gauge fields. It is shown that within the limit of infinite radius of the Einstein Universe curvature the given Einstein-invariant gauge theory transforms to the tetrade gravitation theory with localized triade rotations. Exact solutions in the form of nonsingular cosmological models have been obtained

  8. Gravitational Collapse of Massless Fields in an Expanding Universe

    Directory of Open Access Journals (Sweden)

    Yoo Chul-Moon

    2018-01-01

    Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.

  9. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  10. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    Science.gov (United States)

    Ma, Hong; Li, Jin

    2018-04-01

    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  11. On energy-momentum tensors of gravitational field

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    2001-01-01

    The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru

  12. The intergalactic Newtonian gravitational field and the shell theorem

    Directory of Open Access Journals (Sweden)

    Zaninetti L.

    2012-01-01

    Full Text Available The release of the 2MASS Redshift Survey (2MRS with its 44599 galaxies allows the deduction of their masses in nearly complete sample. A cubic box with side of 37 Mpc containing 2429 galaxies is extracted and the Newtonian gravitational field is evaluated both at the center of the box as well as in 101 x 101 x 101 grid points of the box. The obtained results are then discussed in the light of the shell theorem which states that inside of a sphere the gravitational field is zero.

  13. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  14. Generalization of Einstein's gravitational field equations

    International Nuclear Information System (INIS)

    Moulin, Frederic

    2017-01-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  15. Generalization of Einstein's gravitational field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)

    2017-12-15

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  16. Hyperunified field theory and gravitational gauge-geometry duality

    International Nuclear Information System (INIS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  17. Hyperunified field theory and gravitational gauge-geometry duality

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)

    2018-01-15

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  18. Hyperunified field theory and gravitational gauge-geometry duality

    Science.gov (United States)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  19. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  20. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    International Nuclear Information System (INIS)

    Fursaev, Dmitri V

    2006-01-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant

  1. Quantum States of Neutron in Earth's Gravitational Field

    Indian Academy of Sciences (India)

    Keywords. Neutron; gravitational field; Bohr-Sommerfeld-Wilson quantization; projectile motion; elastic collision; Olympiad. Author Affiliations. Vijay A Singh1 Praveen Pathak1 K Krishna Chaitanya2. Homi Bhabha Centre For Science Education (TIFR), V N Purav Marg, Mankhurd Mumbai 400088, India. Physics Department ...

  2. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    and examine whether bound orbits are possible or not. This study will be of relevance to the structure formation because it gives some idea about the behaviour of the particles. (created at the early universe) in the gravitational field of the domain walls. Our paper is organized as follows: The basic equations are constructed ...

  3. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    Energy Technology Data Exchange (ETDEWEB)

    Fursaev, Dmitri V [Dubna International University and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region (Russian Federation)

    2006-03-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant.

  4. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  5. Space-time algebra for the generalization of gravitational field

    Indian Academy of Sciences (India)

    The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...

  6. Gravitating SO (3,1) gauge field

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    In this article, we postulate SO (3,1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO (3,1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL (4) (the local symmetry determined by the parallel transport). Thus if we assume both GL (4) and SO (3,1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO (3,1) Weyl--Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein--Weyl--Yang system we study whether the SO (3,1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl--Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model

  7. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  8. Vacuum-field solutions of Ross and Sen-Dunn theories of gravitation

    International Nuclear Information System (INIS)

    Krori, K.D.; Nandy, D.

    1978-01-01

    Vacuum-field solutions of Ross (Phys. Rev.; D5:284 (1972)) and Sen-Dunn (J. Math. Phys.; 12:578 (1971)) theories of gravitation have been obtained with the aid of a Friedmann-type metric. Non-static solutions are found showing that the Birkhoff theorem holds for neither theory. It has been observed that the two theories have a limited scope for vacuum solution as against the Brans-Dicke theory. Mach's principle, however, holds for both the theories. (author)

  9. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  10. On quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Haag, R.; Narnhofer, H.; Stein, U.

    1984-02-01

    We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)

  11. Static electric fields modify the locomotory behaviour of cockroaches.

    Science.gov (United States)

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  12. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  13. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  14. Integrable covariant law of energy-momentum conservation for a gravitational field with the absolute parallelism structure

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1979-01-01

    It is shown the description of gravitational field in the riemannian space-time by means of the absolute parallelism structure makes it possible to formulate an integrable covariant law of energy-momentum conservation for gravitational field, by imposing on the energy-momentum tensor the condition of vanishing of the covariant divergence (in the sense of the absolute parallelism). As a result of taking into account covariant constraints for the tetrads of the absolute parallelism, the Lagrangian density turns out to be not geometrised anymore and leads to the unambiguous conservation law of the type mentioned in the N-body problem. Covariant field equations imply the existence of the special euclidean coordinates outside of static neighbourhoods of gravitationing bodies. In these coordinates determined by the tetrads of the absolute parallelism, the linear approximation is not connected with any noncovariant assumptions

  15. Newtonian and non-newtonian limits of gravitational fields

    International Nuclear Information System (INIS)

    Koppel', A.A.

    1975-01-01

    The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c→infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions

  16. Newtonian and non-newtonian limits of gravitational fields

    Energy Technology Data Exchange (ETDEWEB)

    Koppel, A A [Tartuskij Gosudarstvennyj Univ., (USSR)

    1975-09-01

    The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c..-->..infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions.

  17. The Gravitational Field in the Relativistic Uniform Model within the Framework of the Covariant Theory of Gravitation

    OpenAIRE

    Fedosin, Sergey G.

    2018-01-01

    For the relativistic uniform system with an invariant mass density the exact expressions are determined for the potentials and strengths of the gravitational field, the energy of particles and fields. It is shown that, as in the classical case for bodies with a constant mass density, in the system with a zero vector potential of the gravitational field, the energy of the particles, associated with the scalar field potential, is twice as large in the absolute value as the energy defined by the...

  18. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  19. Enhancement of sedimentation and coagulation with static magnetic field

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Hajduk, Anna; Rusanowska, Paulina

    2017-11-01

    The static magnetic field can be an alternative method for wastewater treatment. It has been proved that this physical factor, accelerates the biochemical processes, catalyzes advanced oxidation, intensifies anaerobic and aerobic processes or reduces swelling of activated sludge. There are also reports proving the positive impact of the static magnetic field on the coagulation and sedimentation, as well as the conditioning and dewatering of sludge. In order to be applied in larger scale the published results should be verified and confirmed. In the studies, the enhancement of sedimentation by the static magnetic field was observed. The best sedimentation was noted in the experiment, where magnetizers were placed on activated sludge bioreactor and secondary settling tank. No effect of the static magnetic field on coagulation with the utilization of PIX 113 was observed. However, the static magnetic field enhanced coagulation with the utilization of PAX-XL9. The results suggest that increased sedimentation of colloids and activated sludge, can in practice mean a reduction in the size of the necessary equipment for sedimentation with an unchanged efficiency of the process.

  20. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  1. Self-gravitating static non-critical black holes in 4 D Einstein-Klein-Gordon system with nonminimal derivative coupling

    Science.gov (United States)

    Gunara, Bobby Eka; Yaqin, Ainol

    2018-06-01

    We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

  2. Two-time physics with gravitational and gauge field backgrounds

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2000-01-01

    It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden

  3. On possible conceptual difficulties of quantum field theories involving gravitation

    International Nuclear Information System (INIS)

    Markov, M.A.

    1975-01-01

    The paper outlines principles on the basis of which one would conclude that the gravitational radius of test bodies can impose fundamental limitations on the measurability of coordinates and time in quantum theory, limitations of the type ΔxΔT(>=)(thetak)/csup(4)(more precisely Δrsub(gr)ΔT(>=)(thetak)/csup(4)) as a consequence of the relation ΔEΔT(>=)theta. Corresponding limitations arise for measurability of the average electrostatic field Δanti ΣΔT(>=)(theta√k)/rsub(gr)sup(2)c and of the gravitational field (the Cristoffel symbols [sub(μγ)sup(α)]):Δ[sub(44)sup(1)]ΔT(>=)(thetak)/(rsub(gr)sup(2)c)

  4. Vitamins and glucose metabolism: The role of static magnetic fields.

    Science.gov (United States)

    Lahbib, Aïda; Ghodbane, Soumaya; Sakly, Mohsen; Abdelmelek, Hafedh

    2014-12-01

    This review focuses on our own data and other data from the literature of static magnetic fields (SMF) bioeffects and vitamins and glucose metabolism. Three main areas of investigation have been covered: Static magnetic field and glucose metabolism, static magnetic field and vitamins and the role of vitamins on glucose metabolism. Considering these articles comprehensively, the conclusions are as follows: The primary cause of changes in cells after incubation in external SMF is disruption of free radical metabolism and elevation of their concentration. Such disruption causes oxidative stress leading to an unsteadiness of glucose level and insulin release. Moreover, based on available data, it was concluded that exposure to SMF alters plasma levels of vitamin A, C, D and E; these parameters can take part in disorder of glucose homeostasis and insulin release.

  5. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  6. Canonical quantum theory of gravitational field with higher derivatives

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.

    1981-01-01

    A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)

  7. Stability of a Kahler-type neutrino-gravitational field

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    In this work the deficiencies, suffered by the model for the neutrino-gravitational field using Kahler-type fermion fields, are removed by a more appropriate choice for the right-acting connection group of the spinor geometry, namely the two-parameter Abelian subgroup of SU(3). The action of this two-parameter group from the right on the 4x4 sixteen component Kahler spinor field also has interesting consequences in regard to Pauli's excursion principle and the structure of massive particles

  8. Physical effects in gravitational field of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1986-01-01

    A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed

  9. Gravitational lensing beyond the weak-field approximation

    Science.gov (United States)

    Perlick, Volker

    2014-01-01

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat's principle and the exact lens map of Frittelli and Newman.

  10. Gravitational lensing beyond the weak-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Perlick, Volker, E-mail: perlick@zarm.uni-bremen.de [ZARM, University of Bremen, 28359 Bremen (Germany)

    2014-01-14

    Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.

  11. Do Gravitational Fields Have Mass? Or on the Nature of Dark Matter

    OpenAIRE

    Kunst, Ernst Karl

    1999-01-01

    As has been shown before (a brief comment will be given in the text), relativistic mass and relativistic time dilation of moving bodies are equivalent as well as time and mass in the rest frame. This implies that the time dilation due to the gravitational field is combined with inertial and gravitational mass as well and permits the computation of the gravitational action of the vacuum constituting the gravitational field in any distance from the source of the field. Theoretical predictions a...

  12. Coupling non-gravitational fields with simplicial spacetimes

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2010-01-01

    The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in the Regge calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of the coupling source to the lattice in RC.

  13. Optics of relativistic sources in a spherically symmetric gravitational field

    International Nuclear Information System (INIS)

    Campbell, G.A.

    1975-01-01

    The effects of spectral shifts and gravitational focussing on radiation from sources moving geodesically in the Schwarzschild gravitational field is analyzed using the general-relativistic equations for geodesic motion and for the propagation of radiation along null geodesics in the geometrical optics approximation. The exact solutions of the Schwarzschild geodesic equations are briefly discussed for the null and time-like cases, and the method of classifying the orbital types of motion based on the effective radial potential is presented. A method of finding the stability of these orbits using this technique is discussed. The geometrical optics approximation for the propagation of radiation is discussed, and the area-intensity law for the Schwarzschild field is derived. The particularly interesting region near R = 3m is investigated by means of expansions of the exact equations. Numerical techniques for calculating radiation patterns from the propagation equations are discussed, including techniques for obtaining the time variation along geodesics and differences in propagation time along different null geodesics. Finally, the implications of these calculations for the apparent contradiction in energy requirements set by Joseph Weber's observations of galactic gravitational radiation and by astronomical observation are discussed. (Diss. Abstr. Int., B)

  14. Occupational exposure of NRM spectrometrists to static and radiofrequency fields

    International Nuclear Information System (INIS)

    Berlana, Tania; Ubeda, Alejandro

    2017-01-01

    Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user s hand (B = 683.00 mT) and head thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultra-shield technology allows a 20-65-fold reduction of the field strength received by the operator. (authors)

  15. Quantum limit on time measurement in a gravitational field

    International Nuclear Information System (INIS)

    Sinha, Supurna; Samuel, Joseph

    2015-01-01

    Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of one part in 10 18 using an ytterbium clock. This naturally raises the question of whether there are fundamental limits to time keeping. In this article we point out that gravity and quantum mechanics set a fundamental limit on the fractional frequency uncertainty of clocks. This limit comes from a combination of the uncertainty relation, the gravitational redshift and the relativistic time dilation effect. For example, a single ion aluminium clock in a terrestrial gravitational field cannot achieve a fractional frequency uncertainty better than one part in 10 22 . This fundamental limit explores the interaction between gravity and quantum mechanics on a laboratory scale. (paper)

  16. Reconstructing the gravitational field of the local Universe

    Science.gov (United States)

    Desmond, Harry; Ferreira, Pedro G.; Lavaux, Guilhem; Jasche, Jens

    2018-03-01

    Tests of gravity at the galaxy scale are in their infancy. As a first step to systematically uncovering the gravitational significance of galaxies, we map three fundamental gravitational variables - the Newtonian potential, acceleration and curvature - over the galaxy environments of the local Universe to a distance of approximately 200 Mpc. Our method combines the contributions from galaxies in an all-sky redshift survey, haloes from an N-body simulation hosting low-luminosity objects, and linear and quasi-linear modes of the density field. We use the ranges of these variables to determine the extent to which galaxies expand the scope of generic tests of gravity and are capable of constraining specific classes of model for which they have special significance. Finally, we investigate the improvements afforded by upcoming galaxy surveys.

  17. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  18. Effects of moderate static magnetic field presowing treatment on ...

    African Journals Online (AJOL)

    Improvement of seed performance by static magnetic field (SMF) constitutes a safe ecological way to substitute chemicals use. In laboratory conditions, we studied the effects of presowing seeds of two varieties of Raphanus sativus (Red: R.R, Red and White: R+W) by moderate SMF on seedlings' growth and oxidative status ...

  19. Static universe filled with spinning matter and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, Br [Warsaw Univ. (Poland). Dept. of Radiochemistry and Radiation Chemistry

    1955-08-05

    A static model of the universe is presented in the framework of Einstein-Cartan theory (ECT). The presence of aligned spins and magnetic field makes the model anisotropic. An expression is given for the radius of the universe. The model is classical and does not take into account the effects of pair creation. The validity of this model is discussed.

  20. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  1. Magnetic fields and accretion discs around static black holes

    International Nuclear Information System (INIS)

    Dadhich, N.

    1982-01-01

    Some aspects of accretion onto static black holes immersed in a uniform magnetic field are investigated. The Ernst metric is employed to find the 'Keplerian' angular momentum distribution and the efficiency of mass-to-energy conversion for a plasma and for test particles. Under almost all physically reasonable conditions for hydrodynamic accretion the effect of the magnetic field is small. However, for test particles the effect can be very important and the efficiency can approach unity. (author)

  2. Human exposure to static magnetic fields and basic precautions

    International Nuclear Information System (INIS)

    Vulevic, B.

    1999-01-01

    The development of new technologies using the static magnetic fields and their application in the last several years has increased the possibility of higher human exposure to such fields what has raised an issue of potential adverse health effects. The object of this work is to point, on the basis of the past knowledge, to the significance of the problem and therefore to contribute to its popularization. (author)

  3. Classical particles with spin in electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Amorim, R.M. de.

    1977-02-01

    Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt

  4. Theory of gravitational-inertial field of universe. 1

    International Nuclear Information System (INIS)

    Davtyan, O.K.

    1978-01-01

    A generalization of the real world tensor by the introduction of a inertial field tensor is proposed. On the basis of variational equations a system of more general covariant equations of the gravitational-inertial field is obtained. In the Einstein approximation these equations reduce to the field equations of Einstein. The solution of fundamental problems in the general theory of relativity by means of the new equations gives the same results as the solution by means of Einstein's equations. However, application of these equations to the cosmologic problem gives a result different from that obtained by Friedmann's theory. In particular, the solution gives the Hubble law as the law of motion of a free body in the inertial field - in contrast to Galileo-Newton's law. (author)

  5. Hawking radiation of a vector field and gravitational anomalies

    International Nuclear Information System (INIS)

    Murata, Keiju; Miyamoto, Umpei

    2007-01-01

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed

  6. Gravitational field equations on and off a 3-brane world

    International Nuclear Information System (INIS)

    Aliev, A N; Guemruekcueoglu, A E

    2004-01-01

    The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk

  7. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.

    1989-12-01

    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  8. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  9. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  10. On synthetic gravitational waves from multi-field inflation

    Science.gov (United States)

    Ozsoy, Ogan

    2018-04-01

    We revisit the possibility of producing observable tensor modes through a continuous particle production process during inflation. Particularly, we focus on the multi-field realization of inflation where a spectator pseudoscalar σ induces a significant amplification of the U(1) gauge fields through the coupling propto σFμνtilde Fμν. In this model, both the scalar σ and the Abelian gauge fields are gravitationally coupled to the inflaton sector, therefore they can only affect the primordial scalar and tensor fluctuations through their mixing with gravitational fluctuations. Recent studies on this scenario show that the sourced contributions to the scalar correlators can be dangerously large to invalidate a large tensor power spectrum through the particle production mechanism. In this paper, we re-examine these recent claims by explicitly calculating the dominant contribution to the scalar power and bispectrum. Particularly, we show that once the current limits from CMB data are taken into account, it is still possible to generate a signal as large as r ≈ 10‑3 and the limitations on the model building are more relaxed than what was considered before.

  11. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  12. Gravitational field strength and generalized Komar-integral

    International Nuclear Information System (INIS)

    Simon, W.

    1984-01-01

    We define a 'gravitational field strength' in theories of the Einstein-Cartan type admitting a Killing-vector. This field strength is a second rank, antisymmetric, divergence-free tensor, whose ('Komar-') integral over a closed 2-surface gives a physically meaningful quantity. We find conditions on the Lagrange-density of the theory which ensure the existence of such a tensor, and show that they are satisfied for N = 2-supergravity and for a special case of the bosonic sector of N = 4-supergravity. We discuss a possible application of the generalized Komar-integral in the theory of stationary black holes. We also consider the Kaluza-Klein-approach to the 'field-strength-problem', which turns out to be particularly rewarding in the application to black holes. (Author)

  13. Assessing Static Performance of the Dashengguan Yangtze Bridge by Monitoring the Correlation between Temperature Field and Its Static Strains

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2015-01-01

    Full Text Available Taking advantage of the structural health monitoring system installed on the steel truss arch girder of Dashengguan Yangtze Bridge, the temperature field data and static strain data are collected and analyzed for the static performance assessment of the bridge. Through analysis, it is found that the static strain changes are mainly caused by temperature field (temperature and temperature difference and train. After the train-induced static strains are removed, the correlation between the remaining static strains and the temperature field shows apparent linear characteristics, which can be mathematically modeled for the description of static performance. Therefore, multivariate linear regression function combined with principal component analysis is introduced to mathematically model the correlation. Furthermore, the residual static strains of mathematical model are adopted as assessment indicator and three kinds of degradation regulations of static performance are obtained after simulation of the residual static strains. Finally, it is concluded that the static performance of Dashengguan Yangtze Bridge was in a good condition during that period.

  14. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  15. Reentering the Gravitational Fringe Field of the Solar System

    Science.gov (United States)

    Fisher, P. C.

    A 1998 proposal to the National Aeronautics and Space Administration (NASA) described how to update an earlier proposal outline for an experiment involving a manned spacecraft that traveled to just outside the gravitational field of the solar system. The recent proposal briefly describes how to initiate a 25-year program to launch a seven-year mission. Very little thought has been given to astronomical/astrophysical investigations that might be carried out over seven years, but one or more generations of NASA's Terrestrial Planet Finder program might be included. Only a little serious thought has been given to how to reenter the solar system's gravitational fringe field, but access to several procedures and three-fold redundancy seems desirable. Some details of the proposed paper study will be given. Non-responsibility statement, from source document of calendar 1973. This document was prepared while the author was on an unpaid leave of absence from The Lockheed Missiles and Space Company (LMSC) of Palo Alto, California. The comments made herein are partly the results of experiments carried out over a number of years. For a portion of this time, both NASA and LMSC financed the author's space astronomy investigations. It may be that either or both these institutions may possess some proprietary rights to portions of the ideas and information presented. This work was supported by Ruffner Associates, Inc.

  16. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  17. Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets

    Directory of Open Access Journals (Sweden)

    R.A. Kascheev

    2016-09-01

    Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of

  18. Gravitational self-interactions of a degenerate quantum scalar field

    Science.gov (United States)

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  19. Pair production in the gravitational field of a cosmic string

    Science.gov (United States)

    Harari, Diego D.; Skarzhinsky, Vladimir D.

    1990-04-01

    We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.

  20. Gravitational field self-limitation and its role in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Gershtein, Semen S; Logunov, Anatolii A; Mestvirishvili, Mirian A [State Research Center ' Institute of High Energy Physics' , Protvino, Moscow Region (Russian Federation)

    2006-11-30

    It is shown that according to the relativistic theory of gravity, the gravitational field slows down the rate of time flow but stops doing so when the field is strong, thus displaying its tendency toward self-limitation of the gravitational potential. This property of the gravitational field prevents massive bodies from collapsing and allows a homogeneous isotropic universe to evolve cyclically. (physics of our days)

  1. Modeling the static fringe field of superconducting magnets.

    Science.gov (United States)

    Jeglic, P; Lebar, A; Apih, T; Dolinsek, J

    2001-05-01

    The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.

  2. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  3. Einstein-Podolsky-Rosen correlation in a gravitational field

    International Nuclear Information System (INIS)

    Terashima, Hiroaki; Ueda, Masahito

    2004-01-01

    For quantum communication in a gravitational field, the properties of the Einstein-Podolsky-Rosen (EPR) correlation are studied within the framework of general relativity. Acceleration and gravity are shown to deteriorate the perfect anticorrelation of an EPR pair of spins in the same direction, and apparently decrease the degree of the violation of Bell's inequality. To maintain the perfect EPR correlation and the maximal violation of Bell's inequality, observers must measure the spins in appropriately chosen different directions which depend on the velocity of the particles, the curvature of the space-time, and the positions of the observers. Near the event horizon of a black hole, the appropriate directions depend so sensitively on the positions of the observers that even a very small uncertainty in the identification of the observers' positions leads to a fatal error in quantum communication, unless the observers fall into the black hole together with the particles

  4. Dynamics of a bubble rising in gravitational field

    Directory of Open Access Journals (Sweden)

    De Bernardis Enrico

    2016-03-01

    Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.

  5. An application of information theory to stochastic classical gravitational fields

    Science.gov (United States)

    Angulo, J.; Angulo, J. C.; Angulo, J. M.

    2018-06-01

    The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.

  6. Gravitational waves in bouncing cosmologies from gauge field production

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido, E-mail: ido.bendayan@gmail.com [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be' er-Sheva 8410500 (Israel)

    2016-09-01

    We calculate the gravitational waves (GW) spectrum produced in various Early Universe scenarios from gauge field sources, thus generalizing earlier inflationary calculations to bouncing cosmologies. We consider generic couplings between the gauge fields and the scalar field dominating the energy density of the Universe. We analyze the requirements needed to avoid a backreaction that will spoil the background evolution. When the scalar is coupled only to F F-tilde term, the sourced GW spectrum is exponentially enhanced and parametrically the square of the vacuum fluctuations spectrum, P {sup s} {sub T} ∼ (P {sup v} {sub T} ){sup 2}, giving an even bluer spectrum than the standard vacuum one. When the scalar field is also coupled to F {sup 2} term, the amplitude is still exponentially enhanced, but the spectrum can be arbitrarily close to scale invariant (still slightly blue), n {sub T} ∼> 0, that is distinguishable form the slightly red inflationary one. Hence, we have a proof of concept of observable GW on CMB scales in a bouncing cosmology.

  7. On the vertigo due to static magnetic fields.

    Science.gov (United States)

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2013-01-01

    Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation

  8. On the vertigo due to static magnetic fields.

    Directory of Open Access Journals (Sweden)

    Omar S Mian

    Full Text Available Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25 deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05. Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient

  9. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  10. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  11. Einstein's equations of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...

  12. On quantum electrodynamics in an external gravitational field. Part 2. Discussion of the effects

    International Nuclear Information System (INIS)

    Lotze, K.H.

    1978-01-01

    The S matrix constructed in Part I of this work is evaluated for processes which it includes. Some of them are discussed in more detail: pair creation and scattering in an external gravitational field, pair creation by a photon and creation of an electron-positron pair and a photon in an external gravitational field. (author)

  13. On the possibility of a fourth test of general relativity in earth's gravitational field

    International Nuclear Information System (INIS)

    Zhang Yuan-zhong.

    1981-03-01

    In the paper the possibility for a fourth test of general relativity (i.e. relativistic time delay) in Earth's gravitational field is discussed. The effects of Earth's gravitational field on an interferometer and a resonant cavity are calculated by means of both two definitions of physical length. (author)

  14. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  15. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-10-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  16. Addendum. Relation for the Light Absorption in the Presence of Gravitation Field

    OpenAIRE

    R.Vlokh; M.Kostyrko

    2005-01-01

    We argue for the validity of relation for electromagnetic wave electric field derived by us earlier. It includes an imaginary part responsible for the absorption induced by gravitation field of spherically symmetric mass.

  17. To a physical interpretation of a weak gravitational field in GRT

    International Nuclear Information System (INIS)

    Pavlov, N.V.

    1981-01-01

    The problem of separation of Newton components of weak vacuum gravitational fields is discussed. Chronometric- invariant (CI) characteristics of space-time and the corresponding Newton values are compared in the fixed systems of reference. Attention is paid to the following facts. ''Weak'' sources of weak gravitational fields do not interact gravitationally. If the CI characteristics of vacuum space- time permit series expansion in 1/c powers then the coefficients at odd 1/c powers are connected with the presence of non-gravitational material fields inside the sources. Masses producing gravitational field may not be the sources of gravitational waves in the form of which this field manifests itself. Perspectives of detecting laboratory gravitational waves are discussed: the simplest metrics of plane wave is considered in the quasi-inertial reference system; the flowsheet of the generator of this wave is suggested; relativistic oscillation of a test massive particle is calculated in the postnewtonian approximation. The numerical evaluations show that attempts of mechanical detection of laboratory gravitational waves are hopeless [ru

  18. Equations for the gravitational field and local conserved quantities in the general theory of relativity

    International Nuclear Information System (INIS)

    Manoff, S.

    1979-07-01

    By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)

  19. Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering

    Science.gov (United States)

    Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043

  20. Conformal coupling of gravitational wave field to curvature

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Yudin, V.

    1980-01-01

    Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations

  1. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  2. Quantum phenomena in gravitational field; Phenomenes quantiques dans le champ gravitationnel

    Energy Technology Data Exchange (ETDEWEB)

    Bourdel, Th. [Laboratoire Charles-Fabry de l' Institut d' Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique RD128, 91127 Palaiseau (France); Doser, M. [CERN, Geneva 23, CH-1211 (Switzerland); Ernest, A.D. [Faculty of Science, Charles Sturt University, Wagga Wagga (Australia); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation); Voronin, V.V. [PNPI, Orlova Roscha, Gatchina, RU-188300 (Russian Federation)

    2010-10-15

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  3. General relativity: An introduction to the theory of the gravitational field

    International Nuclear Information System (INIS)

    Stephani, H.

    1985-01-01

    The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index

  4. Radiation tails of the scalar wave equation in a weak gravitational field

    International Nuclear Information System (INIS)

    Mankin, R.; Piir, I.

    1974-01-01

    A class of solutions of the linearized Einstein equations is found making use of the Newman-Penrose spin coefficient formalism. These solutions describe a weak retarded gravitational field with an arbitrary multipole structure. The study of the radial propagation of the scalar waves in this gravitational field shows that in the first approximation the tails of the scalar outgoing radiation appear either in the presence of a gravitational mass or in the case of a nonzero linear momentum of the gravitational source. The quadrupole moment and the higher multipole moments of the gravitational field as well as the constant dipole moment and the angular moment of the source do not contribute to the tail

  5. Energy-momentum tensor of the gravitational field for material spheres

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1990-01-01

    Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed

  6. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  7. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  8. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  9. Coupled electron/photon transport in static external magnetic fields

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Vandevender, W.H.

    A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)

  10. Reduction of static field equation of Faddeev model to first order PDE

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Shi Changguang

    2007-01-01

    A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations

  11. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  12. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  13. Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.

    Science.gov (United States)

    Yau, Jeffrey M; Jalinous, Reza; Cantarero, Gabriela L; Desmond, John E

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention. The aim of this study was to characterize the influence of the scanner's static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Using an MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner's static field to derive a field map to account for TMS field variations. TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner's static field also exhibited the greatest spatial variations in fringe field regions near the gantry. The scanner's static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. Coil orientation changes in the B0 field did not result in substantial TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0-70 cm region from the bore entrance. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Different elution modes and field programming in gravitational field-flow fractionation: Field programming using density and viscosity gradients

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2006-01-01

    Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  15. Levitation of water and organic substances in high static magnetic fields

    Science.gov (United States)

    Beaugnon, E.; Tournier, R.

    1991-08-01

    The levitation of various diamagnetic liquid and solid substances such as water, ethanol, acetone, bismuth, antimony, graphite, wood and plastic has been achieved at room temperature in a strong inhomogeneous static magnetic field. These experiments were performed in the hybrid magnet at the Service National des Champs Intenses (CNRS, Grenoble). These findings show that high field superconducting magnets could be used to provide a contactless, low gravity environment for the elaboration of a wide range of materials. En utilisant les forts champs magnétiques produits par la bobine hybride du Service National des Champs Intenses (CNRS, Grenoble), nous avons obtenu àtempérature ambiante la lévitation de substances diamagnétiques solides ou liquides telles que l'eau, l'alcool, l'acétone, le bismuth, l'antimoine, le graphite, le bois et le plastique. Ces résultats montrent que les bobines supraconductrices peuvent être utilisées pour l'élaboration de nombreux matériaux en gravité réduite, sans contact avec un contenant.

  16. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Agatha P. Colbert

    2009-01-01

    Full Text Available Static magnetic field (SMF therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to: (i summarize SMF research conducted in humans; (ii critically evaluate reporting quality of SMF dosages and treatment parameters and (iii propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61% of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial.

  17. New exact solution for the exterior gravitational field of a charged spinning mass

    International Nuclear Information System (INIS)

    Chamorro, A.; Manko, V.S.; Denisova, T.E.

    1991-01-01

    An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly

  18. New exact solution for the exterior gravitational field of a spinning mass

    International Nuclear Information System (INIS)

    Manko, V.S.

    1990-01-01

    An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented

  19. Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario

    Directory of Open Access Journals (Sweden)

    Asuka Ito

    2017-08-01

    Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.

  20. The influence of static fields on the dynamic Stark spectra of hydrogen Balmer lines

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.; Jayakumar, R.; Granneman, E.H.A.

    1981-01-01

    In plasmas atomic-line radiation is influenced by static and high frequency fields. A simple method of calculating the Stark profiles of the Balmer α and β lines for the case of one-dimensional fields is discussed. Using a Holtsmark field for the static component, the resulting profile of Balmer α shows a splitting of the satellites. (author)

  1. General projective relativity and the vector-tensor gravitational field

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation

  2. Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate

    Science.gov (United States)

    Acedo, Luis; Tung, Michael M.

    2012-01-01

    The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…

  3. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    An exact solution of Einstein's equations is found describing the gravitational field of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.

  4. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  5. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  6. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  7. Canonical field quantization in an external time-dependent gravitational field

    International Nuclear Information System (INIS)

    Il'yn, S.B.; Tagirov, E.A.

    1975-01-01

    The Green functions of the quantum scalar fiels interacting with gravitation of the homogeneous isotropic closed Universe are studied. They have been determined as an expectation value of the time-ordered product of two field operators in the cyclic states of various, in general, unitary-nonequivalent representations of canonical commutation relations. The reqularity properties of these functions are shown to be the same as of the Feynman propagator obtained for arbitrary Riemannian space-time only in the representations that from a class unitary equivalence

  8. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  9. Droplet rotation model apply in steam uniform flow and gravitational field

    International Nuclear Information System (INIS)

    Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong

    2012-01-01

    The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)

  10. Performance and Flow Field of a Gravitation Vortex Type Water Turbine

    OpenAIRE

    Nishi, Yasuyuki; Inagaki, Terumi

    2017-01-01

    A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to p...

  11. The gravitational field of a charged global monopole

    Energy Technology Data Exchange (ETDEWEB)

    Min-Qiang Lu [East China Univ. of Science and Tecnology, Shangai (China). School of Fundamental Education]|[East China Inst. for Theoretical Physics, Shangai (China)

    1998-10-01

    A charged global monopole formed as a consequence of the spontaneous breakdown of a global symmetry should have a mass that grows linearly with the distance off its core where the gravitational effect of this configuration is equivalent to that of the deficit solid angle in the metric and the relatively tiny mass at the origin. In this paper it is shown that this small effective mass depends on the charge in that there exists a negative mass when the charge number Q is less than a critical value Q{sub c}r and that there appears a positive one when Q>Q{sub c}r.

  12. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  13. Relativistic Mechanics in Gravitational Fields Exterior to Rotating Homogeneous Mass Distributions within Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.

  14. A model of Saturn inferred from its measured gravitational field

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    We present an interior model of Saturn with an ice-rock core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. The shape of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium condition. While the ice-rock core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. The Saturnian model is constrained by its known mass, its known equatorial and polar radii, and its known zonal gravitational coefficients, J 2n , n = 1, 2, 3. The model produces an ice-rock core with equatorial radius 0.203 R S, where R S is the equatorial radius of Saturn at the 1-bar pressure surface; the core density ρ c = 10388.1 kgm‑3 corresponding to 13.06 Earth masses; and an analytical expression describing the Saturnian irregular shape of the 1-bar pressure level. The model also predicts the values of the higher-order gravitational coefficients, J 8, J 10 and J 12, for the hydrostatic Saturn and suggests that Saturn’s convective dynamo operates in the metallic region approximately defined by 0.2 R S < r e < 0.7 R S, where r e denotes the equatorial radial distance from the Saturnian center of figure.

  15. Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure

    International Nuclear Information System (INIS)

    Lim, S.C.

    1983-05-01

    It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)

  16. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  17. Phase control of higher spectral components in the presence of a static electric field

    International Nuclear Information System (INIS)

    Zhang Chaojin; Yang Weifeng; Song Xiaohong; Xu Zhizhan

    2009-01-01

    We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.

  18. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  19. Stability of self-gravitating homogeneous spheroid with azimuthal magnetic field. I

    International Nuclear Information System (INIS)

    Antonov, V.A.; Zheleznyak, O.A.

    1988-01-01

    The influence of a frozen magnetic field on the stability of a self-gravitating homogeneous spheroid with respect to a deformation that transforms it into a triaxial ellipsoid is investigated. It is shown that an azimuthal magnetic field is a stabilizing factor, allowing the spheroid to be stable at e > e/sub cr/ = 0.95285

  20. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs

  1. Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.

    Science.gov (United States)

    Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H

    2017-11-08

    In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.

  2. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  3. A possible unification of the electromagnetic and weak interaction with the gravitational field

    International Nuclear Information System (INIS)

    Tauber, G.E.

    1982-01-01

    It is suggested that the generators of SL(6,c) containing the Lorentz group SL(2,c) and SU 3 as sub-groups, may be unified with the gravitational field. For that purpose they are combined into a single ''tetrad'' whose completeness relation then yields the gravitational potentials. The appropriate field equations are written down in analogy with previous formulations given by Einstein and others. Upon projecting on the space tetrad the contributions of these internal variables may be isolated and the relevant equations found. (Auth.)

  4. On the creation of gravitational wave by photon in external electromagnetic field

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Le Khac Huong

    1989-08-01

    The creation of the gravitational wave by the photon in an electromagnetic field is considered. We show that when the momentum of the photon is perpendicular to the field, the probability of the gravitational wave creation is largest in the direction of the motion of the photon. A numerical evaluation shows that the probability of creation in the direction mentioned is much larger than that in the direction considered, namely in the direction perpendicular to the photon momentum and may have the observable value in the present technical conditions. (author). 10 refs

  5. On the discovery of the gravitational field equations by Einstein and Hilbert: new materials

    International Nuclear Information System (INIS)

    Vizgin, Vladimir P

    2001-01-01

    This article describes the history of discovery of the equations of gravitational field by Albert Einstein and David Hilbert in November 1915. The proof sheet of Hilbert's lecture report, made on 20 November 1915 and published in March 1916, rediscovered in 1997 in the archive of the university of Goettingen, throws new light on the history of this discovery. We also discuss the early history of the general theory of relativity that led to the expression of the general covariant equations of gravitational field. (from the history of physics)

  6. Magnetic resonance in medicine occupational exposure to static magnetic field and radiofrequency radiation

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.; Ivanovic, C.

    1997-01-01

    Medical personnel working with magnetic resonance imaging (MRI) devices could be exposed to static magnetic (M) field, time-varying M fields and radiofrequency (RF) radiation. The aim of work was to investigate the density of magnetic flux of static magnetic field and the power density of RF radiation which appear in the working environment around the 0.5 T MRI unit in one hospital. The density of magnetic flux of static magnetic field was measured with Hall Effect Gauss meter - Magnetech (Great Britain), and the power density of RF radiation was measured with broadband isotropic meter - The Narda Microwave Corp. (USA). The results of measurement show that the density of magnetic flux of static M field on working places are below threshold limit of exposure and the intensities of RF radiation are far below maximum permissible level. (author)

  7. Casimir effect of two conducting parallel plates in a general weak gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Borzoo [University of Tehran, Faculty of Engineering Science, College of Engineering, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-10-15

    We calculate the finite vacuum energy density of the scalar and electromagnetic fields inside a Casimir apparatus made up of two conducting parallel plates in a general weak gravitational field. The metric of the weak gravitational field has a small deviation from flat spacetime inside the apparatus, and we find it by expanding the metric in terms of small parameters of the weak background. We show that the metric found can be transformed via a gauge transformation to the Fermi metric. We solve the Klein-Gordon equation exactly and find mode frequencies in Fermi spacetime. Using the fact that the electromagnetic field can be represented by two scalar fields in the Fermi spacetime, we find general formulas for the energy density and mode frequencies of the electromagnetic field. Some well-known weak backgrounds are examined and consistency of the results with the literature is shown. (orig.)

  8. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  9. Matching IMRT fields with static photon field in the treatment of head-and-neck cancer

    International Nuclear Information System (INIS)

    Li, Jonathan G.; Liu, Chihray; Kim, Siyong; Amdur, Robert J.; Palta, Jatinder R.

    2005-01-01

    Radiation treatment with intensity-modulated radiation therapy (IMRT) for head-and-neck cancer usually involves treating the superior aspects of the target volume with intensity-modulated (IM) fields, and the inferior portion of the target volume (the low neck nodes) with a static anterior-posterior field (commonly known as the low anterior neck, or LAN field). A match line between the IM and the LAN fields is created with possibly large dose inhomogeneities, which are clinically undesirable. We propose a practical method to properly match these fields with minimal dependence on patient setup errors. The method requires mono-isocentric setup of the IM and LAN fields with half-beam blocks as defined by the asymmetric jaws. The inferior jaws of the IM fields, which extend ∼1 cm inferiorly past the isocenter, are changed manually before patient treatment, so that they match the superior jaw of the LAN field at the isocenter. The matching of these fields therefore does not depend on the particular treatment plan of IMRT and depends only on the matching of the asymmetric jaws. Measurements in solid water phantom were performed to verify the field-matching technique. Dose inhomogeneities of less than 5% were obtained in the match-line region. Feathering of the match line is done twice during the course of a treatment by changing the matching jaw positions superiorly at 3-mm increments each time, which further reduces the dose inhomogeneity. Compared to the method of including the lower neck nodes in the IMRT fields, the field-matching technique increases the delivery efficiency and significantly reduces the total treatment time

  10. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  11. Responses of the Brans-Dicke field due to gravitational collapses

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2010-01-01

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω ∼ -1.5. If the Brans-Dicke coupling is greater than -1.5, the T uu component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T vv component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  12. Responses of the Brans-Dicke field due to gravitational collapses

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-10-21

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  13. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    OpenAIRE

    Soto-Bernal, Juan J.; Gonzalez-Mota, Rosario; Rosales-Candelas, Iliana; Ortiz-Lozano, Jose A.

    2015-01-01

    This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount ...

  14. Localization from near-source quasi-static electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  15. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  16. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  17. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  18. Newton\\'s equation of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...

  19. Note on the evolution of the gravitational potential in Rastall scalar field theories

    International Nuclear Information System (INIS)

    Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.

    2012-01-01

    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.

  20. Post-Newtonian (and higher order) observational constraints on gravitation field theories

    International Nuclear Information System (INIS)

    Nordtvedt, K.

    1982-01-01

    The empirically confirmed premise that gravity is a metric theory is accepted. The general class of all Lagrangian-based metric field theories of gravity is considered. A collection of observational tests of gravitational phenomena which points to a specific metric theory of gravity and rules out alternatives is created

  1. On the equivalence of electromagnetic and clock-transport synchronization in noninertial frames and gravitational fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    Synchronization by slow clock transport is shown to be equivalent so that by electromagnetic signals for clocks moving along the trajectories of a timelike Killing vector field, provided the gravitational redshift is corrected for and the synchronization paths are the same. (Author)

  2. Statistical metastability of a classical ideal gas in the Schwarzschild gravitational field

    International Nuclear Information System (INIS)

    Gaina, A.B.; Zaslavskii, O.B.

    1990-01-01

    A classical ideal gas in the Schwarzschild gravitational field is considered. The lifetime of a gas influenced by thermal fluctuations has been calculated. It is shown that thermal effects can lead to the electric charging of a black hole in a plasma containing particles with different masses. (author)

  3. General relativistic model for the gravitational field of active galactic nuclei surrounded by a disk

    NARCIS (Netherlands)

    Vogt, D.; Letelier, P.S.

    2005-01-01

    An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of

  4. Continuous Quantum Nondemolition Measurements of a Particle in Electromagnetic and Gravitational Fields

    International Nuclear Information System (INIS)

    Zhu Chunhua; Zha Chaozheng

    2005-01-01

    The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.

  5. Born--Infeld theory of electroweak and gravitational fields: Possible correction to Newton and Coulomb laws

    OpenAIRE

    Palatnik, Dmitriy

    2002-01-01

    In this note one suggests a possibility of direct observation of the $\\theta$-parameter, introduced in the Born--Infeld theory of electroweak and gravitational fields, developed in quant-ph/0202024. Namely, one may treat $\\theta$ as a universal constant, responsible for correction to the Coulomb and Newton laws, allowing direct interaction between electrical charges and masses.

  6. New exact solutions of Einstein's field equations: gravitational force can also be repulsive!

    International Nuclear Information System (INIS)

    Dietz, W.

    1988-01-01

    This article has not been written for specialists of exact solutions of Einstein's field equations but for physicists who are interested in nontrivial information on this topic. We recall the history and some basic properties of exact solutions of Einstein's vacuum equations. We show that the field equations for stationary axisymmetric vacuum gravitational fields can be expressed by only one nonlinear differential equation for a complex function. This compact form of the field equations allows the generation of almost all stationary axisymmetric vacuum gravitational fields. We present a new stationary two-body solution of Einstein's equations as an application of this generation technique. This new solution proves the existence of a macroscopic, repulsive spin-spin interaction in general relativity. Some estimates that are related to this new two-body solution are given

  7. Some consequences of the law of local energy conservation in the gravitational field

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    At gravitational interactions of bodies and particles there appears the defect of masses, i.e. the energy yields since the bodies (or particles) are attracted. It is shown that this changing of the effective mass of the body (or the particle) in the external gravitational field leads to changes of the measurement units: velocity and length (relative to the standard measurement units). The expression describing the advance of the perihelion of the planet (the Mercury) has been obtained. This expression is mathematically identical to Einstein's equation for the advance of the perihelion of the Mercury

  8. A study of fermions coupled to gauge and gravitational fields on a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Lano, R.P. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy; Rodgers, V.G.J. [Iowa Univ., Iowa City, IA (United States). Dept. of Physics and Astronomy

    1995-03-06

    Fermions on a cylinder coupled to background gravitation and gauge fields are examined by studying the geometric action associated with the symmetries of such a system. We are able to show that the gauge coupling constant is constrained to a value of 1/N where N is an integer. Furthermore, in direct analogy with a Yang-Mills theory a new gravitational theory is introduced which couples to the fermions by promoting the coadjoint vector of the diffeomorphism sector to a dynamical variable. The classical dynamics of this theory are examined by displaying its symplectic structure and showing that it is equivalent to a one-dimensional system. ((orig.)).

  9. Stochastic quantization and gauge-fixing of the linearized gravitational field

    International Nuclear Information System (INIS)

    Hueffel, H.; Rumpf, H.

    1984-01-01

    Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)

  10. Vacuum polarisation in some static nonuniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Calucci, G. [Trieste Univ. (Italy). Dip. di Fisica Teorica]|[INFN, Trieste (Italy)

    1995-11-01

    Vacuum polarisation in QED in presence of some configurations of external magnetic fields is investigated. The configuration considered correspond to fields is investigated. The configuration considered correspond to fields lying in a plane and without sources. The motion of a Dirac electron in this field configuration is studied and arguments are found to conclude that the lowest level gives the most important contribution. The result is that the main effect is not very different from the uniform case, the possibilities of calculating the corrections due to the uniformity is explicitly shown. A typical effect of nonuniformity of the field shows out in the refractivity of the field shows out in the refractivity of the vacuum.

  11. Vacuum polarisation in some static nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Calucci, G.

    1995-11-01

    Vacuum polarisation in QED in presence of some configurations of external magnetic fields is investigated. The configuration considered correspond to fields is investigated. The configuration considered correspond to fields lying in a plane and without sources. The motion of a Dirac electron in this field configuration is studied and arguments are found to conclude that the lowest level gives the most important contribution. The result is that the main effect is not very different from the uniform case, the possibilities of calculating the corrections due to the uniformity is explicitly shown. A typical effect of nonuniformity of the field shows out in the refractivity of the field shows out in the refractivity of the vacuum

  12. Canonical quantum theory of gravitational field with higher derivatives, 2

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1982-01-01

    The asymptotic fields in a canonically quantized graviational field with higher derivatives are analyzed. A possible mechanism of the recovery of the physical S-matrix unitarity is discussed. The constraint nabla sub(μ)(B sup(μν) + (Beta /α)g sup(μν)B) = 0 due to the Bianchi identity on R sub(μν) is treated by Dirac's method. (author)

  13. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  14. Quantum fields on manifolds: PCT and gravitationally induced thermal states

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1982-01-01

    We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field

  15. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  16. Reconstruction of the static magnetic field of a magnetron

    Science.gov (United States)

    Krüger, Dennis; Köhn, Kevin; Gallian, Sara; Brinkmann, Ralf Peter

    2018-06-01

    The simulation of magnetron discharges requires a quantitatively correct mathematical model of the magnetic field structure. This study presents a method to construct such a model on the basis of a spatially restricted set of experimental data and a plausible a priori assumption on the magnetic field configuration. The example in focus is that of a planar circular magnetron. The experimental data are Hall probe measurements of the magnetic flux density in an accessible region above the magnetron plane [P. D. Machura et al., Plasma Sources Sci. Technol. 23, 065043 (2014)]. The a priori assumption reflects the actual design of the device, and it takes the magnetic field emerging from a center magnet of strength m C and vertical position d C and a ring magnet of strength m R , vertical position d R , and radius R. An analytical representation of the assumed field configuration can be formulated in terms of generalized hypergeometric functions. Fitting the ansatz to the experimental data with a least square method results in a fully specified analytical field model that agrees well with the data inside the accessible region and, moreover, is physically plausible in the regions outside of it. The outcome proves superior to the result of an alternative approach which starts from a multimode solution of the vacuum field problem formulated in terms of polar Bessel functions and vertical exponentials. As a first application of the obtained field model, typical electron and ion Larmor radii and the gradient and curvature drift velocities of the electron guiding center are calculated.

  17. Charged Tori in Spherical Gravitational and Dipolar Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Slaný, P.; Kovář, J.; Stuchlík, Z.; Karas, Vladimír

    2013-01-01

    Roč. 205, č. 1 (2013), 3/1-3/16 ISSN 0067-0049 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion * accretion disks * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 14.137, year: 2013

  18. Canonical quantum theory of gravitational field with higher derivatives, 3

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1983-01-01

    A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)

  19. Correlation connection between the anomalous magnetic and gravitational fields for regions with different types of the Earth's crust

    International Nuclear Information System (INIS)

    Lugovenko, V.N.; Pronin, V.P.; Kosheleva, L.V.

    1989-01-01

    A method for the correlation analysis of anomalous geophysical fields at different survey altitudes is proposed. The joint correlation analysis is performed for anomalous magnetic and gravitational fields for regions with different types of the Earth's crust. (author)

  20. Gravitation: Field theory par excellence Newton, Einstein, and beyond

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1984-01-01

    Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = αm/sub i/, m/sub a/ = lambdam/sub p/ where α = D: 3 and lambda measures the presence of the field stress-energy t/sup ν//sub μ/ in the field equations. It is shown that α = 1, lambda = 0 corresponds to general relativity and α = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless α = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance

  1. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René

    2013-01-01

    . In conclusion, we found some deviations up to 7% of the supposed signal. Although the scintillators are of much denser material, we measured the same behavior in signal as in (Meijsing et al., 2009) for a Farmer ionization chamber or as in (Raaijmakers et al., 2007) for films described which indicates radiation......-vivo dosimetry in radiation treatments and diagnostics and could be, being all-optical, promising candidates for this application. To study the basic feasibility of using PSDs with organic scintillators in magnetic fields, we measured the response of these dosimeters in presence of magnetic fields up to 1 T...

  2. Passive magnetic cylindrical shielding at gauss-range static fields

    International Nuclear Information System (INIS)

    Calvo, E.; Cerrada, M.; Gil-Botella, I.; Palomares, C.; Rodriguez, I.; Toral, F.; Verdugo, A.

    2009-01-01

    A study has been performed in order to find the optimal solution for the magnetic shielding of the 10 in. photomultipliers which will be used in the Double Chooz neutrino experiment under a very low magnetic field (less than 2 G). The results obtained with analytical and numerical calculations are compared with measurements made using test prototypes of several magnetic materials, with different dimensions and from different manufacturers. An exhaustive analysis of the magnetic materials was needed to understand the observed disagreement between calculations and test results obtained at low field values.

  3. BRS symmetry in stochastic quantization of the gravitational field

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-12-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in a sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space for gravity (in general, for the first-class constrained systems). The stochastic action of gravity includes explicitly an unique De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  4. Parametrized post-Newtonian approximation and Rastall's gravitational field equations

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1978-01-01

    The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories

  5. Massive spin-two particle in a gravitational field

    International Nuclear Information System (INIS)

    Tauber, G.

    1980-01-01

    The spin-two particle is described by a symmetric tensor hsub(μupsilon) subject to the subsidiary conditions hsub(α)sup(α) deltasub(α)hsup(αβ) = O. Their covariant generalization and the 'wave equation' have been obtained directly from the Eulerian variational equations by algebraic methods only. In addition to the tensor field hsub(μupsilon) a symmetric third-rank tensor suplambda)GAMMAsub(μupsilon) sup(lambda)GAMMAsub(upsilonμ) as well as a vector field Asub(μ) have been added, neither of which enter in the final result. The Lagrangian function is taken as a linear sum of all combinations which can be constructed from these functions, as well as terms involving the curvature and its two possible contractions. Variation with respect to hsup(μupsilon), sup(lambda)GAMMAsub(μupsilon) and Asub(μ) independently gives the Euler equations. Combining the various trace equations and choice of arbitrary constants yields the subsidiary conditions, while the Euler equations themselves give the connection between the auxiliary functions and the tensor hsub(μupsilon) Finally, variation with respect to gsup(μupsilon) yields the energy-momentum tensor. (author)

  6. Quantum gravity. On the entity of gravitation generating interacting fields and the elementary fields of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bencivinni, Daniele

    2011-01-01

    The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to

  7. The realization of strong, stray static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2012-01-01

    Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf

  8. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  9. Working with MRI: An investigation of occupational exposure to strong static magnetic fields and associated symptoms

    NARCIS (Netherlands)

    Schaap, K.

    2015-01-01

    Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the

  10. Production of gravitation waves by electromagnetic radiation

    International Nuclear Information System (INIS)

    Buchner, K.; Rosca, R.

    1980-01-01

    An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)

  11. Precise and Fast Computation of the Gravitational Field of a General Finite Body and Its Application to the Gravitational Study of Asteroid Eros

    International Nuclear Information System (INIS)

    Fukushima, Toshio

    2017-01-01

    In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.

  12. Precise and Fast Computation of the Gravitational Field of a General Finite Body and Its Application to the Gravitational Study of Asteroid Eros

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory/SOKENDAI, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-01

    In order to obtain the gravitational field of a general finite body inside its Brillouin sphere, we developed a new method to compute the field accurately. First, the body is assumed to consist of some layers in a certain spherical polar coordinate system and the volume mass density of each layer is expanded as a Maclaurin series of the radial coordinate. Second, the line integral with respect to the radial coordinate is analytically evaluated in a closed form. Third, the resulting surface integrals are numerically integrated by the split quadrature method using the double exponential rule. Finally, the associated gravitational acceleration vector is obtained by numerically differentiating the numerically integrated potential. Numerical experiments confirmed that the new method is capable of computing the gravitational field independently of the location of the evaluation point, namely whether inside, on the surface of, or outside the body. It can also provide sufficiently precise field values, say of 14–15 digits for the potential and of 9–10 digits for the acceleration. Furthermore, its computational efficiency is better than that of the polyhedron approximation. This is because the computational error of the new method decreases much faster than that of the polyhedron models when the number of required transcendental function calls increases. As an application, we obtained the gravitational field of 433 Eros from its shape model expressed as the 24 × 24 spherical harmonic expansion by assuming homogeneity of the object.

  13. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  14. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    International Nuclear Information System (INIS)

    Wu Ning; Zhang Dahua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  15. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    Science.gov (United States)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  16. The motion of a Dirac wave packet in a gravitational field

    International Nuclear Information System (INIS)

    Pietropaolo, F.; Toller, M.

    1983-01-01

    It is studied the motion of a test particle provided with spin in a gravitational field with a nonvanishing torsion with the aim of clarifying the relationship between the approach based on the balance equations for energy, momentum and angular momentum and the approach based directly on a semiclassical approximation of the Dirac equation. The balance equations in the pole-dipole approximation are applied to a Dirac wave packet minimally coupled to the gravitational field and it is shown that, in this particular case, it is possible to compute the dipole moments of energy current, which are essential for a correct calculation of the motion of the centre of the particle and of the precession of its spin

  17. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Hamilton, Russell J.; Kuchnir, Franca T.; Sweeney, Patrick; Rubin, Steven J.; Dujovny, Manuel; Pelizzari, Charles A.; Chen, George T. Y.

    1995-01-01

    Purpose: Compare the use of static conformal fields with the use of multiple noncoplanar arcs for stereotactic radiosurgery or stereotactic radiotherapy treatment of intracranial lesions. Evaluate the efficacy of these treatment techniques to deliver dose distributions comparable to those considered acceptable in current radiotherapy practice. Methods and Materials: A previously treated radiosurgery case of a patient presenting with an irregularly shaped intracranial lesion was selected. Using a three-dimensional (3D) treatment-planning system, treatment plans using a single isocenter multiple noncoplanar arc technique and multiple noncoplanar conformal static fields were generated. Isodose distributions and dose volume histograms (DVHs) were computed for each treatment plan. We required that the 80% (of maximum dose) isodose surface enclose the target volume for all treatment plans. The prescription isodose was set equal to the minimum target isodose. The DVHs were analyzed to evaluate and compare the different treatment plans. Results: The dose distribution in the target volume becomes more uniform as the number of conformal fields increases. The volume of normal tissue receiving low doses (> 10% of prescription isodose) increases as the number of static fields increases. The single isocenter multiple arc plan treats the greatest volume of normal tissue to low doses, approximately 1.6 times more volume than that treated by four static fields. The volume of normal tissue receiving high (> 90% of prescription isodose) and intermediate (> 50% of prescription isodose) doses decreases by 29 and 22%, respectively, as the number of static fields is increased from four to eight. Increasing the number of static fields to 12 only further reduces the high and intermediate dose volumes by 10 and 6%, respectively. The volume receiving the prescription dose is more than 3.5 times larger than the target volume for all treatment plans. Conclusions: Use of a multiple noncoplanar

  18. Gravitational Resonance Spectroscopy with an Oscillating Magnetic Field Gradient in the GRANIT Flow through Arrangement

    International Nuclear Information System (INIS)

    Rebreyend, D.; Pignol, G.; Baeßler, S.; Nesvizhevsky, V. V.; Protasov, K.; Voronin, A.

    2014-01-01

    Gravitational resonance spectroscopy consists in measuring the energy spectrum of bouncing ultracold neutrons above a mirror by inducing resonant transitions between different discrete quantum levels. We discuss how to induce the resonances with a flow through arrangement in the GRANIT spectrometer, excited by an oscillating magnetic field gradient. The spectroscopy could be realized in two distinct modes (so called DC and AC) using the same device to produce the magnetic excitation. We present calculations demonstrating the feasibility of the newly proposed AC mode

  19. About the short-scale perturbations of plasma in gravitational field

    International Nuclear Information System (INIS)

    Gedalin, M.E.; Machabeli, G.Z.

    1985-01-01

    The problem of plasma wave generation and propagation in the presence of strong gravitational fields is studied in the framework of general relativity theory. The coupled relativistic hydrodynamic and Maxwellian equations are solved in circumstances of the surface of the neutron star. The wave solution of the system of equation is analyzed, some limit cases are discussed in detail. The instability criteria of relativistic plasma are also found. (D.Gy.)

  20. On the identification of gravitation with the massless spin 2 field

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    The identification of gravitation with the massless spin 2 gauge field (the gauge group is the group of translations) requires to restrict the solutions of Einstein's equations to the class of topologically trivial manifolds. It is shown that the validity of this restriction in nature is supported by the present-day empirical facts. The identification has a drastic impact on cosmology, because the fulfilment of the cosmological principle seems to be improbable. (author)

  1. Unified theory of gravitation, electromagnetism, and the Yang-Mills field

    International Nuclear Information System (INIS)

    Borchsenius, K.

    1976-01-01

    The recent modification and extension of Einstein's nonsymmetric unified field theory for gravitation and electromagnetism is generalized to include the Yang-Mills field theory. The generalization consists in assuming that the components of the linear connection and of the fundamental tensor are not ordinary c numbers but are matrices related to some unitary symmetry. As an example we consider the SU(2) case. The theory is applied to the gauge-covariant formulation of electrically and isotopically charged spin-1/2 field theories

  2. Gravitational and electromagnetic fields near an anti-de Sitter-like infinity

    International Nuclear Information System (INIS)

    Krtous, Pavel; Podolsky, Jiri

    2004-01-01

    We analyze the asymptotic structure of general gravitational and electromagnetic fields near an anti-de Sitter-like conformal infinity. The dependence of the radiative component of the fields on a null direction along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation, which supplements standard peeling property, is determined by the algebraic (Petrov) type of the fields and also by the orientation of the principal null directions with respect to timelike infinity. The dependence on the orientation is a new feature if compared to spacelike infinity

  3. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  4. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs

  5. Influence of static magnetic fields on S. cerevisae biomass growth

    Directory of Open Access Journals (Sweden)

    João B. Muniz

    2007-05-01

    Full Text Available Biomass growth of Saccharomyces cerevisiae DAUFPE-1012 was studied in eight batch fermentations exposed to steady magnetic fields (SMF running at 23ºC (± 1ºC, for 24 h in a double cylindrical tube reactor with synchronic agitation. For every batch, one tube was exposed to 220mT flow intensity SMF, produced by NdFeB rod magnets attached diametrically opposed (N to S magnets on one tube. In the other tube, without magnets, the fermentation occurred in the same conditions. The biomass growth in culture (yeast extract + glucose 2% was monitored by spectrometry to obtain the absorbance and later, the corresponding cell dry weight. The culture glucose concentration was monitored every two hours so as the pH, which was maintained between 4 and 5. As a result, the biomass (g/L increment was 2.5 times greater in magnetized cultures (n=8 as compared with SMF non-exposed cultures (n=8. The differential (SMF-control biomass growth rate (135% was slightly higher than the glucose consumption rate (130 % leading to increased biomass production of the magnetized cells.O crescimento da biomassa da Saccharomyces cerevisiae DAUFPE-1012 foi estudado em oito bateladas de fermentação, cada uma exposta aos campos magnéticos contínuos (CMC, à 23ºC (± 1ºC, durante um período de 24 horas em um reator duplo com agitação sincrônica. Em cada batelada,um tubo foi exposto ao CMC, com 220mT de intensidade de fluxo, produzidos por imãs de NdFeB fixados diametralmente opostos (N para S em um tubo do reator de fermentação. Em outro tubo, sem imãs, a fermentação ocorreu nas mesmas condições. O crescimento da biomassa nas culturas (extrato de fermento + glicose 2% foi monitorado através de espectrometria e correlacionado ao peso seco de levedura. A concentração de glicose nas culturas foi monitorada a cada duas horas e o pH foi mantido entre 4 e 5. Como resultado, a biomassa (g/L aumentou 2,5 vezes nas culturas magnetizadas (n=8 quando comparadas com as

  6. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)

    2014-05-15

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  7. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    International Nuclear Information System (INIS)

    Azreg-Ainou, Mustapha

    2014-01-01

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  8. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  9. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    International Nuclear Information System (INIS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-01-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  10. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Katebi, Samira; Esmaeili, Abolghasem, E-mail: aesmaeili@sci.ui.ac.ir; Ghaedi, Kamran

    2016-03-15

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  11. Impact of Static Magnetic Field on the Antioxidant Defence System of Mice Fibroblasts

    Directory of Open Access Journals (Sweden)

    Marek Glinka

    2018-01-01

    Full Text Available Results of research assessing the biological impact of static magnetic fields are controversial. So far, they have not provided a clear answer to their influence on cell functioning. Since the use of permanent magnets both in everyday life and in industry becomes more and more widespread, the investigations are continued in order to explain these controversies and to evaluate positive applications. The goal of current work was to assess the impact of static magnetic field of different intensities on redox homeostasis in cultures of fibroblasts. The use of permanent magnets allowed avoiding the thermal effects which are present in electromagnets. During the research we used 6 chambers, designed exclusively by us, with different values of field flux density (varying from 0.1 to 0.7 T. We have noted the decrease in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPx. The static magnetic fields did not modify the energy state of fibroblasts— adenosine triphosphate (ATP concentration was stable, as well as the generation of malondialdehyde (MDA—which is a marker of oxidative stress. Results of research suggest that static magnetic fields generated by permanent magnets do not cause oxidative stress in investigated fibroblasts and that they may show slight antioxidizing activity.

  12. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    Science.gov (United States)

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.

  13. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  14. Different elution modes and field programming in gravitational field-flow fractionation IV. Field programming achieved with channels of non-constant cross-sections

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Matulík, František; Chmelík, Josef

    2002-01-01

    Roč. 955, č. 1 (2002), s. 95-103 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : gravitational field-flow fractionation * field programming * hydrodynamic lift forces Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002

  15. THE IMPACT OF THERMODYNAMICS ON GRAVITATIONAL COLLAPSE: FILAMENT FORMATION AND MAGNETIC FIELD AMPLIFICATION

    International Nuclear Information System (INIS)

    Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J.; Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya

    2012-01-01

    Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = kρ Γ , with both sub-isothermal exponents Γ 1. We find significant differences between these two cases. For Γ > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For Γ < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.

  16. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.

    Science.gov (United States)

    Nesvizhevsky, V V; Protasov, K V

    2005-01-01

    An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.

  17. Interaction of biological systems with static and ELF electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  18. A variational principle giving gravitational 'superpotentials', the affine connection, Riemann tensor, and Einstein field equations

    International Nuclear Information System (INIS)

    Stachel, J.

    1977-01-01

    A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)

  19. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-01-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm

  20. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-10-15

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  1. Retrospective assessment of exposure to static magnetic fields during production and development of magnetic resonance imaging systems

    NARCIS (Netherlands)

    Bongers, Suzan|info:eu-repo/dai/nl/313874050; Christopher, Yvette|info:eu-repo/dai/nl/27590184X; Engels, Hans; Slottje, Pauline|info:eu-repo/dai/nl/299345351; Kromhout, Hans|info:eu-repo/dai/nl/074385224

    2014-01-01

    At present, the relationship between chronic exposure to static magnetic fields (SMF) and health effects is unclear. We developed a task-based deterministic model for estimating historical electromagnetic field exposure from the static B-field (B0) of magnetic resonance imaging (MRI) systems, for a

  2. Effect of a static magnetic field on Escherichia coli adhesion and orientation

    Czech Academy of Sciences Publication Activity Database

    Mhamdi, L.; Mhamdi, N.; Mhamdi, Nc.; Lejeune, M.; Jaffrezic, N.; Burais, N.; Scorretti, R.; Pokorný, Jiří; Ponsonnet, L.

    2016-01-01

    Roč. 62, č. 11 (2016), s. 944-952 ISSN 0008-4166 Institutional support: RVO:67985882 Keywords : Fluorescence microscopy * Static magnetic field * Escherichia coli Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.462, year: 2016

  3. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  4. Static, self-dual, finite action SU(3) gauge fields in the de Sitter space

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1980-01-01

    Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)

  5. Static properties of small Josephson tunnel junctions in an oblique magnetic field

    DEFF Research Database (Denmark)

    Monaco, Roberto; Aarøe, Morten; Mygind, Jesper

    2009-01-01

    We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the barrier plane. We considered annular junctions, as well as rectangular...

  6. Effects of a low-voltage static electric field on energy metabolism in astrocytes.

    Science.gov (United States)

    Huang, R; Peng, L; Hertz, L

    1997-01-01

    Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of approximately 30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition.

  7. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    International Nuclear Information System (INIS)

    Zhang Pingping; Yin Ruochun; Chen Zhiyou; Wu Lifang; Yu Zengliang

    2007-01-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23 o C after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T

  8. Screening of the field of a static charge in an anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Arsenin, V.V.; Puzitskii, M.L.

    1991-01-01

    The field of a static charge placed in an equilibrium plasma is screened at a distance of the order of the Debye radius. Debye screening occurs both with and without an external magnetic field. This property also persists when the plasma is not an equilibrium plasma but the velocity distribution function of the particles is isotropic (the screening radius in this case contains the characteristic value of the energy instead of the temperature). The situation can change if the distribution is anisotropic. First, the drop in the field can become non-Debye. In particular, in an unmagnetized plasma some distribution functions are characterized by a power-law decrease of the field. Second, a static test charge induces a magnetic as well as an electrostatic field in an anisotropic plasma. In this communication the authors describe the anomalies of screening of the field of a static charge in a magnetized plasma. For definiteness they consider a situation (typical, e.g., of magnetic mirror systems) when the ionic component is anisotropic. The simplifications for the sake of computations are limited to the case of a charge which extends along the magnetic field and only harmonics much longer than the Debye length are significant in the Fourier expansion of the density of this charge in the longitudinal coordinate

  9. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    Science.gov (United States)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  10. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  11. On the screening of static electromagnetic fields in hot QED plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1995-01-01

    The screening of static magnetic and electric fields was studied in massless quantum electrodynamics (QED) and massless scalar electrodynamics (SQED) at temperature T. Various exact relations for the static polarization tensor are first reviewed, and then verified perturbatively to fifth order (in the coupling) in QED and fourth order in SQED, using different resummation techniques. The magnetic and electric screening masses squared, as defined through the pole of the static propagators, are also calculated to fifth order in QED and fourth order in SQED, and their gauge-independence and renormalisation-group invariance is checked. Finally, arguments are provided for the vanishing of the magnetic mass to all orders in perturbation theory. (author) 26 refs

  12. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    Science.gov (United States)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  13. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  14. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Juan J. Soto-Bernal

    2015-01-01

    Full Text Available This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount and morphology of CSH gel; the amount of CSH is larger and its morphology becomes denser and less porous with higher magnetostatic induction strengths; it also shows the evidence of changes in the mineralogical composition of the hydrated cement pastes. The temperature increasing has no negative effects over the cement paste compressive strength since the magnetostatic field affects the process of hydration through a molecular restructuring process, which makes cement pastes improve microstructurally, with a reduced porosity and a higher mechanical strength.

  15. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Science.gov (United States)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (Prooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  16. Mammals' response and adaptation to static magnetic fields as a nonspecific stressor

    Science.gov (United States)

    Nakagawa, Masayoshi

    1990-06-01

    Biological effects of static magnetic fields are still unclear and sometimes contradictory, and it has not been possible to connect this situation directly to some explanations of the mechanisms of the effects of static magnetic fields at the molecular level. Some researchers have pointed out that the process through which animals respond at the whole-body level to static magnetic fields follows the same pattern as the GAS (general adaptation syndrome) described by Selye. This biological or behavioral pattern is considered to be a common process followed by animals which are affected by environmental stimulants; they are depressed first, then surpass the deteriorated conditions and recover their normal conditions, or sometimes overshoot it. When this process is observed with mammals subjected to the magnetic fields, it can be concluded that magnetism has affected the organism. In this paper, the author reviews reports in which magnetic field density and minimum exposure time were determined with certain effects produced under certain conditions, and proposes a regression model for estimating the minimum amount of exposure which produces some effect on mammals.

  17. Gravitational instability of thermally anisotropic plasma

    International Nuclear Information System (INIS)

    Singh, B.; Kalra, G.L.

    1986-01-01

    The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references

  18. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    Science.gov (United States)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  19. Unified field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1976-01-01

    A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de

  20. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  1. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  2. Static properties of small Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monaco, R.; Aarøe, Morten; Mygind, Jesper

    2008-01-01

    The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...

  3. Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics

    DEFF Research Database (Denmark)

    Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio

    2015-01-01

    We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...

  4. Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    International Nuclear Information System (INIS)

    Delande, Dominique; Zakrzewski, Jakub

    2003-01-01

    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution

  5. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  6. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    Science.gov (United States)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  7. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    OpenAIRE

    Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...

  8. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  9. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila; Khandaker, Jahirul Islam; Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Iguchi, Yusuke [Department of Solid State Physics, Debrecen University, 4032 Debrecen (Hungary); Ono, Masao [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan)

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normal to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.

  10. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    Science.gov (United States)

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  11. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    Directory of Open Access Journals (Sweden)

    Irina Alexandra Paun

    2018-02-01

    Full Text Available We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20–40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  12. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis.

    Science.gov (United States)

    Paun, Irina Alexandra; Popescu, Roxana Cristina; Calin, Bogdan Stefanita; Mustaciosu, Cosmin Catalin; Dinescu, Maria; Luculescu, Catalin Romeo

    2018-02-07

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experiments using MG-63 osteoblast-like cells for 3D structures with gradients of pore size helped us to find an optimum pore size between 20-40 µm. Starting from optimized 3D structures, we evaluated both qualitatively and quantitatively the effects of static magnetic fields of up to 250 mT on cell proliferation and differentiation, by ALP (alkaline phosphatase) production, Alizarin Red and osteocalcin secretion measurements. We demonstrated that the synergic effect of 3D structure optimization and static magnetic stimulation enhances the bone regeneration by a factor greater than 2 as compared with the same structure in the absence of a magnetic field.

  13. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  14. Spinning gravitating objects in the effective field theory in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-09-30

    We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.

  15. On the relation between the Einstein and the Komar expressions for the energy of the gravitational field

    International Nuclear Information System (INIS)

    Chrusciel, P.T.

    1985-01-01

    It is shown, that the interpretation of the Einstein energy-momentum ''pseudo-tensor'',''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field, is consistent with a geometric hamiltonian analysis. It is also shown, that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. It is explained why the ADM and the von Freud energy expressions are the same, for asymptotically flat space-times

  16. On the relation between the Einstein and the Komar expressions for the energy of the gravitational field

    International Nuclear Information System (INIS)

    Chrusciel, P.T.

    1983-09-01

    It is shown that the interpretation of the Einstein energy-momentum ''pseudo-tensor'', ''covariantized'' with the help of a background metric, as the energy-momentum tensor of the gravitational field with respect to a background field is consistent with a geometric Hamiltonian analysis. It is also shown that the von Freud superpotential and the Komar superpotential describe the dynamics of the gravitational field in different function spaces, subject to different boundary conditions. One can pass from one superpotential to the other by performing a Legendre transformation on the boundary. (author)

  17. Static and time-dependent solutions of Einstein-Maxwell-Yukawa fields

    International Nuclear Information System (INIS)

    Lal, K.B.; Khan, M.Q.

    1977-01-01

    An exact solution of Einstein-Maxwell-Yukawa field equations has been obtained in a space-time with a static metric. A critical analysis reveals that the results previously obtained by Patel (Tensor New Sci.; 29:237 (1975)), Singh (Gen. Rel. Grav.; 6:657 (1974)), and Taub (Ann. Math.; 53:472 (1951)) are particular cases of the present solution. The singular behaviour of the solution is also discussed in this paper. Further, extending the technique developed by Janis et al (Phys. Rev.; 186:1729 (1969)), for static fields, to the case of nonstatic fields, an exact time-dependent axially symmetric solution of EMY fields has been obtained. The present solution in the nonstatic case is nonsingular in the sense of Bonnor (J. Math. Mech.; 6:203 (1957)) and presents a generalization of the results obtained by Misra (Proc. Cambridge Philos. Soc.; 58:711 (1962)) to the case when a zero-mass scalar field coexists with a source free electromagnetic field. (author)

  18. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants.

    Science.gov (United States)

    Schmiedchen, Kristina; Petri, Anne-Kathrin; Driessen, Sarah; Bailey, William H

    2018-01-01

    The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting. Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results. At field levels encountered from natural sources or HVDC lines (plants. At far higher field levels (> 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on

  19. The deflection angle of a gravitational source with a global monopole in the strong field limit

    International Nuclear Information System (INIS)

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  20. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  1. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  2. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field

    International Nuclear Information System (INIS)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi

    2006-01-01

    The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction

  3. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  4. The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields

    International Nuclear Information System (INIS)

    Hao Sanru

    1993-01-01

    A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models

  5. Rovibrational dynamics of the RbCs molecule in static electric fields. Classical study

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, Pedro F.; Iñarrea, Manuel [Área de Física, Universidad de la Rioja, E-26006 Logroño (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física, Universidad de la Rioja, E-26006 Logroño (Spain)

    2012-04-02

    We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interaction of the field with the molecular polarizability. The stability of the equilibrium points and the phase space structure of the system are explored in detail. We find that, for strong electric fields or for energies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system dynamics. -- Highlights: ► We study the classical rovibrational dynamics of the alkali polar dimer RbCs. ► In the model we consider the interaction of the field with the molecular polarizability. ► The potential energy surface is studied depending on the electric field strength. ► Using surfaces of section we study the phase space structure. ► We find that the molecular polarizability causes relevant effects on the system dynamics.

  6. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  7. Rovibrational dynamics of the RbCs molecule in static electric fields. Classical study

    International Nuclear Information System (INIS)

    Arnaiz, Pedro F.; Iñarrea, Manuel; Salas, J. Pablo

    2012-01-01

    We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interaction of the field with the molecular polarizability. The stability of the equilibrium points and the phase space structure of the system are explored in detail. We find that, for strong electric fields or for energies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system dynamics. -- Highlights: ► We study the classical rovibrational dynamics of the alkali polar dimer RbCs. ► In the model we consider the interaction of the field with the molecular polarizability. ► The potential energy surface is studied depending on the electric field strength. ► Using surfaces of section we study the phase space structure. ► We find that the molecular polarizability causes relevant effects on the system dynamics.

  8. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  9. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.

    Science.gov (United States)

    Volkmann, D; Buchen, B; Hejnowicz, Z; Tewinkel, M; Sievers, A

    1991-09-01

    During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10(-4) · g (i.e. microgravity) during the parabolic flight (lasting for 301-390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 μm and 3.6 μm in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.

  10. Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory

    Directory of Open Access Journals (Sweden)

    Matthew T. Aadne

    2017-02-01

    Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.

  11. Origin of intense magnetic fields near black holes due to non-minimal gravitational-electromagnetic coupling

    International Nuclear Information System (INIS)

    Souza, Rafael S. de; Opher, Reuven

    2011-01-01

    The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.

  12. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  13. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    International Nuclear Information System (INIS)

    Anderssen, S.S.; Stuchberry, A.E.

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is ∼ 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction (∼ 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs

  14. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    Energy Technology Data Exchange (ETDEWEB)

    Anderssen, S S; Stuchberry, A E

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is {approx} 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction ({approx} 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs.

  15. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  16. Magnetic field mapping of the UCNTau magneto-gravitational trap: design study

    Energy Technology Data Exchange (ETDEWEB)

    Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.

  17. Creation of particles in the gravitational field and the boundary conditions for quantized fields

    International Nuclear Information System (INIS)

    Khrustalev, O.A.; Silaev, P.K.

    1995-01-01

    We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs

  18. Dark matter cosmic string in the gravitational field of a black hole

    Science.gov (United States)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  19. Comment on 'Late-time tails of a self-gravitating massless scalar field revisited'

    International Nuclear Information System (INIS)

    Szpak, Nikodem

    2009-01-01

    Bizon et al (2009 Class. Quantum Grav. 26 175006) discuss the power-law tail in the long-time evolution of a spherically symmetric self-gravitating massless scalar field in odd spatial dimensions. They derive explicit expressions for the leading-order asymptotics for solutions with small initial data by using formal series expansions. Unfortunately, this approach misses an interesting observation that the actual decay rate is a product of asymptotic cancellations occurring due to a special structure of the nonlinear terms. Here, we show that one can calculate the leading asymptotics more directly by recognizing the special structure and cancellations already on the level of the wave equation. (comments and replies)

  20. On the gravitational wave production from the decay of the Standard Model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrentí, Francisco

    2016-01-01

    During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...

  1. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  2. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    Science.gov (United States)

    Feng, Jinglang; Hou, Xiyun

    2017-07-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  3. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    International Nuclear Information System (INIS)

    Feng, Jinglang; Hou, Xiyun

    2017-01-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  4. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)

    2017-07-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  5. Improved model of the Earth's gravitational field: GEM-T1

    International Nuclear Information System (INIS)

    Marsh, J.G.; Lerch, F.J.; Christodoulidis, D.C.

    1987-07-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

  6. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    International Nuclear Information System (INIS)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    2017-01-01

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  7. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Larchenkova, Tatiana I. [ASC of P.N.Lebedev Physical Institute, Leninskiy prospect 53, Moscow 119991 (Russian Federation); Lutovinov, Alexander A.; Lyskova, Natalya S. [Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation)

    2017-01-20

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributions the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.

  8. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1998-01-01

    The bifurcated states of a rotating tokamak plasma in the presence of a static, resonant, error-field are strongly analogous to the bifurcated states of a conventional induction motor. The two plasma states are the open-quotes unreconnectedclose quotes state, in which the plasma rotates and error-field-driven magnetic reconnection is suppressed, and the open-quotes fully reconnectedclose quotes state, in which the plasma rotation at the rational surface is arrested and driven magnetic reconnection proceeds without hindrance. The response regime of a rotating tokamak plasma in the vicinity of the rational surface to a static, resonant, error-field is determined by three parameters: the normalized plasma viscosity, P, the normalized plasma rotation, Q 0 , and the normalized plasma resistivity, R. There are 11 distinguishable response regimes. The extents of these regimes are calculated in P endash Q 0 endash R space. In addition, an expression for the critical error-field amplitude required to trigger a bifurcation from the open-quotes unreconnectedclose quotes to the open-quotes fully reconnectedclose quotes state is obtained in each regime. The appropriate response regime for low-density, ohmically heated, tokamak plasmas is found to be the nonlinear constant-ψ regime for small tokamaks, and the linear constant-ψ regime for large tokamaks. The critical error-field amplitude required to trigger error-field-driven magnetic reconnection in such plasmas is a rapidly decreasing function of machine size, indicating that particular care may be needed to be taken to reduce resonant error-fields in a reactor-sized tokamak. copyright 1998 American Institute of Physics

  9. Application of the artificial satellite of the earth to determine the velocity of the gravitational interaction within newtonian gravitational fields

    International Nuclear Information System (INIS)

    Cristea, Gh.

    1975-01-01

    In the first part of this paper, additional data are given concerning a gravimeter consisting in a pendulum-laser set proposed in a previous paper of the author (1). This gravimeter could have a sensitivity of 0.1 microgal or even 0.01 microgal in the case of statistical measurements. If processing by an on-line computer is used, the pendulum-laser can constitute a gravimeter which, used in statistical measurements on a long time interval, could reach a sensitivity of 10 -12 g. The second part of the paper points out the advantages resulting from determining the velocity of the gravitational reaction in an artificial satellite of the earth. The main advantage is the very fact that this measurement can be achieved by means of the existant gravimeters. The massive reduction of the time error is due to the increase of the ''sinusoid'' frequency resulting from the recording being made on the gravimeter set on an artificial satellite turning around the earth in about 90 minutes

  10. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  11. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  12. Influence of static magnetic fields in phototaxis and osmotic stress in Gymnodinium catenatum (Dinophyceae).

    Science.gov (United States)

    Vale, Paulo

    2017-07-01

    Phototaxis response of the toxic microalgae Gymnodinium catenatum was studied in vitro. The percentage of cells remaining at mid-depth 20 min after stirring increased with solar radio, X-ray and solar flares output. It also increased with geomagnetic activity and temperature, and was dependent on culture time. Increase in the local static magnetic field with a permanent magnet did not influence the positive phototaxis response. However, survival and growth to a provoked hypo-osmotic shock in an altered static magnetic field was dependent on culture time and geomagnetic activity at a threshold below 22 nT. The results from phototaxis and hypo-osmotic shock experiments were in line with the previous hypothesis for the existence of two separate deleterious mechanisms conditioning the natural blooms of G. catenatum: one that is dependent on solar radiation and the other that is related to geomagnetic activity. Variations in electromagnetic fields caused by tectonic activity were also capable of influencing G. catenatum phototaxis and growth response in vitro.

  13. Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Hashino, Katsuya, E-mail: hashino@jodo.sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kakizaki, Mitsuru, E-mail: kakizaki@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Kanemura, Shinya, E-mail: kanemu@sci.u-toyama.ac.jp [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of); Matsui, Toshinori, E-mail: matsui@kias.re.kr [School of Physics, KIAS, Seoul 02455 (Korea, Republic of)

    2017-03-10

    We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.

  14. Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2017-03-01

    Full Text Available We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.

  15. A Pulsed Electric Field (PEF) bench static system to study bacteria inactivation

    International Nuclear Information System (INIS)

    Cortese, Pietro; Dellacasa, Giuseppe; Gemme, Roberto; Bonetta, Sara; Bonetta, Silvia; Carraro, Elisabetta; Motta, Francesca; Paganoni, Marco; Pizzichemi, Marco

    2011-01-01

    Pulsed Electric Fields (PEF) technology is a promising non-thermal processing method for inactivation of microorganisms. A small PEF bench system able to treat a 0.4 ml static liquid volume has been built and tested at the laboratories of the Universita del Piemonte Orientale in Alessandria, Italy. The technique used to produce the required fields consists of charging high voltage cables of various lengths and subsequently discharge them on a cylindrical cell. The pulse intensity can be adjusted to reach a maximum electric field in the cell of about 35 kV/cm and the pulse frequency can reach 10 Hz. We describe the PEF system in some detail and, as a benchmark of its performances, we report preliminary results obtained on Escherichia coli (ATCC 25922) at 10 9 Cfu/ml concentration suspended in a McIlvaine buffer (pH 7.2).

  16. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  17. Biological effects of static and low-frequency electromagnetic fields: an overview of United States literature

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-04-12

    Results are reviewed from a number of studies on the biological effects of static and low frequency electromagnetic fields on animals. Based on a long history of experience with electric fields by the utility industry, it appears that intermittent and repeated exposures to strong 60-Hz electromagnetic fields from present power transmission systems have no obvious adverse effect on the health of man. It has been recognized recently that this belief must be tested by carefully designed and executed experiments under laboratory conditions where precise control can be exercised over coexisting environmental factors. A number of studies have been initiated in response to this need to evaluate possible effects from both acute and chronic exposures. 100 references.

  18. Fast dose planning Monte Carlo simulations in inhomogeneous phantoms submerged in uniform, static magnetic fields

    International Nuclear Information System (INIS)

    Yanez, R.; Dempsey, J. F.

    2007-01-01

    We present studies in support of the development of a magnetic resonance imaging (MRI) guided intensity modulated radiation therapy (IMRT) device for the treatment of cancer patients. Fast and accurate computation of the absorbed ionizing radiation dose delivered in the presence of the MRI magnetic field are required for clinical implementation. The fast Monte Carlo simulation code DPM, optimized for radiotherapy treatment planning, is modified to simulate absorbed doses in uniform, static magnetic fields, and benchmarked against PENELOPE. Simulations of dose deposition in inhomogeneous phantoms in which a low density material is sandwiched in water shows that a lower MRI field strength (0.3 T) is to prefer in order to avoid dose build-up near material boundaries. (authors)

  19. Moessbauer investigation of static-disorder crystalline media. V. Hyperfine fields' dispersion in static-disordered crystalline media of tetragonal and trigonal iron germanates

    International Nuclear Information System (INIS)

    Constantinescu, S.

    2007-01-01

    The refined 57 Fe Moessbauer spectra of some static-disordered crystalline media (with melilite and Ca-gallate structure) evidenced observable electric and magnetic crystal field dispersions. It is the fifth in a series of papers published previously in the same journal on this subject. The data of crystalline hyperfine fields and their dispersion parameters have calculated using the modeling procedure given in a paper by Kaminskii, et al. published in 1986. The obtained values of the magnetic and quadrupole splitting parameters compared with to experimental data showed the possibility to predict the crystal fields' dispersion. (author)

  20. Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model.

    Science.gov (United States)

    Tharayil, Joseph J; Goetz, Stefan M; Bernabei, John M; Peterchev, Angel V

    2017-10-10

    The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm 3 . This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. © 2017 International Neuromodulation Society.

  1. Static magnetic field effects on proteases with fibrinolytic activity produced by Mucor subtilissimus.

    Science.gov (United States)

    Albuquerque, Wendell; Nascimento, Thiago; Brandão-Costa, Romero; Fernandes, Thiago; Porto, Ana

    2017-02-01

    The influence of a static magnetic field (SMF) on crude enzyme extracts with proteolytic activity is described and discussed. Proteolytic enzymes, which hydrolyze peptide bonds, and fibrinolytic enzymes, which dissolve fibrin clots, have industrial relevance, and applicability dependent on improvements of productivity and activity. We investigated whether a moderate SMF affects proteolysis in different in vitro tests: general proteolysis of azocasein substrate, and static and dynamic fibrinolytic processes (to compare fibrin gel configuration under exposure). Crude enzyme extracts, obtained from solid state fermentation of Mucor subtilissimus UCP (Universidade Católica de Pernambuco, Recife, Brazil) 1262, were used to carry out assays under slightly heterogeneous fields: a varied vertical SMF (for tests in Eppendorf tubes, from 0.100 to 0.170 T) and a varied horizontal SMF (for tests in Petri dishes, from 0.01 to 0.122 T), generated by two permanent magnets (NdFeB alloy). Results showed significant differences (P < 0.05) in static fibrinolysis assays after 24 h of exposure. The mean diameter of halos of fibrin degradation in the treated group increased by 21% compared to the control group; and the pixel number count of fibrin consumption (in a computational analysis of the area of each halo) enhanced by 30% with exposure. However, in dynamic fibrinolysis assays, no effects of SMF were observed. These results suggest a response of fibrin monomers to the SMF as a possible cause of the observed effects. Bioelectromagnetics. 38:109-120, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  3. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    International Nuclear Information System (INIS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  4. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  5. Volume of visual field assessed with kinetic perimetry and its application to static perimetry

    Directory of Open Access Journals (Sweden)

    Christoforidis JB

    2011-04-01

    be applied to static perimetry.Keywords: visual field, kinetic perimetry, static perimetry, steradian, cartographic distortion

  6. Study of the combined action of gamma radiation and static electric fields in human cells

    International Nuclear Information System (INIS)

    Moron, Michelle Mendes

    2008-01-01

    The basic principle of radiotherapy is the one of maximizing damage to the tumor, while minimizing it in neighboring health tissues. Several strategies have been worked out aiming at increasing cellular radiosensitivity, and among them is the use of exogenous fields. Our goal in this work is the study in human cells of the effect resulting from the association of irradiation with exposure to exogenous static electric fields. The T47D cell line of breast cancer cells was irradiated with gammas in the 0 - 8 Gy doses range. The corresponding survival curve provided information on the radiosensitivity of this cell line. The rate of cell deaths per Gray in the 0 - 8 Gy range exhibited a maximum at 2 Gy, which corresponds to the most efficient irradiation dose. The viability of this T47D cells exposed to both gamma radiation and 1.250 V/cm static electric field (SEF) was about 12% lower than when only irradiated. The sole exposure of the cells to SEF by 24 and 72 hours didn't induce toxicity. Immunofluorescence runs carried out in irradiated normal MRC5 cell line of human lung fibroblast, without and with exposition to a SEF, have quantified the expression of the y- H2AX histone. The amount of phosphorylated histones was approximately 40% higher after irradiation with 2 Gy plus exposure to a SEF by 1 hour, showing that the electric field negatively interfered in the repairing process of the DNA double strand breaks. The flow cytometry analysis with FACS allowed the investigation of a possible interference of radiation and SEF in the cell distributions among the cellular cycle phases. It was found that in T47D cells treated with 1 and 2 Gy by 24 hours the SEF also negatively interfered in the DNA repairing process, as evidenced by the higher accumulation of cells in the S phase. Therefore, it would be possible to conclude that static and exogenous electric fields are able of negatively interfering in the cellular repair and, presumably, in DNA repair. (author)

  7. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  8. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  9. A contribution to the numerical calculation of static electromagnetic fields in unbounded domains

    International Nuclear Information System (INIS)

    Krawczyk, F.

    1990-11-01

    The numerical calculation of static electromagnetic fields for arbitrarily shaped three-dimensional structures, especially in unbounded domains, is very memory and cpu-time consuming. In this thesis several schemes that reduce memory and cpu-time consumption have been developed or introduced. The memory needed can be reduced by a special simulation of boundaries towards open space and by the use of a scalar potential for the field description. Known disadvantages of the use of such a potential are avoided by an improved formulation of the used algorithms. The cpu-time for the calculations can be reduced remarkably in many cases by using a multigrid solution scheme including a defect-correction. A computer code has been written that uses these algorithms. With the help of this program it has been demonstrated that using these algorithms, distinct improvements in terms of computer memory, cpu-time consumption and accuracy can be achieved. (orig.) [de

  10. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    International Nuclear Information System (INIS)

    Garibova, L.S.; Avetisyan, T.O.; Ajrapetyan, S.N.

    2000-01-01

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A 1 and A 2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field [ru

  11. Studies on the influence of static magnetic fields on prenatal development of mice

    Energy Technology Data Exchange (ETDEWEB)

    Konermann, G.; Moenig, H.

    1986-10-01

    Developmental effects were studied in pregnant albino-mice after exposures to a static homogeneous magnetic field (1T) on days 7, 10 or 13 post conception. These days correspond approximately to the 16th, 28th or 42nd day p.c. in human development and represent stages of increased sensitivity. Intrauterine effects (after exposures on days 7 or 10 p.c.) were evaluated included lethality, external malformations, disoders in the fetal skeleton and fetal weights. The evaluation of postnatal effects (after exposure on day 13 p.c.) included body-weight, brain-weight, diameter of neocortex and commissures and the alignment of cortical neurons up to day 46 p.c. According to all these criteria, no developmental effects were observed after the exposures to the magnetic field. Transient effects, either being compensatable or biologically without relevance, cannot be excluded.

  12. Propagators for a quantized scalar field in a static closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  13. Color fields of the static pentaquark system computed in SU(3) lattice QCD

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro

    2013-02-01

    We compute the color fields of SU(3) lattice QCD created by static pentaquark systems, in a 243×48 lattice at β=6.2 corresponding to a lattice spacing a=0.07261(85)fm. We find that the pentaquark color fields are well described by a multi-Y-type shaped flux tube. The flux tube junction points are compatible with Fermat-Steiner points minimizing the total flux tube length. We also compare the pentaquark flux tube profile with the diquark-diantiquark central flux tube profile in the tetraquark and the quark-antiquark fundamental flux tube profile in the meson, and they match, thus showing that the pentaquark flux tubes are composed of fundamental flux tubes.

  14. Color fields computed in SU(3) lattice QCD for the static tetraquark system

    International Nuclear Information System (INIS)

    Cardoso, Nuno; Cardoso, Marco; Bicudo, Pedro

    2011-01-01

    The color fields created by the static tetraquark system are computed in quenched SU(3) lattice QCD, in a 24 3 x48 lattice at β=6.2 corresponding to a lattice spacing a=0.07261(85) fm. We find that the tetraquark color fields are well described by a double-Y, or butterfly, shaped flux tube. The two flux-tube junction points are compatible with Fermat points minimizing the total flux-tube length. We also compare the diquark-diantiquark central flux-tube profile in the tetraquark with the quark-antiquark fundamental flux-tube profile in the meson, and they match, thus showing that the tetraquark flux tubes are composed of fundamental flux tubes.

  15. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  16. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-01-01

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow

  17. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  18. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  19. Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect

    Science.gov (United States)

    Okawa, Hirotada; Cardoso, Vitor

    2014-11-01

    Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.

  20. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  1. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Science.gov (United States)

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  2. Auroral electron fluxes induced by static magnetic field aligned electric field and plasma wave turbulence

    International Nuclear Information System (INIS)

    Assis, A.S. de; Silva, C.E. da; Dias Tavares, A. Jr.; Leubner, C.; Kuhn, S.

    2001-07-01

    We have studied the formation of auroral electron fluxes induced by a field aligned dc electric field in the presence of plasma wave turbulence. The effect of the wave spectral shape on the production rate has been considered. This acceleration scheme was modelled by the weak turbulence approach. The electron fluxes for narrow and broad band spectra, in the case of low and high phase velocities, are calculated, and it is found as a general feature, for all modes, that their enhancement is larger the weaker the background electric field, while for its absolute enhancement it is just the opposite. The electron fluxes are enhanced by many orders of magnitude over that without turbulence. It is also shown that the modes enhance the runaway production rate via their Cherenkov dissipation, and that a synergetic effect occurs in the enhancement when more than one mode turbulent is present in the acceleration region. (author)

  3. Linear spin-zero quantum fields in external gravitational and scalar fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1977-11-01

    A general formalism for quantizing the covariant Klein Gordon equation in an arbitrary globally hyperbolic space-time is presented. It is argued that much of the conceptual confusion surrounding ''quantum field theory in curved space-time'' has been caused by the misapplication of a quantization procedure (the single representation formalism) which is really only suitable for quantizing stationary systems. Drawing on a close analogy with time-dependent external field problems in flat space-time, it is argued for the introduction of a new quantization procedure: the many vacuum formalism which accommodates non-stationary situations. In the many vacuum formalism, a whole family of different representations of the field algebra plays a role and dynamics is necessarily described in terms of isomorphisms between different algebras rather than automorphisms of a single algebra. It is shown how this many vacuum approach gives physically sensible results in the flat space-time case. In the curved space-time case, corresponding well defined formalism is obtained relying on rigorous results established in I. A principal feature is that a different vacuum state is obtained for each choice of Cauchy surface together with a choice of lapse and shift functions on that surface. Several questions-mathematical and interpretational- raised by the scheme are discussed

  4. Classical field theory. On electrodynamics, non-Abelian gauge theories and gravitation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian

    2018-04-01

    Scheck's successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity. The new concept of this edition presents the content divided into two tracks: the fast track for master's students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Cleary labeled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Classical Field Theory.

  5. Evaluation of occupational exposure to static magnetic field in a chloralkali plant

    Directory of Open Access Journals (Sweden)

    AR Coobineh

    2005-10-01

    Full Text Available Background and Aims: An observational cross sectional study was conducted to determine iflong term exposure to static magnetic fields could be related to findings of medical examinations.Method: Health data were obtained for 20 workers who spent a major portion of their workdaysin the magnetic fields produced by the direct current through large electrolytic cells. These datawere compared to those of a control group of 21 workers. Intensity of magnetic fields weremeasured in the cell room and the Time weighted Average (TWA exposure to magnetic field wascalculated for each job classification.Results: Maximum and minimum intensities in mTwere found to be 16.99 and 0.46, respectively,which were well below the permissible level. Maximum TWAexposure to magnetic field wasfound to be 47.59 mTWhich were observed. Comparing the ECG, EEG, blood Pressure and pulseratesbetween the two groups showed no statistically significant differences. Clinical findingshowed that fatigue and nervousness complain were be higher in the case group and weresignificantly different between the two groups.Conclusion: We did not see statistical significant differences between case and control groups inECG, EEG, blood pressure and pulse-rates. We have seen statistically differences in the fatigue(P<0.01 and nervousness (P<0.01 complain of these two groups. We suggest that it may benecessary to choose a value of than 60 mT (TLV-TWA, so that the complains of fatigue andnervousness will be reduce.

  6. Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields

    International Nuclear Information System (INIS)

    Donovan, Ellen M.; Johnson, Ursula; Shentall, Glyn; Evans, Philip M.; Neal, Anthony J.; Yarnold, John R.

    2000-01-01

    Purpose: A method that uses electronic portal imaging to design intensity-modulated beams for compensation in breast radiotherapy was implemented using multiple static fields in a planning study. We present the results of the study to verify the algorithm, and to assess improvements to the dosimetry. Methods and Materials: Fourteen patients were imaged with computed tomography (CT) and on a treatment unit using an electronic portal imager. The portal imaging data were used to design intensity-modulated beams to give an ideal dose distribution in the breast. These beams were implemented as multiple static fields added to standard wedged tangential fields. Planning of these treatments was performed on a commercial treatment planning system (Target 2, IGE Medical Systems, Slough, U.K.) using the CT data for each patient. Dose-volume histogram (DVH) analysis of the plans with and without multileaf collimator (MLC) compensation was carried out. This work has been used as the basis for a randomized clinical trial investigating whether improvements in dosimetry are correlated with the reduction of long-term side effects from breast radiotherapy. Results: The planning analysis showed a mean increase in target volume receiving 95-105% of prescribed dose of 7.5% (range -0.8% to 15.9%) when additional MLC compensation was applied. There was no change to the minimum dose for all 14 patient data sets. The change in the volume of breast tissue receiving over 105% of prescribed dose, when applying MLC compensation, was between -1.4% and 11.9%, with positive numbers indicating an improvement. These effects showed a correlation with breast size; the larger the breast the greater the amount of improvement. Conclusions: The method for designing compensation for breast treatments using an electronic portal imager has been verified using planning on CT data for 14 patients. An improvement was seen in planning when applying MLC compensation and this effect was greater the larger the

  7. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  8. Static Load Test on Instrumented Pile – Field Data and Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Krasiński Adam

    2017-09-01

    Full Text Available Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.

  9. Static Load Test on Instrumented Pile - Field Data and Numerical Simulations

    Science.gov (United States)

    Krasiński, Adam; Wiszniewski, Mateusz

    2017-09-01

    Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.

  10. Linear spin-zero quantum fields in external gravitational and scalar fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1977-10-01

    Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators

  11. Electrified BPS giants: BPS configurations on giant gravitons with static electric field

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Sheikh-Jabbari, Mohammad Mahdi

    2007-01-01

    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field

  12. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  14. Modeling bidding decision in engineering field with incomplete information: A static game–based approach

    Directory of Open Access Journals (Sweden)

    Zhi-xing Huang

    2016-01-01

    Full Text Available Corporate investment decision about engineering projects is a key issue for project management. This article aims to study the process of bidding decision-making in engineering field under the condition of incomplete information and investigating the influence of bidders’ game behaviors on investment decision. With reasonable assumed scenes, this article uses an approach to describe the decision process for bidding. The approach is based on the static game theory. With the proposed model, the effectiveness of game participants and the objective function are put forward, and the characteristics of price quotation and the best strategies of bidders under the equilibrium condition are discussed. The results can give a better understanding of investment decision in engineering management and are helpful for tenderees to avoid excessive competition among bidders.

  15. Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field

    Directory of Open Access Journals (Sweden)

    Shenzhi Xu

    2007-01-01

    Full Text Available Effects of static magnetic field (SMF on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region. There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone.

  16. Mutagenicity and co-mutagenicity of static magnetic field in SOD-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Yoshie, Sachiko; Ikehata, Masateru; Hayakawa, Toshio; Hirota, Noriyuki; Takemura, Taro; Minowa, Takashi; Hanagata, Nobutaka

    2008-01-01

    The effects of strong static magnetic fields (SMFs) on mutagenesis related to reactive oxygen species were investigated. To estimate mutagenicity of SMFs, superoxide dismutase (SOD)-deficient Escherichia coli QC774 and its parental strain GC4468 were employed. Tester strains were exposed to 5, 10 and 13 T SMFs for 24 hr at 37 C degrees in LB medium. After exposure, mutation frequency on thymine synthesis genes was determined for evaluation of mutagenicity of SMFs exposure. In the result, no statistically significant difference in mutation frequency on thymine synthesis genes was observed between SMF-exposed cells and unexposed cells in all of magnetic flux densities. Furthermore, SMFs up to 13 T did not affect mutagenicity of plumbagine under its presence of 25 μM, respectively. It suggests that SMF did not have either mutagenicity or co-mutagenicity in SOD-deficient and its parental E. coli strains under the condition in this study. (author)

  17. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  18. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  19. Efficient Evaluation of Arbitrary Static Fields For Symplectic Particle Tracking

    CERN Document Server

    Bojtar, Lajos

    2018-01-01

    This article describes a method devised for efficient evaluation of arbitrary static magnetic and electric fields in a source free region needed for long time tracking of charged particles. Field values given on the boundary of the region of interest are reproduced inside by an arrangement of hypothetical magnetic or electric monopoles surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each monopole. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Software has been developed to test and demonstrate the method on a small particle accelerator. To our knowledge, there is no other meth...

  20. Correlations and fluctuations in static and dynamic mean-field approaches

    International Nuclear Information System (INIS)

    Balian, R.; Veneroni, M.

    1991-01-01

    Let the state of a many-body system at an initial time be specified, completely or partly; find the expectation values, correlations and fluctuations of single-particle observables at a later time. The characteristic function of these observables is optimized within a general variational scheme. The expansion of the optimal characteristic function provides the same results as the conventional mean-field approaches for the thermodynamic potentials and the expectation values: for fermions the best initial state is then the Hartree-Fock (HF) solution and the evolution is described by the time-dependent Hartree-Fock (TDHF) equation. Two special cases are investigated as preliminary steps. The first case deals with the evaluation of correlations for static problems, where the initial and final times coincide. In the second special case, the exact initial state is assumed to be an independent-particle one. (K.A.) 23 refs.; 1 fig

  1. Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube

    Directory of Open Access Journals (Sweden)

    Flaviane C. F. Venditti

    2015-01-01

    Full Text Available The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for constellations of nanosatellites.

  2. Snow load effect on earth's rotation and gravitational field, 1979-1985

    Science.gov (United States)

    Chao, B. Fong; O'Connor, William P.; Chang, Alfred T. C.; Hall, Dorothy K.; Foster, James L.

    1987-01-01

    A global, monthly snow depth data set has been generated from the Nimbus 7 satellite observations using passive microwave remote-sensing techniques. Seven years of data, 1979-1985, are analyzed to compute the snow load effects on the earth's rotation and low-degree zonal gravitational field. The resultant time series show dominant seasonal cycles. The annual peak-to-peak variation in J2 is found to be 2.3 x 10 to the -10th, that in J3 to be 1.1 x 10 to the -10th, and believed to decrease rapidly for higher degrees. The corresponding change in the length of day is 41 micro-s. The annual wobble excitation is (4.9 marc sec, -109 deg) for the prograde motion component and (4.8 marc sec, -28 deg) for the retrograde motion component. The excitation power of the Chandler wobble due to the snow load is estimated to be about 25 dB less than the power needed to maintain the observed Chandler wobble.

  3. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  4. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Pophof, B.; Brix, G.

    2017-01-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de

  5. Modelling the Earth's static and time-varying gravity field using a combination of GRACE and GOCE data

    NARCIS (Netherlands)

    Farahani, H.H.

    2013-01-01

    The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new

  6. The Newton constant and gravitational waves in some vector field adjusting mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Osvaldo P. [IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com [Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2017-10-01

    At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.

  7. Field equations of the gauge theory of gravitation originate from a quadratic Lagrangian with torsion

    International Nuclear Information System (INIS)

    Gogala, B.

    1983-01-01

    The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)

  8. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  9. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    David Stirling

    2013-02-01

    Full Text Available Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.

  10. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Jeans Instability of the Self-Gravitating Viscoelastic Ferromagnetic Cylinder with Axial Nonuniform Rotation and Magnetic Field

    Science.gov (United States)

    Dhiman, Joginder Singh; Sharma, Rajni

    2017-12-01

    The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.

  12. On theories of gravitation in which the dynamical equations do not follow from the field equations and the Birkhoff theorem

    International Nuclear Information System (INIS)

    Bleyer, U.; Muecket, J.P.

    1980-01-01

    In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)

  13. Solution of Einstein's Geometrical Gravitational Field Equations Exterior to Astrophysically Real or Hypothetical Time Varying Distributions of Mass within Regions of Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available Here, we present a profound and complete analytical solution to Einstein’s gravitational field equations exterior to astrophysically real or hypothetical time varying distribu- tions of mass or pressure within regions of spherical geometry. The single arbitrary function f in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein’s gravitational field equations tends out to be a gen- eralization of Newton’s gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration

  14. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    OpenAIRE

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we sho...

  15. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  16. Thermodynamic Analysis of the Static Spherically Symmetric Field Equations in Rastall Theory

    International Nuclear Information System (INIS)

    Moradpour, Hooman; Salako, Ines G.

    2016-01-01

    The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

  17. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  18. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL; Fortner, Allison M [ORNL; Riemer, Kristina P [ORNL; Schweizer, Peter E [ORNL

    2012-04-01

    benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011

  19. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 4. ed.; Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik

    2017-09-01

    The following topics are dealt with: Maxwell's equations together with their symmetry and covariance, the Maxwell theory as classical field theory, simple applications of Maxwell's theory, local gauge theories, classical field theory of gravitation. (HSI)

  20. Antioxidant enzymes response induced by static magnetic field in pregnant rats

    International Nuclear Information System (INIS)

    Chater, S.; Abdelmelek, H.; Garrel, C.; Favier, A.; Sakly, M.; Rhouma, K.B.

    2005-01-01

    Some recent epidemiologic studies have suggested that static magnetic fields (MF) affect human health and, in particular, that the incidence of certain types of cancer, depression, and miscarriage might increase among individuals living or working in environments exposed to such fields. However, despite numerous studies concerning MF, the mechanism of its adverse effect still remains unknown. So, our work hypothesis was that abortion effects induced by MF exposure could be due to an over production of reactive oxygen species produced by pregnant rats. The aim of our study was to examine if MF was able to induce an oxidative stress in pregnant-rats. Pregnant female Wistar rats were exposed to MF (128 mT/1h/day) on day 6 to 19 of gestation. Animals were sacrificed three days after delivery and plasma was collected to determine malondialdehyde (MDA), an indirect oxidative stress marker, glutathion peroxidase activity (GPX), an antioxydant enzyme, and the total antioxidant status (TAS). MF exposure had no effects on MDA level (2.97 ± 0.50 μmol/l vs 2.62 ±0.19 μmol/l, p>0.05) and plasma GPX activity (6936.00 ±109.59 U/l vs 6258.00 ±111.12 U/l, p>0.05). Interestingly, MF exposure induced elevation in the total antioxidant status values (0.716 ±0.018 mmol/l vs 0.646 ±0.023 mmol/l, p<0.05). The results indicated that sub-acute exposures to magnetic field during rat pregnancy have no effects on lipid peroxidation, probably related to the protection role of antioxidant enzymes

  1. Correlation analysis of extremely low-frequency variations of the natural electromagnetic Earth field and the problem of detecting periodical gravitational radiation

    International Nuclear Information System (INIS)

    Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.

    1994-01-01

    A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs

  2. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  3. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  4. Study on Application of Static Magnetic Field for Adjuvant Arthritis Rats

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2004-01-01

    Full Text Available In order to examine the effectiveness of the application of static magnetic field (SMF on pain relief, we performed a study on rats with adjuvant arthritis (AA. Sixty female Sprague–Dawley (SD rats (age: 6 weeks, body weight: approximately 160 g were divided into three groups [SMF-treated AA rats (Group I, non-SMF-treated AA rats (Group II and control rats (Group III]. The SD rats were injected in the left hind leg with 0.6 mg/0.05 ml Mycobacterium butyrium to induce AA. The rats were bred for 6 months as chronic pain model. Thereafter, the AA rats were or were not exposed to SMF for 12 weeks. We assessed the changes in the tail surface temperature, locomotor activity, serum inflammatory marker and bone mineral density (BMD using thermography, a metabolism measuring system and the dual-energy X-ray absorptiometry (DEXA method, respectively. The tail surface temperature, locomotor activity and femoral BMD of the SMF-exposed AA rats were significantly higher than those of the non-SMF-exposed AA rats, and the serum inflammatory marker was significantly lower. These findings suggest that the pain relief effects are primarily due to the increased blood circulation caused by the rise in the tail surface temperature. Moreover, the pain relief effects increased with activity and BMD of the AA rats.

  5. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  6. Efficacy of Static Magnetic Field for Locomotor Activity of Experimental Osteopenia

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2007-01-01

    Full Text Available In order to examine the effectiveness of applying a static magnetic field (SMF for increasing bone mineral density (BMD, we assessed the degree of osteopenia by dual-energy X-ray absorptiometry (DEXA, the metabolism measuring system, and histological examination of bone tissue in an ovariectomized (OVX rat model. Thirty-six female Wistar rats (8 weeks old, 160–180 g were divided into three groups. The rats in the OVX-M group were exposed to SMF for 12 weeks after ovariectomy. The ovariectomized rats in the OVX-D group were not exposed to SMF as a control. The rats in the normal group received neither ovariectomy nor exposure to SMF. Twelve-week exposure to SMF in the OVX-M group inhibited the reduction in BMD that was observed in the OVX-D group. Moreover, in the OVX rats, before exposure to SMF, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After exposure of OVX rats to SMF, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the normal group. In the OVX-M group, the continuity of the trabecular bone was maintained more favorably and bone mass was higher than the respective parameters in the OVX-D group. These results demonstrate that exposure to SMF increased the level of locomotor activity in OVX rats, thereby increasing BMD.

  7. Detection of heavy ion induced DNA double-strand breaks using static-field gel electrophoresis

    International Nuclear Information System (INIS)

    Taucher-Scholz, G.; Heilmann, J.; Schneider, G.; Kraft, G.

    1994-11-01

    Radiation induced DNA double-strand breaks (DSBs) were measured in Chinese hamster ovary cells (CHO-K1) using an experimental protocol involving static-field gel electrophoresis following exposure to various accelerated ions. Dose-effect curves were set up and relative biological efficiencies (RBEs) for DSB induction were determined for different radiation qualities. RBEs around 1 were obtained for low energy deuterons (6-7 keV/μm), while for high energy oxygen ions (20 keV/μm) an RBE value slightly greater than 1 was determined. Low energetic oxygen ions (LET ∼ 250 keV/μm) were found to show RBEs substantially below unity, and for higher LET particles (≥ 250 keV/μm) RBEs for DSB induction were generally found to be smaller than 1. The data presented here are in line with the generally accepted view that not induced DSBs, but misrepaired or unrepaired DNA-lesions are related to cellular inactivation. (orig.)

  8. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  9. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  10. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  11. Critical opalescence of neutrons in nonuniform liquid in the gravitation field

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Chalyj, A.V.; Chernenko, L.M.

    1991-01-01

    Single elastic scattering of neutrons has been investigated in a liquid near the critical point. Double differential cross sections of neutron scattering are obtained in such a system with allowance for the gravitational effect and in various approximation for the pair correlation function of density fluctuations

  12. Weak Static and Extremely Low Frequency Magnetic Fields Affect In Vitro Pollen Germination

    Directory of Open Access Journals (Sweden)

    Lucietta Betti

    2011-01-01

    Full Text Available This study concerns the effects of a weak static magnetic field (MF at 10 μT oriented downward, combined with a 16-Hz sinusoidal MF (10 μT, on in vitro pollen germination of kiwifruit (Actinidia deliciosa. Extremely low frequency magnetic field (ELF-MF exposure was carried out by a signal generator unit connected to a copper wire solenoid, inside which samples where placed. Two different kinds of treatment were performed: direct and indirect. In the direct treatment, pollen samples were directly exposed during rehydration, germination, or both. In the indirect treatment, the pollen growth medium was prepared with water aliquots (at standard temperature of 20°C and pH = 6.74 that were exposed before use for 8 or 24 h. The main purpose of our research was to identify a biological marker (in vitro pollen germination in a stressing growth medium without Ca2+ susceptible to the effects of direct or indirect ELF-MF exposure. The working variable was the pollen germination rate, as detected blind after 3 h 30 min by an Axioplan microscope. A directionally consistent recovery of germination percentage was observed both for direct exposure (during germination and both rehydration and germination phases and water-mediated exposure (with water exposed for 24 h and immediately used. Our results suggest that the ELF-MF treatment might partially remove the inhibitory effect caused by the lack of Ca2+ in the culture medium, inducing a release of internal Ca2+ stored in the secretory vesicles of pollen plasma membrane. Although preliminary, findings seem to indicate the in vitro pollen performance as adequate to study the effects of ELF-MFs on living matter.

  13. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  14. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385.

    Directory of Open Access Journals (Sweden)

    Zhiyun Wang

    2010-11-01

    Full Text Available This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009 established that moderate strength static magnetic field (SMF exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A(2A receptor (A(2AR in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD.SMF reproduced several responses elicited by ZM241385, a selective A(2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A(2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A(2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.

  15. Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    Science.gov (United States)

    Wang, Zhiyun; Che, Pao-Lin; Du, Jian; Ha, Barbara; Yarema, Kevin J.

    2010-01-01

    Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders. PMID:21079735

  16. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  17. Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet

    International Nuclear Information System (INIS)

    Fiaschetti, V.; Pastorelli, D.; Squillaci, E.; Funel, V.; Rascioni, M.; Meschini, A.; Salimbeni, C.; Sileri, P.; Franceschilli, L.; Simonetti, G.

    2013-01-01

    Aim: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. Materials and methods: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. Results: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. Conclusion: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

  18. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern

    Directory of Open Access Journals (Sweden)

    Snoussi Sarra

    2012-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Hadar (S. Hadar is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal, in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF, in the oxidative stress status (bacterioferritin, in virulence (OmpX, Yfgl or in motility (FlgE and UspF. Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.

  19. Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems

    DEFF Research Database (Denmark)

    Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas

    2018-01-01

    . The main result of this paper is the verification of a nonlinearity condition in an infinite dimensional Hilbert space context. This condition guarantees convergence of iterative regularization methods. Furthermore, numerical examples for recovery of the Lam´e parameters from displacement data simulating......We consider a problem of quantitative static elastography, the estimation of the Lam´e parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber iteration both analytically and numerically...... a static elastography experiment are presented....

  20. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  1. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  2. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  3. Self-gravitating black hole scalar wigs

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  4. The gravitational polarization in general relativity: solution to Szekeres' model of quadrupole polarization

    International Nuclear Information System (INIS)

    Montani, Giovanni; Ruffini, Remo; Zalaletdinov, Roustam

    2003-01-01

    A model for the static weak-field macroscopic medium is analysed and the equation for the macroscopic gravitational potential is derived. This is a biharmonic equation which is a non-trivial generalization of the Poisson equation of Newtonian gravity. In the case of strong gravitational quadrupole polarization, it essentially holds inside a macroscopic matter source. Outside the source the gravitational potential fades away exponentially. The equation is equivalent to a system of the Poisson equation and the non-homogeneous modified Helmholtz equations. The general solution to this system is obtained by using the Green function method and it is not limited to Newtonian gravity. In the case of insignificant gravitational quadrupole polarization, the equation for macroscopic gravitational potential becomes the Poisson equation with the matter density renormalized by a factor including the value of the quadrupole gravitational polarization of the source. The general solution to this equation obtained by using the Green function method is limited to Newtonian gravity

  5. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  6. Effect of a static magnetic field on silicon transport in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2010-03-15

    Liquid phase diffusion experiments have been performed without and with the application of a 0.4 T static magnetic field using a three-zone DC furnace system. SiGe crystals were grown from the germanium side for a period of 72 h. Experiments have led to the growth of single crystal sections varying from 0 to 10 mm thicknesses. Examination of the processed samples (single and polycrystalline sections) has shown that the effect of the applied static magnetic field is significant. It alters the temperature distribution in the system, reduces mass transport in the melt, and leads to a much lower growth rate. The initial curved growth interface was slightly flattened under the effect of magnetic field. There were no growth striations in the single crystal sections of the samples. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    Science.gov (United States)

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Theoretical approaches to laser spectroscopy in the presence of gravitational fields

    International Nuclear Information System (INIS)

    Borde, C.J.; Sharma, J.; Tourrenc, P.; Damour, T.

    1983-01-01

    We present a general framework in which non-linear optical phenomena for an ensemble of accelerated atoms can be studied. We show the equivalence of various approaches through frame transformations. This equivalence is understood within the context of a covariant formalism which is briefly sketched. The choice of the frame, in which the atoms are not accelerated but where the light spectrum and the atomic source term are correspondingly modified, leads to the simplest calculated. It enables one to use the usual density matrix diagrams and associated rules. Explicit examples are given in the case of a sinusoidal gravitational wave. Finally a brief discussion of the signal-to-noise of the sidebands induced by gravitational waves on saturation resonances is outlined

  9. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    Science.gov (United States)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  10. Estimation of genetic effects of static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheats

    International Nuclear Information System (INIS)

    Zhang Pingping; Yin Ruochun; Tang Mingli; Wu Yuejin; Yu Zengliang

    2007-01-01

    The effect of static magnetic fields (SMFs) on the chromosome aberrations in the pollen mother cells (PMCs) of wheat was studied. The seeds of wheat were exposed to static magnetic fields of different magnetic flux density (0, 1, 3, 5 and 7 Tesla) for 5h and with different treated time (1, 3 and 5h) at magnetic flux density of 7 Tesla. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome, abnormal segregation and fragment in PMCs. The results indicated that the exposed groups of low field intensity (below 5 Tesla) showed no statistically significant difference in aberration frequency compared with unexposed control groups and sham exposed groups, but significant differences of chromosomal bridge at 5T and lagging chromosome, triple-polar segregation or micronucleus at 7T were detected in the exposed group (p<0.05). The dose-effect relationships indicated that the increase frequency of meiotic abnormal cells correlated with flux density of magnetic field and treated time, but no linear effect was observed. These results lead us to the conclusion that high static magnetic fields above 5T for 5h duration might cause an increase in potential damage to organisms. (authors)

  11. Use of static and ac field techniques for measuring mobility and charge lifetimes of radon progeny with a simple device

    International Nuclear Information System (INIS)

    Sapra, B.K.; Mayya, Y.S.

    1998-01-01

    A simple device, based on a modification of the scintillation cell, has been developed for the measurement of radon daughter mobility and charge lifetimes by employing AC and static electric fields. It has a central electrode coated with ZnS and the scintillations are recorded by a PMT unit. The coating is made on the wire, instead of on the inner walls, to improve the relative response of the device with respect to the zero field situation. Radon is drawn into the cell by evacuation techniques. Theoretical formulae, relating the observed count rates to the system parameters and progeny mobilities and charge lifetimes, have been derived under zero field, static and AC field situations. Measurements indicate that the device has very low leak rate (T 1/2 ∼38 days) and the initial environment if maintained for long time. Results of experiments carried out with static and AC fields in most air yielded 218 Po mobilities (1.89 cm 2 /V/s) and charge lifetimes (0.08s) are comparable to those reported in the literature. This demonstrates the feasibility of this technique for future studies with different trace gases. A major advantage of this device as opposed to the conventional spectrometric methods is its simplicity. (author)

  12. A Useful Expression for Relativistic Energy Conservation of a Point Mass in an Isotropic Static Gravitational Field

    Science.gov (United States)

    Augousti, A. T.; Radosz, A.; Ostasiewicz, K.

    2011-01-01

    By using the symmetry and time-independence properties of Schwarzschild spacetime it is demonstrated that an energy conservation law may be expressed in terms of local velocity. From this form three important results may be derived very concisely. This highlights analogies and differences between relativistic and classical approaches to mechanics…

  13. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  14. On particle creation by black holes. [Quantum mechanical state vector, gravitational collapse, Hermition scalar field, density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wald, R M [Chicago Univ., Ill. (USA). Lab. for Astrophysics and Space Research

    1975-11-01

    Hawking's analysis of particle creation by black holes is extended by explicity obtaining the expression for the quantum mechanical state vector PSI which results from particle creation starting from the vacuum during gravitational collapse. We first discuss the quantum field theory of a Hermitian scalar field in an external potential or in a curved but asymptotically flat spacetime with no horizon present. Making the necessary modification for the case when a horizon is present, we apply this theory for a massless Hermitian scalar field to get the state vector describing the steady state emission at late times for particle creation during gravitational collapse to a Schwarzschild black hole. We find that the state vector describing particle creation from the vacuum decomposes into a simple product of state vectors for each individual mode. The density matrix describing emission of particles to infinity by this particle creation process is found to be identical to that of black body emission. Thus, black hole emission agrees in complete detail with black body emission (orig./BJ).

  15. Survey of risks related to static magnetic fields in ultra high field MRI; Bestandsaufnahme zu Risiken durch statische Magnetfelder im Zusammenhang mit der Ultrahochfeld-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.E. [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Cramon, D.Y. von [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    2008-04-15

    In magnetic resonance imaging (MRI), substantial improvements with respect to sensitivity are expected due to the development of so-called ultra high field scanners, i.e., whole-body scanners with a magnetic field strength of 7 T or above. Users of this technology need to evaluate this benefit for potential risks since commercially available systems are not certified as a medical device for human use. This review provides a detailed survey of static field bioeffects related to the exposure of subjects being scanned, to occupational exposure, and to exposure of the general public under consideration of current standards and directives. According to present knowledge, it is not expected that exposure of human subjects to static magnetic fields of 7 T implies a specific risk of damage or disease provided that known contraindications are observed. The available database does not permit definition of exact thresholds for harmful effects. However, experience from previous application of ultra high field MRI indicates that transient phenomena, such as vertigo, nausea, metallic taste, or magnetophosphenes, are more frequently observed. In particular, movements in the field or the gradient of the fringe field seem to lead to detectable effects. Besides such observations, there is a strong demand for systematic investigation of potential interaction mechanisms related to static field exposure during MRI examinations. (orig.)

  16. Cosmic matter-antimatter asymmetry and gravitational force

    Science.gov (United States)

    Hsu, J. P.

    1980-01-01

    Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.

  17. M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule

    Science.gov (United States)

    Capitaine, E.; Louot, C.; Ould-Moussa, N.; Lefort, C.; Kaneyasu, J. F.; Kano, H.; Pagnoux, D.; Couderc, V.; Leproux, P.

    2016-03-01

    The influence of a static electric field on a non-polar molecule has been studied by means of multiplex coherent anti-Stokes Raman scattering (M-CARS). A parallel measurement of electric field induced second harmonic generation (EFISHG) has also been led. Both techniques suggest a reorientation of the molecule due to the presence of an electric field. This phenomenon can be used to increase the chemical selectivity and the signal to non-resonant background ratio, namely, the sensitivity of the M-CARS spectroscopy.

  18. Metric in a static cylindrical elastic medium and in an empty rotating frame as solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Gron, O.

    1982-01-01

    Using the Weyl-type canonical coordinates, an integration of Einstein's field equations in the cylindrosymmetric case considered by Kursunoglu is reexamined. It is made clear that the resulting metric is not describing the spacetime in a rotating frame, but in a static cylindrical elastic medium. The conclusion of Kursunoglu that ''for an observer on a rotating disk there is no way of escape from a curved spacetime'' is therefore not valid. The metric in an empty rotating frame is found as a solution of Einstein's field equations, and is not orthogonal. It is shown that the corresponding orthogonal solution represents spacetime in an inertial frame expressed in cylindrical coordinates. Introducing a noncoordinate basis, the metric in a rotating frame is given the static form of Kursunoglu's solution. The essential role played by the nonvanishing structure coefficients in this case is made clear

  19. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  20. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.