Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝
2011-01-01
Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...
Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing
Weisshaar, T. A.; Ehlers, S. M.
1990-01-01
The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.
Static aeroelastic analysis and tailoring of a single-element racing car wing
Sadd, Christopher James
This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.
Quasi-Static Condensation of Aeroelastic Suspension Bridge Model
DEFF Research Database (Denmark)
Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin
2017-01-01
For long span bridges the wind-induced dynamic response is a design driving factor and therefore continuously a subject for detailed analysis. Traditionally both buffeting and stability calculations have been considered in the frequency domain. However, this yields alimitation in accounting...... for turbulence when considering the stability limit and further it is not possible to account for non-linear effects. These limitations suggest to do simulations of the aeroelastic response of long span bridges in the time domain. For this it is of interest to have an efficient model while still maintaining...... sufficient accuracy. This contribution is on quasi-static reduction of an aeroelastic finite element model of a 3000m suspension bridge proposed for crossing Sulafjorden in Norway. The model is intended for stability limit calculation where the representation of higher modes is of less importance...
Static aeroelastic analysis including geometric nonlinearities based on reduced order model
Directory of Open Access Journals (Sweden)
Changchuan Xie
2017-04-01
Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
Numerical studies of static aeroelastic effects on grid fin aerodynamic performances
Directory of Open Access Journals (Sweden)
Chengde HUANG
2017-08-01
Full Text Available The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects. In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow, respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
Skoog, Richard B
1951-01-01
A theoretical analysis of the effects of aeroelasticity on the stick-fixed static longitudinal stability and elevator angle required for balance of an airplane is presented together with calculated effects for a swept-wing bomber of relatively high flexibility. Although large changes in stability due to certain parameters are indicated for the example airplane, the over-all stability change after considering all parameters was quite small, compared to the individual effects, due to the counterbalancing of wing and tail contributions. The effect of flexibility on longitudinal control for the example airplane was found to be of little real importance.
Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...
Nonlinear aeroelastic behavior of compliant airfoils
International Nuclear Information System (INIS)
Thwapiah, G; Campanile, L F
2010-01-01
Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea
Nonlinear aeroelastic behavior of compliant airfoils
Thwapiah, G.; Campanile, L. F.
2010-03-01
Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea.
Proposed aeroelastic and flutter tests for the National Transonic Facility
Stevenson, J. R.
1981-01-01
Tests that can exploit the capability of the NTF and the transonic cryogenic tunnel, or lead to improvements that could enhance testing in the NTF are discussed. Shock induced oscillation, supersonic single degree control surface flutter, and transonic flutter speed as a function of the Reynolds number are considered. Honeycombs versus screens to smooth the tunnel flow and a rapid tunnel dynamic pressure reducer are recommended to improve tunnel performance.
Mourey, D. J.
1979-01-01
The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.
Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane
Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.
2002-01-01
The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.
40 CFR 53.64 - Test procedure: Static fractionator test.
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...
Aeroelastic analysis of large horizontal wind turbine baldes?
Institute of Scientific and Technical Information of China (English)
Di TANG; Zhiliang LU; Tongqing GUO
2016-01-01
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear ?nite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aero-dynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities signi?cantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
Voracek, David
2007-01-01
A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned
Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher
2014-01-01
This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.
Bartels, Robert E.; Funk, Christie; Scott, Robert C.
2015-01-01
Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.
Identification of reduced-order model for an aeroelastic system from flutter test data
Directory of Open Access Journals (Sweden)
Wei Tang
2017-02-01
Full Text Available Recently, flutter active control using linear parameter varying (LPV framework has attracted a lot of attention. LPV control synthesis usually generates controllers that are at least of the same order as the aeroelastic models. Therefore, the reduced-order model is required by synthesis for avoidance of large computation cost and high-order controller. This paper proposes a new procedure for generation of accurate reduced-order linear time-invariant (LTI models by using system identification from flutter testing data. The proposed approach is in two steps. The well-known poly-reference least squares complex frequency (p-LSCF algorithm is firstly employed for modal parameter identification from frequency response measurement. After parameter identification, the dominant physical modes are determined by clear stabilization diagrams and clustering technique. In the second step, with prior knowledge of physical poles, the improved frequency-domain maximum likelihood (ML estimator is presented for building accurate reduced-order model. Before ML estimation, an improved subspace identification considering the poles constraint is also proposed for initializing the iterative procedure. Finally, the performance of the proposed procedure is validated by real flight flutter test data.
A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics
Yuan, Zhe; Huo, Shihui; Ren, Jianting
2018-01-01
A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...
Experimental set-up for advanced aeroelastic tests on sectional models
Czech Academy of Sciences Publication Activity Database
Král, Radomil; Pospíšil, Stanislav; Náprstek, Jiří
2016-01-01
Roč. 40, č. 1 (2016), s. 3-13 ISSN 0732-8818 R&D Projects: GA ČR GA103/09/0094; GA AV ČR IAA200710902; GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : bridge aeroelasticity * wind tunnel * experimental set-up * non- linear response Subject RIV: JM - Building Engineering Impact factor: 0.932, year: 2016 http://link.springer.com/article/10.1007%2Fs40799-015-0004-6
A Nonlinear Modal Aeroelastic Solver for FUN3D
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
Huy, N.Q.
2010-01-01
Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance
Pilot Study: Foam Wedge Chin Support Static Tolerance Testing
2017-10-24
AFRL-SA-WP-SR-2017-0026 Pilot Study: Foam Wedge Chin Support Static Tolerance Testing Austin M. Fischer, BS1; William W...COVERED (From – To) April – October 2017 4. TITLE AND SUBTITLE Pilot Study: Foam Wedge Chin Support Static Tolerance Testing 5a. CONTRACT NUMBER...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF School of Aerospace
Multiaxial pedicle screw designs: static and dynamic mechanical testing.
Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R
2004-02-15
Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.
Energy Technology Data Exchange (ETDEWEB)
Soederberg, M.
1990-01-01
The GAROS system for general analysis of rotating aeroelastic structures is used to analyse the behaviour of the WTS 3 Maglarp wind turbine, situated in Maglarp, Sweden. The GAROS method is based on a branch mode technique and modal reduction. Stability analyses of the total tower-rotor system as well as numerical time integration analyses are performed within the GAROS system. The FE-model made by Anders Henoch, AIMS, for FFA is used as a base for this investigation. Some modifications concerning center of gravity of the rotor and teeter bearing/hinge have been made in the finite element model. In this report simulated values of loads in the blades are compaed to measured data. The unstable yaw behaviour of the WTS 3 was also found in the behaviour of the model. The amount of yaw-angle rotation in the model was also found to be according to measured values when induced velocities were accounted for in the aerodynamic force calculations. The analyses in general show good agreement between simulated and measured values. This paper was presented at the European Wind Energy Conference in Glasgow, 10-13 July, 1989.
Structural testing for static failure, flutter and other scary things
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Strain actuated aeroelastic control
Lazarus, Kenneth B.
1992-01-01
Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.
A Static Burst Test for Composite Flywheel Rotors
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Aeroelastic characteristics of composite bearingless rotor blades
Bielawa, R. L.
1976-01-01
Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.
Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility.
Gerodimos, Vassilis; Karatrantou, Konstantina; Psychou, Dimitra; Vasilopoulou, Theodora; Zafeiridis, Andreas
2017-03-01
This study investigated the reliability of static and dynamic handgrip strength endurance using different protocols and indicators for the assessment of strength endurance. Forty young, healthy men and women (age, 18-22 years) performed 2 handgrip strength endurance protocols: a static protocol (sustained submaximal contraction at 50% of maximal voluntary contraction) and a dynamic one (8, 10, and 12 maximal repetitions). The participants executed each protocol twice to assess the test-retest reproducibility. Total work and total time were used as indicators of strength endurance in the static protocol; the strength recorded at each maximal repetition, the percentage change, and fatigue index were used as indicators of strength endurance in the dynamic protocol. The static protocol showed high reliability irrespective of sex and hand for total time and work. The 12-repetition dynamic protocol exhibited moderate-high reliability for repeated maximal repetitions and percentage change; the 8- and 10-repetition protocols demonstrated lower reliability irrespective of sex and hand. The fatigue index was not a reliable indicator for the assessment of dynamic handgrip endurance. Static handgrip endurance can be measured reliably using the total time and total work as indicators of strength endurance. For the evaluation of dynamic handgrip endurance, the 12-repetition protocol is recommended, using the repeated maximal repetitions and percentage change as indicators of strength endurance. Practitioners should consider the static (50% maximal voluntary contraction) and dynamic (12 repeated maximal repetitions) protocols as reliable for the assessment of handgrip strength endurance. The evaluation of static endurance in conjunction with dynamic endurance would provide more complete information about hand function. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Testing static tradeoff theiry against pecking order models of capital ...
African Journals Online (AJOL)
We test two models with the purpose of finding the best empirical explanation for corporate financing choice of a cross section of 27 Nigerian quoted companies. The models were developed to represent the Static tradeoff Theory and the Pecking order Theory of capital structure with a view to make comparison between ...
Self-Testing Static Random-Access Memory
Chau, Savio; Rennels, David
1991-01-01
Proposed static random-access memory for computer features improved error-detecting and -correcting capabilities. New self-testing scheme provides for detection and correction of errors at any time during normal operation - even while data being written into memory. Faults in equipment causing errors in output data detected by repeatedly testing every memory cell to determine whether it can still store both "one" and "zero", without destroying data stored in memory.
F-1 Engine for Saturn V Undergoing a Static Test
1964-01-01
The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.
2011-01-01
This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.
FEM simulation of static loading test of the Omega beam
Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr
2017-09-01
The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.
Static Tension Tests on Axially Loaded Pile Segments in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
This paper provides laboratory test results of static axially loaded piles in sand. With a newly developed test setup, the pile-soil interface friction was investigated by using an open-ended steel pile segment with a diameter of 0.5 m. Use of a pile length of 1 m enabled the pile-soil interface...... friction to be analyzed at a given soil horizon while increasing the vertical effective stress in the sand. Test results obtained by this approach can be analyzed as single t-z curves and compared to predictions of unit shaft friction from current design methods for offshore foundations. The test results...... showed best agreement with the traditional design method given in the American Petroleum Institute (API) design code. When t-z curves obtained from the test results were compared to t-z curve formulations found in the literature, the Zhang formulation gave good predictions of the initial and post...
A modern course in aeroelasticity
Dowell, Earl H
2015-01-01
This book cover the basics of aeroelasticity or the dynamics of fluid-structure interaction. While the field began in response to the rapid development of aviation, it has now expanded into many branches of engineering and scientific disciplines and treat physical phenomena from aerospace engineering, bioengineering, civil engineering, and mechanical engineering in addition to drawing the attention of mathematicians and physicists. The basic questions addressed are dynamic stability and response of fluid structural systems as revealed by both linear and nonlinear mathematical models and correlation with experiment. The use of scaled models and full scale experiments and tests play a key role where theory is not considered sufficiently reliable. In this new edition the more recent literature on nonlinear aeroelasticity has been brought up to date and the opportunity has been taken to correct the inevitable typographical errors that the authors and our readers have found to date. The early chapters of t...
STATIC TESTS OF UNCONVENTIONAL PROPULSION UNITS FOR ULTRALIGHT AIRPLANES
Directory of Open Access Journals (Sweden)
Martin Helmich
2014-06-01
Full Text Available This paper presents static tests of a new unconventional propulsion unit for small aviation airplanes. Our laboratory stand – a fan drive demonstrator – enables us to compare various design options. We performed experiments to verify the propulsion functionality and a measurement procedure to determine the available thrust of the propulsion unit and its dependence on engine speed. The results used for subsequent optimization include the operating parameters of the propulsion unit, and the temperature and velocity fields in parts of the air duct.
Testing static quark-antiquark potentials with bottomonium
International Nuclear Information System (INIS)
Lichtenberg, D.B.; Predazzi, E.; Roncaglia, R.; Rosso, M.; Wills, J.G.
1989-01-01
We investigate the question of whether experimental data on the energy levels of bottomonium can discriminate between quark-antiquark potentials which are motivated by what we know about QCD and potentials which are purely phenomenological. We restrict ourselves to bottomonium because, of all the quarkonia observed thus far, bottomonium is the least relativistic and therefore the best testing ground for the static quarkonium potential. We consider two potentials whose functional form is motivated from perturbative QCD at short quark-antiquark separations and from nonperturbative lattice QCD at large separations. We also consider three strictly phenomenological potentials. We find that the best of the three phenomenological potentials, which has never been previously used, fits the spin-averaged data at least as well as the best of the QCD-motivated potentials. We propose further measurements on bottomium energy levels to provide additional tests. (orig.)
Aerodynamic Tests on a Static California Sea Lion Flipper
Kulkarni, Aditya A.; Leftwich, Megan C.
2017-11-01
Unlike most biological swimmers that use BCF swimming, the California sea lion relies on its foreflippers for thrust production. This unique swimming style, which lacks a characteristic oscillation frequency, allows the sea lion to leave less traceable wake while also producing high amounts of thrust. While the swimming energetics of the animal have been studied, almost nothing is known about the fluid dynamics of the system. To overcome this lack of basic understanding, a three-dimensional model of the flipper was developed using structured light-based scanners. Cross sections of the flipper model resemble the shape of the airfoils typically found in wings with thickness ratios, 11% - 37%. Wind tunnel testing conducted on static flipper revealed that positive lift was being generated at negative angles of attack. This is hypothesized to help the sea lions considerably in perform tight maneuvers with a small turning radius. The wake structure downstream of the flipper was captured using Particle Image Velocimetry (PIV).
Aeroelastic Stability of Suspension Bridges using CFD
DEFF Research Database (Denmark)
Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.
2007-01-01
using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...
Short-term static corrosion tests in lead-bismuth
Soler Crespo, L.; Martín Muñoz, F. J.; Gómez Briceño, D.
2001-07-01
Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400°C and 600°C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase.
Short-term static corrosion tests in lead-bismuth
International Nuclear Information System (INIS)
Soler Crespo, L.; Martin Munoz, F.J.; Gomez Briceno, D.
2001-01-01
Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400 o C and 600 o C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase
DEFF Research Database (Denmark)
Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.
2014-01-01
Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...
Static Feed Water Electrolysis Subsystem Testing and Component Development
Koszenski, E. P.; Schubert, F. H.; Burke, K. A.
1983-01-01
A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.
Cox, T. H.; Gilyard, G. B.
1986-01-01
The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.
Static Aeroelastic Effects on High Performance Aircraft
1987-06-01
davis la rffrence 9. L’avion est instrurnent6, en plus des capteurs classiques des param~tres de n~ca- nique du vol. de plusleurs centaines de jauges de...crites §2.3.5, et lensemble dv l’analyse, pernet- tent le calcul des r~ponues des jauges en fonction dv X soit ar ( X) , lv procesnus de d~rivation...travissonique. Rema rque La smine technique d’identification par rtponne dv jauges s’applique (plus simple- ment) sur len essais en soufflerie, pour la
Aeroelasticity of morphing wings using neural networks
Natarajan, Anand
In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to
Generator dynamics in aeroelastic analysis and simulations
Energy Technology Data Exchange (ETDEWEB)
Larsen, T.J.; Hansen, M.H.; Iov, F.
2003-05-01
This report contains a description of a dynamic model for a doubly-fed induction generator implemented in the aeroelastic code HAWC. The model has physical input parameters (resistance, reactance etc.) and input variables (stator and rotor voltage and rotor speed). The model can be used to simulate the generator torque as well as the rotor and stator currents, active and reactive power. A perturbation method has been used to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the model from the slow variations and deduce a reduced order expression for the slow part. Dynamic effects of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during time simulation of wind turbine response have been compared to simulations with a linear static generator model originally implemented i HAWC. A 2 MW turbine has been modelled in the aeroelastic code HAWC. When using the new dynamic generator model there is an interesting coupling between the generator dynamics and a global turbine vibration mode at 4.5 Hz, which only occurs when a dynamic formulation of the generator equations is applied. This frequency can especially be seen in the electrical power of the generator and the rotational speed of the generator, but also as torque variations in the drive train. (au)
KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity
DEFF Research Database (Denmark)
Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.
2004-01-01
wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow...... the computations for the full blade, 2D computations for the so-called “typical section” have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lagmode. The presence of roughness tapes has a small, rather negligible impact...... on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...
Chaotic Patterns in Aeroelastic Signals
Directory of Open Access Journals (Sweden)
F. D. Marques
2009-01-01
patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.
Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.
2014-01-01
This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.
Prediction of flyover jet noise spectra from static tests
Michel, U.; Michalke, A.
A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.
International Nuclear Information System (INIS)
Freund, O; Seume, J R; Montgomery, M; Mittelbach, M
2014-01-01
Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used
Energy Technology Data Exchange (ETDEWEB)
Visser, B. [Stork Product Eng., Amsterdam (Netherlands)
1996-09-01
To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)
Investigation of a precise static leach test for the testing of simulated nuclear waste materials
International Nuclear Information System (INIS)
Kingston, H.M.; Cronin, D.J.; Epstein, M.S.
1984-01-01
The precision of the nuclear waste static leach test was evaluated using controlled experimental conditions and homogeneous glass materials. The majority of the leachate components were subjected to simultaneous multielement DCP analysis. The overall precision of the static leach test is determined by the summation of random effects caused by: variance in the experimental conditions of the leaching procedure; inhomogeneity of the material to be leached; and variance of the analytical techniques used to determine elemental concentrations in the leachate. In this study, strict control of key experimental parameters was employed to reduce the first source of variance. In addition, special attention to the preparation of glass samples to be tested assured a high degree of homogeneity. Described here are the details of the reduction of these two sources of variance to a point where the overall test precision is limited by that of the analysis step. Of the elements determined - B, Ba, Ca, Cs, Mo, Na, Si, Sr, and Zn - only Ca and Zn exhibited replicate imprecision significantly greater than that observed in the analysis of the leachate solutions. The imprecision in the Zn was partially attributed to the non-reproducible adsorption onto the leach vessel walls during the 28 day test period. None of the other elements exhibited this behavior
Research in aeroelasticity EFP-2005
DEFF Research Database (Denmark)
2006-01-01
In the Energy Research Project ”Program for Research in Applied Aeroelasticity” (EFP2005), Risø National Laboratory (Risø) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. Themain results from the project are: Adding...... a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. Transient wind loads during pitch motion are determined using CFD. Compared to theNREL/NASA Ames test, reasonably good agreement is seen. A general method was developed...... for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. A model of the far wake behind windturbines was developed for stability studies of the tip vortices in the far wake. Investigating the blade root region showed that the power efficiency, CP...
[Static posturography versus clinical tests in elderly people with vestibular pathology].
Ortuño-Cortés, Miguel A; Martín-Sanz, Eduardo; Barona-de Guzmán, Rafael
2008-01-01
Balance can be quantified by clinical tests and through instrumental studies. The objective of this paper is to determine the correlation between static posturography and 4 clinical tests of balance in elderly people with vestibular disorders and to identify its capability to discriminate the groups studied. 60 patients with vestibular disorders and 60 healthy subjects performed 4 clinical tests (one leg standing with opened eyes, Timed Up and Go, Tinetti and Berg tests) and a static posturography analysis (NedSVE/IBV system) under 4 conditions: Romberg Test, Eyes Open (REO), Romberg Test, Eyes Closed (REC), Romberg Test on Foam with Eyes Open (RFEO), and Romberg Test on Foam with Eyes Closed (RFEC). RFEO correlated best with the clinical tests and RFEC was the worst. RFEO distinguished between healthy individuals and decompensated patients. RFEO gave the best information about postural balance in the elderly. RFEC was not useful. Static posturography can be useful to distinguish vestibular compensation status.
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Directory of Open Access Journals (Sweden)
Xiang Jinwu
2014-02-01
Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
New aeroelastic studies for a morphing wing
Directory of Open Access Journals (Sweden)
Ruxandra Mihaela BOTEZ*
2012-06-01
Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.
A materials test system for static compression at elevated temperatures
Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.
1992-06-01
This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.
33 CFR 183.580 - Static pressure test for fuel tanks.
2010-07-01
... pressure test for fuel tanks. A fuel tank is tested by performing the following procedures in the following... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Static pressure test for fuel tanks. 183.580 Section 183.580 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
Effects of Antiparasitic Treatment on Dynamically and Statically Tested Cognitive Skills over Time
Grigorenko, Elena L.; Sternberg, Robert J.; Jukes, Mathew; Alcock, Katie; Lambo, Jane; Ngorosho, Damaris; Nokes, Catherine; Bundy, Donald A.
2006-01-01
The main objective of this work was to investigate two testing procedures, repeated static tests and dynamic testing, that can more clearly demonstrate the impact of treatment for parasites in children. Rural Tanzanian children were assessed for the presence/absence and burden of helminth parasites and assigned to one of three…
Analysis of Static Load Test of a Masonry Arch Bridge
Shi, Jing-xian; Fang, Tian-tian; Luo, Sheng
2018-03-01
In order to know whether the carrying capacity of the masonry arch bridge built in the 1980s on the shipping channel entering and coming out of the factory of a cement company can meet the current requirements of Level II Load of highway, through the equivalent load distribution of the test vehicle according to the current design specifications, this paper conducted the load test, evaluated the bearing capacity of the in-service stone arch bridge, and made theoretical analysis combined with Midas Civil. The results showed that under the most unfavorable load conditions the measured strain and deflection of the test sections were less than the calculated values, the bridge was in the elastic stage under the design load; the structural strength and stiffness of the bridge had a certain degree of prosperity, and under the in the current conditions of Level II load of highway, the bridge structure was in a safe state.
Unstructed Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2
Frink, Neal T.; Allison, Dennis O.; Parikh, Paresh C.
1999-01-01
The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.
International Nuclear Information System (INIS)
Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.
2014-01-01
Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)
Mesoscopic analyses of porous concrete under static compression and drop weight impact tests
DEFF Research Database (Denmark)
Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.
2008-01-01
was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...
Murrow, H. N.
1981-01-01
Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.
Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics
Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.
2015-01-01
The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…
Goldman, Benjamin D.
asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were
Generator dynamics in aeroelastic analysis and simulations
DEFF Research Database (Denmark)
Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.
2003-01-01
This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...... of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during timesimulation of wind turbine response have been compared to simulations with a traditional static generator model based entirely on the slip angle. A 2 MW...
Static Pull Testing of a New Type of Large Deformation Cable with Constant Resistance
Directory of Open Access Journals (Sweden)
Zhigang Tao
2017-01-01
Full Text Available A new type of energy-absorbing cable, Constant-Resistance Large Deformation cable (CRLD cable with three different specifications, has been recently developed and tested. An effective cable should occupy the ability of absorbing deformation energy from these geodisaster loads and additionally must be able to yield with the sliding mass movements and plastic deformation over large distances at high displacement rates. The new cable mainly consists of constant-resistance casing tube and frictional cone unit that transfers the load from the slope. When experiencing a static or dynamic load and especially the load exceeding the constant resistance force (CR-F, a static friction force derived from the movement of frictional cone unit in casing tube of CRLD cable, the frictional cone unit will move in the casing tube along the axis and absorb deformation energy, accordingly. In order to assess the performance of three different specified cables in situ, a series of field static pull tests have been performed. The results showed that the first type of CRLD cable can yield 2000 mm displacement while acting 850 kN static pull load, which is superior to that of other two types, analyzing based on the length of the displacement and the level of static pull load.
Static pile load tests on driven piles into Intermediate-Geo Materials.
2016-09-01
The Wisconsin Department of Transportation (WisDOT) has concerns with both predicting pile lengths and pile capacities for H-piles driven into Intermediate-Geo Materials (IGM). The goal of the research was to perform 7 static axial load tests at 7 lo...
Towards building a neural network model for predicting pile static load test curves
Directory of Open Access Journals (Sweden)
Alzo’ubi A. K.
2018-01-01
Full Text Available In the United Arab Emirates, Continuous Flight Auger piles are the most widely used type of deep foundation. To test the pile behaviour, the Static Load Test is routinely conducted in the field by increasing the dead load while monitoring the displacement. Although the test is reliable, it is expensive to conduct. This test is usually conducted in the UAE to verify the pile capacity and displacement as the load increase and decreases in two cycles. In this paper we will utilize the Artificial Neural Network approach to build a model that can predict a complete Static Load Pile test. We will show that by integrating the pile configuration, soil properties, and ground water table in one artificial neural network model, the Static Load Test can be predicted with confidence. We believe that based on this approach, the model is able to predict the entire pile load test from start to end. The suggested approach is an excellent tool to reduce the cost associated with such expensive tests or to predict pile’s performance ahead of the actual test.
Level-Set Topology Optimization with Aeroelastic Constraints
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
Aeroelastic Wingbox Stiffener Topology Optimization
Stanford, Bret K.
2017-01-01
This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels
Groen, Joseph M.; Johnson, Aldie E., Jr.
1959-01-01
Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.
Assessment of Calculation Procedures for Piles in Clay Based on Static Loading Tests
DEFF Research Database (Denmark)
Augustesen, Anders; Andersen, Lars
2008-01-01
College in London. The calculation procedures are assessed based on an established database of static loading tests. To make a consistent evaluation of the design methods, corrections related to undrained shear strength and time between pile driving and testing have been employed. The study indicates...... that the interpretation of the field tests is of paramount importance, both with regard to the soil profile and the loading conditions. Based on analyses of 253 static pile loading tests distributed on 111 sites, API-RP2A provides the better description of the data. However, it should be emphasised that some input......Numerous methods are available for the prediction of the axial capacity of piles in clay. In this paper, two well-known models are considered, namely the current API-RP2A (1987 to present) and the recently developed ICP method. The latter is developed by Jardine and his co-workers at Imperial...
In-flight and ground testing of single event upset sensitivity in static RAMs
International Nuclear Information System (INIS)
Johansson, K.; Dyreklev, P.; Granbom, B.; Calvet, C.; Fourtine, S.; Feuillatre, O.
1998-01-01
This paper presents the results from in-flight measurements of single event upsets (SEU) in static random access memories (SRAM) caused by the atmospheric radiation environment at aircraft altitudes. The memory devices were carried on commercial airlines at high altitude and mainly high latitudes. The SEUs were monitored by a Component Upset Test Equipment (CUTE), designed for this experiment. The in flight results are compared to ground based testing with neutrons from three different sources
Saturn V First Stage Lowered to the Ground After Static Test
1966-01-01
This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand
DEFF Research Database (Denmark)
Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo
In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....
Definition of the linearity loss of the surface temperature in static tensile tests
Directory of Open Access Journals (Sweden)
A. Risitano
2014-10-01
Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.
Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F
2010-09-01
This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load
Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines
Energy Technology Data Exchange (ETDEWEB)
Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories
2017-06-09
A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.
Aeroelastic Modeling of a Nozzle Startup Transient
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Suzuki, Makoto; Fujisawa, Hiroyuki; Machida, Yooichiro; Minakata, Shin
2013-01-01
[Purpose] The purpose of this study was to analyze the relationship between results of the Berg Balance Scale (BBS) and Static Balance Test (SBT) in hemiplegic patients with stroke. [Subjects] The subjects were 39 hemiplegic patients (25 men, 14 women; mean age, 69.4 ? 11.0?years) with stroke that had occurred within the preceding 6 months and who had good understanding of verbal instructions. [Methods] The SBT consists of five posture-holding tasks (sitting, stride standing, close standing, ...
Safety prediction for basic components of safety critical software based on static testing
International Nuclear Information System (INIS)
Son, H.S.; Seong, P.H.
2001-01-01
The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)
Safety prediction for basic components of safety-critical software based on static testing
International Nuclear Information System (INIS)
Son, H.S.; Seong, P.H.
2000-01-01
The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)
Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars
DEFF Research Database (Denmark)
Hansen, Lars Pilegaard; Heshe, Gert
2001-01-01
A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...
PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation
DEFF Research Database (Denmark)
Sera, Dezso; Teodorescu, Remus; Valentini, Massimo
2008-01-01
This paper concerns the evaluation of performance of grid-connected PV inverters in terms of conversion efficiency, European efficiency, static and dynamic MPP efficiency. Semi-automated tests were performed in the PV laboratory of the Institute of Energy Technology at the Aalborg University...... (Denmark) on a commercial transformerless PV inverter. Thanks to the available experimental test setups, that provide the required high measuring accuracy, and the developed PV simulator, which is required for MPPT performance evaluation, PV Inverters can be pretested before being tested by accredited...
International Nuclear Information System (INIS)
Koennecke, R.; Kirsch, J.
1985-01-01
The results of an interlaboratory static high-temperature leach test conducted by the Commission of the European Communities in 1983 over a period of 9 months are compiled and statistically evaluated. A total of 12 laboratories - 10 from Member States of the EC and one from Finland and the USA - provided information concerning the test method and the analytical test results in the frame of a round robin test (RRT). All together these laboratories tested 366 waste from specimens of the borosilicate glass UK 209 containing simulated high-level radioactive waste. Leach tests were performed on the basis of the ''Document on the EC static high-temperature leach test method'' in autoclaves at leaching temperatures of 90 0 C, 110 0 C, 150 0 C, and 190 0 C over time periods of 3,7,14,28 and 56 days using dionized water as leachant. The resulting leachates were analysed for the elemental concentrations of Si,B,Sr,Nd and Cs by all laboratories and for the concentrations of the optional elements Na, Al,Ce,Mo,Cr,Fe,Li,Mg and Zn by some of the participating laboratories. Additionally, the F content of the blank leachates was analysed by all laboratories
KNOW-BLADE task-4 report. Navier-Stokes aeroelasticity
Energy Technology Data Exchange (ETDEWEB)
Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.; Bertagnolio, F.; Soerensen, N.N.; Johansen, J.
2005-01-01
The problem of the aeroelastic stability of wind turbine blades is addressed in this report by advancing the aerodynamic modelling in the beam element type codes from the engineering-type empirical models to unsteady, 2D or 3D, Navier-Stokes solvers. In this project, structural models for the full wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) is its inability to model induced flow. The lack of a validation test case did not allow for quantitative comparisons with experimental data to be carried out; instead the results of the advanced aeroelastic tools are qualitatively cross-compared. All investigated methods predicted qualitatively similar results. They all resulted in positive aerodynamic damping values for the flap mode, in a decrease in damping with the increase of wind speeds and in a minimum value for the damping for wind speed around 15{approx}m/s. The eigenvalue analyses resulted in steeper distributions for this mode. The agreement in aerodynamic damping decrease with the increase of wind speed is also observed in the distributions for the lead-lag mode. In perspective, the uncoupled, linear method results in higher values of aerodynamic damping compared to the 3D aeroelastic tool. The quasi-3D tool results in lower aerodynamic damping values in the higher wind speeds and in lower damping values in the lower wind speed regime. Apart from the computations for the full blade, 2D computations for the so-called 'typical section' have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lag mode. The presence of roughness tapes has a small, rather negligible impact on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted
Static Load Test on Instrumented Pile – Field Data and Numerical Simulations
Directory of Open Access Journals (Sweden)
Krasiński Adam
2017-09-01
Full Text Available Static load tests on foundation piles are generally carried out in order to determine load – the displacement characteristic of the pile head. For standard (basic engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28–30 November 2016.
Static Load Test on Instrumented Pile - Field Data and Numerical Simulations
Krasiński, Adam; Wiszniewski, Mateusz
2017-09-01
Static load tests on foundation piles are generally carried out in order to determine load - the displacement characteristic of the pile head. For standard (basic) engineering practices this type of test usually provides enough information. However, the knowledge of force distribution along the pile core and its division into the friction along the shaft and the resistance under the base can be very useful. Such information can be obtained by strain gage pile instrumentation [1]. Significant investigations have been completed on this technology, proving its utility and correctness [8], [10], [12]. The results of static tests on instrumented piles are not easy to interpret. There are many factors and processes affecting the final outcome. In order to understand better the whole testing process and soil-structure behavior some investigations and numerical analyses were done. In the paper, real data from a field load test on instrumented piles is discussed and compared with numerical simulation of such a test in similar conditions. Differences and difficulties in the results interpretation with their possible reasons are discussed. Moreover, the authors used their own analytical solution for more reliable determination of force distribution along the pile. The work was presented at the XVII French-Polish Colloquium of Soil and Rock Mechanics, Łódź, 28-30 November 2016.
Erickson, Gary E.
2013-01-01
A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.
USB environment measurements based on full-scale static engine ground tests
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.
Modeling of the Jacked Pile Static Load Test with PLAX 3D
Directory of Open Access Journals (Sweden)
Tautvydas Statkus
2016-12-01
Full Text Available In this article jacked pile installation technology and its current processes, altering the base physical and mechanical characteristics are discussed. For the jacked pile static load test simulation Plax 3D software was selected, the opportunities and developments were described. Model building, materials, models, model geometry, finite elements, boundary conditions and assumptions adopted in addressing problems described in detail. Three different tasks formulated and load-settlement dependence a comparison of the results with the experiment given. Conclusions are formulated according to the modeling results.
Saturn V Second Stage (S-II) Ready for Static Test
1965-01-01
Two workers are dwarfed by the five J-2 engines of the Saturn V second stage (S-II) as they make final inspections prior to a static test firing by North American Space Division. These five hydrogen -fueled engines produced one million pounds of thrust, and placed the Apollo spacecraft into earth orbit before departing for the moon. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.
Static tilt tests of a full-sized cylindrical liquid storage tank model
International Nuclear Information System (INIS)
Sakai, F.
1988-01-01
This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate
Experimental test of static and dynamic characteristics of tilting-pad thrust bearings
Directory of Open Access Journals (Sweden)
Annan Guo
2015-07-01
Full Text Available The axial vibration in turbine machine has attracted more and more interest. Tilting-pad thrust bearings are widely used in turbine machines to support the axial load. The dynamic properties generated by oil film of the thrust pad have important effects on the axial vibration of the rotor-bearing system. It is necessary to develop the method to test the dynamic characteristics of thrust bearings. A new rig has been developed. The facility allows a complete set of bearing operating parameters to be measured. Parameters measured include oil temperatures, oil-film thickness, and pressure. The static load and dynamic load can be added on the thrust bearing in the vertical direction at the same time. The relative and absolute displacement vibrations of the test experimental bearing with the changes of dynamic force are measured, and the dynamic characteristics of the test bearing are obtained. The experimental results show clearly that the operating conditions influence largely on the pad static and dynamic characteristics.
Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This test method provides a measure of the chemical durability of a simulated or radioactive monolithic waste form, such as a glass, ceramic, cement (grout), or cermet, in a test solution at temperatures <100°C under low specimen surface- area-to-leachant volume (S/V) ratio conditions. 1.2 This test method can be used to characterize the dissolution or leaching behaviors of various simulated or radioactive waste forms in various leachants under the specific conditions of the test based on analysis of the test solution. Data from this test are used to calculate normalized elemental mass loss values from specimens exposed to aqueous solutions at temperatures <100°C. 1.3 The test is conducted under static conditions in a constant solution volume and at a constant temperature. The reactivity of the test specimen is determined from the amounts of components released and accumulated in the solution over the test duration. A wide range of test conditions can be used to study material behavior, includin...
Analog automatic test pattern generation for quasi-static structural test.
Zjajo, A.; Pineda de Gyvez, J.
2009-01-01
A new approach for structural, fault-oriented analog test generation methodology to test for the presence of manufacturing-related defects is proposed. The output of the test generator consists of optimized test stimuli, fault coverage and sampling instants that are sufficient to detect the failure
Research in aeroelasticity[Wind turbines
Energy Technology Data Exchange (ETDEWEB)
Bak, C.
2006-05-15
In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic
Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors
Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt
1997-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.
Lyle, Karen H.
2015-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.
Aeroelastic stability analysis of a Darrieus wind turbine
Popelka, D.
1982-02-01
An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Aeroelastic stability analysis of a Darrieus wind turbine
Energy Technology Data Exchange (ETDEWEB)
Popelka, D.
1982-02-01
An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings
DEFF Research Database (Denmark)
Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus
2013-01-01
The design and construction of an easy-to-use test-rig for permanent magnet couplings is presented. Static torque of permanent magnet couplings as a function of angular displacement is measured of permanent magnet couplings through an semi-automated test system. The test-rig is capable of measuring...
Harmonic Balance Computations of Fan Aeroelastic Stability
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
Static and fatigue experimental tests on a full scale fuselage panel and FEM analyses
Directory of Open Access Journals (Sweden)
Raffaele Sepe
2016-02-01
Full Text Available A fatigue test on a full scale panel with complex loading condition and geometry configuration has been carried out using a triaxial test machine. The demonstrator is made up of two skins which are linked by a transversal butt-joint, parallel to the stringer direction. A fatigue load was applied in the direction normal to the longitudinal joint, while a constant load was applied in the longitudinal joint direction. The test panel was instrumented with strain gages and previously quasi-static tests were conducted to ensure a proper load transferring to the panel. In order to support the tests, geometric nonlinear shell finite element analyses were conducted to predict strain and stress distributions. The demonstrator broke up after about 177000 cycles. Subsequently, a finite element analysis (FEA was carried out in order to correlate failure events; due to the biaxial nature of the fatigue loads, Sines criterion was used. The analysis was performed taking into account the different materials by which the panel is composed. The numerical results show a good correlation with experimental data, successfully predicting failure locations on the panel.
Static and dynamic testing of a damaged post tensioned concrete beam
Directory of Open Access Journals (Sweden)
Limongelli M.P.
2015-01-01
Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.
Cramer, J. M.; Marshall, W. M.; Pal, S.; Santoro, R. J.
2003-01-01
Twin thruster tests have been conducted with the Penn State RBCC test article operating at sea- level static conditions. Significant differences were observed in the performance characteristics for two different thruster centerline spacings. Changing the thruster spacing from 2.50 to 1.75 in. reduced the entrained air velocity (-17%) and the thrust (-7%) for tests at a thruster chamber pressure of 200 psia and MR = 8. In addition, significant differences were seen in the static pressure profiles, the Raman spectroscopy profiles, and the acoustic power spectrum for these two configurations.
Static Aeroelastic Optimization of Composite Wings with Variable Stiffness Laminates
Dillinger, J.K.S.
2014-01-01
The application of composite material in load carrying structural components of an aircraft is rapidly gaining momentum. While part of the reason for this can certainly be attributed to an increasing confidence of designers in the new material as a result of growing experience, two other crucial
Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model
Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.
2001-01-01
Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.
Multifidelity Robust Aeroelastic Design, Phase I
National Aeronautics and Space Administration — Nielsen Engineering & Research (NEAR) proposes a new method to generate mathematical models of wind-tunnel models and flight vehicles for robust aeroelastic...
Directory of Open Access Journals (Sweden)
Laszlo A. Marosi
2013-01-01
Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.
Quasi-static characterisation and impact testing of auxetic foam for sports safety applications
International Nuclear Information System (INIS)
Duncan, Olly; Alderson, Andrew; Foster, Leon; Senior, Terry; Allen, Tom
2016-01-01
This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required. (paper)
Computer-assisted static/dynamic renal imaging: a screening test for renovascular hypertension
International Nuclear Information System (INIS)
Keim, H.J.; Johnson, P.M.; Vaughan, E.D. Jr.; Beg, K.; Follett, D.A.; Freeman, L.M.; Laragh, J.H.
1979-01-01
Computer-assisted static/dynamic renal imaging with [ 197 Hg] chlormerodrin and [/sup 99m/Tc] pertechnetate was evaluated prospectively as a screening test for renovascular hypertension. Results are reported for 51 patients: 33 with benign essential hypertension and 18 with renovascular hypertension, and for 21 normal controls. All patients underwent renal arteriography. Patients with significant obesity, renal insufficiency, or renoparenchymal disease were excluded from this study. Independent visual analyses of renal gamma images and time-activity transit curves identified 17 of the 18 patients with renovascular hypertension; one study was equivocal. There were five equivocal and three false-positive results in the essential hypertension and normal control groups. The sensitivity of the method was 94% and the specificity 85%. Since the prevalence of the renovascular subset of hypertension is approximately 5%, the predictive value is only 25%. Inclusion of computer-generated data did not improve this result. Accordingly, this method is not recommended as a primary screening test for renovascular hypertension
Non-linear aeroelastic prediction for aircraft applications
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
in this domain. This is set within the context of a generic industrial process and the requirements of UK and US aeroelastic qualification. A range of test cases, from simple small DOF cases to full aircraft, have been used to evaluate and validate the non-linear methods developed and to make comparison with the linear methods in everyday use. These have focused mainly on aerodynamic non-linearity, although some results for structural non-linearity are also presented. The challenges associated with time domain (coupled computational fluid dynamics-computational structural model (CFD-CSM)) methods have been addressed through the development of grid movement, fluid-structure coupling, and control surface movement technologies. Conclusions regarding the accuracy and computational cost of these are presented. The computational cost of time-domain methods, despite substantial improvements in efficiency, remains high. However, significant advances have been made in reduced order methods, that allow non-linear behaviour to be modelled, but at a cost comparable with that of the regular linear methods. Of particular note is a method based on Hopf bifurcation that has reached an appropriate maturity for deployment on real aircraft configurations, though only limited results are presented herein. Results are also presented for dynamically linearised CFD approaches that hold out the possibility of non-linear results at a fraction of the cost of time coupled CFD-CSM methods. Local linearisation approaches (higher order harmonic balance and continuation method) are also presented; these have the advantage that no prior assumption of the nature of the aeroelastic instability is required, but currently these methods are limited to low DOF problems and it is thought that these will not reach a level of maturity appropriate to real aircraft problems for some years to come. Nevertheless, guidance on the most likely approaches has been derived and this forms the basis for ongoing
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohsen Rostami
2012-06-01
Full Text Available The pathophysiology of primary benign exertional headache (EH is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP and heart rate (HR of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15 and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12 were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali
2012-01-01
The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile
Hoľko, Michal; Stacho, Jakub
2014-12-01
The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.
Results from the First Two Flights of the Static Computer Memory Integrity Testing Experiment
Hancock, Thomas M., III
1999-01-01
This paper details the scientific objectives, experiment design, data collection method, and post flight analysis following the first two flights of the Static Computer Memory Integrity Testing (SCMIT) experiment. SCMIT is designed to detect soft-event upsets in passive magnetic memory. A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip". In its mildest form a soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing (ending data collection) or corrupted fault protection and error recovery capabilities. In it's most severe form loss of mission or spacecraft can occur. Analysis after the first flight (in 1991 during STS-40) identified possible soft-event upsets to 25% of the experiment detectors. Post flight analysis after the second flight (in 1997 on STS-87) failed to find any evidence of soft-event upsets. The SCMIT experiment is currently scheduled for a third flight in December 1999 on STS-101.
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
Energy Technology Data Exchange (ETDEWEB)
Goff, D. R.; Cutright, R. L.; Griffith, R. A.; Loomis, R. B.; Maxfield, D. A.; Moritz, R. S.
1981-10-01
METC Prototype Test Valve No. F-1 is a hybrid design, based on a segmented ball termed a visor valve, developed and manufactured by Fairchild Stratos Division under contract to the Department of Energy. The valve uses a visor arm that rotates into position and then translates to seal. This valve conditionally completed static testing at METC with clean gas to pressures of 1600 psig and internal valve temperatures to 600/sup 0/F. External leakage was excessive due to leakage through the stuffing box, purge fittings, external bolts, and other assemblies. The stuffing box was repacked several times and redesigned midway through the testing, but external leakage was still excessive. Internal leakage through the seats, except for a few anomalies, was very low throughout the 2409 cycles of testing. As shown by the low internal leakage, the visor valve concept appears to have potential for lock-hopper valve applications. The problems that are present with METC Prototype Test Valve No. F-1 are in the seals, which are equivalent to the shaft and bonnet seals in standard valve designs. The operating conditions at these seals are well within the capabilities of available seal designs and materials. Further engineering and minor modifications should be able to resolve the problems identified during static testing.
Energy Technology Data Exchange (ETDEWEB)
Chin, Eric Brian [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-09-01
V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.
Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade
Kaza, K. R. V.; Kvaternik, R. G.
1979-01-01
The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.
Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.
Centrifugal Compressor Aeroelastic Analysis Code
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Influence of stationary vehicles on bridge aerodynamic and aeroelastic coefficients
Czech Academy of Sciences Publication Activity Database
Pospíšil, Stanislav; Buljac, A.; Kozmar, H.; Kuznetsov, Sergeii; Macháček, Michael; Král, Radomil
2017-01-01
Roč. 22, č. 4 (2017), č. článku 05016012. ISSN 1084-0702 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : wind-vehicle-bridge system * cable-supported bridge * bridge aerodynamics and aeroelasticity * stationary vehicles * wind tunnel tests Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 1.476, year: 2016 http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0001017
Aeroelastic instability problems for wind turbines
DEFF Research Database (Denmark)
Hansen, Morten Hartvig
2007-01-01
This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....
Bower, Kelly J; McGinley, Jennifer L; Miller, Kimberly J; Clark, Ross A
2014-01-01
The Wii Balance Board (WBB) is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke. Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand) in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach) on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated. All WBB-based outcomes were found to be highly reliable between testing occasions (ICC = 0.82 to 0.98). Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test. The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.
Stranzinger, S; Faulhammer, E; Scheibelhofer, O; Calzolari, V; Biserni, S; Paudel, A; Khinast, J G
2018-04-05
Precise filling of capsules with doses in the mg-range requires a good understanding of the filling process. Therefore, we investigated the various process steps of the filling process by dynamic and static mode tests. Dynamic tests refer to filling of capsules in a regular laboratory dosator filling machine. Static tests were conducted using a novel filling system developed by us. Three grades of lactose excipients were filled into size 3 capsules with different dosing chamber lengths, nozzle diameters and powder bed heights, and, in the dynamic mode, with two filling speeds (500, 3000 caps/h). The influence of the gap at the bottom of the powder container on the fill weight and variability was assessed. Different gaps resulted in a change in fill weight in all materials, although in different ways. In all cases, the fill weight of highly cohesive Lactohale 220 increased when decreasing the gap. Furthermore, experiments with the stand-alone static test tool indicated that this very challenging powder could successfully be filled without any pre-compression in the range of 5 mg-20 mg with acceptable RSDs. This finding is of great importance since for very fine lactose powders high compression ratios (dosing-chamber-length-to-powder-bed height compression ratios) may result in jamming of the piston. Moreover, it shows that the static mode setup is suitable for studying fill weight and variability. Since cohesive powders, such as Lactohale 220, are hard to fill, we investigated the impact of vibration on the process. Interestingly, we found no correlation between the reported fill weight changes in dynamic mode at 3000 cph and static mode using similar vibration. However, we could show that vibrations during sampling in the static mode dramatically reduced fill weight variability. Overall, our results indicate that by fine-tuning instrumental settings even very challenging powders can be filled with a low-dose dosator capsule filling machine. This study is a
Empirical Tests and Preliminary Results with the Krakatoa Tool for Full Static Program Verification
Directory of Open Access Journals (Sweden)
Ramírez-de León Edgar Darío
2014-10-01
Full Text Available XJML (Ramírez et al., 2012 is a modular external platform for Verification and Validation of Java classes using the Java Modeling Language (JML through contracts written in XML. One problem faced in the XJML development was how to integrate Full Static Program Verification (FSPV. This paper presents the experiments and results that allowed us to define what tool to embed in XJML to execute FSPV.
Aeroelastic Dynamics Simulation of Two BaffleBased Connected Shells
Directory of Open Access Journals (Sweden)
G. A. Shcheglov
2015-01-01
Full Text Available The present work is an extention study of aeroelastic vibrations of thin-walled structures with a spatial subsonic flow. An original algorithm for solving complex conjugated aeroelasticity problem, allowing to carry out direct numerical simulation of structural oscillations in the spatial flow of an incompressible medium are developed and tested. On the basis of this simulation study of the spectrum comes the driving forces acting on the flow in a spatial component elastic structure mounted on an impenetrable screen.Currently, updating the mathematical models of unsteady loads that act on the spacepurpose elastic designs such as launch vehicles, service tower installed on the launch pad is a challenge. We consider two thin-walled cantilevered rotating shells connected by a system of elastic couplings, installed next to the impenetrable baffle so that the axes of rotation are perpendicular to the baffle. Dynamics of elastic system is investigated numerically, using the vortex element method with the spatial separated flow of an incompressible medium. A feature of the algorithm is the common commercial complex MSC Patran / Nastran which is used in preparing data to calculate the shell dynamics thereby allowing to consider very complex dynamic schemes.The work performs the first calculations of the model problem concerning the forced oscillations of two coupled cylindrical shells in the flow of an incompressible medium. Comparing the load spectra for the elastic and absolutely rigid structure has shown that the frequency spectra vary slightly. Further calculations are required in which it will be necessary to increase the duration of the calculations, sampling in construction of design scheme, and given the large number of vibration modes that require increasing computing power.Experience in calculating aeroelastic dynamics of complex elastic structures taking into account the screen proved to be successful as a whole, thereby allowing to turn to
Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.
2015-01-01
This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.
Research in aeroelasticity EFP-2007
Energy Technology Data Exchange (ETDEWEB)
Bak, C.
2008-07-15
This report contains results from the EFP2007 project 'Program for Research in Applied Aeroelasticity'. The main results from this project are: 1) The rotor aerodynamics were computed using different types of models with focus on the flow around the tip. The results showed similar trend for all models. 2) Comparison of 3D CFD computations with and without inflow shear showed that the integrated rotor thrust and power were largely identical in the two situations. 3) The influence of tower shadow with and without inflow shear showed significant differences compared to BEMcomputations, which gives cause for further investigation. 4) 3D CFD computations showed that the flow in the region of the nacelle anemometer measured the flow angle in the wake with errors up to as much as 7 deg. relative to the freestream flow angle. 5) As long as the flow over a blade remains attached there is little difference between 2-D and 3-D flow. However, at separation an increased lift is observed close to the rotational axis. 6) A correlation based transition model has been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Computations on airfoils and rotors showed good agreement and distinct improvement in the drag predictions compared to using fully turbulent computations. 7) Comparing the method of Dynamic Wake Meandering (DWM) and IEC, the IECmodel seems conservative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending, whereas the loads on tower and blade torsion are non-conservative. 8) An experimental method for measuring transition point and energy spectra in airfoil boundary layers using microphones has been developed. 9) A robust and automatic method for detecting transition based on microphone measurement on airfoil surfaces has been developed. 10) Transition points and the corresponding instabilities have clearly been observed in airfoil boundary layers. 11) Predictions of the transition points on airfoils using
Directory of Open Access Journals (Sweden)
Kelly J Bower
Full Text Available The Wii Balance Board (WBB is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke.Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated.All WBB-based outcomes were found to be highly reliable between testing occasions (ICC = 0.82 to 0.98. Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test.The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.
Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James
2015-01-01
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.
Computational Models for Nonlinear Aeroelastic Systems, Phase II
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Variable Fidelity Aeroelastic Toolkit - Structural Model, Phase I
National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...
Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.
2014-01-01
The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.
Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki
Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.
Investigations on precursor measures for aeroelastic flutter
Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan
2018-04-01
Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.
Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.
2003-10-01
The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.
Directory of Open Access Journals (Sweden)
M.G. Bara Filho
2008-01-01
Full Text Available Strength and flexibility are common components of a training program and their maximal values are obtained through specific tests. However, little information about the damage effect of these training procedures in a skeletal muscle is known. Objective: To verify a serum CK changes 24 h after a sub maximal stretching routine and after the static flexibility and maximal strength tests. Methods: the sample was composed by 14 subjects (man and women, 28 ± 6 yr. physical education students. The volunteers were divided in a control group (CG and experimental group (EG that was submitted in a stretching routine (EG-ST, in a maximal flexibility static test (EG-FLEX and in 1-RM test (EG-1-RM, with one week interval among tests. The anthropometrics characteristics were obtained by digital scale with stadiometer (Filizola, São Paulo, Brasil, 2002. The blood samples were obtained using the IFCC method with reference values 26-155 U/L. The De Lorme and Watkins technique was used to access maximal maximal strength through bench press and leg press. The maximal flexibility test consisted in three 20 seconds sets until the point of maximal discomfort. The stretching was done in normal movement amplitude during 6 secons. Results: The basal and post 24 h CK values in CG and EG (ST; Flex and 1 RM were respectively 195,0 ± 129,5 vs. 202,1 ± 124,2; 213,3 ± 133,2 vs. 174,7 ± 115,8; 213,3 ± 133,2 vs. 226,6 ± 126,7 e 213,3 ± 133,2 vs. 275,9 ± 157,2. It was only observed a significant difference (p = 0,02 in the pre and post values inGE-1RM. Conclusion: only maximal strength dynamic exercise was capable to cause skeletal muscle damage.
Comparison between ground tests and flight data for two static 32 KB memories
International Nuclear Information System (INIS)
Cheynet, Ph.; Velazco, R.; Cheynet, Ph.; Ecoffet, R.; Duzellier, S.; David, J.P.; Loquet, J.G.
1999-01-01
The study concerns two 32 K-byte static memories, one from Hitachi (HM62256) and the other (HM65756) from Matra-MHS. The results correspond to around one year of measurement in high radiation orbit and a total of 268 upsets were detected. As a preliminary conclusion it can be stated that the MHS SRAM is probably at least 4 times more sensitive to SEU (single event upset) than the Hitachi SRAM. The Hitachi memory has exhibited what we call ''stuck-at'' bit errors. This kind of event is identified when the same address and data is found in error (fixed read data) for several consecutive read cycles. A confrontation of SEU rates derived from predictions to those measured in flight has shown that: - error rate is underestimated for HM62256 using standard prediction models, - error rate can be under or over-estimated for HM65756 but the dispersion on heavy-ion ground results does not allow us to conclude. (A.C.)
STEM - software test and evaluation methods: fault detection using static analysis techniques
International Nuclear Information System (INIS)
Bishop, P.G.; Esp, D.G.
1988-08-01
STEM is a software reliability project with the objective of evaluating a number of fault detection and fault estimation methods which can be applied to high integrity software. This Report gives some interim results of applying both manual and computer-based static analysis techniques, in particular SPADE, to an early CERL version of the PODS software containing known faults. The main results of this study are that: The scope for thorough verification is determined by the quality of the design documentation; documentation defects become especially apparent when verification is attempted. For well-defined software, the thoroughness of SPADE-assisted verification for detecting a large class of faults was successfully demonstrated. For imprecisely-defined software (not recommended for high-integrity systems) the use of tools such as SPADE is difficult and inappropriate. Analysis and verification tools are helpful, through their reliability and thoroughness. However, they are designed to assist, not replace, a human in validating software. Manual inspection can still reveal errors (such as errors in specification and errors of transcription of systems constants) which current tools cannot detect. There is a need for tools to automatically detect typographical errors in system constants, for example by reporting outliers to patterns. To obtain the maximum benefit from advanced tools, they should be applied during software development (when verification problems can be detected and corrected) rather than retrospectively. (author)
Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.
2018-03-01
The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.
Li, Jin; Correia, Ricardo P.; Chehura, Edmon; Staines, Stephen; James, Stephen W.; Tatam, Ralph; Butcher, Antony P.; Fuentes, Raul
2009-10-01
Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown.
DEFF Research Database (Denmark)
Corfitzen, Charlotte B.; Arvin, Erik; Albrechtsen, Hans-Jørgen
. The bioavailable migration from the polymer surface was influence by diffusion over the solid-liquid boundary layer under sterile conditions, which resulted in an inversely proportionally relationship between bioavailable migration expressed per unit surface area of material and the surface to volume ratio (S/V-ratio...... the effect of the boundary layer, since bioavailable migration was continuously consumed by the bacteria. Thus the driving force for the diffusion process was maintained at a maximum, thereby enhancing the bioavailable migration from the material surfaces. Thus neither non-static conditions nor varying S/V-ratios...
Rommel, Bruce A.
1989-01-01
An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.
Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.
2014-01-01
This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.
Nguyen, Nhan; James Urnes, Sr.
2012-01-01
achieved. Moreover, some parts of the flap system can be made to have a high frequency response for roll control, gust load alleviation, and aeroservoelastic (ASE) modal suppression control. Abstract The aeroelastic model of the ESAC is based on one-dimensional structural dynamic theory that captures the aeroelastic deformation of a wing structure in a combined motion that involves flapwise bending, chordwise bending, and torsion. The model includes the effect of aircraft propulsion due to wing flexibility which causes the propulsive forces and moments to couple with the wing elastic motion. Engine mass is also accounted in the model. A fuel management model is developed to describe the wing mass change due to fuel usage in the main tank and wing tanks during cruise. Abstract The model computes both static and dynamic responses of the wing structures. The static aeroelastic deflections are used to estimate the effect of wing flexibility on induced drag and the potential drag reduction by the VCCTE flap system. A flutter analysis is conducted to estimate the flutter speed boundary. Gust load alleviation via adaptive control has been recently investigated to address flexibility of aircraft structures. A multi-objective flight control approach is presented for drag reduction control. The approach is based on an optimal control framework using a multi-objective cost function. Future studies will demonstrate the potential benefits of the approach.
A test-bench for measurement of electrical static parameters of strip silicon detectors
International Nuclear Information System (INIS)
Golutvin, I.A.; Dmitriev, A.Yu.; Elsha, V.V.
2003-01-01
An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control. (author)
A Test-Bench for Measurement of Electrical Static Parameters of Strip Silicon Detectors
Golutvin, I A; Danilevich, V G; Dmitriev, A Yu; Elsha, V V; Zamiatin, Y I; Zubarev, E V; Ziaziulia, F E; Kozus, V I; Lomako, V M; Stepankov, D V; Khomich, A P; Shumeiko, N M; Cheremuhin, A E
2003-01-01
An automated test-bench for electrical parameters input control of the strip silicon detectors, used in the End-Cap Preshower detector of the CMS experiment, is described. The test-bench application allows one to solve a problem of silicon detectors input control in conditions of mass production - 1800 detectors over 2 years. The test-bench software is realized in Delphi environment and contains a user-friendly operator interface for measurement data processing and visualization as well as up-to-date facilities for MS-Windows used for the network database. High operating characteristics and reliability of the test-bench were confirmed while more than 800 detectors were tested. Some technical solutions applied to the test-bench could be useful for design and construction of automated facilities for electrical parameters measurements of the microstrip detectors input control.
DEFF Research Database (Denmark)
Sessarego, Matias; Ramos García, Néstor; Sørensen, Jens Nørkær
2017-01-01
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal......, multi-body or the finite-element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three-dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS...... Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine-elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS-FLEX results, such as blade tip...
International Nuclear Information System (INIS)
Freitag, Joerg; Kosuge, Hitoshi; Schmelzer, Juergen P.; Kato, Satoru
2015-01-01
Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method
International Nuclear Information System (INIS)
Wu Shengxing; Chen Xudong; Zhou Jikai
2012-01-01
Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.
Mark Alexander Butler; Joseph Dahlen; Finto Antony; Michael Kane; Thomas L. Eberhardt; Huizhe Jin; Kim Love-Myers; John Paul McTague
2016-01-01
Prior to the 1980s, the allowable stresses for lumber in North America were derived from testing of small clear specimens. However, the procedures were changed because these models were found to be inaccurate. Nevertheless, small clear testing continues to be used around the world for allowable stress determinations and in studies that examine forest management impacts...
Straub, F. K.; Johnston, R. A.
1987-01-01
A 27% dynamically scaled model of the YAH-64 Advanced Attack Helicopter main rotor and hub has been designed and fabricated. The model will be tested in the NASA Langley Research Center V/STOL wind tunnel using the General Rotor Model System (GRMS). This report documents the studies performed to ensure dynamic similarity of the model with its full scale parent. It also contains a preliminary aeroelastic and aeromechanical substantiation for the rotor installation in the wind tunnel. From the limited studies performed no aeroelastic stability or load problems are projected. To alleviate a projected ground resonance problem, a modification of the roll characteristics of the GRMS is recommended.
Static pile load tests on driven piles in Intermediate-Geo Materials : research brief.
2017-02-01
Research Objectives: : Investigate the use of modified standard penetration tests (MSPT) : Compare field results with predictions made by the WisDOT driving formula, PDA and CAPWAP : Improve prediction of pile lengths and pile capacities ...
ORNL Interim Progress Report on Static CIRFT Testing Curvature Data Update
Energy Technology Data Exchange (ETDEWEB)
Wang, Jy-An John [ORNL; Wang, Hong [ORNL
2016-10-10
Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.
Aeroelastic modelling without the need for excessive computing power
Energy Technology Data Exchange (ETDEWEB)
Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Technology, Dept. of Electronic and Electrical Engineering, Loughborough (United Kingdom)
1996-09-01
The aeroelastic model presented here was developed specifically to represent a wind turbine manufactured by Northern Power Systems which features a passive pitch control mechanism. It was considered that this particular turbine, which also has low solidity flexible blades, and is free yawing, would provide a stringent test of modelling approaches. It was believed that blade element aerodynamic modelling would not be adequate to properly describe the combination of yawed flow, dynamic inflow and unsteady aerodynamics; consequently a wake modelling approach was adopted. In order to keep computation time limited, a highly simplified, semi-free wake approach (developed in previous work) was used. a similarly simple structural model was adopted with up to only six degrees of freedom in total. In order to take account of blade (flapwise) flexibility a simple finite element sub-model is used. Good quality data from the turbine has recently been collected and it is hoped to undertake model validation in the near future. (au)
The manufacture of system for testing static random access memory radiation effect
International Nuclear Information System (INIS)
Chen Rui; Yang Chen
2008-01-01
Space radiation effects will lead to single event upset, event latch up and other phenomena in SRAM devices. This paper introduces the hardware, software composition and related testing technology of SRAM radiation effect testing device. Through to the SRAM chip current detection and power protection, it has solved the SRAM chip damage question in the SRAM experiment. It has accessed to the expected experimental data by using the device in different source of radiation conducted on SRAM Experimental study of radiation effects. It provides important references in the assessment of operational life and reinforcement of the memory carried in the satellites. (authors)
Energy Technology Data Exchange (ETDEWEB)
Lipa, M. [Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-Lez-Durance (France)], E-mail: manfred.lipa@cea.fr; Blanchet, J.; Feron, D. [CEA/DEN/SCCME, Centre de Saclay, 91191 Gif sur Yvette (France); Cellier, F. [AREVA ANP, Centre Technique, 71380 Saint Marcel (France)
2008-12-15
Tore supra (TS) in vessel components represent a unique combination of metals in the hydraulic circuit. Different materials, e.g. stainless steel, copper alloys, nickel, etc., were joined together by fusion welding, brazing and friction. Since the operation and baking temperature of all in vessel components has been defined to be set at 230 deg. C/40 bars a special water chemistry of the cooling water loop was suggested in order to prevent eventual water leaks due to corrosion at relative high temperatures and pressures in tubes, bellows, coils and coolant plant ancillary equipments. Following experiences with water chemistry in Pressurised Water Reactors, an all volatile chemical treatment (AVT) has been defined for the cooling water quality of TS. Since then, a simplified static (no fluid circulation) corrosion test program at relatively high temperature and pressure has been performed using capsule-type samples made of above mentioned multi-metal assemblies.
Test analysis and research on static choice reaction ability of commercial vehicle drivers
Zhang, Lingchao; Wei, Lang; Qiao, Jie; Tian, Shun; Wang, Shengchang
2017-03-01
Drivers' choice reaction ability has a certain relation with safe driving. It has important significance to research its influence on traffic safety. Firstly, the paper uses a choice reaction detector developed by research group to detect drivers' choice reaction ability of commercial vehicles, and gets 2641 effective samples. Then by using mathematical statistics method, the paper founds that average reaction time from accident group has no difference with non-accident group, and then introduces a variance rate of reaction time as a new index to replace it. The result shows that the test index choice reaction errors and variance rate of reaction time have positive correlations with accidents. Finally, according to testing results of the detector, the paper formulates a detection threshold with four levels for helping transportation companies to assess commercial vehicles drivers.
Static Test and Result Analysis on Different Types of Pile Composite Foundation in the Same Field
Directory of Open Access Journals (Sweden)
Zhao Tuo
2015-01-01
Full Text Available Combining with the situation of soil test site, the large scale experiment was studying about natural foundation, rammed soil-cement piles, CFG pile and gravel pil. A series of conclusions were given from p-s curve, the fitting curve, and the Angle of the stress ratio of pile-soil composite modulus. It has certain guiding significance for the design and construction of pile type, which is used in North China area.
Experimental test of static and dynamic characteristics of tilting-pad thrust bearings
Annan Guo; Xiaojing Wang; Jian Jin; Diann Y Hua; Zikai Hua
2015-01-01
The axial vibration in turbine machine has attracted more and more interest. Tilting-pad thrust bearings are widely used in turbine machines to support the axial load. The dynamic properties generated by oil film of the thrust pad have important effects on the axial vibration of the rotor-bearing system. It is necessary to develop the method to test the dynamic characteristics of thrust bearings. A new rig has been developed. The facility allows a complete set of bearing operating parameters ...
Static bending test after proximal femoral nail (PFN removal - in vitro analysis
Directory of Open Access Journals (Sweden)
Leonardo Morais Paiva
Full Text Available Abstract Objective To evaluate, through biomechanical testing, the resistance to and energy required for the occurrence of proximal femoral fracture in synthetic bone after removal of a proximal femoral nail model (PFN, comparing the results obtained with a reinforcement technique using polymethylmethacrylate (PMMA. Methods Fifteen synthetic bones were used: five units for the control group (CG, five for the test group without reinforcement (TGNR, and five for the test group with reinforcement (TGR. The biomechanical analysis was performed simulating a fall on the trochanter using a servo-hydraulic machine. In the GC, the assay was performed with the PFN intact. In the TGNR and TGR groups, a model of PFN was introduced and the tests were performed in the TGNR, after simple removal of the synthesis material, and in the TGR, after removal of the same PFN model and filling of the cavity in the femoral neck with PMMA. Results All groups presented a basicervical fracture. The CG presented a mean of 1427.39 Newtons (N of maximum load and 10.14 Joules (J of energy for the occurrence of the fracture. The TGNR and TGR presented 892.14 N and 1477.80 N of maximum load, and 6.71 J and 11.99 J of energy, respectively. According to the Kruskal-Wallis ANOVA, there was a significant difference in the maximum load (p = 0.009 and energy (p = 0.007 between these groups. Conclusion The simple removal of a PFN in synthetic bone showed a significant reduction of the maximum load and energy for the occurrence of fracture, which were re-established with a reinforcement technique using PMMA.
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2015-01-01
Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential
Development of an aeroelastic methodology for surface morphing rotors
Cook, James R.
transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.
Energy Technology Data Exchange (ETDEWEB)
Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)
Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.
Mechanical properties of reactor pressure vessel steels studied by static and dynamic torsion tests
International Nuclear Information System (INIS)
Munier, A.; Maamouri, M.; Schaller, R.; Mercier, O.
1993-01-01
Internal friction measurements and torsional plastic deformation tests have been performed in reactor pressure vessel steels (unirradiated, irradiated and irradiated/annealed specimens). The results of these experiments have been interpreted with help of transmission electron microscopy observations (conventional and in situ). It is shown how the interactions between screw dislocations and obstacles (Peierls valleys, impurities and precipitates) could explain the low temperature hardening and the irradiation embrittlement of ferritic steels. In addition, it appears that the nondestructive internal friction technique could be used advantageously to follow the evolution of the material properties under irradiation, as for instance the irradiation embrittlement of the reactor pressure vessel steels. (orig.)
Fuel Tests on an I-16 Jet-Propulsion Engine at Static Sea-Level Conditions
1947-04-29
All fuel lines and manometer leads were Joined to tbs engine by r.;bber-hoee con::&-:tions to prov-.de flexi- bility. The test cell Itself wa3 a...The air leakage into t:.e cell was measured i:id laolntefl’ In the calculations of the air flow to the er.jine. Figure 1 also shirks tbfl...t t - ’ > / J / i / 4» / / / >•• —* / - - iw r—’ 860 <•— 4 f < Hot-« el4 oct.nt t> Unil rucl . - -Theoretical lln«i / 0 ; I T
Aeroelastic Optimization of MW Wind Turbines
DEFF Research Database (Denmark)
Hansen, Morten Hartvig; Zahle, Frederik
This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...
Studying aeroelastic oscillations with tensoresistor and Arduino
Demenkov, Maxim
2018-05-01
We describe a modification of the Flexy device, originally developed at the Slovak University of Technology. With our version of it, constructed at the Institute of Control Sciences, one can study aeroelastic oscillations (flutter) using cheap and freely available components. Flex sensor (tensoresistor) changes its electrical resistance proportionally to its bending. The lightweight plastic plate (attached to the resistor) plays the role of a wing in the flow generated by a small fan. Both fan and tensoresistor are connected to an Arduino microcontroller and it is possible to obtain and analyze experimental data from the device on a personal computer.
Research in Aeroelasticity EFP-2006[Wind turbines
Energy Technology Data Exchange (ETDEWEB)
Bak, C.
2007-07-15
This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind
A wind turbine hybrid simulation framework considering aeroelastic effects
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Energy Technology Data Exchange (ETDEWEB)
Tweedie, R.; Clementino, R.; Law, D. [Thurber Engineering Ltd., Edmonton, AB (Canada)
2009-07-01
Many of the foundations at industrial plants in northern Alberta are supported by driven steel piles that are often installed through thick glacial clay and sand deposits. This paper presented 3 case histories where static load tests (SLT) and high strain dynamic tests (HSDT) were conducted on the driven steel piles. The soil conditions and typical pile sizes used at the 3 sites were described. The first site was an oilsand processing facility where steam assisted gravity drainage (SAGD) was used for bitumen production from oilsand. The second site was a petrochemical plant and the third site was a power plant. The case histories revealed the importance of combining SLT and HSDT to optimize pile designs. The paper emphasized the benefits of undertaking the pile load tests during the design phase, when the potential benefits of obtaining higher capacities can be effectively applied to the pile designs. It was concluded that pile design based on Limit States Design (LSD) in accordance with NBC 2005 must satisfy the Ultimate Limit States (ULS) to prevent plunging failure and also Serviceability Limit States (SLS) to maintain tolerable settlement. 10 refs., 5 tabs., 7 figs.
Directory of Open Access Journals (Sweden)
Fei Wang
Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.
Presentations from the Aeroelastic Workshop - latest results from AeroOpt
Energy Technology Data Exchange (ETDEWEB)
Hartvig Hansen, M. (ed.)
2011-10-15
This report contains the slides of the presentations at the Aeroelastic Workshop held at Risoe-DTU for the wind energy industry in Denmark on October 27, 2011. The scientific part of the agenda at this workshop was 1) Detailed and reduced models of dynamic mooring system (Anders M. Hansen). 2) Bend-twist coupling investigation in HAWC2 (Taeseong Kim). 3) Q3UIC - A new aerodynamic airfoil tool including rotational effects (Nestor R. Garcia). 4) Influence of up-scaling on loads, control and aerodynamic modeling (Helge Aa. Madsen). 5) Aerodynamic damping of lateral tower vibrations (Bjarne S. Kallesoee). 6) Open- and closed-loop aeroservoelastic analysis with HAWCStab2 (Morten H. Hansen). 7) Design and test of a thick, flatback, high-lift multielement airfoil (Frederik Zahle). The presented results are mainly obtained in the EUDP project ''Aeroelastic Optimization of MW Wind Turbines (AeroOpt)''. (Author)
Rectifier cabinet static breaker
International Nuclear Information System (INIS)
Costantino, R.A. Jr; Gliebe, R.J.
1992-01-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs
Rectifier cabinet static breaker
Costantino, Jr, Roger A.; Gliebe, Ronald J.
1992-09-01
A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.
Development and testing of a double-focusing, static, axisymmetric mass spectrometer
International Nuclear Information System (INIS)
Ritter, G.
1979-04-01
The developed mass spectrometer affords very high acceptance (cm 2 sr) compared with conventional mass spectrometers owing to its large solid angle of 0.178 sr. The ion optical properties of the instrument were tested by bombarding various targets (Al, Ni, Ti, Cu, Si) with potassium or caesium ions from a thermionic ion source with energies of 1, 2 and 3 keV and recording mass spectra of positive and negative sputtered ions. The ion optical beam path was calculated analytically (magnet system) in part and numerically in part (energy analyzer, einzel lenses and detector system) and represented in graph form. The results obtained from the mass spectra showed that the magnet system with its twelve permanent magnets is too irregular to produce mass linses with good resolution. Furthermore, it was found that the maximum primary energy of the alkali ions that was possible in this mass spectrometer owing to the breakdown strength was not sufficient to record surface-specific mass spectra since the target surface was covered within a very short time with an at least monatomic layer of alkali ions from the thermionic ion source. (orig./HP) [de
Static analysis of material testing reactor cores:critical core calculations
International Nuclear Information System (INIS)
Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.
1999-01-01
A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions
Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights
Friedmann, Peretz P.
1990-01-01
Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.
Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines
International Nuclear Information System (INIS)
Marnett, M; Wellenberg, S; Schröder, W
2014-01-01
Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities
An overview of selected NASP aeroelastic studies at the NASA Langley Research Center
Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.
1990-01-01
Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Transonic aeroelastic numerical simulation in aeronautical engineering
International Nuclear Information System (INIS)
Yang, G.
2005-01-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
International Nuclear Information System (INIS)
Ise, Takeharu
1976-12-01
Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)
Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment
International Nuclear Information System (INIS)
Sousa, V C; De M Anicézio, M; De Marqui Jr, C; Erturk, A
2011-01-01
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
Aeroelastic Simulation Tool for Inflatable Ballute Aerocapture, Phase II
National Aeronautics and Space Administration — This project will develop a much-needed multidisciplinary analysis tool for predicting the impact of aeroelastic effects on the functionality of inflatable...
Sensitivity Analysis and Error Control for Computational Aeroelasticity, Phase I
National Aeronautics and Space Administration — The objective of this proposal is the development of a next-generation computational aeroelasticity code, suitable for real-world complex geometries, and...
Computational Models for Nonlinear Aeroelastic Systems, Phase I
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...
Doucette, William J; Curry, Eric; McNeill, Laurie S; Heavilin, Justin
2017-12-01
A mixture of combustion products (mainly hydrogen chloride, aluminum oxide, and water) and entrained soil, referred to as Test Fire Soil (TFS), can be deposited on crops during static solid rocket motor tests. The impact of a reported worst-case event was previously evaluated by exposing corn and alfalfa to 3200-gTFS/m 2 at 54days after emergence. Exposures via soil and leaves were evaluated separately. Reduced growth (soil exposure) and leaf "scorch" (leaf exposure) were attributed mainly to the high chloride concentrations in the TFS (56,000mg/kg). A follow-up study was conducted to evaluate the effect of a typical deposition event (70-gTFS/m 2 , estimated by radar during several tests) and exposure (soil and leaves simultaneously) on juvenile corn, alfalfa, and winter wheat. Younger crops were used to examine potential age sensitivity differences. Impact was evaluated by comparing the growth, elemental composition, and leaf chlorophyll content of treated and untreated plants. The relationship between deposition exposure and response was also addressed. Growth of corn, alfalfa, and winter wheat exposed to a typical TFS loading was not impacted, although slightly elevated concentrations of aluminum and iron were found in the leaves. At the highest loadings used for the exposure-response experiment, concentrations of chloride and calcium were higher in TFS-exposed corn leaves than in the untreated leaves. Overall results indicate that exposure to a typical deposition event does not adversely impact juvenile crops and that younger plants may be less vulnerable to TFS. However, higher TFS loadings can cause leaf scorch and increase the leaf concentrations of some elements. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Lipa, M. [CEA/DSM/DRFC Centre de Cadarache, 13 - Saint-Paul lez Durance (France); Blanchet, J.; Cellier, F. [Framatome, 71 - Saint Marcel (France). Centre Technique
2007-07-01
Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)
International Nuclear Information System (INIS)
Lipa, M.; Blanchet, J.; Cellier, F.
2007-01-01
Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)
International Nuclear Information System (INIS)
Ng, D.S.
1986-09-01
The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is a large-scale, tandem-mirror-fusion experiment. MFTF-B comprises many highly interconnected systems, including a magnet array and a vacuum vessel. The vessel, which houses the magnet array, is supported by reinforced concrete piers and steel frames resting on an array of foundations and surrounded by a 7-ft-thick concrete shielding vault. The Pittsburgh-Des Moines (PDM) Corporation, which was awarded the contract to design and construct the vessel, carried out fixed-base static and dynamic analyses of a finite-element model of the axicell vessel and magnet systems, including the simulation of various loading conditions and three postulated earthquake excitations. Meanwhile, LLNL monitored PDM's analyses with modeling studies of its own, and independently evaluated the structural responses of the vessel in order to define design criteria for the interface members and other project equipment. The assumptions underlying the finite-element model and the behavior of the axicell vessel are described in detail in this report, with particular emphasis placed on comparing the LLNL and PDM studies and on analyzing the fixed-base behavior with the soil-structure interaction, which occurs between the vessel and the massive concrete vault wall during a postulated seismic event. The structural members that proved sensitive to the soil effect are also reevaluated
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Aeroelastic tailoring of composite aircraft wings
Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin
2017-07-01
The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.
Aeroelastic optimization of MW wind turbines
Energy Technology Data Exchange (ETDEWEB)
Hartvig Hansen, M.; Zahle, F.
2011-12-15
This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)
Research in Aeroelasticity EFP-2007-II
DEFF Research Database (Denmark)
is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. • The unsteady flow in the nacelle region of a wind turbine......This report contains results from the EFP-2007-II project "Program for Research in Applied Aeroelasticity". The main results can be summed up into the following bullets: • 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower...... is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. • The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. • The trailing edge...
Directory of Open Access Journals (Sweden)
Ion DIMA
2017-03-01
Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces, displacements and stress function of frequency, under a combined linear static (101 Solution - Linear Static and dynamic load in frequency response (108 Solution - Frequency Response, Direct Method, applied to a micro launcher engine test bench, using NASTRAN 400 Solution - Implicit Nonlinear. NASTRAN/PATRAN software is used. Practically in PATRAN the preprocessor has to define a linear or nonlinear static load at step 1 and a dynamic in frequency response load (time dependent at step 2. In Analyze the following options are chosen: for Solution Type Implicit Nonlinear Solution (SOL 400 is selected, for Subcases Static Load and Transient Dynamic is chosen and for Subcase Select the two cases static and dynamic will be selected. NASTRAN solver will overlap results from static analysis with the dynamic analysis. The running time will be reduced three times if using Krylov solver. NASTRAN SYSTEM (387 = -1 instruction is used in order to activate Krylov option. Also, in Analysis the OP2 Output Format shall be selected, meaning that in bdf NASTRAN input file the PARAM POST 1 instruction shall be written. The structural damping can be defined in two different ways: either at the material card or using the PARAM, G, 0.05 instruction (in this example a damping coefficient by 5% was used. The SDAMPING instruction in pair with TABDMP1 work only for dynamic in frequency response, modal method, or in direct method with viscoelastic material, not for dynamic in frequency response, direct method (DFREQ, with linear elastic material. The Direct method – DFREQ used in this example is more accurate. A set in translation of boundary conditions was used and defined at the base of the test bench.
Aeroelastic characteristics of the AH-64 bearingless tail rotor
Banerjee, D.
1988-01-01
The results of a wind tunnel test program to determine the performance loads and dynamic characteristics of the Composite Flexbeam Tail Rotor (CFTR) for the AH-64 Advanced Attack Helicopter are reported. The CFTR uses an elastomeric shear attachment of the flexbeam to the hub to provide soft-inplane S-mode and stiff-inplane C-mode configuration. The properties of the elastomer were selected for proper frequency placement and scale damping of the inplane S-mode. Kinematic pitch-lag coupling was introduced to provide the first cyclic inplane C-mode damping at high collective pitch. The CFTR was tested in a wind tunnel over the full slideslip envelop of the AH-64. It is found that the rotor was aeroelastically stable throughout the complete collective pitch range and up to rotor speeds of 1403 rpm. The dynamic characteristics of the rotor were found to be satisfactory at all pitch angles and rotor speeds of the tunnel tests. The design characteristics of the rotor which permit the high performance characteristics are discussed. Several schematic drawings and photographs of the rotor are provided.
Energy Technology Data Exchange (ETDEWEB)
Lipa, M.; Blanchet, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Cellier, F. [Framatome, Centre Technique, 71 - Saint Marcel (France)
2007-07-01
Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal
International Nuclear Information System (INIS)
Lipa, M.; Blanchet, J.
2007-01-01
Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal
Hancock, Thomas
1993-01-01
This experiment investigated the integrity of static computer memory (floppy disk media) when exposed to the environment of low earth orbit. The experiment attempted to record soft-event upsets (bit-flips) in static computer memory. Typical conditions that exist in low earth orbit that may cause soft-event upsets include: cosmic rays, low level background radiation, charged fields, static charges, and the earth's magnetic field. Over the years several spacecraft have been affected by soft-event upsets (bit-flips), and these events have caused a loss of data or affected spacecraft guidance and control. This paper describes a commercial spin-off that is being developed from the experiment.
Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic System
Directory of Open Access Journals (Sweden)
M. Ghommem
2010-01-01
Full Text Available Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO. It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be effciently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.
Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.
2005-01-01
The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.
Aeroelastic tailoring for gust load alleviation
Lancelot, P.M.G.J.; De Breuker, R.
2016-01-01
This paper presents the results from the equivalent static load method applied to gust response optimisation of an aircraft wing. Through the different optimisation runs, it is assessed that gust load cases can be critical and are difficult to constrain with the sole use of static load cases.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Aeroelastic scaling laws for gust load alleviation control system
Directory of Open Access Journals (Sweden)
Tang Bo
2016-02-01
Full Text Available Gust load alleviation (GLA tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and verified. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compensating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude saturations in actuator have been studied and examined by a numerical simulation.
Aeroelastic Research Programme EFP-2000; Forskning i Aeroelasticitet - EFP-2000
Energy Technology Data Exchange (ETDEWEB)
Aagaard Madsen, H. (ed.)
2001-07-01
The report presents the main results achieved within (Program for forskning i aeroelasticitet EFP-2000), which is a project carried out in collaboration between Risoe, DTU and the wind turbine industry. The project period has been 2000-2001 and it is the fourth period of a five years research program on aeroelasticity initiated in 1997. Within the present period the project has comprised the following six milestones: a.) status on 2D and 3D CFD computations b.) implementation of improved aerodynamic and structural sub models in the aeroelastic codes FLEX4 and HAWC c.) design of an airfoil family with high maximum lift d.) determination of the potential in prediction of dynamic stability e.) analysis of the uncertainty in computation of design loads f.) guidelines for optimised blade dynamics Within the project important results have been obtained and in particular within the following three main ares: 1) verification, development and application of 2D and 3D CFD computation on airfoils an rotors; 2) dynamic stability of a complete wind turbine structure; 3) importance of non-linearity's related to big blade deflections. The development of rotor computations with the 3D CFD code EllipSys3D has been an important research area since the start of the aeroelastic research programme in 1997, where initial results of 3D computations on a rotor were presented. However, first within the present project a verification of these 3D rotor computations has been possible. A blind test of rotor codes was carried out by NREL in USA using experimental data from a comprehensive wind tunnel experiment on a 10 m rotor. Out of about 20 different codes EllipSys3D gave results with the best correlation with the experimental data and in particular the 3D effect on the airfoil characteristics was well predicted. Within the research area on dynamic stability a simple, linear structural model has been developed enabling the computation of a Cambell diagram within a few seconds. Such a
Yucel, Deniz Sanliyuksel; Baba, Alper
2016-08-01
The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.
Research in aeroelasticity EFP-2007-II
Energy Technology Data Exchange (ETDEWEB)
Buhl, T. (ed.)
2009-06-15
This report contains results from the EFP-2007-II project 'Program for Research in Applied Aeroelasticity'. The main results can be summed up into the following bullets: 1) 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. 2) Using a streamlined tower reduces the tower shadow by 50% compared to a cylindrical tower. Similar reductions can be achieved using a four legged lattice tower. 3) The application of laminar/turbulent transition in CFD computations for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. 4) The unsteady flow in the nacelle region of a wind turbine is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. 5) The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. 6) The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. 7) 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. 8) The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
Integrated aeroelastic vibrator for fluid mixing in open microwells
Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.
2018-01-01
Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2 × 2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.
Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A
2014-12-01
The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Aeroelastic behavior of composite rotor blades with swept tips
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.
Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface
Directory of Open Access Journals (Sweden)
Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface
2015-12-01
Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Shil'ko, S. V.; Gavrilenko, S. L.; Panin, S. V.; Alexenko, V. O.
2017-12-01
A method for determining rheological parameters of the Prony model describing the process of viscoelastic deformation of a material was developed based on the results of dynamic mechanical analysis. For the approbation of the method, static (uniaxial tension) and dynamic (three-point bending) mechanical tests of polymer composites were carried out. Based on the analytical dependence of the storage modulus on the parameters of the Prony model, the parameters of the shear function are determined. The results of the static and dynamic analysis are in good agreement. The proposed technique allows us to accelerate the determination of rheological parameters of polymer materials and recommend it to the calculation of the stress-strain state of structural elements and friction joints during their long operation at elevated temperature.
Static electricity: A literature review
Crow, Rita M.
1991-11-01
The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.
Directory of Open Access Journals (Sweden)
Nathalie Godin
2016-02-01
Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.
State of the art in wind turbine aerodynamics and aeroelasticity
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S
2006-01-01
A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...
Aeroelastic simulation using CFD based reduced order models
International Nuclear Information System (INIS)
Zhang, W.; Ye, Z.; Li, H.; Yang, Q.
2005-01-01
This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Aeroelastic Loads Modeling for Composite Aircraft Design Support
Baluch, H.A.
2009-01-01
With regard to the simulation of structural vibrations and consequent aeroelastic loads in aircraft components, the use of elastic axis e.a as reference of vibrations is quite common. The e.a decouples the bending and torsion degrees of freedom (D.o.F) during the dynamic analysis. The use of the e.a
Contribution to finite element modelling of airfoil aeroelastic instabilities
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Sváček, P.; Růžička, M.; Feistauer, M.
2007-01-01
Roč. 1, č. 1 (2007), s. 43-52 ISSN 1802-680X. [Computational Mechanics 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA MPO FT-TA/026 Institutional research plan: CEZ:AV0Z20760514 Keywords : induced vibration * aeroelasticity * nonlinear vibrations Subject RIV: BI - Acoustics
14 CFR 25.629 - Aeroelastic stability requirements.
2010-01-01
... stability envelopes as follows: (1) For normal conditions without failures, malfunctions, or adverse conditions, all combinations of altitudes and speeds encompassed by the VD/MD versus altitude envelope... necessary by the Administrator. (b) Aeroelastic stability envelopes. The airplane must be designed to be...
Parameter estimation of an aeroelastic aircraft using neural networks
Indian Academy of Sciences (India)
Many proposed model reduction procedures rely on numerical techniques andaor ... The capacity to act as general function approximator presents FFNNs as an alternative tool ... This paper investigates the aerodynamic modelling of an aeroelastic aircraft using ... the learning (training) process ± backpropagation of error.
Directory of Open Access Journals (Sweden)
Jacopo Zenzeri
2013-01-01
Full Text Available The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.
Design and simulation of the rotating test rig in the INDUFLAP project
DEFF Research Database (Denmark)
Barlas, Thanasis K.; Aagaard Madsen, Helge; Løgstrup Andersen, Tom
The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, as used for the aeroelastic testing of a controllable rubber trailing edge flap (CRTEF) system in the INDUFLAP project. The design of all new components is presented, including the electrical...... drive, the pitch system, the boom, and the wing/flap section. The overall instrumentation of the components used for the aeroelastic testing is described. Moreover, the aeroelastic model simulating the setup is described, and predictions of steady and dynamic loading along with the aeroelastic analysis...
Zahouani, H; Pailler-Mattei, C; Sohm, B; Vargiolu, R; Cenizo, V; Debret, R
2009-02-01
The study of changes in skin structure with age is becoming all the more important with the increase in life. The atrophy that occurs during aging is accompanied by more profound changes, with a loss of organization within the elastic collagen network and alterations in the basal elements. The aim of this study is to present a method to determine the mechanical properties of total human skin in vivo compared with dermal equivalents (DEs) using indentation and static friction tests. A new bio-tribometer working at a low contact pressure for the characterization the mechanical properties of the skin has been developed. This device, based on indentation and static friction tests, also allows to characterize the skin in vivo and reconstructed DEs in a wide range of light contact forces, stress and strain. This original bio-tribometer shows the ability to assess the skin elasticity and friction force in a wide range of light normal load (0.5-2 g) and low contact pressure (0.5-2 kPa). The results obtained by this approach show identical values of the Young's modulus E(*) and the shear modulus G(*) of six DEs obtained from a 62-year-old subject (E(*)=8.5+/-1.74 kPa and G(*)=3.3+/-0.46 kPa) and in vivo total skin of 20 subjects aged 55 to 70 years (E(*)=8.3+/-2.1 kPa, G(*)=2.8+/-0.8 kpa).
International Nuclear Information System (INIS)
Brezovich, I; Wu, X; Popple, R; Shen, S; Cardan, R; Bolding, M; Fiveash, J; Kraus, J; Spencer, S
2016-01-01
Purpose: To test spatial and dosimetric accuracy of small cranial target irradiation based on 1.5 T MRI scans using static arcs with MLC-defined fields Methods: A plastic (PMMA) phantom simulating a small brain lesion was mounted on a GammaKnife headframe equipped with MRI localizer. The lesion was a 3 mm long, 3.175 mm diameter cylindrical cavity filled with MRI contrast. Radiochromic film passing through the cavity was marked with pin pricks at the cavity center. The cavity was contoured on an MRI image and fused with CT to simulate treatment of a lesion not visible on CT. The transfer of the target to CT involved registering the MRI contrast cannels of the localizer that were visible on both modalities. Treatments were planned to deliver 800 cGy to the cavity center using multiple static arcs with 5.0×2.4 mm MLC-defined fields. The phantom was aligned on a STx accelerator by registering the conebeam CT with the planning CT. Films from coronal and sagittal planes were scanned and evaluated using ImageJ software Results: Geographic errors in treatment based on 1.5 T scans agreed within 0.33, −0.27 and 1.21 mm in the vertical, lateral and longitudinal dimensions, respectively. The doses delivered to the cavity center were 7.2% higher than planned. The dose distributions were similar to those of a GammaKnife. Conclusion: Radiation can be delivered with an accelerator at mm accuracy to small cranial targets based on 1.5 MRI scans fused to CTs using a standard GammaKnife headframe and MRI localizer. MLC-defined static arcs produce isodose lines very similar to the GammaKnife.
Martos, Borja; Kiszely, Paul; Foster, John V.
2011-01-01
As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.
Aeroelastic modal dynamics of wind turbines including anisotropic effects
DEFF Research Database (Denmark)
Skjoldan, Peter Fisker
frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions......Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...
Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft
Directory of Open Access Journals (Sweden)
Pezhman Mardanpour
2017-07-01
Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
International Nuclear Information System (INIS)
Carrión, M; Woodgate, M; Steijl, R; Barakos, G; Gómez-Iradi, S; Munduate, X
2014-01-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted
Applications of potential theory computations to transonic aeroelasticity
Edwards, J. W.
1986-01-01
Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.
Unsteady airfoil flows with application to aeroelastic stability
Energy Technology Data Exchange (ETDEWEB)
Johansen, Jeppe
1999-09-01
The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.
International Nuclear Information System (INIS)
Jesus Miranda, C.A. de.
1992-01-01
An integrated 3-D model of a research PWR reactor core support internals structures was developed for its dynamic analyses. The static tests for the validation of the model are presented. There are about 90 super-elements with, approximately, 85000 degrees of freedom (DoF), 8200 masters DoF, 12000 elements with about 8400 thin shell elements. A DEC VAX computer 11/785 model and the ANSYS program were used. If impacts occurs the spectral seismic analysis will be changed to a non-linear one with direct integration of the displacement pulse derived from the seismic accelerogram. This last will be obtained from the seismic acceleration response spectra. (author)
International Nuclear Information System (INIS)
1998-10-01
This test method is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycles and is the direct responsibility of Subcommittee C26.07 on Waste Materials. The current edition was approved July 10, 1998, and published in October 1998. It was originally published as C 1220-92. The last previous edition was C 1220-92
International Nuclear Information System (INIS)
Crofts, D.W.; Moore, H.
1995-01-01
Comanche Peak Nuclear Power Plant, with two 1150 Megawatt units, has two 345-20.9 kV, three-phase, 650 MVA transformers connected in parallel. The transformers have had a long history of hydrogen generation, and one of the Unit No. 2 transformers failed in 1983 while energized from the system for plant construction power. The failed unit was repaired and returned to Comanche Peak, and there was no evidence of static electrification involvement in the failure. During the time from installation to commercial operation in 1990 for Unit No. 1 and 1992 for Unit No. 2, the transformers were backfed from the system as needed to provide construction power. There was little regard paid to the operation of the cooling systems other than assuring the cooling was running. The transformers on unit No. 1 were subjected to several unusual electrical events - ferroresonance in 1981 and over excitation in 1983, with the generation of gasses of great concern. The decision was made to install a new transformer and return the old unit to the factory for diagnostic testing to determine the cause for the generation of combustible gas, primarily hydrogen. The dielectric integrity of the transformer could be quantified and decisions made concerning the replacement of the remaining transformers. After testing, the transformer was disassembled for forensic evaluation and rebuilt for return as a spare or to replace another transformer while undergoing repairs. Deformation of the bottom of the tank was discovered with large dents in the bottom protruding inward approximately one and one-half inches. With the concern of decreased clearances or displaced flux shields in the tank, an inspection opening was cut in the end of the transformer near the bottom. While investigating the deformation, evidence of partial discharge activity was discovered at the bottom of the high-to-low insulation; a location where static electrification damage has been observed in other large shell-form transformers
Design, realization and structural testing of a compliant adaptable wing
International Nuclear Information System (INIS)
Molinari, G; Arrieta, A F; Ermanni, P; Quack, M; Morari, M
2015-01-01
This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing. (paper)
Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis
Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.
2015-01-01
Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the
DEFF Research Database (Denmark)
Gebhardt, Cristian; Veluri, Badrinath; Preidikman, Sergio
2010-01-01
In this work an aeroelastic model that describes the interaction between aerodynamics and drivetrain dynamics of a large horizontal–axis wind turbine is presented. Traditional designs for wind turbines are based on the output of specific aeroelastic simulation codes. The output of these codes giv...
Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil
Sarkar, S.; Bijl, H.
2006-01-01
In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way
International Nuclear Information System (INIS)
Abdelrahman, Ahmed; Johnson, David A
2014-01-01
One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted
Low-order aeroelastic models of wind turbines for controller design
DEFF Research Database (Denmark)
Sønderby, Ivan Bergquist
Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design....... The thesis contains a characterization of the dynamics that influence the open-loop aeroelastic frequency response of a modern wind turbine, based on a high-order aeroelastic wind turbine model. One main finding is that the transfer function from collective pitch to generator speed is affected by two low...
Jutte, Christine; Stanford, Bret K.
2014-01-01
This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M
2013-03-01
Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.
International Nuclear Information System (INIS)
Pfiefle, T.W.; Senseny, P.E.
1981-05-01
Constant stress-rate triaxial compression experiments were performed on specimens of anhydrite and polyhalite at low confining pressure and at two temperatures. The loading rate was 5.75 x 10 -2 MPa s -1 ; the confining pressures were 1, 5, 10, and 20 MPa and the two temperatures were 25 0 C and 100 0 C. The specimens were loaded to failure in a soft testing machine so that failure occurred at peak stress. Results from these experiments were used to construct yield envelopes, failure envelopes and stress-strain curves, and to determine mechanical properties. Yield, determined by the onset of dilatancy, occurs at about sixty percent of peak stress. The effect of temperature on both the yield and failure envelopes is negligible. The polyhalite specimens were found to be about twice as strong as the anhydrite specimens. The stress-strain data were fitted to a constitutive law
Tolba, Khaled Ibrahim; Morgenthal, Guido
2018-01-01
This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.
Energy Technology Data Exchange (ETDEWEB)
Arias, F.; Soria, E.
1996-12-01
This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particular it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel`s test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)
International Nuclear Information System (INIS)
Arias, F.; Soria, E.
1996-01-01
This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particularly it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)
Aeroelastic model identification of winglet loads from flight test data
Reijerkerk, M.J.
2008-01-01
Numerical computational methods are getting more and more sophisticated every day, enabling more accurate aircraft load predictions. In the structural design of aircraft higher levels of flexibility can be tolerated to arrive at a substantial weight reduction. The result is that aircraft of the future can be bigger, have better performance and less mass. The performance of an aircraft can be even further enhanced by the use of winglets or other wing tip devices. A more flexible structure in c...
Aeroelastic model identification of winglet loads from flight test data
Reijerkerk, M.J.
2008-01-01
Numerical computational methods are getting more and more sophisticated every day, enabling more accurate aircraft load predictions. In the structural design of aircraft higher levels of flexibility can be tolerated to arrive at a substantial weight reduction. The result is that aircraft of the
Bisplinghoff, Raymond L; Pian, Theodore HH
2014-01-01
Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.
Aeroelastic Analysis of a Distributed Electric Propulsion Wing
Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer
2017-01-01
An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.
GAROS, an aeroelastic code for coupled fixed-rotating structures
Energy Technology Data Exchange (ETDEWEB)
Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)
1996-09-01
The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)
Aero-Elastic Optimization of a 10 MW Wind Turbine
DEFF Research Database (Denmark)
Zahle, Frederik; Tibaldi, Carlo; Verelst, David Robert
2015-01-01
This article describes a multi-disciplinary optimization and analysis tool for wind turbines that is based on the open-source framework OpenMDAO. Interfaces to several simulation codes have been implemented which allows for a wide variety of problem formulations and combinations of models....... In this article concurrent aeroelastic optimization of a 10 MW wind turbine rotor is carried out with respect to material distribution distribution and planform. The optimizations achieve up to 13% mass reduction while maintaining the same power production compared to the baseline DTU 10MW RWT....
Design of an aeroelastically tailored 10 MW wind turbine rotor
DEFF Research Database (Denmark)
Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian
2016-01-01
This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained...... not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP...
Aeroelastic analysis of an adaptive trailing edge with a smart elastic skin
Arena, Maurizio; Pecora, Rosario; Amoroso, Francesco; Noviello, Maria Chiara; Rea, Francesco; Concilio, Antonio
2017-09-01
Nowadays, the design choices of the new generation aircraft are moving towards the research and development of innovative technologies, aimed at improving performance as well as to minimize the environmental impact. In the current "greening" context, the morphing structures represent a very attractive answer to such requirements: both aerodynamic and structural advantages are ensured in several flight conditions, safeguarding the fuel consumption at the same time. An aeronautical intelligent system is therefore the outcome of combining complex smart materials and structures, assuring the best functionality level in the flight envelope. The Adaptive Trailing Edge Device (ATED) is a sub-project inside SARISTU (Smart Intelligent Aircraft Structures), an L2 level project of the 7th EU Framework programme coordinated by Airbus, aimed at developing technologies for realizing a morphing wing extremity addressed to improve the general aircraft performance and to reduce the fuel burning up to 5%. This specific study, divided into design, manufacturing and testing phases, involved universities, research centers and leading industries of the European consortium. The paper deals with the aeroelastic impact assessment of a full-scale morphing wing trailing edge on a Large Aeroplanes category aircraft. The FE (Finite Element) model of the technology demonstrator, located in the aileron region and manufactured within the project, was referenced to for the extrapolation of the structural properties of the whole adaptive trailing edge device placed in its actual location in the outer wing. The input FE models were processed within MSC-Nastran® environment to estimate stiffness and inertial distributions suitable to construct the aeroelastic stick-beam mock-up of the reference structure. Afterwards, a flutter analysis in simulated operative condition, have been carried out by means of Sandy®, an in-house code, according to meet the safety requirements imposed by the applicable
Thimm, Jens C
2017-12-01
The Computerized Adaptive Test of Personality Disorder-Static Form (CAT-PD-SF) is a self-report inventory developed to assess pathological personality traits. The current study explored the reliability and higher order factor structure of the Norwegian version of the CAT-PD-SF and the relationships between the CAT-PD traits and domains of personality functioning in an undergraduate student sample ( N = 375). In addition to the CAT-PD-SF, the short form of the Severity Indices of Personality Problems and the Brief Symptom Inventory were administered. The results showed that the Norwegian CAT-PD-SF has good score reliability. Factor analysis of the CAT-PD-SF scales indicated five superordinate factors that correspond to the trait domains of the alternative DSM-5 model for personality disorders. The CAT-PD traits were highly predictive of impaired personality functioning after controlling for psychological distress. It is concluded that the CAT-PD-SF is a promising tool for the assessment of personality disorder traits.
Presentations from the Aeroelastic Workshop – latest results from AeroOpt
DEFF Research Database (Denmark)
Hansen, Morten Hartvig
This report contains the slides of the presentations at the Aeroelastic Workshop held at Risø-DTU for the wind energy industry in Denmark on January 27, 2011. The scientific part of the agenda at this workshop was • Anisotropic beam element in HAWC2 for modelling of composite lay-ups (Taeseong Kim...... (Robert Mikkelsen) • Potential of fatigue and extreme load reductions on swept blades using HAWC2 (David Verelst) • Aeroelastic modal analysis of backward swept blades using HAWCStab2 (Morten H. Hansen) • Aeroelastic rotor design minimizing the loads (Christian Bak) • A small study of flat back airfoils...
Approximate analytical relationships for linear optimal aeroelastic flight control laws
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles
Ivanco, Thomas G.
2016-01-01
Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.
Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis, Phase I
National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...
National Aeronautics and Space Administration — The need to accurately predict aeroelastic phenomenon for a wide range of Mach numbers is a critical step in the design process of any aerospace vehicle. Complex...
DEFF Research Database (Denmark)
Døssing, Mads
of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization...... software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplied way allowing fast conceptual design...... studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned...
A stochastic model for the simulation of wind turbine blades in static stall
DEFF Research Database (Denmark)
Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.
2010-01-01
The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...
Numerical study of the static and pitching RISØ-B1-18 airfoil
DEFF Research Database (Denmark)
Bertagnolio, Franck
2004-01-01
The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISØ-B1-18 airfoil which was equippedand measured in an open jet wind tunnel...... that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the maincharacteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can...
Static electromagnetic frequency changers
Rozhanskii, L L
1963-01-01
Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work
Aiken, T. N.; Falarski, M. D.; Koenin, D. G.
1979-01-01
The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.
A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity
Directory of Open Access Journals (Sweden)
C. C. Cui
2017-01-01
Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.
On the way to reliable aeroelastic load simulation on VAWT's
DEFF Research Database (Denmark)
Larsen, Torben J.; Aagaard Madsen, Helge
2013-01-01
In this paper a method for an implementation of a 2D actuator cylinder flow model of an Vertical Axis Wind Turbine (VAWT) is presented. The model is implemented in a full aeroelastic code including consideration of structural dynamics, dynamic inflow, tower shadow and dynamic stall, which is needed...... for a full load analysis relating to eg. certification of a VAWT turbine. Further on, principal load cases according to the IEC61400-1 are simulated for a fictitious 5MW VAWT turbine in it’s simplest 2 bladed Darrieus configuration. The IEC61400-1 load cases, originally developed for Horizontal Axis Wind...... Turbines (HAWT’s), are discussed regarding the application to VAWT’s. Further on a small section regarding aerodynamic flow in curved motion is included....
Contribution to finite element modelling of airfoil aeroelastic instabilities
Directory of Open Access Journals (Sweden)
Horáček J.
2007-10-01
Full Text Available Nonlinear equations of motion for a flexibly supported rigid airfoil with additional degree of freedom for controlling of the profile motion by a trailing edge flap are derived for large vibration amplitudes. Preliminary results for numerical simulation of flow-induced airfoil vibrations in a laminar incompressible flow are presented for the NACA profile 0012 with three-degrees of freedom (vertical translation, rotation around the elastic axis and rotation of the flap. The developed numerical solution of the Navier – Stokes equations and the Arbitrary Eulerian-Lagrangian approach enable to consider the moving grid for the finite element modelling of the fluid flow around the oscillating airfoil. A sequence of numerical simulation examples is presented for Reynolds numbers up to about Re~10^5, when the system loses the aeroelastic stability, and when the large displacements of the profile and a post-critical behaviour of the system take place.
The aeroelastic code HawC - model and comparisons
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J. [Risoe National Lab., The Test Station for Wind Turbines, Roskilde (Denmark)
1996-09-01
A general aeroelastic finite element model for simulation of the dynamic response of horizontal axis wind turbines is presented. The model has been developed with the aim to establish an effective research tool, which can support the general investigation of wind turbine dynamics and research in specific areas of wind turbine modelling. The model concentrates on the correct representation of the inertia forces in a form, which makes it possible to recognize and isolate effects originating from specific degrees of freedom. The turbine structure is divided into substructures, and nonlinear kinematic terms are retained in the equations of motion. Moderate geometric nonlinearities are allowed for. Gravity and a full wind field including 3-dimensional 3-component turbulence are included in the loading. Simulation results for a typical three bladed, stall regulated wind turbine are presented and compared with measurements. (au)
National Aeronautics and Space Administration — ASSURE - Aeroelastic / Aeroservoelastic (AE/ASE) Uncertainty and Reliability Engineering capability - is a set of probabilistic computer programs for isolating...
National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...
National Aeronautics and Space Administration — The proposed research program will develop a physics-based identification, modeling and risk management infrastructure for aeroelastic transonic flutter and...
Martian Atmospheric Pressure Static Charge Elimination Tool
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
Buffet test in the National Transonic Facility
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.
International Nuclear Information System (INIS)
Leander, G.A.
1985-01-01
Certain nuclei can be described as having intrinsic shapes with parity breaking static moments. The rationale for this description is discussed, spectroscopic models are outlined and their consequences are compared with experiment. (orig.)
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe
2013-01-01
The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitiveness...
Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model
Nikbay, Melike; Heeg, Jennifer
2017-01-01
This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
Owens, B. C.; Griffith, D. T.
2014-06-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
International Nuclear Information System (INIS)
2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Senior Member of Technical Staff, Analytical Structural Dynamics Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Owens, B C; 2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Principal Member of Technical Staff, Wind Energy Technologies Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Griffith, D T
2014-01-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs
Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
Nguyen, Nhan T.; Tuzcu, Ilhan
2009-01-01
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.
Aeroelastic modal dynamics of wind turbines including anisotropic effects
Energy Technology Data Exchange (ETDEWEB)
Fisker Skjoldan, P.
2011-03-15
Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between
Research in aeroelasticity EFP-2002; Forskning i aeroelasticitet EFP-2002
Energy Technology Data Exchange (ETDEWEB)
Bak, Christian (ed.)
2004-02-01
This report contains results from the Energy Research Project 'Application, demonstration and further development of advanced aerodynamic and aeroelastic models' (EFP 2002), covering the time from July 1 2002 to December 31 2003. The partners in the project are Risoe National Labo-ratory (Risoe), The Technical University of Denmark (DTU), Bonus Energy A/S, LM Glasfiber A/S, NEG Micon A/S og Vestas Wind Systems A/S. In the project, Risoe and DTU have de-monstrated the application of their advanced computational methods on several different mega-Watt-size wind turbine designs. Compared to traditional methods the advanced methods have among other results shown: 1) that the aerodynamics at the blade tip for a wind turbine cannot be analysed correctly for a non-rotating blade. 2) that the drag coefficient distribution on a rotor in stand still according to Computational Fluid Dynamics should be increased from the blade root towards the blade tip. 3) that the maximum 2D lift coefficient in airfoil characteristics should be reduced at the blade tip and should be increased significantly on the inner part of the rotor. The drag coefficients should in general be increased for all sections on the blade, when the flow is separating. 4) that the choice of airfoil characteristics, aerodynamical as well as structural, are impor-tant for the loads, the noise and the design of a wind turbine. 5) that blade edgewise vibrations in stand still computed with an aeroelastic code are most critical around 40 deg. and 140 deg. angles of attack and that these vibrations depend completely on the given values of lift and drag. 6) that the energy production decreases in the case of large deflections of the blades. 7) that the blade flap eigenfrequency increases in the case of large deflections. 8) that there is an increased coupling between blade edge and blade torsional frequency in the case of large deflections. 9) that an overview of the dynamics for a wind turbine design can be
Preliminary aeroelastic assessment of a large aeroplane equipped with a camber-morphing aileron
Pecora, Rosario; Amoroso, Francesco; Palumbo, Rita; Arena, Maurizio; Amendola, Gianluca; Dimino, Ignazio
2017-04-01
The development of adaptive morphing wings has been individuated as one of the crucial topics in the greening of the next generation air transport. Research programs have been lunched and are still running worldwide to exploit the potentials of morphing concepts in the optimization of aircraft efficiency and in the consequent reduction of fuel burn. In the framework of CRIAQ MDO 505, a joint Canadian and Italian research project, an innovative camber morphing architecture was proposed for the aileron of a reference civil transportation aircraft; aileron shape adaptation was conceived to increase roll control effectiveness as well as to maximize overall wing efficiency along a typical flight mission. Implemented structural solutions and embedded systems were duly validated by means of ground tests carried out on a true scale prototype. Relying upon the experimental modes of the device in free-free conditions, a rational analysis was carried out in order to investigate the impacts of the morphing aileron on the aeroelastic stability of the reference aircraft. Flutter analyses were performed in compliance with EASA CS-25 airworthiness requirements and referring -at first- to nominal aileron functioning. In this way, safety values for aileron control harmonic and degree of mass-balance were defined to avoid instabilities within the flight envelope. Trade-off analyses were finally addressed to justify the robustness of the adopted massbalancing as well as the persistence of the flutter clearance in case of relevant failures/malfunctions of the morphing system components.
Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
Energy Technology Data Exchange (ETDEWEB)
Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)
2016-07-01
A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.
Cannon, Michael D.
1956-01-01
Static longitudinal and lateral stability and control data are presented of an investigation on a l/15-scale model of the Goodyear XZP5K airship over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg, respectively, for various rudder and elevator deflections. Two tail configurations of different plan forms were tested and wake and boundary-layer surveys were conducted. Testing was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, and corresponds to a Mach number of about 0.12.
Static Behaviour of Bucket Foundations
DEFF Research Database (Denmark)
Larsen, Kim André
One new foundation concept in relation to offshore wind turbines is bucket foundations. The concept is known from the oil and gas industry, though the load conditions here are significantly different. The bucket foundation can be used as monopod or e.g. tripod foundations for offshore wind turbines....... The monopod concept is investigated in this thesis, regarding the static behaviour from loads relevant to offshore wind turbines. The main issue in this concept is the rotational stiffness of the foundation and the combined capacity dominated by moments. The vertical bearing capacity of bucket foundations...... theory is proposed. The proposed expression applies to plane strain as well as axis-symmetric stress conditions for foundations with smooth or rough bases. A thorough experimental investigation of the static behaviour of bucket foundations subjected to combined loading is carried out. Laboratory tests...
Batterson, Sidney A.
1959-01-01
An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.
Observing the Forces Involved in Static Friction under Static Situations
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
A new aeroelastic model for composite rotor blades with straight and swept tips
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations
Directory of Open Access Journals (Sweden)
Mohammad Amin Rashidifar
2014-01-01
Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.
Directory of Open Access Journals (Sweden)
Debrégeas G.
2010-06-01
Full Text Available We present the results of recent friction experiments in which a MEMS-based sensing device is used to measure both the normal and tangential stress ﬁelds at the base of a rough elastomer ﬁlm in frictional contact with smooth, rigid, glass indentors. We consider successively multicontacts under (i static normal loading by a spherical indentor and (ii frictional steady sliding conditions against a cylindrical indentor, for an increasing normal load. In both cases, the measured ﬁelds are compared to elastic calculations assuming (i a smooth interface and (ii Amontons’ friction law. In the static case, signiﬁcant deviations are observed which decrease with increasing load and which vanish when a lubricant is used. In the steady sliding case, Amontons’ law reproduces rather satisfactorily the experiments provided that the normal/tangential coupling at the contact interface is taken into account. We discuss the origin of the diﬀerence between the Amontons ﬁelds and the measured ones, in particular the eﬀect of the ﬁnite normal and tangential compliances of the multicontact interface.
Frøyd, Lars
2009-01-01
The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...
Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads
Stanford, Bret K.; Dunning, Peter D.
2014-01-01
Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.
Janetzke, David C.; Murthy, Durbha V.
1991-01-01
Aeroelastic analysis is multi-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic capability on a distributed memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a 3-D unsteady aerodynamic model and a parallel discretization. Efficiencies up to 85 percent were demonstrated using 32 processors. The effect of subtask ordering, problem size, and network topology are presented. A comparison to results on a shared memory computer indicates that higher speedup is achieved on the distributed memory system.
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...
A methodology for aeroelastic constraint analysis in a conceptual design environment
de Baets, Peter Wilfried Gaston
The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method
Messerle, H K; Declaris, Nicholas
2013-01-01
Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...
Explosions and static electricity
DEFF Research Database (Denmark)
Jonassen, Niels M
1995-01-01
The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...
DEFF Research Database (Denmark)
Danvy, Olivier; Damian, Daniel
2001-01-01
Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...
Nano-ADEPT Aeroloads Wind Tunnel Test
Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul;
2016-01-01
A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.
Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis
Ladkany, Samaan G.
1998-01-01
Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.
Computational aeroelasticity using a pressure-based solver
Kamakoti, Ramji
A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.
Ferede, E.A.
2016-01-01
There is a growth in the energy consumption of the world, leading to rapid depletion of natural resources, such as fossil fuels. Added to that, the environmental impact of fossil fuels (e.g. global warming) makes a renewable source of energy a better alternative for power generation. Among renewable
First-order aerodynamic and aeroelastic behavior of a single-blade installation setup
DEFF Research Database (Denmark)
Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas
2014-01-01
the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...
A Cybernetic Approach to Assess the Longitudinal Handling Qualities of Aeroelastic Aircraft
Damveld, H.J.
2009-01-01
The future demand for larger and lighter civil transport aircraft leads to more flexible aircraft, which bring their own controlling and handling problems. A review of established handling qualities methods showed that they were either unsuitable for aeroelastic aircraft, or had significant
Effects of extreme wind shear on aeroelastic modal damping of wind turbines
DEFF Research Database (Denmark)
Skjoldan, P.F.; Hansen, Morten Hartvig
2013-01-01
Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...
Energy Technology Data Exchange (ETDEWEB)
Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering
2017-09-01
Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.
Aeroelastic experiments with measurement of the kinematic properties based on optical methods
Czech Academy of Sciences Publication Activity Database
Chládek, Štěpán; Zolotarev, Igor
2015-01-01
Roč. 21, č. 1 (2015), s. 43-53 ISSN 1803-9782 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelasticity * optical measurements * vibration frequencies * kinematic properties * profile in the wind tunnel Subject RIV: BI - Acoustics
Low-fidelity 2D isogeometric aeroelastic optimization with application to a morphing airfoil
Gillebaart, E.; De Breuker, R.
2015-01-01
Low-fidelity isogeometric aeroelastic analysis has not received much attention since the introduction of the isogeometric analysis (IGA) concept, while the combination of IGA and the boundary element method in the form of the potential flow theory shows great potential. This paper presents a
Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips
Yuan, K. A.; Friedmann, P. P.
1995-01-01
This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.
Ganguli, R.
2002-11-01
An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.
Aeroelastic modeling of composite rotor blades with straight and swept tips
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.
Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities
van Rooij, A.C.L.M.
2017-01-01
Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities
Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.
2007-01-01
This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as
Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol
Czech Academy of Sciences Publication Activity Database
Půst, Ladislav; Pešek, Luděk
2017-01-01
Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016
Investigation of two pitot-static tubes at supersonic speeds
Hasel, Lowell E; Coletti, Donald E
1948-01-01
The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.
Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.
2017-10-01
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.
Static and dynamic thyroid scintigraphy
International Nuclear Information System (INIS)
Mahlstedt, J.
1986-01-01
Static images as isolated investigation in thyroid diagnosis mainly provides morphologic information, and therefore sonography is largely applied for this purpose. 99m Tc-pertechnetate scans or 123 I-scans are indicated in cases of malpositions and serve to clarify lesions of unknown dignity. Additionally 201 Tl-chloride is suited for examinations with regard to metabolically active thyroid tissue, whereby differential diagnostic laboratory tests must be carried out to exclude parathyroid adenoma. Dynamic thyroid scans before and after regulation tests (suppression, stimulation) reflect the physiological correlation between the iodine avidity of the thyroid, the peripheral thyroid hormone concentrations and the hypophyseal regulation in the TRH-test. The main application of this procedure is the clarification of thyroid autonomy, i.e. indication, detection, quantification or exclusion of thyroid autonomy. For the treatment of immunogenic thyrotoxicosis, dynamic thyroid scintigraphy provides important information about the onset of remission, thus permitting to end thyreostatic therapy. (orig.) [de
Nomura, Yasunori
2012-01-01
We consider the multiverse in the intrinsically quantum mechanical framework recently proposed in Refs. [1,2]. By requiring that the principles of quantum mechanics are universally valid and that physical predictions do not depend on the reference frame one chooses to describe the multiverse, we find that the multiverse state must be static---in particular, the multiverse does not have a beginning or end. We argue that, despite its naive appearance, this does not contradict observation, inclu...
Energy Technology Data Exchange (ETDEWEB)
Doessing, M.
2011-05-15
During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)
1990-01-01
The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.
Friedmann, P. P.; Venkatesan, C.; Yuan, K.
1992-01-01
This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.
PEBBLES Simulation of Static Friction and New Static Friction Benchmark
International Nuclear Information System (INIS)
Cogliati, Joshua J.; Ougouag, Abderrafi M.
2010-01-01
Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Pospíšil, Stanislav
2012-01-01
Roč. 111, č. 1 (2012), s. 1-13 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GA103/09/0094; GA AV ČR(CZ) IAA200710902 Institutional support: RVO:68378297 Keywords : aero-elastic system * self-excited vibration * instability * aero-elastic derivatives Subject RIV: JN - Civil Engineering Impact factor: 1.342, year: 2012
Design and testing of a deformable wind turbine blade control surface
International Nuclear Information System (INIS)
Daynes, S; Weaver, P M
2012-01-01
Wind tunnel tests were conducted on a 1.3 m chord NACA 63–418 blade section fitted with an adaptive trailing edge flap. The 20% chord flap had an aramid honeycomb core covered with a silicone skin and was actuated using servo motors. The honeycomb core had a high stiffness in the thickness direction but was compliant in chordwise bending. These anisotropic properties offer a potential solution for the conflicting design requirements found in morphing trailing edge structures. Static and dynamic tests were performed up to a Reynolds number of 5.4 × 10 6 . The tests showed that deflecting the flap from − 10° to + 10° changes the blade section lift coefficient by 1.0 in non-stalled conditions. Dynamic tests showed the flap to be capable of operating up to 9° s −1 using a 15 V power supply. A two-dimensional static aeroelastic model of the morphing flap was developed to analyse strains, predict actuator requirements and study fluid–structure interaction effects. The model was used to conduct parametric studies to further improve the flap design. Potential applications include wind turbine blade load alleviation and increased wind energy capture. (paper)
Energy Technology Data Exchange (ETDEWEB)
Longmire, Conrad L [University of California, Los Alamos Scientific Laboratory, Los Alamos, NM (United States)
1958-07-01
In a pinch, the outward diffusion of plasma due to collisions can be balanced by the inward drift resulting from ExB, where E is the applied electric field and B the magnetic field. From the equation expressing the balance of these two effects, together with the pressure balance equation, one obtains the perpendicular conductivity, which is about one-half of the classical parallel conductivity. This result has been applied to the problem of a static pinch under the assumptions: 1) there is an applied longitudinal (B{sub z}) magnetic field; 2) the plasma is isothermal; 3) the solution depends only on the radial coordinate.
Directory of Open Access Journals (Sweden)
Daniele Pochi
2013-09-01
Full Text Available Modern tractors are characterized by the introduction of devices designed to increase the operative performances of the machines, such as systems for monitoring and controlling various functions (through a massive use of electronics and hydraulics, or deputed to improve the comfort of the driver (paying more attention to ergonomics, air-conditioning, noise and vibration. Such devices need energy to be operated, affecting the energetic balance of the tractor. In this context, the availability of suitable methodologies and instrumental systems could be useful to provide objective, accurate and reliable measurements of the performances of the tractors under different conditions, also considering the power requirements from ancillary services and/or simulating the coupling with operating machines. The tests on the performances of tractors are now made using different methods, including the trial codes issued by the OECD Codes. Beyond their undoubted validity, they fix standard test conditions that often do not adequately represent the operative reality, so that, much remains to investigate on the actual performances provided by the tractors. From this point of view and with reference to fixed point tests, a test bench was developed for the measurement of the power required by various devices, such as transmission and air conditioning. It was used in experimental tests on a tracked tractor and on a wheeled tractor, aimed at validating the test device, measuring the power absorption related to the rotational speed of the organs of propulsion and to the characteristics curves, in order to quantify the power drawn by the transmission and by the air conditioning and assess the residual power for other tractor functions. As to field conditions, a study is being conducted at CRA-ING, within the project PTO (Mi.P.A.A.F., to develop a mobile test bench aimed at evaluating the power required by different operations, such as self displacement, traction, use of
Harasid, Harun; Roesyanto; Iskandar, Rudi; Silalahi, Sofyan A.
2018-03-01
Piling Foundation is one of the foundations which is used to penetrate its load through soil layer. The power carried by the piling is obtained from the end bearing capacity, that is, the compressive end piling and friction bearing capacity obtained from friction bearing and adhesive capacity between the piling and the soil around it. The investigation on the Standard Penetration Test is aimed to get the description of soil layer, based on the type and color of soil through visual observation, and soil characteristics. SPT data can be used to calculate bearing capacity. Besides investigating the SPT, this study is also been equipped by taking the samples in laboratory and loading test on the piling and Ducth Cone Penetrometer (DCP) data to confirm its bearing capacity. This study analyzed bearing capacity and settlement in the square pile of 40X40 cm in diameter in a single pile or grouped, using an empirical method, AllPile program, Plaxis program, and comparing the result with interpreting its loading test in the foundation of Rusunawa project, Jatinegara, Jakarta. The analysis was been done by using the data on soil investigation and laboratory by comparing them with Mohr-Coulomb soil model. Ultimate bearing capacity from the SPT data in the piling of 15.4 meters was 189.81 tons and the parameter of soil shear strength was 198.67 tons. The sander point, based on Aoki and De Alencar bearing capacity was 276.241 tons and based on Mayerhoff it was 305.49 tons. Based on the loading test of bearing capacity, unlimited bearing capacity for the three methods was Davisson (260 tons), Mazurkiewich (270 tons), and Chin (250 tons). The efficiency of grouped piles according to Converse-Library Equation method = 0.73, according to Los Angeles Group Action Equation method = 0.59, and according to Sheila-Keeny method = 0.94. Bearing capacity based on piling strength was 221.76 tons, bearing capacity based on calendaring data was 201.71 tons, and lateral bearing capacity of a
2009-06-01
Filters, Order 3, Type 0-C, Optional Range B.2.2 Sound Level Meter Calibration • ISO / IEC 17025 :2005 General requirements for the competence of...noise levels − NCSL -National Conference of Standards Laboratories − ISO - International Standards Organization − IEC - The International...testing and calibration laboratories • ISO 10012:2003 Measurement management systems -- Requirements for measurement processes and measuring
Application of CFD based wave loads in aeroelastic calculations
DEFF Research Database (Denmark)
Schløer, Signe; Paulsen, Bo Terp; Bredmose, Henrik
2014-01-01
Two fully nonlinear irregular wave realizations with different significant wave heights are considered. The wave realizations are both calculated in the potential flow solver Ocean-Wave3D and in a coupled domain decomposed potential-flow CFD solver. The surface elevations of the calculated wave...... domain decomposed potentialflow CFD solver result in different dynamic forces in the tower and monopile, despite that the static forces on a fixed monopile are similar. The changes are due to differences in the force profiles and wave steepness in the two solvers. The results indicate that an accurate...
Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.
2015-01-01
Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...
Janetzke, D. C.; Murthy, D. V.
1991-01-01
Aeroelastic analysis is mult-disciplinary and computationally expensive. Hence, it can greatly benefit from parallel processing. As part of an effort to develop an aeroelastic analysis capability on a distributed-memory transputer network, a parallel algorithm for the computation of aerodynamic influence coefficients is implemented on a network of 32 transputers. The aerodynamic influence coefficients are calculated using a three-dimensional unsteady aerodynamic model and a panel discretization. Efficiencies up to 85 percent are demonstrated using 32 processors. The effects of subtask ordering, problem size and network topology are presented. A comparison to results on a shared-memory computer indicates that higher speedup is achieved on the distributed-memory system.
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas
2017-01-01
In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....
International Nuclear Information System (INIS)
Witteveen, Jeroen A.S.; Bijl, Hester
2009-01-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Photovoltaic static concentrator analysis
Almonacid, G.; Luque, A.; Molledo, A. G.
1984-12-01
Ray tracing is the basis of the present analysis of truncated bifacial compound parabolic concentrators filled with a dielectric substance, which are of interest in photovoltaic applications where the bifacial cells allow higher static concentrations to be achieved. Among the figures of merit for this type of concentrator, the directional intercept factor plays a major role and is defined as the ratio of the power of the collector to that at the entry aperture, in a lossless concentrator illuminated by light arriving from a given direction. A procedure for measuring outdoor, full size panels has been developed, and a correction method for avoiding the effect of unwanted diffuse radiation during the measurements is presented.
Doucette, William J; Mendenhall, Scout; McNeill, Laurie S; Heavilin, Justin
2014-06-01
Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. Exposure to TFS, containing elevated levels of chloride (1000 times) and aluminum (2 times) relative to native soils, affected the germination, growth and tissue concentrations of various elements, depending on the type and level of exposure. Germination was inhibited by high concentrations of TFS in soil, but the impact was reduced if the TFS was pre-leached with water. Biomass production was reduced in the TFS amended soils and corn grown in TFS amended soils did not develop kernels. Chloride concentrations in corn and alfalfa grown in TFS amended soils were two orders of magnitude greater than controls. TFS exposed plants contained higher concentrations of several cations, although the concentrations were well below livestock feed recommendations. Foliar applications of TFS had no impact on biomass, but some differences in the elemental composition of leaves relative to controls were observed. Washing the TFS off the leaves lessened the impact. Results indicate that the TFS deposition could have an effect, depending on the amount and growth stage of the crops, but the impact could be mitigated with rainfall or the application of additional irrigation water. The high level of chloride associated with the TFS is the main cause of the observed impacts. Copyright © 2014 Elsevier B.V. All rights reserved.
2016-08-01
Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast
A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis
CSIR Research Space (South Africa)
Van Zyl, Lourens H
2015-09-01
Full Text Available complex natural modes of vibration in aeroelastic analysis Louw van Zyl International Aerospace Symposium of South Africa 14 to 16 September, 2015 Stellenbosch, South Africa Slide 2 © CSIR 2006 www.csir.co.za Problem statement..., the square of the angular frequencies in radians per second) [ ]{ } [ ]{ } [ ]{ } { }fxKxCxM =++ &&& [ ]{ } [ ]{ } 0=+ xKxMs2 Slide 4 © CSIR 2006 www.csir.co.za Structural Dynamics (continued) • The corresponding eigenvectors are real...
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Larsen, Gunner Chr.; Larsen, Torben J.
2010-01-01
in an aeroelastic model. Calibration and validation of the different parts of the model is carried out by comparisons with actuator disk and actuator line (ACL) computations as well as with inflow measurements on a full-scale 2 MW turbine. It is shown that the load generating part of the increased turbulence....... Finally, added turbulence characteristics are compared with correlation results from literature. ©2010 American Society of Mechanical Engineers...
Aero-elastic stability of airfoil flow using 2-D CFD
Energy Technology Data Exchange (ETDEWEB)
Johansen, J [Risoe National Lab., Roskilde (Denmark)
1999-03-01
A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)
The aeroelasticity research project 2004[Wind turbines]; Forskning i aeroelasticitet EFP-2004
Energy Technology Data Exchange (ETDEWEB)
Bak, C.
2005-05-01
The report presents the results of the project ''Programme for Applied Aeroelasticity'', the Danish Energy Research Programme 2004. The main results are: 1) Based on an analysis of the NREL/NASA experiment with a wind turbine in a wind tunnel a new model is formulated for 3D corrections of profile data for aeroelastic codes. Use of the model on three rotors suggests that the load distribution is determined more correctly than in existing 3D models. 2) A near-wake model, originally developed for aerodynamic loads on helicopter rotors, is implemented for calculating dynamic induction on wind turbine rotors. The model has several advantages to the other normally used model BEM. 3) A detailed comparison of the aeroelastic models FLEX5 and HAWC shows that there are no model differences that can result in large differences in the calculated loads. The comparison shows that differences in the calculated loads are due to the use of the models. 4) A model for pitch-servo dynamics on a modern wind turbine is formed and implemented in HAWC2. The conclusion from analysis of the importance of the pitch-servo characteristics showed that coupling between structure/aerodynamics and pitch actuator may be of importance, especially for the loads on the actuator itself. Also large deflections are coupled to the pitch moment and thus also to torsion of the wing and wing bearing. 5) An un-linear stability analysis has been performed in which periodic loads are included and compared to a linear analysis used in HAWCStab. For a profile with near zero aerodynamic damping in one oscillation direction, the aerodynamic force in this direction depends mostly of the square on the profile's speed. The linear damping is changed only a little by the profile's forced oscillation. It is assumed that the present HAWCStab can predict the mean aeroelastic damping for turbines' oscillations in operation. (LN)
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability
Rodriguez, Steven N.; Jaworski, Justin W.
2015-11-01
The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.
Aeroelastic stability of full-span tiltrotor aircraft model in forward flight
Directory of Open Access Journals (Sweden)
Zhiquan LI
2017-12-01
Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft
International Nuclear Information System (INIS)
Song, Zhi-Guang; Li, Feng-Ming
2011-01-01
The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved
Calibration of a pitot-static rake
Stump, H. P.
1977-01-01
A five-element pitot-static rake was tested to confirm its accuracy and determine its suitability for use at Langley during low-speed tunnel calibration primarily at full-scale tunnel. The rake was tested at one airspeed of 74 miles per hour (33 meters per second) and at pitch and yaw angles of 0 to + or - 20 degrees in 4 deg increments.
Drones for aerodynamic and structural testing /DAST/ - A status report
Murrow, H. N.; Eckstrom, C. V.
1978-01-01
A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority
THE EXPERIENCE OF COMPARISON OF STATIC SECURITY CODE ANALYZERS
Directory of Open Access Journals (Sweden)
Alexey Markov
2015-09-01
Full Text Available This work presents a methodological approach to comparison of static security code analyzers. It substantiates the comparison of the static analyzers as to efficiency and functionality indicators, which are stipulated in the international regulatory documents. The test data for assessment of static analyzers efficiency is represented by synthetic sets of open-source software, which contain vulnerabilities. We substantiated certain criteria for quality assessment of the static security code analyzers subject to standards NIST SP 500-268 and SATEC. We carried out experiments that allowed us to assess a number of the Russian proprietary software tools and open-source tools. We came to the conclusion that it is of paramount importance to develop Russian regulatory framework for testing software security (firstly, for controlling undocumented features and evaluating the quality of static security code analyzers.
Statics and Mechanics of Structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically...
Directory of Open Access Journals (Sweden)
Gang Chen
2012-01-01
Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.
Comparing numerically exact and modelled static friction
Directory of Open Access Journals (Sweden)
Krengel Dominik
2017-01-01
Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.
Statics and mechanics of structures
Krenk, Steen
2013-01-01
The statics and mechanics of structures form a core aspect of civil engineering. This book provides an introduction to the subject, starting from classic hand-calculation types of analysis and gradually advancing to a systematic form suitable for computer implementation. It starts with statically determinate structures in the form of trusses, beams and frames. Instability is discussed in the form of the column problem - both the ideal column and the imperfect column used in actual column design. The theory of statically indeterminate structures is then introduced, and the force and deformation methods are explained and illustrated. An important aspect of the book’s approach is the systematic development of the theory in a form suitable for computer implementation using finite elements. This development is supported by two small computer programs, MiniTruss and MiniFrame, which permit static analysis of trusses and frames, as well as linearized stability analysis. The book’s final section presents related ...
Statics of Historic Masonry Constructions
Como, Mario
2013-01-01
Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of much of these constructions, the demand for safety assessments and restoration projects is pressing and constant. This book aims to help fill this demand presenting a comprehensive new statics of masonry constructions. The book, result of thirty years of research and professional experience, gives the fundamentals of statics of the masonry solid, then applied to the study of statics of arches, piers and vaults. Further, combining engineering and architecture and through an interdisciplinary approach, the book investigates the statical behaviour of many historic monuments, as the Pantheon, the Colosseum, the domes of S. Maria del Fiore in Florence and of St. Peter in Rome, the Tower of Pisa, the Gothic Cathedrals and the Masonry Buildings under seismic actions.
Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses
Batina, John T.
2005-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.
Static Analysis of Mobile Programs
2017-02-01
and not allowed, to do. The second issue was that a fully static analysis was never a realistic possibility, because Java , the programming langauge...scale to large programs it had to handle essentially all of the features of Java and could also be used as a general-purpose analysis engine. The...static analysis of imperative languages. • A framework for adding specifications about the behavior of methods, including methods that were
Static Decoupling in fault detection
DEFF Research Database (Denmark)
Niemann, Hans Henrik
1998-01-01
An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...
Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity
Nitzsche, Fred
1994-05-01
The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.
Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps
DEFF Research Database (Denmark)
Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik
2016-01-01
This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...
An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)
Dodd, Alan J.
1989-01-01
From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.
Effect of steady deflections on the aeroelastic stability of a turbine blade
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
2011-01-01
This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which affects the dynamic behaviour of the blade. The fl...... apwise blade defl ection causes the edgewise blade motion to couple to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & Sons......, Ltd....
Czech Academy of Sciences Publication Activity Database
Sváček, P.; Horáček, Jaromír
2015-01-01
Roč. 267, September (2015), s. 28-41 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207; GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : aeroelasticity * finite element method * 2D RANS equations * sudden gust Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315008887/pdfft?md5=1329144b9cc04b57a05c506ae7f54b0a&pid=1-s2.0-S0096300315008887-main.pdf
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
Firouz-Abadi, R. D.; Alavi, S. M.; Salarieh, H.
2013-07-01
The flutter of a 3-D rigid fin with double-wedge section and free-play in flapping, plunging and pitching degrees-of-freedom operating in supersonic and hypersonic flight speed regimes have been considered. Aerodynamic model is obtained by local usage of the piston theory behind the shock and expansion analysis, and structural model is obtained based on Lagrange equation of motion. Such model presents fast, accurate algorithm for studying the aeroelastic behavior of the thick supersonic fin in time domain. Dynamic behavior of the fin is considered over large number of parameters that characterize the aeroelastic system. Results show that the free-play in the pitching, plunging and flapping degrees-of-freedom has significant effects on the oscillation exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by some parameters, such as the Mach number, thickness, angle of attack, hinge position and sweep angle.
Energy Technology Data Exchange (ETDEWEB)
Dugeai, A.; Sens, A.S. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Madec, A. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation SNECMA, 77 - Villaroche (France)
2001-07-01
A computational tool for the prediction of aeronautical machineries aeroelastic stability is presented. Numerical features of the quasi-3D Navier-Stokes unsteady solver are discussed: turbulence models, grid deformation techniques, specific boundary conditions. Isolated profile and cascade computational results are compared to experimental data, for steady and unsteady cases. (authors)
Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge
Mikkelsen, O.; Jakobsen, J. B.
2017-12-01
The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.
Aeroelastic response and blade loads of a composite rotor in forward flight
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
Directory of Open Access Journals (Sweden)
Anderson Freitas
2009-01-01
Full Text Available OBJETIVO: Avaliar isolada e comparativamente placas do tipo sistema dinâmico do quadril (DHS de dois fabricantes nacionais, analisar estatisticamente seus resultados e demonstrar a falta de determinantes para sua fabricação. MÉTODOS: Foram realizados ensaios estáticos de flexão em cinco placas DHS do fabricante I (grupo I e em igual quantidade do mesmo modelo do fabricante II (grupo II, sendo todas fabricadas em aço inoxidável austenítico ASTM F 138, com quatro furos e angulação de 135º. Utilizou-se máquina servohidráulica MTS, modelo Test Star II®, com capacidade de carga de 10 toneladas e controle de deslocamento. Foram obtidos dados da carga aplicada (P em função do deslocamento vertical do pistão (L, cuja velocidade foi 5 mm/min. Os ensaios foram interrompidos após atingir a deflexão vertical máxima especificada pelas normas dos ensaios. RESULTADOS: Grupo I: resistência de flexão, 161,4 ± 17,2 kgf rigidez, 64,5 ± 1,8 kgf/mm, ductilidade, > 25,4 mm. Grupo II: resistência de flexão, 124,7 ± 4,4, rigidez 59,6 ± 2,3, ductilidade > 25,4 mm. Para análise estatística foi adotado o teste de Mann-Whitney e a determinação de significância foi de 5% (pOBJECTIVE: To evaluate, both individually and comparatively, dynamic hip system-type plates marketed by two local manufacturers, to statistically analyze its results and show the lack of parameters for its manufacturing. METHODS: Static tests of flexion were carried out in five DHS plates of the manufacturer I (I group I and in equal quantity of the same model of the manufacturer II (I group II, being all made in stainless austenitic ASTM F 138 steel, with four holes and a 135º angle. A servo-hydraulic MTS machine, Test Star II model, was used with a load capacity of 10 tons and dislocation control. The data were obtained from the applied load (P as a function of the vertical dislocation of the piston (L, whose speed was 5mm/min. The tests were shutdown after reaching
Zhang, Dongliang
2014-08-05
The quality of migration images depends on the accuracy of the velocity model. For large velocity errors, the migration image is strongly distorted, which unflattens events in the common image gathers and consequently leads to a blurring in the stacked migration image. To mitigate this problem, we propose dynamic image warping to flatten the common image gathers before stacking and to enhance the signal-to-noise ratio of the migration image. Numerical tests on the Marmousi model and GOM data show that image warping of the prestack images followed by stacking leads to much better resolved reflectors than the original migration image. The problem, however, is that the reflector locations have increased uncertainty because the wrong velocity model is still used.
Zhang, Dongliang; Wang, Xin; Huang, Yunsong; Schuster, Gerard T.
2014-01-01
The quality of migration images depends on the accuracy of the velocity model. For large velocity errors, the migration image is strongly distorted, which unflattens events in the common image gathers and consequently leads to a blurring in the stacked migration image. To mitigate this problem, we propose dynamic image warping to flatten the common image gathers before stacking and to enhance the signal-to-noise ratio of the migration image. Numerical tests on the Marmousi model and GOM data show that image warping of the prestack images followed by stacking leads to much better resolved reflectors than the original migration image. The problem, however, is that the reflector locations have increased uncertainty because the wrong velocity model is still used.
Statics of historic masonry constructions
Como, Mario
2017-01-01
Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments of its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant; still within the broad studies in the subject it is not yet recognised, in particular within the seismic area, a unitary approach to deal with Masonry structures. This successful book contributes to clarify the issues with a rigorous approach offering a comprehensive new Statics of Masonry Constructions. This third edition has been driven by some recent developments of the research in the field, and it gives the fundamentals of Statics with an original and rigorous mathematical formulation, further in-depth inquired in this new version. With many refinements and improvements, the book investigates the static behaviour of many historic monuments, such as the Gothic Cathedrals, the Mycenaean Tholoi, the Pantheon, the Colosseum, the dome...
Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials
Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.
1994-01-01
The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.
Pre-exposure to moving form enhances static form sensitivity.
Directory of Open Access Journals (Sweden)
Thomas S A Wallis
Full Text Available BACKGROUND: Motion-defined form can seem to persist briefly after motion ceases, before seeming to gradually disappear into the background. Here we investigate if this subjective persistence reflects a signal capable of improving objective measures of sensitivity to static form. METHODOLOGY/PRINCIPAL FINDINGS: We presented a sinusoidal modulation of luminance, masked by a background noise pattern. The sinusoidal luminance modulation was usually subjectively invisible when static, but visible when moving. We found that drifting then stopping the waveform resulted in a transient subjective persistence of the waveform in the static display. Observers' objective sensitivity to the position of the static waveform was also improved after viewing moving waveforms, compared to viewing static waveforms for a matched duration. This facilitation did not occur simply because movement provided more perspectives of the waveform, since performance following pre-exposure to scrambled animations did not match that following pre-exposure to smooth motion. Observers did not simply remember waveform positions at motion offset, since removing the waveform before testing reduced performance. CONCLUSIONS/SIGNIFICANCE: Motion processing therefore interacts with subsequent static visual inputs in a way that can improve performance in objective sensitivity measures. We suggest that the brief subjective persistence of motion-defined forms that can occur after motion offsets is a consequence of the decay of a static form signal that has been transiently enhanced by motion processing.
Czech Academy of Sciences Publication Activity Database
Krištofíková, Z.; Čermák, M.; Benešová, O.; Klaschka, Jan; Zach, P.
2005-01-01
Roč. 30, č. 2 (2005), s. 253-262 ISSN 0364-3190 R&D Projects: GA MZd NF7576 Keywords : magnetic nanoparticles * choline transport * cholinergic * functional impairment * hippocampus * laterality * magnetoreception * static magnetic field Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.187, year: 2005
Static Analysis for Systems Biology
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da
2004-01-01
This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....
Static Verification for Code Contracts
Fähndrich, Manuel
The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.
Static Analysis for Dynamic XML
DEFF Research Database (Denmark)
Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff
2002-01-01
We describe the summary graph lattice for dataflow analysis of programs that dynamically construct XML documents. Summary graphs have successfully been used to provide static guarantees in the JWIG language for programming interactive Web services. In particular, the JWIG compiler is able to check...
Counterterms for static Lovelock solutions
International Nuclear Information System (INIS)
Mehdizadeh, M.R.; Dehghani, M.H.; Zangeneh, M.K.
2015-01-01
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
Counterterms for static Lovelock solutions
Energy Technology Data Exchange (ETDEWEB)
Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, PO Box 76175, Kerman (Iran, Islamic Republic of); Dehghani, M.H. [Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-06-15
In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)
Static Analysis of Functional Programs
van den Berg, Klaas; van den Broek, P.M.
1994-01-01
In this paper, the static analysis of programs in the functional programming language Miranda is described based on two graph models. A new control-flow graph model of Miranda definitions is presented, and a model with four classes of caligraphs. Standard software metrics are applicable to these
Aeroelastic flutter energy harvesters self-polarized by triboelectric effects
Perez, M.; Boisseau, S.; Geisler, M.; Gasnier, P.; Willemin, J.; Despesse, G.; Reboud, J. L.
2018-01-01
This paper presents the performances of several electrostatic flutter energy harvesters tested in a wind tunnel between 0 and 20 m s-1. The main idea is to use the flutter capability of thin flexible films confined between lateral walls to induce simultaneously the capacitance variations and the electrostatic polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and solve the electret’s stability issue (Perez et al 2015 Smart Mater. Struct., Perez et al 2015 New Circuits and Systems). Our prototypes (management circuit has finally been used to supply an 868 MHz wireless sensor node with temperature and acceleration measurements, validating the complete energy harvesting chain.
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
QuickChecking Static Analysis Properties
DEFF Research Database (Denmark)
Midtgaard, Jan; Møller, Anders
2015-01-01
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs...... of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language...
QuickChecking static analysis properties
DEFF Research Database (Denmark)
Midtgaard, Jan; Møller, Anders
2017-01-01
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs....... Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, eg, monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language....
Effect of compressive force on aeroelastic stability of a strut-braced wing
Sulaeman, Erwin
2002-01-01
Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce
Aeroelastic performance evaluation of a flexure box morphing airfoil concept
Pankonien, Alexander M.; Inman, Daniel J.
2014-04-01
The flexure-box morphing aileron concept utilizes Macro-Fiber Composites (MFCs) and a compliant box to create a conformal morphing aileron. This work evaluates the impact of the number of MFCs on the performance, power and mass of the aileron by experimentally investigating two different actuator configurations: unimorph and bimorph. Implemented in a NACA 0012 airfoil with 304.8 mm chord, the unimorph and bimorph configurations are experimentally tested over a range of flow speeds from 5 to 20 m/s and angles of attack from -20 to 20 degrees under aerodynamic loads in a wind tunnel. An embedded flexible sensor is installed in the aileron to evaluate the effect of aerodynamic loading on tip position. For both design choices, the effect of actuation on lift, drag and pitching moment coefficients are measured. Finally, the impact on aileron mass and average power consumption due to the added MFCs is considered. The results showed the unimorph exhibiting superior ability to influence flow up to 15 m/s, with equivalent power consumption and lower overall mass. At 20 m/s, the bimorph exhibited superior control over aerodynamic forces and the unimorph experienced significant deformation due to aerodynamic loading.
Static and dynamic balance of children and adolescents with sensorineural hearing loss
Melo, Renato de Souza; Marinho, Sônia Elvira dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão
2017-01-01
ABSTRACT Objective To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. Methods A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Results Hearing loss students showed more changes in static ...
Aeroelastic Analysis of Olsen Wings 14.3m Blade-Blatigue Project
DEFF Research Database (Denmark)
Galinos, Christos
HAWC2 model description and basic analysis of a 15 m rotor radius horizontal axis wind turbine (HAWT) based on 14.3m blade from Olsen Wings and the V27 wind turbine (WT) tower and nacelle properties. The subcomponents of the aero-elastic HAWC2 model have been created in previous projects. The aim...... of this analysis is to give an overview of the whole model properties and response through simulations. The blade structural and aerodynamic properties in HAWC2 format have been provided by Frederik Zahle and the HAWC2 model of the V27 structure by Morten H. Hansen of DTU Wind Energy Department. The current...... analysis is part of the Bladigue project ( Blatigue, 2020)....
Aeroelastic research programme EFP-2001[YAW;STALL]; Forskning i aeroelasticitet EFP-2001
Energy Technology Data Exchange (ETDEWEB)
Aagaard Madsen, H. (ed.)
2002-12-01
The project covers the one year period from mid 2001 to mid 2002 and is the last part of a 5 years research programme on aeroelasticity. The overall objectives of the project are to improve the load and design basis for wind turbines and to ensure in collaboration with industry a continu-ously running process on development of new designs and solution of actual problems. Specifi-cally the main objectives for the present period are the following: a) development of a design tool for analysis of dynamic stability b) investigations of blade tip aerodynamics and blade tip design on basis of 3D CFD computa-tions c) publication of an airfoil catalogue d) load reduction using new control strategies e) aeroacoustic modelling of noise propagation During the present project period the computer code HAWCModal has been finished. The code computes the modal characteristics for a turbine as function of rotational speed. It is based on the structural modelling in the aeroelastic code HAWC and uses the same input files. The computed eigen frequencies are shown in a Campbell diagram and the corresponding modal forms can be shown graphically for an operating turbine. Finally, the structural damping is also computed by the code. HAWCModal is the basis for the stability analysis tool HAWCStab which is now under devel-opment. With HAWCStab the aeroelastic stability of a turbine can be analysed. The complex aerodynamics at three different blade tip shapes have been analysed with the three-dimensional CFD code EllipSys3D. The tip vortex was visualised and the lift and drag coef-ficients in the tip region were analysed in order to study the influence of the tip geometry on the performance and aerodynamic damping. An airfoil catalogue containing computations on 28 different airfoils for wind turbine applica-tion in comparison with experimental data has been developed and is available via the internet. Besides the main themes of the project as mentioned above there have been research
Energy Technology Data Exchange (ETDEWEB)
Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)
1996-09-01
It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)
International Nuclear Information System (INIS)
De-Min, Zhao; Qi-Chang, Zhang
2010-01-01
The dynamics character of a two degree-of-freedom aeroelastic airfoil with combined freeplay and cubic stiffness nonlinearities in pitch submitted to supersonic and hypersonic flow has been gaining significant attention. The Poincaré mapping method and Floquet theory are adopted to analyse the limit cycle oscillation flutter and chaotic motion of this system. The result shows that the limit cycle oscillation flutter can be accurately predicted by the Floquet multiplier. The phase trajectories of both the pitch and plunge motion are obtained and the results show that the plunge motion is much more complex than the pitch motion. It is also proved that initial conditions have important influences on the dynamics character of the airfoil system. In a certain range of airspeed and with the same system parameters, the stable limit cycle oscillation, chaotic and multi-periodic motions can be detected under different initial conditions. The figure of the Poincaré section also approves the previous conclusion
Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology
Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan
2014-01-01
Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.
8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines
1998-01-01
Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this int...
OC3—Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes
Passon, P.; Kühn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.
2007-07-01
This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration"(OC3) within the "IEA Wind Annex XXIII - Subtask 2". An overview is given on the state-of-the-art of the concerned offshore wind turbine simulation codes. Exemplary results of benchmark simulations from the first phase of the project are presented and discussed while subsequent phases are introduced. Furthermore, the paper discusses areas where differences between the codes have been identified and the sources of those differences, such as the differing theories implemented into the individual codes. Finally, further research and code development needs are presented based on the latest findings from the current state of the project.
DEFF Research Database (Denmark)
Pirrung, Georg
In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... to earlier implementations, the model has been improved in several ways: Among other things, the need for model-specific user input has been removed, the effect of downwind convection of the trailed vorticity is modeled, the near wake induction is iterated to stabilize the computations and the numerical......-of-plane vibrations agrees much better with high fidelity models. Further, the trailed vorticity effects on the aerodynamic work are found to be of the same order of magnitude as the shed vorticity effects. The trailed vorticity effects are, however, mainly important close to the tip in the investigated cases, which...
Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap
DEFF Research Database (Denmark)
Bergami, Leonardo
Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil...... section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap...... is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement...
Shaft flexibility effects on aeroelastic stability of a rotating bladed disk
Khader, Naim; Loewy, Robert
1989-01-01
A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.
Static analysis of a piping system with elbows
International Nuclear Information System (INIS)
Bryan, B.J.
1994-01-01
Vibration tests of elbows to failure were performed in Japan in the early 1970s. The piping system included two elbows and an eccentric mass. Tests were run both pressurized and unpressurized. This report documents a static analysis of the piping system in which the elbows are subjected to out of plane bending. The effects of internal pressure and material plasticity are investigated
Technology advancement of the static feed water electrolysis process
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
Size scaling of static friction.
Braun, O M; Manini, Nicola; Tosatti, Erio
2013-02-22
Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.
Statics of historic masonry constructions
Como, Mario
2016-01-01
This successful book, which is now appearing in its second edition, presents a comprehensive new Statics of Masonry Constructions. Masonry constructions are the great majority of the buildings in Europe’s historic centres and the most important monuments in its architectural heritage. Given the age of these constructions, the demand for safety assessments and restoration projects is pressing and constant. The book you hold in hands contributes to fill this demand. The second edition integrates the original text of the first edition with new developments, widening and revisions, due to recent research studies achievements. The result is a book that gives a complete picture of the behaviour of the Masonry Constructions. First of all, it gives the fundamentals of its Statics, based on the no-tension assumption, and then it develops the Limit Analysis for the Masonry Constructions. In this framework, through an interdisciplinary approach combining Engineering and Architecture, the book also investigates the sta...
Water cooled static pressure probe
Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)
1991-01-01
An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.
Precipitation-Static-Reduction Research
1943-03-31
if» 85 z \\ PRECIPITATION-STATIC-REDUCTION RESEARCH study of the effects of flame length , flame spacing, and burner spacing on B shows that there...unod: Flame length *. The visual length of the flame from the burner tip to the flame tip when examined in a darkened room against a black background...Postlve and Negative Flames The use of the second flame-conduction coefficient, B, facilitates considerably the study of the effect of flame length , spacing
Static and Dynamic Membrane Structures
Directory of Open Access Journals (Sweden)
Sergiu Ivanov
2012-10-01
Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
DEFF Research Database (Denmark)
Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian
2013-01-01
The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D...... of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between...
International Nuclear Information System (INIS)
Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David
2016-01-01
The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models. (paper)
A Pedagogical Model of Static Friction
Pickett, Galen T.
2015-01-01
While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.
In-Flight Pitot-Static Calibration
Foster, John V. (Inventor); Cunningham, Kevin (Inventor)
2016-01-01
A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.
Fossum, Peter Kalsaas
2012-01-01
Aeroelastic design and fatigue analysis of large utility-scale wind turbine blades are performed. The applied fatigue model is based on established methods and is incorporated in an iterative numerical design tool for realistic wind turbine blades. All aerodynamic and structural design properties are available in literature. The software tool FAST is used for advanced aero-servo-elastic load calculations and stress-histories are calculated with elementary beam theory.According to wind energy ...
Jaeck, C. L.
1977-01-01
A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
Static mechanical properties of buffer material
International Nuclear Information System (INIS)
Takaji, Kazuhiko; Suzuki, Hideaki
1999-11-01
The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)
Static feed water electrolysis module
Powell, J. D.; Schubert, F. H.; Jensen, F. C.
1974-01-01
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.
Static stars : Some mathematical curiosities
International Nuclear Information System (INIS)
Collins, C.B.
1977-01-01
The equations of structure of static Newtonian and general relativistic stars are investigated. By using Lie group theory, it is shown that, in each case, the condition that there should exist a simple ''homologous'' family of similar solutions necessitates precisely those equations of state for the stellar matter that are usually invoked by means of extraneous physical arguments. In the relativistic case, a diagram which depicts these families is drawn, using the qualitative theory of differential equations. This vividly exhibits the nature of the general solutions, and the exceptional character of the Misner--Zapolsky solution. This diagram is contrasted with similar ones obtained by Chandrasekhar in the Newtonian case
Static Analysis of Dynamic Languages
DEFF Research Database (Denmark)
Madsen, Magnus
Dynamic programming languages are highly popular and widely used. Java- Script is often called the lingua franca of the web and it is the de facto standard for client-side web programming. On the server-side the PHP, Python and Ruby languages are prevalent. What these languages have in common...... with static type systems, such as Java and C# , but the same features are rarely available for dynamic languages such as JavaScript. The aim of this thesis is to investigate techniques for improving the tool- support for dynamic programming languages without imposing any artificial restrictions...... of new dataflow analysis techniques to tackle the nature of dynamic programming languages....
Static Validation of Security Protocols
DEFF Research Database (Denmark)
Bodei, Chiara; Buchholtz, Mikael; Degano, P.
2005-01-01
We methodically expand protocol narrations into terms of a process algebra in order to specify some of the checks that need to be made in a protocol. We then apply static analysis technology to develop an automatic validation procedure for protocols. Finally, we demonstrate that these techniques ...... suffice to identify several authentication flaws in symmetric and asymmetric key protocols such as Needham-Schroeder symmetric key, Otway-Rees, Yahalom, Andrew secure RPC, Needham-Schroeder asymmetric key, and Beller-Chang-Yacobi MSR...
Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.
2004-01-01
The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)
Hubble expansion in static spacetime
International Nuclear Information System (INIS)
Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony
2007-01-01
A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish
Static Posturography in Aging and Parkinson's disease
Directory of Open Access Journals (Sweden)
Guntram W. Ickenstein
2012-08-01
Full Text Available Introduction: In clinical practise, evaluation of postural control is based on the neurological examination, including Romberg’s test, examination of gait and performance of pull test as part of the Unified Parkinson´s Disease Rating Scale (UPDRS. The goal of our study was to identify posturographic parameters since quantitative technical methods for the measurement of postural control are not established in clinical routine yet. Methods: In this cross-sectional study design we examined patients with Parkinson's disease (Hoehn & Yahr <3; PD n=12 on a static posturographic platform (eyes open and eyes closed, performing a standard Romberg’s test during neurological examination and compared the results with an age-matched control group (healthy adult control; HAC n=10 and a healthy young control (HYC n=21.Results: In the platform Romberg’s test with open eyes, the patients with Parkinson’s disease (PD showed a significantly greater mean sway (PD: 14.98 vs. HAC: 8.77 [mm], p<0.003 vs. HYC 7.80 [mm], greater mean radius (PD: 28.31 vs. HAC: 16.36 [mm], p<0.008 vs. HYC: 14.19 [mm] and greater marked area (PD: 2.38 vs. HAC: 0.88 [cm2], p<0.016 vs. HYC: 0.78 [cm2] compared to the healthy adult control (HAC. The Romberg’s test with closed eyes revealed a significantly greater mean sway (PD: 13.83 vs. HAC: 10.12 [mm], p<0.033 vs. HYC: 5.82 [mm] and greater mean radius (PD: 25.03 vs. HAC: 18.15 [mm], p<0.045 vs. HYC: 9.11 [mm] compared to both groups.Conclusions: The platform Romberg test with closed eyes detected significant differences in elderly people and patients with Parkinson's disease, which could be objectively quantified with static posturography testing. Age alone showed significant changes, only detectable with closed eyes. Therefore balance testing with a new computerized approach could help to identify balance problems in a geriatric assessment in clinical routine, especially with the parameters marked area and mean sway.
On the scaling of gas leakage from static seals
International Nuclear Information System (INIS)
Chivers, T.C.; Hunt, R.P.
1977-01-01
The interaction between gas leakage from static seals and eight potential variables is discussed. From a consideration of the interaction of these various parameters and the mechanical design of the seal system the importance of correctly interpreting leakage data is demonstrated. Given a situation where model experiments are necessary, this document forms a basis for the definition and interpretation of a test programme. (author)
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-09-01
Full Text Available Motivated by a recent paper by the RBC–UKQCD Collaboration, which observes large violations of the naïve factorization hypothesis in K→ππ decays, we study in this paper the accuracy of the Vacuum Insertion Approximation (VIA for the matrix elements of the complete basis of four-fermion ΔF=2 operators. We perform a comparison between the matrix elements in QCD, evaluated on the lattice, and the VIA predictions. We also investigate the dependence on the external meson masses by computing matrix elements for K, Ds, Bs and static mesons. In commonly used renormalization schemes, we find large violations of the VIA in particular for one of the two relevant Wick contractions in the kaon sector. These deviations, however, decrease significantly as the meson mass increases and the VIA predictions turn out to be rather well verified for B-meson matrix elements and, even better, in the infinite mass limit.
FACET Tolerances for Static and Dynamic Misalignments
Energy Technology Data Exchange (ETDEWEB)
Federico, Joel
2012-07-13
The Facility for AdvancedAccelerator and Experimental Tests (FACET) at the SLAC National Accelerator Laboratory is designed to deliver a beam with a transverse spot size on the order of 10 {micro}m x 10 {micro}m in a new beamline constructed at the two kilometer point of the SLAC linac. Commissioning the beamline requires mitigating alignment errors and their effects, which can be significant and result in spot sizes orders of magnitude larger. Sextupole and quadrupole alignment errors in particular can introduce errors in focusing, steering, and dispersion which can result in spot size growth, beta mismatch, and waist movement. Alignment errors due to static misalignments, mechanical jitter, energy jitter, and other physical processes can be analyzed to determine the level of accuracy and precision that the beamline requires. It is important to recognize these effects and their tolerances in order to deliver a beam as designed.
Static analysis of an office desk construction
Directory of Open Access Journals (Sweden)
Milan Novotný
2011-01-01
Full Text Available The objective of the paper is a static analysis of a desk construction and the determination of its probable mechanical behaviour using Finite Element Method. The construction was modelled and numerically analysed in Autocad Inventor 2011 and the stability of the entire desk was calculated with the size and placement of the loading force based on the standards and cited literature. Possible locations and directions of the deformation were analysed and a solution for its prevention was proposed and the stability of the desk as well as the extreme position of the stand were calculated. The verification of the obtained results in an accredited furniture testing lab is planned using a prototype of the office desk.
Static structure of active Brownian hard disks
de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.
2018-02-01
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
Non-local means filter for trim statics
Huang, Yunsong
2014-08-05
Structures will be mispositioned across prestack migration gathers in the presence of inaccuracies in the velocity model. Stacking these misaligned gathers runs the risk of destroying important structures in the stacked migration image. To mitigate this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image patches instead of individual image traces. Second, no global pilot trace is needed because only two migration images at a time participate in trim statics and are stacked into one image. A multitude of migration images are stacked recursively in this two-to-one fashion. Tests with a Gulf of Mexico dataset show a noticeable improvement in the feature coherency of the stacked migration image.
Statics learning from engineering examples
Emri, Igor
2016-01-01
This textbook introduces and explains the basic concepts on which statics is based utilizing real engineering examples. The authors emphasize the learning process by showing a real problem, analyzing it, simplifying it, and developing a way to solve it. This feature teaches students intuitive thinking in solving real engineering problems using the fundamentals of Newton’s laws. This book also: · Stresses representation of physical reality in ways that allow students to solve problems and obtain meaningful results · Emphasizes identification of important features of the structure that should be included in a model and which features may be omitted · Facilitates students' understanding and mastery of the "flow of thinking" practiced by professional engineers.
International Nuclear Information System (INIS)
Sundman, S.
1981-01-01
The static particle model of Part I requires creation of ether proportional to the energy of the particle. It is shown that this ether creation leads to gravitation and a forever expanding universe in agreement with the large-number hypothesis. The age, mass and size of the universe are calculated from atomic constants and G. The model predicts scale-invariance with different scales for gravitational matter, nucleons and electrons. This leads to a fine structure constant decreasing very slowly with time. For each scale there is a different type of dynamic balance governing the expansion of the universe. The model indicates that the universe was initially densely packed with (tau) leptons. It suggests a program for calculating the gravitational constant and the muon-electron mass ratio from other universal constants. Tentative numerological derivation gives these quantities with a higher accuracy than has been achieved experimentally. (Auth.)
The mechanics of pollination by wind: is anemophily aeroelastically optimized for reproduction?
Timerman, David; Greene, David F.; Ackerman, Josef D.; Urzay, Javier
2011-11-01
Approximately 10 percent of plant species rely on wind for pollination (anemophily). These include many taxa of economic importance: e.g. cultigens such as wheat and maize; species like grasses and ragweed that trigger allergies; and the conifers, our most important species for the forest industry in the mid- latitudes. It has often been assumed that anemophily is an inefficient mechanism compared to animal pollination (zoophily), but very little is known about the forces and micromechanics that deliver pollen grains into wind streams. Here we ask a fundamental question: is anemophily optimized for pollen shedding? In this talk, we focus on an as-yet rudimentary theory of turbulence- initiated pollen shed that models the pollen-bearing stamen as an aeroelastic oscillator. Ongoing experiments with anemophilous and zoophilous flowers excited by shakers are analyzed to extract values of damping ratios, adhesion forces and flexural rigidities. Finally, the anatomical differences between anemophilous and zoophilous species are evaluated using a dimensionless number that measures the ratio of adhesion to aeroleastic forces.
Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver
Directory of Open Access Journals (Sweden)
Ma Yanfeng
2016-10-01
Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.
Velazquez, Antonio; Swartz, R. Andrew
2012-04-01
Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Gupta, K. K.
1997-01-01
A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.
Energy based study of quasi-static delamination as a low cycle fatigue process
Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.
2015-01-01
This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize
Static Equilibrium Configurations of Charged Metallic Bodies
African Journals Online (AJOL)
Key words: Static equilibrium, charged metallic body, potential energy, projected gradient method. ... television, radio, internet, microwave ovens, mobile telephones, satellite communication systems, radar systems, electrical motors, electrical.
Rethinking the neurological examination I: static balance assessment
Directory of Open Access Journals (Sweden)
Péricles A. Maranhão-Filho
2011-12-01
Full Text Available The authors advocate a modernization of the neurologic exam with regard to the evaluation of static equilibrium through the application of some easily performed and interpreted bedside maneuvers like the Clinical Test of Sensory Integration and Balance - modified and the Functional Reach Test. The authors also believe that these and other assessments, such as that of the risk of falling for elderly patients, should be incorporated into the routine neurological examination.
Magnetic fields and accretion discs around static black holes
International Nuclear Information System (INIS)
Dadhich, N.
1982-01-01
Some aspects of accretion onto static black holes immersed in a uniform magnetic field are investigated. The Ernst metric is employed to find the 'Keplerian' angular momentum distribution and the efficiency of mass-to-energy conversion for a plasma and for test particles. Under almost all physically reasonable conditions for hydrodynamic accretion the effect of the magnetic field is small. However, for test particles the effect can be very important and the efficiency can approach unity. (author)
Effects of Static Stretching and Playing Soccer on Knee Laxity.
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen
2015-11-01
This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.
Constitutive equation of butter at static loading
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2008-01-01
Full Text Available This study focuses on the constitutive modelling of finite deformation in the commercially obtained butter (composition is 83 % of milk fat at the temperature 17–20 °C. The specimens from the butter (height L0=14.6 mm and diameter 20 mm have been compressed between two parallel metal plates at a fixed crosshead speed 20 mm/min using of the testing device TIRA TEST. The force F and the deformation ∆L are measured during compression and both quantities are recorded. The experimental records force F – displacement (deformation were obtained. These records have been transformed into stress–strain dependences and into true stress–true strain. The basic data on the strain behaviour of a butter under low strain rates have been obtained. Experimental results show that the behaviour of butter can be described by a hyperelastic material model. In this model, the quasi–static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. The material parameters in the constitutive model are determined from compression test. A comparison of predictions based on the proposed constitutive equation with experiments shows that the model is able to describe the strain behaviour of the butter examined.
Static capacity of laterally pre-cycled monopiles in dense sand
DEFF Research Database (Denmark)
Nicolai, Giulio; Ibsen, Lars Bo
This work aims to investigate the change in static capacity of monopiles due to cyclic lateral loading. Results from small-scale tests on a monopile model in dense saturated sand are presented. Three series of tests were carried out to study the response of the monopile to different cyclic lateral...... loading conditions. A formulation to predict the change in static capacity is proposed and applied to confirm the tests results....
Static polarizabilities of dielectric nanoclusters
International Nuclear Information System (INIS)
Kim, Hye-Young; Sofo, Jorge O.; Cole, Milton W.; Velegol, Darrell; Mukhopadhyay, Gautam
2005-01-01
A cluster consisting of many atoms or molecules may be considered, in some circumstances, to be a single large molecule with a well-defined polarizability. Once the polarizability of such a cluster is known, one can evaluate certain properties--e.g. the cluster's van der Waals interactions, using expressions derived for atoms or molecules. In the present work, we evaluate the static polarizability of a cluster using a microscopic method that is exact within the linear and dipolar approximations. Numerical examples are presented for various shapes and sizes of clusters composed of identical atoms, where the term 'atom' actually refers to a generic constituent, which could be any polarizable entity. The results for the clusters' polarizabilities are compared with those obtained by assuming simple additivity of the constituents' atomic polarizabilities; in many cases, the difference is large, demonstrating the inadequacy of the additivity approximation. Comparison is made (for symmetrical geometries) with results obtained from continuum models of the polarizability. Also, the surface effects due to the nonuniform local field near a surface or edge are shown to be significant
Static response of deformable microchannels
Christov, Ivan C.; Sidhore, Tanmay C.
2017-11-01
Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.
Energy Technology Data Exchange (ETDEWEB)
Moreni, M.; Laloui, L.; Steinmann, G. [and others
1999-10-01
A pile foundation of the polyvalent building in the north quarter of the Federal Institute of Technology in Lausanne (EPFL) was equipped with a hydraulic circuit in order to be able to inject heat into the pile (i.e. the pile was transformed into a heat exchanger pile). Load, deformation and temperature sensors were installed in the pile in order to assess the influence of thermal solicitations on the static behaviour of the pile. In the initial phase of the project (up to May 1998), the design and realisation of the heat exchanger pile was scheduled together with the installation of the measurement sensors. The next phase, ending one month after publication of the present report, is comprised of series of thermal solicitations applied in the pile, called tests. Due to the construction of the building, the weight on the pile increases between each test. This report contains the presentation of all the measurements done in the 6 tests performed in between the completion of each floor of the building. The pile was heated with a temperature difference of 15 K for each test, except for the first one, where it reached 22 K (this was before the construction of the building`s basement). The temperatures and deformations induced by the thermal and mechanical solicitations were measured and the stresses calculated at different depths of the pile (fluid temperatures, flow rate, electric and thermal powers) were continuously recorded. Sonic coring and a control using the reflection method were performed to determine the pile elastic modulus and the quality of its concrete. The last phase of the project (March - December 1999) deals with the analysis of the measurements in order to assess the influence of a temperature variation on the ability of the pile to support the load of the building [Francais] Un pieu du batiment polyvalent du Quartier Nord de l`Ecole Polytechnique Federale de Lausanne (EPFL) a ete equipe d`un circuit hydraulique pour pouvoir lui injecter de la chaleur
A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance
Directory of Open Access Journals (Sweden)
Lun Kong
2013-02-01
Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.
Predicting vertebral bone strength by vertebral static histomorphometry
DEFF Research Database (Denmark)
Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis
2002-01-01
of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...
DEFF Research Database (Denmark)
Bayati, I.; Belloli, M.; Bernini, L.
2016-01-01
and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD...
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
Circular Raft Footings Strengthened by Stone Columns under Static Loads
R. Ziaie Moayed; B. Mohammadi-Haji
2016-01-01
Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of ...
SEU ground and flight data in static random access memories
International Nuclear Information System (INIS)
Liu, J.; Duan, J.L.; Hou, M.D.; Sun, Y.M.; Yao, H.J.; Mo, D.; Zhang, Q.X.; Wang, Z.G.; Jin, Y.F.; Cai, J.R.; Ye, Z.H.; Han, J.W.; Lin, Y.L.; Huang, Z.
2006-01-01
This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed on SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based on the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data
Static and dynamic balance of children and adolescents with sensorineural hearing loss
Melo, Renato de Souza; Marinho, Sônia Elvira dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão
2017-01-01
ABSTRACT Objective To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. Methods A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Results Hearing loss students showed more changes in s...
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11
Static potentials from an extended gauge symmetry
International Nuclear Information System (INIS)
Doria, R.M.; Helayel Neto, J.A.
1985-01-01
Static potentials derived from the inclusion of more than one vector field in a single simple group are calculated. A confinement mechanism including colourful unphysical particle is discussed. (Author) [pt
Estimation of static parameters based on dynamical and physical properties in limestone rocks
Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza
2018-01-01
Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.
Static Deadlock Detection in MPI Synchronization Communication
Ming-Xue, Liao; Xiao-Xin, He; Zhi-Hua, Fan
2007-01-01
It is very common to use dynamic methods to detect deadlocks in MPI programs for the reason that static methods have some restrictions. To guarantee high reliability of some important MPI-based application software, a model of MPI synchronization communication is abstracted and a type of static method is devised to examine deadlocks in such modes. The model has three forms with different complexity: sequential model, single-loop model and nested-loop model. Sequential model is a base for all ...
Static quarks with improved statistical precision
International Nuclear Information System (INIS)
Della Morte, M.; Duerr, S.; Molke, H.; Heitger, J.
2003-09-01
We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations up to 2 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass M b and F B s in the static approximation. (orig.)
Statics formulas and problems : engineering mechanics 1
Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf
2017-01-01
This book contains the most important formulas and more than 160 completely solved problems from Statics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Equilibrium - Center of Gravity, Center of Mass, Centroids - Support Reactions - Trusses - Beams, Frames, Arches - Cables - Work and Potential Energy - Static and Kinetic Friction - Moments of Inertia.
Khouli, F.
An aeroelastic phenomenon, known as blade sailing, encountered during maritime operation of helicopters is identified as being a factor that limits the tactical flexibility of helicopter operation in some sea conditions. The hazards associated with this phenomenon and its complexity, owing to the number of factors contributing to its occurrence, led previous investigators to conclude that advanced and validated simulation tools are best suited to investigate it. A research gap is identified in terms of scaled experimental investigation of this phenomenon and practical engineering solutions to alleviate its negative impact on maritime helicopter operation. The feasibility of a proposed strategy to alleviate it required addressing a gap in modelling thin-walled composite active beams/rotor blades. The modelling is performed by extending a mathematically-consistent and asymptotic reduction strategy of the 3-D elastic problem to account for embedded active materials. The derived active cross-sectional theory is validated using 2-D finite element results for closed and open cross-sections. The geometrically-exact intrinsic formulation of active maritime rotor systems is demonstrated to yield compact and symbolic governing equations. The intrinsic feature is shown to allow a classical and proven solution scheme to be successfully applied to obtain time history solutions. A Froude-scaled experimental rotor was designed, built, and tested in a scaled ship airwake environment and representative ship motion. Based on experimental and simulations data, conclusions are drawn regarding the influence of the maritime operation environment and the rotor operation parameters on the blade sailing phenomenon. The experimental data is also used to successfully validate the developed simulation tools. The feasibility of an open-loop control strategy based on the integral active twist concept to counter blade sailing is established in a Mach-scaled maritime operation environment
The Impact of One Heat Treated Contact Element on the Coefficient of Static Friction
Directory of Open Access Journals (Sweden)
P. Todorović, , , , , ,
2013-12-01
Full Text Available The subject of the paper includes theoretical considerations, the conducting of experimental tests, and the analysis of exposed test results related to determination of the coefficient of static friction of previously heat-treated contact pairs. One contact element is previously, before the procedure of determining the coefficient of static friction, heated at temperatures in the range of ambient temperature to 280°C and then cooled down to ambient temperature. The results of experimental tests of five different materials show that depending on the heat treatment of one contact element, there is a significant decrease in the coefficient of static friction. The authors of the paper consider that the reasons for the decreasing coefficient of static friction are related to oxide formation and changes in the surface layer of the contact element which is previously heat-treated.
Static Members of Classes in C#
Directory of Open Access Journals (Sweden)
Adrian LUPASC
2017-12-01
Full Text Available The C# language is object-oriented, which is why the declared member data must be part of a class. Thus, there is no possibility to declare certain variables that can be accessed from anywhere within the application, as it happens, for example, with global variables at the C language level. Making this work in C# is possible through static members of the class. Declaring a class implies defining some of its member data that later receive values when creating each object. A static member of the class can be interpreted as belonging only to the class, not to the objects subsequently created, which means that for the non-static data, there are as many children as there were objects created, while for the static ones there is only one copy, regardless of the number of created objects. In this regard, this paper presents the main aspects that characterize these abstract concepts of object oriented programming in general and C# language in particular, detailing how to develop an application that includes both static and non-static members. At the same time, particularities in the mirror for the two types of data, restrictions on use and potential limitations are presented.
From Static Output Feedback to Structured Robust Static Output Feedback: A Survey
Sadabadi , Mahdieh ,; Peaucelle , Dimitri
2016-01-01
This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...
Strategy for Alternative Occupant Volume Testing
2009-10-20
This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
2010-10-01
... interior wall of the cab and 56 inches above the floor. See Figure 1. ER27OC06.005 (5) The observer shall... records of the following data. The records created under this procedure shall be retained and made readily... suspected reason(s) for the failure. [71 FR 63136, Oct. 27, 2006, as amended at 74 FR 25174, May 27, 2009] ...
Development of a static feed water electrolysis system
Schubert, F. H.; Lantz, J. B.; Hallick, T. M.
1982-01-01
A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.
Static strain aging type AISI-304 austenitic stainless steel
International Nuclear Information System (INIS)
Trindade, M.B.
1981-03-01
Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt
EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS
Directory of Open Access Journals (Sweden)
Michael Samson
2012-06-01
Full Text Available The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1 general aerobic warm-up with static stretching, 2 general aerobic warm-up with dynamic stretching, 3 general and specific warm-up with static stretching and 4 general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance, countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013 in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM by 2.8% more (p = 0.0083 than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via
Diffusion through statically compacted clay
International Nuclear Information System (INIS)
Ho, C.L.; Shebl, M.A.A.
1994-01-01
This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
International Nuclear Information System (INIS)
Cheng Ting-Hai; Gao Han; Bao Gang
2011-01-01
A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chloroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively. (fundamental areas of phenomenology(including applications))
Peters, David A.
1988-01-01
The purpose of this research is the development of an unsteady aerodynamic model for rotors such that it can be used in conventional aeroelastic analysis (e.g., eigenvalue determination and control system design). For this to happen, the model must be in a state-space formulation such that the states of the flow can be defined, calculated and identified as part of the analysis. The fluid mechanics of the problem is given by a closed-form inversion of an acceleration potential. The result is a set of first-order differential equations in time for the unknown flow coefficients. These equations are hierarchical in the sense that they may be truncated at any number of radial or azimuthal terms.
Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.
Doughty, Noel A.
1981-01-01
Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…
International Nuclear Information System (INIS)
Mathiesen, R.H.; Forbord, B.; Mardalen, J.; Furu, T.; Lange, H.I.
2007-01-01
High-energy synchrotron X-ray diffraction has been used to study through-thickness deformation response in extruded Al-Mg-Si-profiles during tensile testing, in terms of micro- and mesoscopic distributions and dynamical evolution of elastic strains and grain rotations. Local averaging with analysis at intermediate length scales reveals strongly inhomogeneous through-profile elastic strains, caused by the presence of three distinct microstructure regions and the compatibility relations that apply at their interfaces. Variations in elastic strains at characteristic microstructure lengths are found to be large; typically 1σ Gaussian spreads for the different ε ij -components of the elastic strain tensor are minimal and of the order 1.0 x 10 -3 in the central profile region at low stresses. The spread increases with the tensile loads, but even more dramatically with decreasing distance to the surfaces where maximum 1σ spreads up to 6-7 x 10 -3 are encountered. The evolution and distribution of certain texture components have been analysed, showing grain rotations to be a non-negligible part of the deformation response that activates at quite modest plastic deformations. Inhomogeneous strain response at local and intermediate length scales together with the strain and texture component relations that apply across the microstructure region boundaries are found to be decisive to surface roughening. All together, the results point in the direction that strain and texture evolution should be considered together in order to provide a more complete description of microstructure mechanics in metals
A study of the static to kinetic friction transition of polymers
Lee, Edward Chungjen
1995-01-01
This study investigates the transition from static to kinetic friction for structural polymers and continues previous research conducted by Dr. N. S. Eiss, B. McCann, and R. Molique. A new test apparatus which simultaneously measures friction, normal load, and relative velocity was developed to study this transition. The polymers used in this study were nylon, ABS, polycarbonate, and fiberglass filled and unfilled polypropylene. Creep effects of polymers on the static coefficie...
Abdolhamid Daneshjoo; Ashril Yusof
2016-01-01
This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...
Vasconcellos, Rui; Abdelkefi, Abdessattar
2015-01-01
The effects of a multi-segmented nonlinearity in the pitch degree of freedom on the behavior of a two-degree of freedom aeroelastic system are investigated. The aeroelastic system is free to plunge and pitch and is supported by linear translational and nonlinear torsional springs and is subjected to an incoming flow. The unsteady representation based on the Duhamel formulation is used to model the aerodynamic loads. Using modern method of nonlinear dynamics, a nonlinear characterization is performed to identify the system's response when increasing the wind speed. It is demonstrated that four sudden transitions take place with a change in the system's response. It is shown that, in the first transition, the system's response changes from simply periodic (only main oscillating frequency) to two periods (having the main oscillating frequency and its superharmonic of order 2). In the second transition, the response of the system changes from two periods (having the main oscillating frequency and its superharmonic of order 2) to a period-1. The results also show that the third transition is accompanied by a change in the system's response from simply periodic to two periods (having the main oscillating frequency and its superharmonic of order 3). After this transition, chaotic responses take place and then the fourth transition is accompanied by a sudden change in the system's response from chaotic to two periods (having the main oscillating frequency and its superharmonic of order 3). The results show that these transitions are caused by the tangential contact between the trajectory and the multi-segmented nonlinearity boundaries and with a zero-pitch speed incidence. This observation is associated with the definition of grazing bifurcation.