Thermodynamic approach to the inelastic state variable theories
International Nuclear Information System (INIS)
Dashner, P.A.
1978-06-01
A continuum model is proposed as a theoretical foundation for the inelastic state variable theory of Hart. The model is based on the existence of a free energy function and the assumption that a strained material element recalls two other local configurations which are, in some specified manner, descriptive of prior deformation. A precise formulation of these material hypotheses within the classical thermodynamical framework leads to the recovery of a generalized elastic law and the specification of evolutionary laws for the remembered configurations which are frame invariant and formally valid for finite strains. Moreover, the precise structure of Hart's theory is recovered when strains are assumed to be small
Directory of Open Access Journals (Sweden)
Kori Blankenship
2015-04-01
Full Text Available Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess departure from a mean reference value for ecosystems in the United States. While the mean provides a useful benchmark, land managers and researchers are often interested in the range of variability around the mean. This range, frequently referred to as the historical range of variability (HRV, offers model users improved understanding of ecosystem function, more information with which to evaluate ecosystem change and potentially greater flexibility in management options. We developed a method for using LANDFIRE STSMs to estimate the HRV around the mean reference condition for each model state in ecosystems by varying the fire probabilities. The approach is flexible and can be adapted for use in a variety of ecosystems. HRV analysis can be combined with other information to help guide complex land management decisions.
A state variable approach to the BESSY II local beam-position-feedback system
International Nuclear Information System (INIS)
Gilpatrick, J.D.; Khan, S.; Kraemer, D.
1996-01-01
At the BESSY II facility, stability of the electron beam position and angle near insertion devices (IDs) is of utmost importance. Disturbances due to ground motion could result in unwanted broad-bandwidth beam-jitter which decreases the electron (and resultant photon) beam's effective brightness. Therefore, feedback techniques must be used. Operating over a frequency range of 100-Hz, a local feedback system will correct these beam-trajectory errors using the four bumps around IDs. This paper reviews how the state-variable feedback approach can be applied to real-time correction of these beam position and angle errors. A frequency-domain solution showing beam jitter reduction is presented. Finally, this paper reports results of a beam-feedback test at BESSY I
The Matrix model, a driven state variables approach to non-equilibrium thermodynamics
Jongschaap, R.J.J.
2001-01-01
One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC
Directory of Open Access Journals (Sweden)
H. Bassi
2017-04-01
Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.
Directory of Open Access Journals (Sweden)
Jing Lei
2013-01-01
Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.
Beckerman, Bernardo S; Jerrett, Michael; Serre, Marc; Martin, Randall V; Lee, Seung-Jae; van Donkelaar, Aaron; Ross, Zev; Su, Jason; Burnett, Richard T
2013-07-02
Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.
Directory of Open Access Journals (Sweden)
Běták Emil
2014-04-01
Full Text Available For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and – at the same time – it stimulated further developments of the model. However – to the best of our knowledge – no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work pre-equilibrium cluster emission with spin including all nuclei in the reaction chain.
Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward
2018-01-01
Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.
Gaussian anamorphosis in the analysis step of the EnKF: a joint state-variable/observation approach
Directory of Open Access Journals (Sweden)
Javier Amezcua
2014-09-01
Full Text Available The analysis step of the (ensemble Kalman filter is optimal when (1 the distribution of the background is Gaussian, (2 state variables and observations are related via a linear operator, and (3 the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state-variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1–(3 are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Eutrophication Modeling Using Variable Chlorophyll Approach
International Nuclear Information System (INIS)
Abdolabadi, H.; Sarang, A.; Ardestani, M.; Mahjoobi, E.
2016-01-01
In this study, eutrophication was investigated in Lake Ontario to identify the interactions among effective drivers. The complexity of such phenomenon was modeled using a system dynamics approach based on a consideration of constant and variable stoichiometric ratios. The system dynamics approach is a powerful tool for developing object-oriented models to simulate complex phenomena that involve feedback effects. Utilizing stoichiometric ratios is a method for converting the concentrations of state variables. During the physical segmentation of the model, Lake Ontario was divided into two layers, i.e., the epilimnion and hypolimnion, and differential equations were developed for each layer. The model structure included 16 state variables related to phytoplankton, herbivorous zooplankton, carnivorous zooplankton, ammonium, nitrate, dissolved phosphorus, and particulate and dissolved carbon in the epilimnion and hypolimnion during a time horizon of one year. The results of several tests to verify the model, close to 1 Nash-Sutcliff coefficient (0.98), the data correlation coefficient (0.98), and lower standard errors (0.96), have indicated well-suited model’s efficiency. The results revealed that there were significant differences in the concentrations of the state variables in constant and variable stoichiometry simulations. Consequently, the consideration of variable stoichiometric ratios in algae and nutrient concentration simulations may be applied in future modeling studies to enhance the accuracy of the results and reduce the likelihood of inefficient control policies.
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
Directory of Open Access Journals (Sweden)
A. Comegna
2010-12-01
Full Text Available Unsaturated hydraulic properties and their spatial variability today are analyzed in order to use properly mathematical models developed to simulate flow of the water and solute movement at the field-scale soils. Many studies have shown that observations of soil hydraulic properties should not be considered purely random, given that they possess a structure which may be described by means of stochastic processes. The techniques used for analyzing such a structure have essentially been based either on the theory of regionalized variables or to a lesser extent, on the analysis of time series. This work attempts to use the time-series approach mentioned above by means of a study of pressure head h and water content θ which characterize soil water status, in the space-time domain. The data of the analyses were recorded in the open field during a controlled drainage process, evaporation being prevented, along a 50 m transect in a volcanic Vesuvian soil. The isotropic hypothesis is empirical proved and then the autocorrelation ACF and the partial autocorrelation functions PACF were used to identify and estimate the ARMA(1,1 statistical model for the analyzed series and the AR(1 for the extracted signal. Relations with a state-space model are investigated, and a bivariate AR(1 model fitted. The simultaneous relations between θ and h are considered and estimated. The results are of value for sampling strategies and they should incite to a larger use of time and space series analysis.
De Hoyos, Diane N.
The global demand for electric energy has continuously increased over the last few decades. Some mature, alternative generation methods are wind, power, photovoltaic panels, biogas and fuel cells. In order to find alternative sources of energy to aid in the reduction of our nation's dependency on non-renewable fuels, energy sources include the use of solar energy panels. The intent of these initiatives is to provide substantial energy savings and reduce dependence on the electrical grid and net metering savings during the peak energy-use hours. The focus of this study explores and provides a clearer picture of the adoption of solar photovoltaic technology in institutions of higher education. It examines the impact of different variables associated with a photovoltaic installation in an institutions of higher education in the United States on the production generations for universities. Secondary data was used with permission from the Advancement of Suitability in Higher Education (AASHE). A multiple regression analysis was performed to determine the impact of different variables on the energy generation production. A Meta Data transformation analysis offered a deeper investigation into the impact of the variables on the photovoltaic installations. Although a review of a significant number of journal articles, dissertations and thesis in the area of photovoltaic solar installations are available, there were limited studies of actual institutions of higher education with the significant volume of institutions. However a study where the database included a significant number of data variables is unique and provides a researcher the opportunity to investigate different facets of a solar installation. The data of the installations ranges from 1993-2015. Included in this observation are the researcher's experience both in the procurement industry and as a team member of a solar institution of higher education in the southern portion of the United States.
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Sabuncu, Metin
2009-01-01
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Work hardening correlation for monotonic loading based on state variables
International Nuclear Information System (INIS)
Huang, F.H.; Li, C.Y.
1977-01-01
An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes
Bipartite entanglement in continuous variable cluster states
Energy Technology Data Exchange (ETDEWEB)
Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)
2010-11-15
A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.
Control approach development for variable recruitment artificial muscles
Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew
2016-04-01
This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.
Action–angle variables, ladder operators and coherent states
International Nuclear Information System (INIS)
Campoamor-Stursberg, R.; Gadella, M.; Kuru, Ş.; Negro, J.
2012-01-01
This Letter is devoted to the building of coherent states from arguments based on classical action–angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical–quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential system. -- Highlights: ► We study the building of coherent states from classical action–angle variables arguments. ► The classical variables are associated to an algebraic structure in terms of Poisson brackets. ► In the quantum context these considerations are implemented by ladder type operators. ► All this allows to formulate coherent states and the correspondence of classical–quantum properties.
State variable theories based on Hart's formulation
Energy Technology Data Exchange (ETDEWEB)
Korhonen, M.A.; Hannula, S.P.; Li, C.Y.
1985-01-01
In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.
Squeezed states and Hermite polynomials in a complex variable
International Nuclear Information System (INIS)
Ali, S. Twareque; Górska, K.; Horzela, A.; Szafraniec, F. H.
2014-01-01
Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)
Variable flavor scheme for final state jets
International Nuclear Information System (INIS)
Pietrulewicz, P.
2014-01-01
In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies
Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.
2013-01-01
Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…
High-fidelity teleportation of continuous-variable quantum States using delocalized single photons
DEFF Research Database (Denmark)
Andersen, Ulrik L; Ralph, Timothy C
2013-01-01
Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed...... states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...
Possible State Approaches to Cryptocurrencies
Directory of Open Access Journals (Sweden)
Jan Lansky
2018-01-01
Full Text Available Cryptocurrencies are a type of digital currencies that are relying on cryptographic proofs for confirmation of transactions. Cryptocurrencies usually achieve a unique combination of three features: ensuring limited anonymity, independence from central authority and double spending attack protection. No other group of currencies, including fiat currencies, has this combination of features. We will define cryptocurrency ownership and account anonymity. We will define cryptocurrency ownership and account anonymity. We will introduce a classification of the types of approaches to regulation of cryptocurrencies by various individual countries. We will present the risks that the use of cryptocurrencies involves and the possibilities of prevention of those risks. We will present the possible use of cryptocurrencies for the benefit of the state. The conclusion addresses the implications of adoption of a cryptocurrency as a national currency.
State variable participation in the limit cycle of induction motor
Indian Academy of Sciences (India)
State variable participation in the limit cycle of induction ... 2National Institute of Technical Teachers' Training and Research, Kolkata 700 106, India ..... the phase plot shown in figure 10 would be very useful as it shows infinite loops, meaning.
Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao
2014-10-07
In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.
Latent variable method for automatic adaptation to background states in motor imagery BCI
Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei
2018-02-01
Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Continuous variable quantum key distribution with modulated entangled states
DEFF Research Database (Denmark)
Madsen, Lars S; Usenko, Vladyslav C.; Lassen, Mikael
2012-01-01
Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes...... based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile...... entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising...
The utility of affine variables and affine coherent states
International Nuclear Information System (INIS)
Klauder, John R
2012-01-01
Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)
Continuous Variable Quantum Key Distribution Using Polarized Coherent States
Vidiella-Barranco, A.; Borelli, L. F. M.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
Gene variants associated with antisocial behaviour: a latent variable approach.
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V; Lee, Maria; Yrigollen, Carolyn M; Pakstis, Andrew J; Katsovich, Liliya; Olds, David L; Grigorenko, Elena L; Leckman, James F
2013-10-01
The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation programme in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Eight single-nucleotide polymorphisms (SNPs) from eight genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all eight genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid and cholinergic signalling as well as stress response pathways in mediating susceptibility to antisocial behaviour. This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential 'co-action' of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the aetiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a
Automatic Welding Control Using a State Variable Model.
1979-06-01
A-A10 610 NAVEAL POSTGRADUATE SCH4O.M CEAY CA0/ 13/ SAUTOMATIC WELDING CONTROL USING A STATE VARIABLE MODEL.W()JUN 79 W V "my UNCLASSIFIED...taverse Drive Unit // Jbint Path /Fixed Track 34 (servomotor positioning). Additional controls of heave (vertical), roll (angular rotation about the
Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund
2009-01-01
We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...
Bayesian approach to errors-in-variables in regression models
Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad
2017-05-01
In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.
by a solid-state metathesis approach
Indian Academy of Sciences (India)
Wintec
Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...
Estimating variability in functional images using a synthetic resampling approach
International Nuclear Information System (INIS)
Maitra, R.; O'Sullivan, F.
1996-01-01
Functional imaging of biologic parameters like in vivo tissue metabolism is made possible by Positron Emission Tomography (PET). Many techniques, such as mixture analysis, have been suggested for extracting such images from dynamic sequences of reconstructed PET scans. Methods for assessing the variability in these functional images are of scientific interest. The nonlinearity of the methods used in the mixture analysis approach makes analytic formulae for estimating variability intractable. The usual resampling approach is infeasible because of the prohibitive computational effort in simulating a number of sinogram. datasets, applying image reconstruction, and generating parametric images for each replication. Here we introduce an approach that approximates the distribution of the reconstructed PET images by a Gaussian random field and generates synthetic realizations in the imaging domain. This eliminates the reconstruction steps in generating each simulated functional image and is therefore practical. Results of experiments done to evaluate the approach on a model one-dimensional problem are very encouraging. Post-processing of the estimated variances is seen to improve the accuracy of the estimation method. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other parametric imaging methods
Inverse Ising problem in continuous time: A latent variable approach
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
State space approach to mixed boundary value problems.
Chen, C. F.; Chen, M. M.
1973-01-01
A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.
A variable resolution right TIN approach for gridded oceanographic data
Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki
2017-12-01
Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.
Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme
Directory of Open Access Journals (Sweden)
Zia Bashir
2017-12-01
Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.
A Novel Approach to model EPIC variable background
Marelli, M.; De Luca, A.; Salvetti, D.; Belfiore, A.
2017-10-01
One of the main aim of the EXTraS (Exploring the X-ray Transient and variable Sky) project is to characterise the variability of serendipitous XMM-Newton sources within each single observation. Unfortunately, 164 Ms out of the 774 Ms of cumulative exposure considered (21%) are badly affected by soft proton flares, hampering any classical analysis of field sources. De facto, the latest releases of the 3XMM catalog, as well as most of the analysis in literature, simply exclude these 'high background' periods from analysis. We implemented a novel SAS-indipendent approach to produce background-subtracted light curves, which allows to treat the case of very faint sources and very bright proton flares. EXTraS light curves of 3XMM-DR5 sources will be soon released to the community, together with new tools we are developing.
Developing State Level Approaches under the State Level Concept
International Nuclear Information System (INIS)
Budlong Sylvester, K.; Murphy, C.L.; Boyer, B.; Pilat, J.F.
2015-01-01
With the pursuit of the State-Level Concept (SLC), the IAEA has sought to further evolve the international safeguards system in a manner which maintains (or improves) the effectiveness of the system in an environment of expanding demands and limited resources. The IAEA must not remain static and should continuously examine its practices to ensure it can capture opportunities for cost reductions while adapting to, and staying ahead of, emerging proliferation challenges. Contemporary safeguards have been focused on assessing the nuclear programme of the State as a whole, rather than on the basis of individual facilities. Since the IAEA's integrated safeguards program, State-level Approaches (SLAs) have been developed that seek to optimally combine the measures provided for by the Additional Protocol with those of traditional safeguards. This process resulted in facility specific approaches that, while making use of a State's broader conclusion, were nonetheless prescriptive. Designing SLAs on a State-by-State basis would avoid the shortcomings of a one-size-fits-all system. It would also enable the effective use of the Agency's information analysis and State evaluation efforts by linking this analysis to safeguards planning efforts. Acquisition Path Analysis (APA), along with the State Evaluation process, can be used to prioritize paths in a State in terms of their attractiveness for proliferation. While taking advantage of all safeguards relevant information, and tailoring safeguards to individual characteristics of the State, paths of the highest priority in all States will necessarily meet the same standard of coverage. Similarly, lower priority paths will have lower performance targets, thereby promoting nondiscrimination. Such an approach would improve understanding of safeguards implementation under the SLC and the rational for safeguards resource allocation. The potential roles for APA and performance targets in SLA development will be reviewed
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio
2006-01-01
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed
Energy Technology Data Exchange (ETDEWEB)
Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)
2006-01-15
For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.
Integrated variable projection approach (IVAPA) for parallel magnetic resonance imaging.
Zhang, Qiao; Sheng, Jinhua
2012-10-01
Parallel magnetic resonance imaging (pMRI) is a fast method which requires algorithms for the reconstructing image from a small number of measured k-space lines. The accurate estimation of the coil sensitivity functions is still a challenging problem in parallel imaging. The joint estimation of the coil sensitivity functions and the desired image has recently been proposed to improve the situation by iteratively optimizing both the coil sensitivity functions and the image reconstruction. It regards both the coil sensitivities and the desired images as unknowns to be solved for jointly. In this paper, we propose an integrated variable projection approach (IVAPA) for pMRI, which integrates two individual processing steps (coil sensitivity estimation and image reconstruction) into a single processing step to improve the accuracy of the coil sensitivity estimation using the variable projection approach. The method is demonstrated to be able to give an optimal solution with considerably reduced artifacts for high reduction factors and a low number of auto-calibration signal (ACS) lines, and our implementation has a fast convergence rate. The performance of the proposed method is evaluated using a set of in vivo experiment data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Increased variability of tornado occurrence in the United States.
Brooks, Harold E; Carbin, Gregory W; Marsh, Patrick T
2014-10-17
Whether or not climate change has had an impact on the occurrence of tornadoes in the United States has become a question of high public and scientific interest, but changes in how tornadoes are reported have made it difficult to answer it convincingly. We show that, excluding the weakest tornadoes, the mean annual number of tornadoes has remained relatively constant, but their variability of occurrence has increased since the 1970s. This is due to a decrease in the number of days per year with tornadoes combined with an increase in days with many tornadoes, leading to greater variability on annual and monthly time scales and changes in the timing of the start of the tornado season. Copyright © 2014, American Association for the Advancement of Science.
S-variable approach to LMI-based robust control
Ebihara, Yoshio; Arzelier, Denis
2015-01-01
This book shows how the use of S-variables (SVs) in enhancing the range of problems that can be addressed with the already-versatile linear matrix inequality (LMI) approach to control can, in many cases, be put on a more unified, methodical footing. Beginning with the fundamentals of the SV approach, the text shows how the basic idea can be used for each problem (and when it should not be employed at all). The specific adaptations of the method necessitated by each problem are also detailed. The problems dealt with in the book have the common traits that: analytic closed-form solutions are not available; and LMIs can be applied to produce numerical solutions with a certain amount of conservatism. Typical examples are robustness analysis of linear systems affected by parametric uncertainties and the synthesis of a linear controller satisfying multiple, often conflicting, design specifications. For problems in which LMI methods produce conservative results, the SV approach is shown to achieve greater accuracy...
Regularized tripartite continuous variable EPR-type states with Wigner functions and CHSH violations
International Nuclear Information System (INIS)
Jacobsen, Sol H; Jarvis, P D
2008-01-01
We consider tripartite entangled states for continuous variable systems of EPR type, which generalize the famous bipartite CV EPR states (eigenvectors of conjugate choices X 1 - X 2 , P 1 + P 2 , of the systems' relative position and total momentum variables). We give the regularized forms of such tripartite EPR states in second-quantized formulation, and derive their Wigner functions. This is directly compared with the established NOPA-like states from quantum optics. Whereas the multipartite entangled states of NOPA type have singular Wigner functions in the limit of large squeezing, r → ∞, or tanh r → 1 - (approaching the EPR states in the bipartite case), our regularized tripartite EPR states show singular behaviour not only in the approach to the EPR-type region (s → 1 in our notation), but also for an additional, auxiliary regime of the regulator (s→√2). While the s → 1 limit pertains to tripartite CV states with singular eigenstates of the relative coordinates and remaining squeezed in the total momentum, the (s→√2) limit yields singular eigenstates of the total momentum, but squeezed in the relative coordinates. Regarded as expectation values of displaced parity measurements, the tripartite Wigner functions provide the ingredients for generalized CHSH inequalities. Violations of the tripartite CHSH bound (B 3 ≤ 2) are established, with B 3 ≅2.09 in the canonical regime (s → 1 + ), as well as B 3 ≅2.32 in the auxiliary regime (s→√2 + )
The productivity of mental health care: an instrumental variable approach.
Lu, Mingshan
1999-06-01
BACKGROUND: Like many other medical technologies and treatments, there is a lack of reliable evidence on treatment effectiveness of mental health care. Increasingly, data from non-experimental settings are being used to study the effect of treatment. However, as in a number of studies using non-experimental data, a simple regression of outcome on treatment shows a puzzling negative and significant impact of mental health care on the improvement of mental health status, even after including a large number of potential control variables. The central problem in interpreting evidence from real-world or non-experimental settings is, therefore, the potential "selection bias" problem in observational data set. In other words, the choice/quantity of mental health care may be correlated with other variables, particularly unobserved variables, that influence outcome and this may lead to a bias in the estimate of the effect of care in conventional models. AIMS OF THE STUDY: This paper addresses the issue of estimating treatment effects using an observational data set. The information in a mental health data set obtained from two waves of data in Puerto Rico is explored. The results using conventional models - in which the potential selection bias is not controlled - and that from instrumental variable (IV) models - which is what was proposed in this study to correct for the contaminated estimation from conventional models - are compared. METHODS: Treatment effectiveness is estimated in a production function framework. Effectiveness is measured as the improvement in mental health status. To control for the potential selection bias problem, IV approaches are employed. The essence of the IV method is to use one or more instruments, which are observable factors that influence treatment but do not directly affect patient outcomes, to isolate the effect of treatment variation that is independent of unobserved patient characteristics. The data used in this study are the first (1992
STATUS SOSIAL EKONOMI DAN FERTILITAS: A Latent Variable Approach
Directory of Open Access Journals (Sweden)
Suandi -
2012-11-01
Full Text Available The main problems faced by developing countries including Indonesia are not onlyeconomic problems that tend to harm, but still met the high fertility rate. The purpose ofwriting to find out the relationship between socioeconomic status to the level of fertilitythrough the "A Latent Variable Approach." The study adopts the approach of fertility oneconomic development. Economic development based on the theories of Malthus: anincrease in "income" is slower than the increase in births (fertility and is the root ofpeople falling into poverty. However, Becker made linkage model or the influence ofchildren income and price. According to Becker, viewed from the aspect of demand thatthe price of children is greater than the income effect.The study shows that (1 level of education correlates positively on income andnegatively affect fertility, (2 age structure of women (control contraceptives adverselyaffect fertility. That is, the older the age, the level of individual productivity and lowerfertility or declining, and (3 husband's employment status correlated positively to theearnings (income. Through a permanent factor income or household income referred toas a negative influence on fertility. There are differences in value orientation of childrenbetween advanced society (rich with a backward society (the poor. The poor, forexample, the value of children is more production of goods. That is, children born moreemphasis on aspects of the number or the number of children owned (quantity, numberof children born by the poor is expected to help their parents at the age of retirement orno longer productive so that the child is expected to assist them in economic, security,and social security (insurance, while the developed (rich children are moreconsumption value or quality of the child.
Failure mode analysis using state variables derived from fault trees with application
International Nuclear Information System (INIS)
Bartholomew, R.J.
1982-01-01
Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem
The coordinate coherent states approach revisited
International Nuclear Information System (INIS)
Miao, Yan-Gang; Zhang, Shao-Jun
2013-01-01
We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies that the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor. - Highlights: ► Suggest a canonical quantization in the coordinate coherent states approach. ► Prove the validity of the concept of point particles. ► Apply the canonical quantization to the Unruh effect and Hawking radiation. ► Find no deformations in the Unruh temperature and Hawking temperature. ► Provide the modified spectra of the Unruh effect and Hawking radiation.
How to get rid of W: a latent variables approach to modelling spatially lagged variables
Folmer, H.; Oud, J.
2008-01-01
In this paper we propose a structural equation model (SEM) with latent variables to model spatial dependence. Rather than using the spatial weights matrix W, we propose to use latent variables to represent spatial dependence and spillover effects, of which the observed spatially lagged variables are
How to get rid of W : a latent variables approach to modelling spatially lagged variables
Folmer, Henk; Oud, Johan
2008-01-01
In this paper we propose a structural equation model (SEM) with latent variables to model spatial dependence. Rather than using the spatial weights matrix W, we propose to use latent variables to represent spatial dependence and spillover effects, of which the observed spatially lagged variables are
Variability in United States Allopathic Medical School Tuition.
Gil, Joseph A; Park, Sarah H; Daniels, Alan H
2015-11-01
Over the course of the last generation, the cost of medical school attendance and medical student debt has increased drastically. Medical student debt has been reported as high as $350,000, and the Association of American Medical Colleges (AAMC) reports that medical school tuition continues to increase annually. The increasing cost of medical education and associated financial burden is now beginning to deter potential applicants from pursuing a career in medicine. In this study we aimed to assess medical school tuition across the US. We hypothesized that the cost of medical school attendance is variable across all regions of the US, and as a result, the financial burden on medical students is inconsistent. All 123 allopathic medical schools accredited by the AAMC were assessed in this investigation. In-state and out-of-state tuitions for the year 2016 were obtained from U.S. News and World Report. Additionally, medical school size was collected. Regions were defined according to the US Census Bureau definition, with the US being divided into 4 regions: Northeast, Midwest, South, and West. There was no difference in average medical school size among the 4 regions (P > .05). Average in-state tuition was $38,291.56 ± $9801.38 (95% confidence interval [CI], $34,658.07-$41,513.46) in the Midwest, $45,923.04 ± $9178.87 (95% CI, $42,566.28-$49,216.78) in the Northeast, $32,287.78 ± $12,277.53 (95% CI, $28,581.90-$35,378.68) in the South, and $37,745.40 ± $11,414.37 (95% CI, $30,063.28-$40,458.99) in the West. In-state tuition in the South was significantly lower than in the Northeast, West, and Midwest (P tuition in the Northeast was significantly higher than in the South, West, and Midwest (P tuition is $54,104.04 ± $8227.65 (95% CI, $51,207.6-$57,000.39) in the Midwest, $53,180.10 ± $3963.71 (95% CI, $51,761.71-$54,598.50) in the Northeast, $48,191.86 ± $12,578.13 (95% CI, $44,595.84-$51,787.89) in the South, and $52,920.47 ± $7400.83 (95% CI, $49
Garcia-Diaz, Antón; Leborán, Víctor; Fdez-Vidal, Xosé R; Pardo, Xosé M
2012-06-12
A hierarchical definition of optical variability is proposed that links physical magnitudes to visual saliency and yields a more reductionist interpretation than previous approaches. This definition is shown to be grounded on the classical efficient coding hypothesis. Moreover, we propose that a major goal of contextual adaptation mechanisms is to ensure the invariance of the behavior that the contribution of an image point to optical variability elicits in the visual system. This hypothesis and the necessary assumptions are tested through the comparison with human fixations and state-of-the-art approaches to saliency in three open access eye-tracking datasets, including one devoted to images with faces, as well as in a novel experiment using hyperspectral representations of surface reflectance. The results on faces yield a significant reduction of the potential strength of semantic influences compared to previous works. The results on hyperspectral images support the assumptions to estimate optical variability. As well, the proposed approach explains quantitative results related to a visual illusion observed for images of corners, which does not involve eye movements.
International Nuclear Information System (INIS)
Wire, G.L.; Duncan, D.R.; Cannon, N.S.; Johnson, G.D.; Alexopoulos, P.S.; Li, C.Y.
Inelastic analysis is performed to calculate the deformation of thin-walled, internally pressurized, tube under a variety of loading modes. A state-variable approach was used to describe the material properties. The material parameters of the constitutive equations used were determined based on uniaxial, load relaxation, tensile tests, and internally pressurized tubes under creep and constant-displacement-rate modes of loading. The simulated results were compared with the experimental data. The significance of the comparison is discussed in terms of the validity of a state-variable approach used to describe the deformation properties in mechanical testing
Analyzing Variability in Ebola-Related Controls Applied to Returned Travelers in the United States.
Kraemer, John D; Siedner, Mark J; Stoto, Michael A
2015-01-01
Public health authorities have adopted entry screening and subsequent restrictions on travelers from Ebola-affected West African countries as a strategy to prevent importation of Ebola virus disease (EVD) cases. We analyzed international, federal, and state policies-principally based on the policy documents themselves and media reports-to evaluate policy variability. We employed means-ends fit analysis to elucidate policy objectives. We found substantial variation in the specific approaches favored by WHO, CDC, and various American states. Several US states impose compulsory quarantine on a broader range of travelers or require more extensive monitoring than recommended by CDC or WHO. Observed differences likely partially resulted from different actors having different policy goals-particularly the federal government having to balance foreign policy objectives less salient to states. Further, some state-level variation appears to be motivated by short-term political goals. We propose recommendations to improve future policies, which include the following: (1) actors should explicitly clarify their objectives, (2) legal authority should be modernized and clarified, and (3) the federal government should consider preempting state approaches that imperil its goals.
International Nuclear Information System (INIS)
Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.
2010-01-01
We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.
Continuous variable entanglement distillation of non-Gaussian states
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel
2009-01-01
We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...
An automated approach for finding variable-constant pairing bugs
DEFF Research Database (Denmark)
Lawall, Julia; Lo, David
2010-01-01
program-analysis and data-mining based approach to identify the uses of named constants and to identify anomalies in these uses. We have applied our approach to a recent version of the Linux kernel and have found a number of bugs affecting both correctness and software maintenance. Many of these bugs...... have been validated by the Linux developers....
In search of control variables : A systems approach
Dalenoort, GJ
1997-01-01
Motor processes cannot be modeled by a single (unified) model. Instead, a number of models at different levels of description are needed. The concepts of control and control variable only make sense at the functional level. A clear distinction must be made between external models and internal
The evolutionary state of the Beta Canis Majoris variables
International Nuclear Information System (INIS)
Shobbrook, R.R.
1978-01-01
New β photometry is presented for all the known β Canis Majoris variables and for other bright early B stars observable from the southern hemisphere which were close to the β CMa stars in a β/[c 1 ] diagram published earlier. The new β values are accurate to +- 0.002 or 0.003 mag and enable the 'instability strip' along which the variables lie to be defined much more precisely. Several of the other B stars also lie in the strip; most of these have already been found to be non-variable in a subsidiary observing programme. (author)
Subseasonal climate variability for North Carolina, United States
Sayemuzzaman, Mohammad; Jha, Manoj K.; Mekonnen, Ademe; Schimmel, Keith A.
2014-08-01
Subseasonal trends in climate variability for maximum temperature (Tmax), minimum temperature (Tmin) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The magnitude and significance of the trends at all stations were determined using the non-parametric Theil-Sen Approach (TSA) and the Mann-Kendall (MK) test, respectively. The Sequential Mann-Kendall (SQMK) test was also applied to find the initiation of abrupt trend changes. The lag-1 serial correlation and double mass curve were employed to address the data independency and homogeneity. Using the MK trend test, statistically significant (confidence level ≥ 95% in two-tailed test) decreasing (increasing) trends by 44% (45%) of stations were found in May (June). In general, trends were decreased in Tmax and increased in Tmin data series in subseasonal scale. Using the TSA method, the magnitude of lowest (highest) decreasing (increasing) trend in Tmax is - 0.050 °C/year (+ 0.052 °C/year) in the monthly series for May (March) and for Tmin is - 0.055 °C/year (+ 0.075 °C/year) in February (December). For the precipitation time series using the TSA method, it was found that the highest (lowest) magnitude of 1.00 mm/year (- 1.20 mm/year) is in September (February). The overall trends in precipitation data series were not significant at the 95% confidence level except that 17% of stations were found to have significant (confidence level ≥ 95% in two-tailed test) decreasing trends in February. The statistically significant trend test results were used to develop a spatial distribution of trends: May for Tmax, June for Tmin, and February for precipitation. A correlative analysis of significant temperature and precipitation trend results was examined with respect to large scale circulation modes (North Atlantic Oscillation (NAO) and Southern Oscillation Index (SOI). A negative NAO index (positive-El Niño Southern Oscillation (ENSO) index) was found to be associated with
An algebraic geometric approach to separation of variables
Schöbel, Konrad
2015-01-01
Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.” (Jim Stasheff) Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations Target Groups Scientists in the fie...
Experimental verification of quantum discord in continuous-variable states
International Nuclear Information System (INIS)
Hosseini, S; Haw, J Y; Assad, S M; Chrzanowski, H M; Janousek, J; Symul, T; Lam, P K; Rahimi-Keshari, S; Ralph, T C
2014-01-01
We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states. (paper)
Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O
2016-06-01
Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.
Automated approach to detecting behavioral states using EEG-DABS
Directory of Open Access Journals (Sweden)
Zachary B. Loris
2017-07-01
Full Text Available Electrocorticographic (ECoG signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves. Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
function. The MLRPS is more complex than the variable flow model as it has to cater for a force structure that is much larger than just the MT branch...essential positions in a Ship’s complement, or by the biggest current deficit in forecast end strength. The model can be adjusted to cater for any of these...is unlikely that the RAN will be able to cater for such an increase in hires, so this scenario is not likely to solve their problem. Each transition
The evolutionary state of the β Canis Majoris variables
International Nuclear Information System (INIS)
Shobbrook, R.R.
1978-01-01
It is found from accurate β photometry of bright stars in the region of the β CMa instability strip that about three-quarters of the stars in the strip, to a distance modulus of 8.0, are β CMa variables. The strip is not resolved by the data so that its intrinsic width is uncertain, but the conclusion from a consideration of theoretical evolutionary rates is that the variables must be very near the end of core hydrogen burning. Comparison of the relative positions of the empirical and theoretical instability strip and zero age main sequence indicates that the observationally located upper ZAMS is too bright. (author)
Characterization of Nighttime Light Variability Over the Southeastern United States
Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.
2016-01-01
City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.
Variability in personality expression across contexts: a social network approach.
Clifton, Allan
2014-04-01
The current research investigated how the contextual expression of personality differs across interpersonal relationships. Two related studies were conducted with college samples (Study 1: N = 52, 38 female; Study 2: N = 111, 72 female). Participants in each study completed a five-factor measure of personality and constructed a social network detailing their 30 most important relationships. Participants used a brief Five-Factor Model scale to rate their personality as they experience it when with each person in their social network. Multiple informants selected from each social network then rated the target participant's personality (Study 1: N = 227, Study 2: N = 777). Contextual personality ratings demonstrated incremental validity beyond standard global self-report in predicting specific informants' perceptions. Variability in these contextualized personality ratings was predicted by the position of the other individuals within the social network. Across both studies, participants reported being more extraverted and neurotic, and less conscientious, with more central members of their social networks. Dyadic social network-based assessments of personality provide incremental validity in understanding personality, revealing dynamic patterns of personality variability unobservable with standard assessment techniques. © 2013 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Meyer, L.; Witzel, G.; Ghez, A. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Longstaff, F. A. [UCLA Anderson School of Management, University of California, Los Angeles, CA 90095-1481 (United States)
2014-08-10
Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works with conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.
Coherent states approach to Penning trap
International Nuclear Information System (INIS)
Fernandez, David J; Velazquez, Mercedes
2009-01-01
By using a matrix technique, which allows us to identify directly the ladder operators, the Penning trap coherent states are derived as eigenstates of the appropriate annihilation operators. These states are compared with those obtained through the displacement operator. The associated wavefunctions and mean values for some relevant operators in these states are also evaluated. It turns out that the Penning trap coherent states minimize the Heisenberg uncertainty relation
The Variable Transition State in Polar Additions to Pi Bonds
Weiss, Hilton M.
2010-01-01
A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…
State-independent quantum contextuality for continuous variables
International Nuclear Information System (INIS)
Plastino, Angel R.; Cabello, Adan
2010-01-01
Recent experiments have shown that nature violates noncontextual inequalities regardless of the state of the physical system. So far, all these inequalities involve measurements of dichotomic observables. We show that state-independent quantum contextuality can also be observed in the correlations between measurements of observables with genuinely continuous spectra, highlighting the universal character of the effect.
New variable separation approach: application to nonlinear diffusion equations
International Nuclear Information System (INIS)
Zhang Shunli; Lou, S Y; Qu Changzheng
2003-01-01
The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described
A thermodynamic approach to fatigue damage accumulation under variable loading
International Nuclear Information System (INIS)
Naderi, M.; Khonsari, M.M.
2010-01-01
We put forward a general procedure for assessment of damage evolution based on the concept of entropy production. The procedure is applicable to both constant- and variable amplitude loading. The results of a series of bending fatigue tests under both two-stage and three-stage loadings are reported to investigate the validity of the proposed methodology. Also presented are the results of experiments involving bending, torsion, and tension-compression fatigue tests with Al 6061-T6 and SS 304 specimens. It is shown that, within the range of parameters tested, the evolution of fatigue damage for these materials in terms of entropy production is independent of load, frequency, size, loading sequence and loading history. Furthermore, entropy production fractions of individual amplitudes sums to unity.
Characteristics of quantum open systems: free random variables approach
International Nuclear Information System (INIS)
Gudowska-Nowak, E.; Papp, G.; Brickmann, J.
1998-01-01
Random Matrix Theory provides an interesting tool for modelling a number of phenomena where noises (fluctuations) play a prominent role. Various applications range from the theory of mesoscopic systems in nuclear and atomic physics to biophysical models, like Hopfield-type models of neural networks and protein folding. Random Matrix Theory is also used to study dissipative systems with broken time-reversal invariance providing a setup for analysis of dynamic processes in condensed, disordered media. In the paper we use the Random Matrix Theory (RMT) within the formalism of Free Random Variables (alias Blue's functions), which allows to characterize spectral properties of non-Hermitean ''Hamiltonians''. The relevance of using the Blue's function method is discussed in connection with application of non-Hermitean operators in various problems of physical chemistry. (author)
Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach
Directory of Open Access Journals (Sweden)
Sofiane Maachou
2014-04-01
Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.
Pattern recognition of state variables by neural networks
International Nuclear Information System (INIS)
Faria, Eduardo Fernandes; Pereira, Claubia
1996-01-01
An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.
2007-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
A Database Approach to Distributed State Space Generation
Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.
2008-01-01
We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database
State control of discrete-time linear systems to be bound in state variables by equality constraints
International Nuclear Information System (INIS)
Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír
2014-01-01
The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach
Stochastic variational approach to minimum uncertainty states
Energy Technology Data Exchange (ETDEWEB)
Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)
1995-05-21
We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)
Stereotype Threat and College Academic Performance: A Latent Variables Approach*
Owens, Jayanti; Massey, Douglas S.
2013-01-01
Stereotype threat theory has gained experimental and survey-based support in helping explain the academic underperformance of minority students at selective colleges and universities. Stereotype threat theory states that minority students underperform because of pressures created by negative stereotypes about their racial group. Past survey-based studies, however, are characterized by methodological inefficiencies and potential biases: key theoretical constructs have only been measured using summed indicators and predicted relationships modeled using ordinary least squares. Using the National Longitudinal Survey of Freshman, this study overcomes previous methodological shortcomings by developing a latent construct model of stereotype threat. Theoretical constructs and equations are estimated simultaneously from multiple indicators, yielding a more reliable, valid, and parsimonious test of key propositions. Findings additionally support the view that social stigma can indeed have strong negative effects on the academic performance of pejoratively stereotyped racial-minority group members, not only in laboratory settings, but also in the real world. PMID:23950616
International Nuclear Information System (INIS)
McHugh, Derek; Buzek, Vladimir; Ziman, Mario
2006-01-01
We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case
Continuous Variable Entanglement of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund
2009-01-01
We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...
Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-09-01
Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.
State variable participation in the limit cycle of induction motor
Indian Academy of Sciences (India)
2015-02-21
Feb 21, 2015 ... The paper presents bifurcation behaviour of a single-phase induction motor. Study of bifurcation of a system gives the complete picture of its dynamical behaviour with the change in system's parameters. The system is mathematically described by a set of differential equations in the state space. Induction ...
Possible generalization of Yang variables for the study of many particle final states
International Nuclear Information System (INIS)
Becker, L.; Schiller, H.
1976-01-01
Starting from a discussion of constraints on invariant variables a generalization of the so called Yang-variables is discussed for the case of 5 and 6 particles in the final states. The obtained Lorentz-invariant variables are ''quasi permutation invariant'' with respect to the final state particles. The influence of Gram determinants is discussed in the context of the application of a cluster algorithm. (author)
Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.
Generating continuous variable optical quantum states and entanglement
International Nuclear Information System (INIS)
Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.
2002-01-01
Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox
Present state and perspectives of variable renewable energies in Spain
Gómez-Calvet, Roberto; Martínez-Duart, José Manuel; Serrano Calle, Silvia
2018-03-01
In accordance with the Paris Climate Agreement (2015) and the more recent European Union Winter Package of November 2016, the European nations have committed to drastically cut CO2 emissions during the next decades, especially in the power sector. To this end, Spain as well as many other European countries are initiating plans for a large deployment of variable renewable energy sources (VRES), especially motivated by the huge lowering in prices of solar and wind installations. In the first part of this work, a detailed analysis of the current Spanish electricity mix is carried out, especially of the present generation by VRES. To this end, we present hourly and daily fan charts, for the different days of the week as well as months or seasons of the year. These studies show that the current power system is quite varied and presents a large installed capacity in relation to peak demand. Other aspects, that will surely assist the transition to lower emission targets are the following: the recent adjudication of 9000MW of VRES, which will be operational within the next 2-3 years; a large overcapacity of Combined Cycle Gas Turbines (CCGT) plants, which could be used during the transition as backup plants; and the relatively large hydro-pump potential for the storage of possible VRES surpluses. Finally, the possibility of decommissioning several nuclear plants in a few years is also discussed.
State Synchronization Approaches in Web-based Applications
Directory of Open Access Journals (Sweden)
Grocevs Aleksejs
2014-12-01
Full Text Available The main objective of the article is to provide insight into technologies and approaches available to maintain consistent state on both client and server sides. The article describes basic RIA application state persistence difficulties and offers approaches to overcoming such problems using asynchronous data transmission synchronization channels and other user-available browser abilities.
Recent state report: Groundwater programmes of variable density
International Nuclear Information System (INIS)
Fein, E.
1991-12-01
This report summarises basic facts and data that may be helpful in decisions about the development of a groundwater programme for the calculation of saline groundwater movements. Generally accepted requirements of a rapid groundwater programme for the assessment of flow mechanisms above salt domes are defined. It also describes the possibilities offered by similar programmes already in progress on a national and international basis and discusses state-of-the-art numerical methods and hardware in respect of speed and efficiency of the relevant computer programmes. The availability of a rapid groundwater programme would make it possible for model calculations in connection with long-term safety analyses to take account of the influence of salinity on groundwater movements in extended and complex model regions. (orig./DG) [de
Institute of Scientific and Technical Information of China (English)
YUAN Hong-Chun; QI Kai-Guo
2005-01-01
We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.
New approach to calculate bound state eigenvalues
International Nuclear Information System (INIS)
Gerck, E.; Gallas, J.A.C.
1983-01-01
A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt
Crisis and adjustment variables of Mediterranean oil states
International Nuclear Information System (INIS)
Beraud, Philippe; Jablanczy, Adrienne
2010-01-01
This paper deals with the performance of the Mediterranean and the other Arabian oil exporting countries. As far as the resource-based industry is concerned, it could be interesting to notice that the performance of these countries is linked to sectoral mix, nature of industry, type of enterprise, nature of joint-venture contracts and obviously macro-economic policies. The studies on the relationship between oil resources, oil production and valorization and global growth show that oil sector is not reliable, especially if we take into account the gap between low and high absorbing countries in the Arab world. In the first group of countries, oil revenues have a positive and significant effect on economic growth and development. In the second group of countries, oil revenues often copy with the Dutch-disease type resource reallocation process and have a negative effect on growth and development. Three alternative ways seem to be opened for these countries. And we study each of them: growing influence of profit sharing contracts between the state-owned companies and the international oil companies linked to technology transfers agreements, entrepreneurial and managerial trajectories coping with the influence of small and medium enterprises, effects of the regional integration in the framework of the Euro-Mediterranean trade agreements
The state-level approach: moving beyond integrated safeguards
International Nuclear Information System (INIS)
Tape, James W.
2008-01-01
The concept of a State-Level Approach (SLA) for international safeguards planning, implementation, and evaluation was contained in the Conceptual Framework for Integrated Safeguards (IS) agreed in 2002. This paper describes briefly the key elements of the SLA, including State-level factors and high-level safeguards objectives, and considers different cases in which application of the SLA methodology could address safeguards for 'suspect' States, 'good' States, and Nuclear Weapons States hosting fuel cycle centers. The continued use and further development of the SLA to customize safeguards for each State, including for States already under IS, is seen as central to effective and efficient safeguards for an expanding nuclear world.
Fernandes, José Antonio
2013-02-01
A multi-species approach to fisheries management requires taking into account the interactions between species in order to improve recruitment forecasting of the fish species. Recent advances in Bayesian networks direct the learning of models with several interrelated variables to be forecasted simultaneously. These models are known as multi-dimensional Bayesian network classifiers (MDBNs). Pre-processing steps are critical for the posterior learning of the model in these kinds of domains. Therefore, in the present study, a set of \\'state-of-the-art\\' uni-dimensional pre-processing methods, within the categories of missing data imputation, feature discretization and feature subset selection, are adapted to be used with MDBNs. A framework that includes the proposed multi-dimensional supervised pre-processing methods, coupled with a MDBN classifier, is tested with synthetic datasets and the real domain of fish recruitment forecasting. The correctly forecasting of three fish species (anchovy, sardine and hake) simultaneously is doubled (from 17.3% to 29.5%) using the multi-dimensional approach in comparison to mono-species models. The probability assessments also show high improvement reducing the average error (estimated by means of Brier score) from 0.35 to 0.27. Finally, these differences are superior to the forecasting of species by pairs. © 2012 Elsevier Ltd.
On the Integrity of Online Testing for Introductory Statistics Courses: A Latent Variable Approach
Directory of Open Access Journals (Sweden)
Alan Fask
2015-04-01
Full Text Available There has been a remarkable growth in distance learning courses in higher education. Despite indications that distance learning courses are more vulnerable to cheating behavior than traditional courses, there has been little research studying whether online exams facilitate a relatively greater level of cheating. This article examines this issue by developing an approach using a latent variable to measure student cheating. This latent variable is linked to both known student mastery related variables and variables unrelated to student mastery. Grade scores from a proctored final exam and an unproctored final exam are used to test for increased cheating behavior in the unproctored exam
Institute of Scientific and Technical Information of China (English)
Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai
2006-01-01
This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.
2010-04-01
The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...
A Novel Flood Forecasting Method Based on Initial State Variable Correction
Directory of Open Access Journals (Sweden)
Kuang Li
2017-12-01
Full Text Available The influence of initial state variables on flood forecasting accuracy by using conceptual hydrological models is analyzed in this paper and a novel flood forecasting method based on correction of initial state variables is proposed. The new method is abbreviated as ISVC (Initial State Variable Correction. The ISVC takes the residual between the measured and forecasted flows during the initial period of the flood event as the objective function, and it uses a particle swarm optimization algorithm to correct the initial state variables, which are then used to drive the flood forecasting model. The historical flood events of 11 watersheds in south China are forecasted and verified, and important issues concerning the ISVC application are then discussed. The study results show that the ISVC is effective and applicable in flood forecasting tasks. It can significantly improve the flood forecasting accuracy in most cases.
Genuine tripartite entangled states with a local hidden-variable model
International Nuclear Information System (INIS)
Toth, Geza; Acin, Antonio
2006-01-01
We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states
Variability common to first leaf dates and snowpack in the western conterminous United States
McCabe, Gregory J.; Betancourt, Julio L.; Pederson, Gregory T.; Schwartz, Mark D.
2013-01-01
Singular value decomposition is used to identify the common variability in first leaf dates (FLDs) and 1 April snow water equivalent (SWE) for the western United States during the period 1900–2012. Results indicate two modes of joint variability that explain 57% of the variability in FLD and 69% of the variability in SWE. The first mode of joint variability is related to widespread late winter–spring warming or cooling across the entire west. The second mode can be described as a north–south dipole in temperature for FLD, as well as in cool season temperature and precipitation for SWE, that is closely correlated to the El Niño–Southern Oscillation. Additionally, both modes of variability indicate a relation with the Pacific–North American atmospheric pattern. These results indicate that there is a substantial amount of common variance in FLD and SWE that is related to large-scale modes of climate variability.
An Approach for Implementing State Machines with Online Testability
Directory of Open Access Journals (Sweden)
P. K. Lala
2010-01-01
Full Text Available During the last two decades, significant amount of research has been performed to simplify the detection of transient or soft errors in VLSI-based digital systems. This paper proposes an approach for implementing state machines that uses 2-hot code for state encoding. State machines designed using this approach allow online detection of soft errors in registers and output logic. The 2-hot code considerably reduces the number of required flip-flops and leads to relatively straightforward implementation of next state and output logic. A new way of designing output logic for online fault detection has also been presented.
Koster, Randal D.; Salvucci, Guido D.; Rigden, Angela J.; Jung, Martin; Collatz, G. James; Schubert, Siegfried D.
2015-01-01
The spatial pattern across the continental United States of the interannual variance of warm season water-dependent evapotranspiration, a pattern of relevance to land-atmosphere feedback, cannot be measured directly. Alternative and indirect approaches to estimating the pattern, however, do exist, and given the uncertainty of each, we use several such approaches here. We first quantify the water dependent evapotranspiration variance pattern inherent in two derived evapotranspiration datasets available from the literature. We then search for the pattern in proxy geophysical variables (air temperature, stream flow, and NDVI) known to have strong ties to evapotranspiration. The variances inherent in all of the different (and mostly independent) data sources show some differences but are generally strongly consistent they all show a large variance signal down the center of the U.S., with lower variances toward the east and (for the most part) toward the west. The robustness of the pattern across the datasets suggests that it indeed represents the pattern operating in nature. Using Budykos hydroclimatic framework, we show that the pattern can largely be explained by the relative strength of water and energy controls on evapotranspiration across the continent.
Variational Approach in the Theory of Liquid-Crystal State
Gevorkyan, E. V.
2018-03-01
The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.
Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.
Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo
2010-02-26
This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.
Collision detection and prediction using a mutual configuration state approach
Schoute, Albert L.; Weiss, N.; Jesse, N.; Reusch, B.
A configuration state approach is presented that simplifies the mutual collision analysis of objects with known shapes that move along known paths. Accurate and fast prediction of contact situations in games such as robot soccer enables improved anticipatory and corrective actions of the state
Improved installation approach for variable spring setting on a pipe yet to be insulated
International Nuclear Information System (INIS)
Shah, H.H.; Chitnis, S.S.; Rencher, D.
1993-01-01
This paper provides an approach in setting of variable spring supports for noninsulated or partially insulated piping systems so that resetting these supports is not required when the insulation is fully installed. This approach shows a method of deriving the spring coldload setting tolerance values that can be readily utilized by craft personnel. This method is based on the percentage of the weight of the insulation compared to the total weight of the pipe and the applicable tolerance. Use of these setting tolerances eliminates reverification of the original cold-load settings, for the majority of variable springs when the insulation is fully installed
A first approach to calculate BIOCLIM variables and climate zones for Antarctica
Wagner, Monika; Trutschnig, Wolfgang; Bathke, Arne C.; Ruprecht, Ulrike
2018-02-01
For testing the hypothesis that macroclimatological factors determine the occurrence, biodiversity, and species specificity of both symbiotic partners of Antarctic lecideoid lichens, we present a first approach for the computation of the full set of 19 BIOCLIM variables, as available at http://www.worldclim.org/ for all regions of the world with exception of Antarctica. Annual mean temperature (Bio 1) and annual precipitation (Bio 12) were chosen to define climate zones of the Antarctic continent and adjacent islands as required for ecological niche modeling (ENM). The zones are based on data for the years 2009-2015 which was obtained from the Antarctic Mesoscale Prediction System (AMPS) database of the Ohio State University. For both temperature and precipitation, two separate zonings were specified; temperature values were divided into 12 zones (named 1 to 12) and precipitation values into five (named A to E). By combining these two partitions, we defined climate zonings where each geographical point can be uniquely assigned to exactly one zone, which allows an immediate explicit interpretation. The soundness of the newly calculated climate zones was tested by comparison with already published data, which used only three zones defined on climate information from the literature. The newly defined climate zones result in a more precise assignment of species distribution to the single habitats. This study provides the basis for a more detailed continental-wide ENM using a comprehensive dataset of lichen specimens which are located within 21 different climate regions.
State, power, and domination. An approach on its mechanisms
Directory of Open Access Journals (Sweden)
Paola García Reyes
2017-11-01
Full Text Available This article offers an approach to the interactions between State and social actors, based on the analysis of three cases in which opportunistic or violent actors were associated with policies to promote growing of palm oil in Colombia. We move away from other approaches which describe these interactions as cooptation and suggest they can be better understood as processes associated with the exercise of indirect domination by the State. To this end, we present an overall framework of analysis, review relevant policies, offer a description of the cases, and propose three mechanisms of indirect state domination: privateers, friends and Gullivers.
Generating entangled states of continuous variables via cross-Kerr nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2007-05-28
We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.
Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint
Energy Technology Data Exchange (ETDEWEB)
Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.
2014-04-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.
Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data
Energy Technology Data Exchange (ETDEWEB)
Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)
2014-03-01
India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.
On the derivation of thermodynamic restrictions for materials with internal state variables
International Nuclear Information System (INIS)
Malmberg, T.
1987-07-01
Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de
Assessing positive emotional states in dogs using heart rate and heart rate variability.
Zupan, Manja; Buskas, Julia; Altimiras, Jordi; Keeling, Linda J
2016-03-01
Since most animal species have been recognized as sentient beings, emotional state may be a good indicator of welfare in animals. The goal of this study was to manipulate the environment of nine beagle research dogs to highlight physiological responses indicative of different emotional experiences. Stimuli were selected to be a more or a less positive food (meatball or food pellet) or social reward (familiar person or less familiar person). That all the stimuli were positive and of different reward value was confirmed in a runway motivation test. Dogs were tested individually while standing facing a display theatre where the different stimuli could be shown by lifting a shutter. The dogs approached and remained voluntarily in the test system. They were tested in four sessions (of 20s each) for each of the four stimuli. A test session consisted of four presentation phases (1st exposure to stimulus, post exposure, 2nd exposure, and access to reward). Heart rate (HR) and heart rate variability (HRV) responses were recorded during testing in the experimental room and also when lying resting in a quiet familiar room. A new method of 'stitching' short periods of HRV data together was used in the analysis. When testing different stimuli, no significant differences were observed in HR and LF:HF ratio (relative power in low frequency (LF) and the high-frequency (HF) range), implying that the sympathetic tone was activated similarly for all the stimuli and may suggest that dogs were in a state of positive arousal. A decrease of HF was associated with the meatball stimulus compared to the food pellet and the reward phase (interacting with the person or eating the food) was associated with a decrease in HF and RMSSD (root mean square of successive differences of inter-beat intervals) compared to the preceding phase (looking at the person or food). This suggests that parasympathetic deactivation is associated with a more positive emotional state in the dog. A similar reduction
Emerging adulthood features and criteria for adulthood : Variable- and person-centered approaches
Tagliabue, Semira; Crocetti, Elisabetta; Lanz, Margherita
Reaching adulthood is the aim of the transition to adulthood; however, emerging adults differently define both adulthood and the transitional period they are living. Variable-centered and person-centered approaches were integrated in the present paper to investigate if the criteria used to define
Preßler, Anna-Lena; Könen, Tanja; Hasselhorn, Marcus; Krajewski, Kristin
2014-01-01
The aim of the present study was to empirically disentangle the interdependencies of the impact of nonverbal intelligence, working memory capacities, and phonological processing skills on early reading decoding and spelling within a latent variable approach. In a sample of 127 children, these cognitive preconditions were assessed before the onset…
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.
2011-01-01
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis
2017-01-01
Purpose: We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method: Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF…
2003-03-01
within the Automated Cost Estimating Integrated Tools ( ACEIT ) software suite (version 5.x). With this capability, one can set cost targets or time...not allow the user to vary more than one decision variable. This limitation of the ACEIT approach thus hinders a holistic view when attempting to
STATE AND ECONOMY IN BOURGEOISIES ECONOMIC THEORIES: A CRITICAL APPROACH
Directory of Open Access Journals (Sweden)
Verena Hernández-Pérez
2016-01-01
Full Text Available The issue of state-economy relationship has been present throughout the history of bourgeois economic thought. In the bourgeois liberal tradition the distinction between civil society and state has been presented as total and necessary, reserving to the first one the monopoly of economic activity, based on the principle of self-regulating market. From Keynes bourgeois economists were divided into two sides, one side those who still deny the state capacity to intervene right in the economy, and the other those who recognize the need for their participation. This paper proposes a critical approach to the major bourgeois theoretical positions on the relationship state-economy.
Recent trends in the variability of halogenated trace gases over the United States
Hurst, Dale F.; Bakwin, Peter S.; Elkins, James W.
1998-10-01
Recent trends in the atmospheric variability of seven halogenated trace gases are determined from three years (November 1994 through October 1997) of hourly gas chromatographic measurements at a 610 m tower in North Carolina and 17 months (June 1996 through October 1997) of similar measurements at a 450 m tower in Wisconsin. Production of five of these gases, CCl3F (CFC-11), CCl2F2 (CFC-12), CCl2FCClF2 (CFC-113), CH3CCl3 (methyl chloroform), and CCl4 (carbon tetrachloride), is now strictly regulated in the United States and other developed countries under international legislation. C2Cl4 (tetrachloroethene) and SF6 (sulfur hexafluoride) are currently produced without restriction, but requests for voluntary cutbacks in C2Cl4 emissions have been made, at least in the United States. Atmospheric variability of these gases is examined at several sampling heights on the towers, but trends are deduced using only nighttime data at the top sampling level of each tower to minimize variability driven by local emissions and the diurnal cycle of the planetary boundary layer, leaving regional emissions as the main source of day-to-day variability. Significant downward trends are determined for CFC-12, CFC-113, CH3CCl3, and C2Cl4 variability at both towers, reflecting decreased emissions of these gases in two regions of the United States. Trends in CFC-11, CCl4, and SF6 variability at both towers are not significantly different from zero.
Spatiotemporal predictions of soil properties and states in variably saturated landscapes
Franz, Trenton E.; Loecke, Terrance D.; Burgin, Amy J.; Zhou, Yuzhen; Le, Tri; Moscicki, David
2017-07-01
Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well-characterized site in Ohio. We find that combining time-lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions ( 5 m). A cross-validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an 30% reduction in root-mean-square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper-resolution hydrologic and biogeochemical models.
Evidence for increasingly variable Palmer Drought Severity Index in the United States since 1895.
Rayne, Sierra; Forest, Kaya
2016-02-15
Annual and summertime trends towards increasingly variable values of the Palmer Drought Severity Index (PDSI) over a sub-decadal period (five years) were investigated within the contiguous United States between 1895 and the present. For the contiguous United States as a whole, there is a significant increasing trend in the five-year running minimum-maximum ranges for the annual PDSI (aPDSI5 yr(min|max, range)). During this time frame, the average aPDSI5 yr(min|max, range) has increased by about one full unit, indicating a substantial increase in drought variability over short time scales across the United States. The end members of the running aPDSI5 yr(min|max, range) highlight even more rapid changes in the drought index variability within the past 120 years. This increasing variability in the aPDSI5 yr(min|max, range) is driven primarily by changes taking place in the Pacific and Atlantic Ocean coastal climate regions, climate regions which collectively comprise one-third the area of the contiguous United States. Similar trends were found for the annual and summertime Palmer Hydrological Drought Index (PHDI), the Palmer Modified Drought Index (PMDI), and the Palmer Z Index (PZI). Overall, interannual drought patterns in the contiguous United States are becoming more extreme and difficult to predict, posing a challenge to agricultural and other water-resource related planning efforts. Copyright © 2015 Elsevier B.V. All rights reserved.
APE (state-oriented approach) centralized control procedures
International Nuclear Information System (INIS)
Astier, D.; Depont, G.; Van Dermarliere, Y.
2004-01-01
This article presents the progressive implementation of the state-oriented approach (APE) for centralized control procedures in French nuclear power plants. The implementation began in the years 1982-83 and it concerned only the circuits involved in engineered safeguard systems such IS (safety injection), EAS (containment spray system) and GMPP (reactor coolant pump set). In 2003 the last PWR unit switched from the event oriented approach to APE for post-accidental situations
Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach
Energy Technology Data Exchange (ETDEWEB)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2015-02-15
This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3
Smale, Alan P.; Boyd, Patricia T.
2012-01-01
Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.
Feingold, Alan; Tiberio, Stacey S; Capaldi, Deborah M
2014-03-01
Assessments of substance use behaviors often include categorical variables that are frequently related to other measures using logistic regression or chi-square analysis. When the categorical variable is latent (e.g., extracted from a latent class analysis [LCA]), classification of observations is often used to create an observed nominal variable from the latent one for use in a subsequent analysis. However, recent simulation studies have found that this classical 3-step analysis championed by the pioneers of LCA produces underestimates of the associations of latent classes with other variables. Two preferable but underused alternatives for examining such linkages-each of which is most appropriate under certain conditions-are (a) 3-step analysis, which corrects the underestimation bias of the classical approach, and (b) 1-step analysis. The purpose of this article is to dissuade researchers from conducting classical 3-step analysis and to promote the use of the 2 newer approaches that are described and compared. In addition, the applications of these newer models-for use when the independent, the dependent, or both categorical variables are latent-are illustrated through substantive analyses relating classes of substance abusers to classes of intimate partner aggressors.
Clark, Renee M; Besterfield-Sacre, Mary E
2009-03-01
We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk.
Agudelo, Paula; Robbins, Robert T.; Stewart, James McD.; Szalanski, Allen L.
2005-01-01
Reniform nematode (Rotylenchulus reniformis) is a major pest of cotton in the southeastern United States. The objective of this study was to examine the variation of reniform nematode populations from cotton-growing locations in the United States where it is prevalent. Multivariate analysis of variance and discriminant analysis were used to determine the variability of morphology in males and immature females. Reproduction indices of populations were measured on selected soybean and cotton ge...
Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan
2011-01-01
The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.
Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.
Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John
2018-03-01
Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon
A Quantitative Approach to Variables Affecting Production of Short Films in Turkey
Directory of Open Access Journals (Sweden)
Vedat Akman
2011-08-01
Full Text Available This study aims to explore the influence of various variables affecting the production of migration themed short films in Turkey. We proceeded to our analysis using descriptive statistics to describe the main futures of the sample data quantitatively. Due to non-uniformity of the data available, we were unable to use inductive statistics. Our basic sample statistical results indicated that short film producers prefered to produce short films on domestic migration theme rather than international. Gender and university seemed on surface as significant determinants to the production of migration themed short films in Turkey. We also looked at the demografic variables to provide more insights into our quantitative approach.
An Energy-Based State Observer for Dynamical Subsystems with Inaccessible State Variables
Khalil, I.S.M.; Sabanovic, Asif; Misra, Sarthak
2012-01-01
This work presents an energy-based state estimation formalism for a class of dynamical systems with inaccessible/unknown outputs, and systems at which sensor utilization is impractical, or when measurements can not be taken. The power-conserving physical interconnections among most of the dynamical
Accurate determination of process variables in a solid-state fermentation system
Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.
1996-01-01
The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model
Quantum error correction of continuous-variable states against Gaussian noise
Energy Technology Data Exchange (ETDEWEB)
Ralph, T. C. [Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072 (Australia)
2011-08-15
We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.
A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States
Ryff, Luiz Carlos
1996-01-01
A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.
State-related differences in heart rate variability in bipolar disorder
DEFF Research Database (Denmark)
Faurholt-Jepsen, Maria; Brage, Søren; Kessing, Lars Vedel
2017-01-01
Heart rate variability (HRV) is a validated measure of sympato-vagal balance in the autonomic nervous system. HRV appears decreased in patients with bipolar disorder (BD) compared with healthy individuals, but the extent of state-related alterations has been sparingly investigated. The present...... bipolar disorder and could...
Bemmel, Alex L. van; Hoofdakker, Rutger H. van den; Beersma, Domien G.M.; Bouhuys, Antoinette L.
1993-01-01
Drug-induced improvement of depression may be mediated by changes in sleep physiology. The aim of this study was to relate changes in sleep polygraphic variables to clinical state during treatment with citalopram, a highly specific serotonin uptake inhibitor. Sixteen patients took part. The study
Quantum key distribution using continuous-variable non-Gaussian states
Borelli, L. F. M.; Aguiar, L. S.; Roversi, J. A.; Vidiella-Barranco, A.
2016-02-01
In this work, we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the photon added then subtracted coherent states (PASCS) in which one photon is added and subsequently one photon is subtracted from the field. We analyze the performance of our protocol, compared with a coherent state-based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack, and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.
Steady and dynamic states analysis of induction motor: FEA approach
African Journals Online (AJOL)
This paper deals with the steady and dynamic states analysis of induction motor using finite element analysis (FEA) approach. The motor has aluminum rotor bars and is designed for direct-on-line operation at 50 Hz. A study of the losses occurring in the motor performed at operating frequency of 50Hz showed that stator ...
Regulating the Relationship between State and Religion: An Economic Approach
A.M.I.B. Vandenberghe (Ann-Sophie)
2012-01-01
markdownabstract__Abstract__ In defining its relationship towards religion, the Dutch government is committed to the values of freedom of religion and neutrality. This article uses the economic approach to freedom of religion and state neutrality as a tool for looking at the existing Dutch policy
Glacier variability in the conterminous United States during the twentieth century
McCabe, Gregory J.; Fountain, Andrew G.
2013-01-01
Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.
a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.
Sobolewski, Stanley John
The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second
Novel Harmonic Regularization Approach for Variable Selection in Cox’s Proportional Hazards Model
Directory of Open Access Journals (Sweden)
Ge-Jin Chu
2014-01-01
Full Text Available Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL, the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.
R Package multiPIM: A Causal Inference Approach to Variable Importance Analysis
Directory of Open Access Journals (Sweden)
Stephan J Ritter
2014-04-01
Full Text Available We describe the R package multiPIM, including statistical background, functionality and user options. The package is for variable importance analysis, and is meant primarily for analyzing data from exploratory epidemiological studies, though it could certainly be applied in other areas as well. The approach taken to variable importance comes from the causal inference field, and is different from approaches taken in other R packages. By default, multiPIM uses a double robust targeted maximum likelihood estimator (TMLE of a parameter akin to the attributable risk. Several regression methods/machine learning algorithms are available for estimating the nuisance parameters of the models, including super learner, a meta-learner which combines several different algorithms into one. We describe a simulation in which the double robust TMLE is compared to the graphical computation estimator. We also provide example analyses using two data sets which are included with the package.
Use of state variables in the description of irradiation creep and deformation of metals
International Nuclear Information System (INIS)
Hart, E.W.; Li, C.Y.
1976-01-01
The understanding of the effects of irradiation on metal creep and deformation are not yet satisfactory, owing in part to the limitations on experimentation in radiation environment. Because of such limitations, theoretical considerations must play a strong role. Virtually all of the theoretical considerations currently employed are based on micro-mechanical models for the deformation behavior. The recent theoretical and experimental development of a plastic equation of state for metal deformation has led to the identification of some of the principal micro-mechanisms in phenomenological terms. The role of the individual mechanisms can be related to the state variables of the description, and those variables are directly accessible measurable quantities. This paper explores how irradiation might affect this description. It is shown that the radiation flux and the radiation fluence are expected to affect different components of the equation of state. The resultant description makes considerable use of the information developed in radiation-free environment. 5 fig
Ji, Lizhen; Liu, Chengyu; Li, Peng; Wang, Xinpei; Yan, Chang; Liu, Changchun
2015-10-01
Heart rate variability (HRV) has been widely used in clinical research to provide an insight into the autonomic control of the cardiovascular system. Measurement of HRV is generally performed under a relaxed resting state. The effects of other conditions on HRV measurement, such as running, mountaineering, head-up tilt, etc, have also been investigated. This study aimed to explore whether an inflation-and-deflation process applied to a unilateral upper arm cuff would influence the HRV measurement. Fifty healthy young volunteers aged between 21 and 30 were enrolled in this study. Electrocardiogram (ECG) signals were recorded for each subject over a five minute resting state followed by a five minute external-cuff-inflation-and-deflation state (ECID state). A one minute gap was scheduled between the two measurements. Consecutive RR intervals in the ECG were extracted automatically to form the HRV data for each of the two states. Time domain (SDNN, RMSSD and PNN50), frequency domain (LFn, HFn and LF/HF) and nonlinear (VLI, VAI and SampEn) HRV indices were analyzed and compared between the two states. In addition, the effects of mean artery pressure (MAP) and heart rate (HR) on the aforementioned HRV indices were assessed for the two states, respectively, by Pearson correlation analysis. The results showed no significant difference in all aforementioned HRV indices between the resting and the ECID states (all p > 0.05). The corresponding HRV indices had significant positive correlation (all p 0.05) for either state. Besides, none of the indices showed HR-related change (all p > 0.05) for either state except the index of VLI in the resting state. To conclude, this pilot study suggested that the applied ECID process hardly influenced those commonly used HRV indices. It would thus be applicable to simultaneously measure both blood pressure and HRV indices in clinical practice.
Assessing the Approaches to Classification of the State Financial Control
Directory of Open Access Journals (Sweden)
Baraniuk Yurii R.
2017-11-01
Full Text Available The article is aimed at assessing the approaches to classification of the State financial control, as well as disclosing the relationship and differences between its forms, types and methods. The results of comparative analysis of existing classifications of the State financial control have been covered. The substantiation of its identification by forms, types and methods of control was explored. Clarification of the interpretation of the concepts of «form of control», «type of control», «subtype of control», «method of control», «methodical reception of control» has been provided. It has been determined that the form of the State financial control is a manifestation of the internal organization of control and the methods of its carrying out; a model of classification of the State financial control has been substantiated; attributes of the first and second order have been allocated; substantiation of methods and techniques has been improved; their composition and structure have been identified. This approach allows to divide general questions of the State financial control into theoretical and practical and, taking into consideration the expansion of the list of objects of the State financial control, will help to improve its methodology.
Directory of Open Access Journals (Sweden)
Dongkyun Kim
2014-01-01
Full Text Available A novel approach for a Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall and watershed response characteristics at 104 locations in the United States. The suggested novel approach, The Hybrid Model (THM, as compared to the traditional Poisson cluster rainfall modeling approaches, has an additional capability to account for the interannual variability of rainfall statistics. THM and a traditional approach of Poisson cluster rainfall model (modified Bartlett-Lewis rectangular pulse model were compared in their ability to reproduce the characteristics of extreme rainfall and watershed response variables such as runoff and peak flow. The results of the comparison indicate that THM generally outperforms the traditional approach in reproducing the distributions of peak rainfall, peak flow, and runoff volume. In addition, THM significantly outperformed the traditional approach in reproducing extreme rainfall by 2.3% to 66% and extreme flow values by 32% to 71%.
VALUE OF HEART RATE VARIABILITY ANALYSIS IN DIAGNOSTICS OF THE EMOTIONAL STATE
Directory of Open Access Journals (Sweden)
І. Chaykovskyi
2012-11-01
Full Text Available The is presented the development of method for evaluation of emotional state of man, what suitable for use at the workplace based on analysis of heart rate (HR variability. 28 healthy volunteers were examined. 3 audiovisual clips were consistently presented on the display of the personal computer for each of them. One clip contained information originating the positive emotions, the second one – negative emotions, the third one – neutral. All possible pairs of the emotional states were analysed with help of one- and multi-dimensional linear discriminant analysis based on HR variability. Showing the emotional video-clips (of both signs causes reliable slowing of HR frequency and also some decreasing of HR variability. In addition, negative emotions cause regularizing and simplification of structural organization of heart rhythm. Accuracy of discrimination for pair “emotional – neutral” video clips was 98 %, for pair “rest – neutral” was 74 %, for pair “positive – negative” was 91 %. Analysis of HR variability enables to determine the emotional state of observed person at the workplace with high reliability.
Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation
Energy Technology Data Exchange (ETDEWEB)
Trifonov, D A
1975-01-01
Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.
Multidimensional poverty: an alternative measurement approach for the United States?
Waglé, Udaya R
2008-06-01
International poverty research has increasingly underscored the need to use multidimensional approaches to measure poverty. Largely embraced in Europe and elsewhere, this has not had much impact on the way poverty is measured in the United States. In this paper, I use a comprehensive multidimensional framework including economic well-being, capability, and social inclusion to examine poverty in the US. Data from the 2004 General Social Survey support the interconnectedness among these poverty dimensions, indicating that the multidimensional framework utilizing a comprehensive set of information provides a compelling value added to poverty measurement. The suggested demographic characteristics of the various categories of the poor are somewhat similar between this approach and other traditional approaches. But the more comprehensive and accurate measurement outcomes from this approach help policymakers target resources at the specific groups.
The Structure of Character Strengths: Variable- and Person-Centered Approaches
Directory of Open Access Journals (Sweden)
Małgorzata Najderska
2018-02-01
Full Text Available This article examines the structure of character strengths (Peterson and Seligman, 2004 following both variable-centered and person-centered approaches. We used the International Personality Item Pool-Values in Action (IPIP-VIA questionnaire. The IPIP-VIA measures 24 character strengths and consists of 213 direct and reversed items. The present study was conducted in a heterogeneous group of N = 908 Poles (aged 18–78, M = 28.58. It was part of a validation project of a Polish version of the IPIP-VIA questionnaire. The variable-centered approach was used to examine the structure of character strengths on both the scale and item levels. The scale-level results indicated a four-factor structure that can be interpreted based on four of the five personality traits from the Big Five theory (excluding neuroticism. The item-level analysis suggested a slightly different and limited set of character strengths (17 not 24. After conducting a second-order analysis, a four-factor structure emerged, and three of the factors could be interpreted as being consistent with the scale-level factors. Three character strength profiles were found using the person-centered approach. Two of them were consistent with alpha and beta personality metatraits. The structure of character strengths can be described by using categories from the Five Factor Model of personality and metatraits. They form factors similar to some personality traits and occur in similar constellations as metatraits. The main contributions of this paper are: (1 the validation of IPIP-VIA conducted in variable-centered approach in a new research group (Poles using a different measurement instrument; (2 introducing the person-centered approach to the study of the structure of character strengths.
Castelletti, A.; Giuliani, M.; Block, P. J.
2017-12-01
Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como
Puffed-up but shaky selves: State self-esteem level and variability in narcissists.
Geukes, Katharina; Nestler, Steffen; Hutteman, Roos; Dufner, Michael; Küfner, Albrecht C P; Egloff, Boris; Denissen, Jaap J A; Back, Mitja D
2017-05-01
Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at unraveling this inconsistency by disentangling the effects of two theoretically distinct facets of narcissism (i.e., admiration and rivalry) on the two aspects of state self-esteem (i.e., level and variability). We report on data from a laboratory-based and two field-based studies (total N = 596) in realistic social contexts, capturing momentary, daily, and weekly fluctuations of state self-esteem. To estimate unbiased effects of narcissism on the level and variability of self-esteem within one model, we applied mixed-effects location scale models. Results of the three studies and their meta-analytical integration indicated that narcissism is positively linked to self-esteem level and variability. When distinguishing between admiration and rivalry, however, an important dissociation was identified: Admiration was related to high (and rather stable) levels of state self-esteem, whereas rivalry was related to (rather low and) fragile self-esteem. Analyses on underlying processes suggest that effects of rivalry on self-esteem variability are based on stronger decreases in self-esteem from one assessment to the next, particularly after a perceived lack of social inclusion. The revealed differentiated effects of admiration and rivalry explain why the analysis of narcissism as a unitary concept has led to the inconsistent past findings and provide deeper insights into the intrapersonal dynamics of grandiose narcissism governing state self-esteem. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A continuous variable quantum deterministic key distribution based on two-mode squeezed states
International Nuclear Information System (INIS)
Gong, Li-Hua; Song, Han-Chong; Liu, Ye; Zhou, Nan-Run; He, Chao-Sheng
2014-01-01
The distribution of deterministic keys is of significance in personal communications, but the existing continuous variable quantum key distribution protocols can only generate random keys. By exploiting the entanglement properties of two-mode squeezed states, a continuous variable quantum deterministic key distribution (CVQDKD) scheme is presented for handing over the pre-determined key to the intended receiver. The security of the CVQDKD scheme is analyzed in detail from the perspective of information theory. It shows that the scheme can securely and effectively transfer pre-determined keys under ideal conditions. The proposed scheme can resist both the entanglement and beam splitter attacks under a relatively high channel transmission efficiency. (paper)
Shnip, A. I.
2018-01-01
Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.
Harrigan, George G; Harrison, Jay M
2012-01-01
New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
Energy Technology Data Exchange (ETDEWEB)
McAnulty, Michael J., E-mail: mcanulmj@id.doe.gov [Department of Energy, 1955 Fremont Avenue, Idaho Falls, ID 83402 (United States); Potirniche, Gabriel P. [Mechanical Engineering Department, University of Idaho, Moscow, ID 83844 (United States); Tokuhiro, Akira [Mechanical Engineering Department, University of Idaho, Idaho Falls, ID 83402 (United States)
2012-09-15
Highlights: Black-Right-Pointing-Pointer An internal state variable approach is used to predict the plastic behavior of irradiated metals. Black-Right-Pointing-Pointer The model predicts uniaxial tensile test data for irradiated 304L stainless steel. Black-Right-Pointing-Pointer The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. Black-Right-Pointing-Pointer Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.
Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states
International Nuclear Information System (INIS)
He Guangqiang; Zhang Jingtao; Zeng Guihua
2008-01-01
Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).
Conditional flood frequency and catchment state: a simulation approach
Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon
2017-04-01
Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.
Assessing the Approaches to Classification of the State Financial Control
Baraniuk Yurii R.
2017-01-01
The article is aimed at assessing the approaches to classification of the State financial control, as well as disclosing the relationship and differences between its forms, types and methods. The results of comparative analysis of existing classifications of the State financial control have been covered. The substantiation of its identification by forms, types and methods of control was explored. Clarification of the interpretation of the concepts of «form of control», «type of control», «sub...
Vanderhoof, Melanie; Fairaux, Nicole; Beal, Yen-Ju G.; Hawbaker, Todd J.
2017-01-01
The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and
Approaches for developing a sizing method for stand-alone PV systems with variable demand
Energy Technology Data Exchange (ETDEWEB)
Posadillo, R. [Grupo de Investigacion en Energias y Recursos Renovables, Dpto. de Fisica Aplicada, E.P.S., Universidad de Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba (Spain); Lopez Luque, R. [Grupo de Investigacion de Fisica para las Energias y Recursos Renovables, Dpto. de Fisica Aplicada. Edificio C2 Campus de Rabanales, 14071 Cordoba (Spain)
2008-05-15
Accurate sizing is one of the most important aspects to take into consideration when designing a stand-alone photovoltaic system (SAPV). Various methods, which differ in terms of their simplicity or reliability, have been developed for this purpose. Analytical methods, which seek functional relationships between variables of interest to the sizing problem, are one of these approaches. A series of rational considerations are presented in this paper with the aim of shedding light upon the basic principles and results of various sizing methods proposed by different authors. These considerations set the basis for a new analytical method that has been designed for systems with variable monthly energy demands. Following previous approaches, the method proposed is based on the concept of loss of load probability (LLP) - a parameter that is used to characterize system design. The method includes information on the standard deviation of loss of load probability ({sigma}{sub LLP}) and on two new parameters: annual number of system failures (f) and standard deviation of annual number of failures ({sigma}{sub f}). The method proves useful for sizing a PV system in a reliable manner and serves to explain the discrepancies found in the research on systems with LLP<10{sup -2}. We demonstrate that reliability depends not only on the sizing variables and on the distribution function of solar radiation, but on the minimum value as well, which in a given location and with a monthly average clearness index, achieves total solar radiation on the receiver surface. (author)
Lake variability: Key factors controlling mercury concentrations in New York State fish
International Nuclear Information System (INIS)
Simonin, Howard A.; Loukmas, Jefferey J.; Skinner, Lawrence C.; Roy, Karen M.
2008-01-01
A 4 year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands. - Lake water chemistry variables, dams, and wetlands play major roles in determining fish mercury concentrations
State-space dimensionality in short-memory hidden-variable theories
International Nuclear Information System (INIS)
Montina, Alberto
2011-01-01
Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.
International Nuclear Information System (INIS)
Shen Yong; Yang Jian; Guo Hong
2009-01-01
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.
Menicucci, Nicolas C
2014-03-28
A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.
Energy Technology Data Exchange (ETDEWEB)
Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)
2009-12-14
Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.
International Nuclear Information System (INIS)
Namiki, Ryo; Hirano, Takuya
2005-01-01
We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel
Study The role of latent variables in lost working days by Structural Equation Modeling Approach
Directory of Open Access Journals (Sweden)
Meysam Heydari
2016-12-01
Full Text Available Background: Based on estimations, each year about 250 million work-related injuries and many temporary or permanent disabilities occur which most are preventable. Oil and Gas industries are among industries with high incidence of injuries in the world. The aim of this study has investigated the role and effect of different risk management variables on lost working days (LWD in the seismic projects. Methods: This study was a retrospective, cross-sectional and systematic analysis, which was carried out on occupational accidents between 2008-2015(an 8 years period in different seismic projects for oilfield exploration at Dana Energy (Iranian Seismic Company. The preliminary sample size of the study were 487accidents. A systems analysis approach were applied by using root case analysis (RCA and structural equation modeling (SEM. Tools for the data analysis were included, SPSS23 and AMOS23 software. Results: The mean of lost working days (LWD, was calculated 49.57, the final model of structural equation modeling showed that latent variables of, safety and health training factor(-0.33, risk assessment factor(-0.55 and risk control factor (-0.61 as direct causes significantly affected of lost working days (LWD in the seismic industries (p< 0.05. Conclusion: The finding of present study revealed that combination of variables affected in lost working days (LWD. Therefore,the role of these variables in accidents should be investigated and suitable programs should be considered for them.
Directory of Open Access Journals (Sweden)
Dirk Temme
2008-12-01
Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
Evans, Wiley; Mathis, Jeremy T.; Winsor, Peter; Statscewich, Hank; Whitledge, Terry E.
2013-01-01
northern Gulf of Alaska (GOA) shelf experiences carbonate system variability on seasonal and annual time scales, but little information exists to resolve higher frequency variability in this region. To resolve this variability using platforms-of-opportunity, we present multiple linear regression (MLR) models constructed from hydrographic data collected along the Northeast Pacific Global Ocean Ecosystems Dynamics (GLOBEC) Seward Line. The empirical algorithms predict dissolved inorganic carbon (DIC) and total alkalinity (TA) using observations of nitrate (NO3-), temperature, salinity and pressure from the surface to 500 m, with R2s > 0.97 and RMSE values of 11 µmol kg-1 for DIC and 9 µmol kg-1 for TA. We applied these relationships to high-resolution NO3- data sets collected during a novel 20 h glider flight and a GLOBEC mesoscale SeaSoar survey. Results from the glider flight demonstrated time/space along-isopycnal variability of aragonite saturations (Ωarag) associated with a dicothermal layer (a cold near-surface layer found in high latitude oceans) that rivaled changes seen vertically through the thermocline. The SeaSoar survey captured the uplift to aragonite saturation horizon (depth where Ωarag = 1) shoaled to a previously unseen depth in the northern GOA. This work is similar to recent studies aimed at predicting the carbonate system in continental margin settings, albeit demonstrates that a NO3--based approach can be applied to high-latitude data collected from platforms capable of high-frequency measurements.
MEANINGFUL VARIABILITY: A SOCIOLINGUISTICALLY-GROUNDED APPROACH TO VARIATION IN OPTIMALITY THEORY
Directory of Open Access Journals (Sweden)
Juan Antonio Cutillas Espinosa
2004-12-01
Full Text Available Most approaches to variability in Optimality Theory have attempted to make variation possible within the OT framework, i.e. to reformulate constraints and rankings to accommodate variable and gradient linguistic facts. Sociolinguists have attempted to apply these theoretical advances to the study of language variation, with an emphasis on language-interna1 variables (Auger 2001, Cardoso 2001. Little attention has been paid to the array of externa1 factors that influence the patterning of variation. In this paper, we argue that some variation pattems-specially those that are socially meaningful- are actually the result of a three-grarnmar system. G, is the standard grammar, which has to be available to the speaker to obtain these variation patterns. G; is the vernacular grammar, which the speaker is likely to have acquired in his local community. Finally, G, is an intergrammar, which is used by the speaker as his 'default' constraint set. G is a continuous ranking (Boersma & Hayes 2001 and domination relations are consciously altered by the speakers to shape the appropriate and variable linguistic output. We illustrate this model with analyses of English and Spanish.
Sensitivity analysis on uncertainty variables affecting the NPP's LUEC with probabilistic approach
International Nuclear Information System (INIS)
Nuryanti; Akhmad Hidayatno; Erlinda Muslim
2013-01-01
One thing that is quite crucial to be reviewed prior to any investment decision on the nuclear power plant (NPP) project is the calculation of project economic, including calculation of Levelized Unit Electricity Cost (LUEC). Infrastructure projects such as NPP’s project are vulnerable to a number of uncertainty variables. Information on the uncertainty variables which makes LUEC’s value quite sensitive due to the changes of them is necessary in order the cost overrun can be avoided. Therefore this study aimed to do the sensitivity analysis on variables that affect LUEC with probabilistic approaches. This analysis was done by using Monte Carlo technique that simulate the relationship between the uncertainty variables and visible impact on LUEC. The sensitivity analysis result shows the significant changes on LUEC value of AP1000 and OPR due to the sensitivity of investment cost and capacity factors. While LUEC changes due to sensitivity of U 3 O 8 ’s price looks not quite significant. (author)
A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism
Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo
2015-03-01
In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.
Variability and trends in dry day frequency and dry event length in the southwestern United States
McCabe, Gregory J.; Legates, David R.; Lins, Harry F.
2010-01-01
Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.
McCarty, James; Parrinello, Michele
2017-11-01
In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.
Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi
2013-12-01
We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.
Blums, Angela
The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.
Squeezing more information out of time variable gravity data with a temporal decomposition approach
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Bordoni, A.; Aoudia, A.
2012-01-01
an explorative approach based on a suitable time series decomposition, which does not rely on predefined time signatures. The comparison and validation against the fitting approach commonly used in GRACE literature shows a very good agreement for what concerns trends and periodic signals on one side......A measure of the Earth's gravity contains contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished both in time and space. After more than 7years, the GRACE gravity data available now support more elaborate analysis on the time series. We propose...... used to assess the possibility of finding evidence of meaningful geophysical signals different from hydrology over Africa in GRACE data. In this case we conclude that hydrological phenomena are dominant and so time variable gravity data in Africa can be directly used to calibrate hydrological models....
Directory of Open Access Journals (Sweden)
Vanessa Scarapicchia
2018-02-01
Full Text Available Background: Alzheimer’s disease (AD is a neurodegenerative disorder that may benefit from early diagnosis and intervention. Therefore, there is a need to identify early biomarkers of AD using non-invasive techniques such as functional magnetic resonance imaging (fMRI. Recently, novel approaches to the analysis of resting-state fMRI data have been developed that focus on the moment-to-moment variability in the blood oxygen level dependent (BOLD signal. The objective of the current study was to investigate BOLD variability as a novel early biomarker of AD and its associated psychophysiological correlates.Method: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2 database from 19 participants with AD and 19 similarly aged controls. For each participant, a map of BOLD signal variability (SDBOLD was computed as the standard deviation of the BOLD timeseries at each voxel. Group comparisons were performed to examine global differences in resting state SDBOLD in AD versus healthy controls. Correlations were then examined between participant SDBOLD maps and (1 ADNI-derived composite scores of memory and executive function and (2 neuroimaging markers of cerebrovascular status.Results: Between-group comparisons revealed significant (p < 0.05 increases in SDBOLD in patients with AD relative to healthy controls in right-lateralized frontal regions. Lower memory scores and higher WMH burden were associated with greater SDBOLD in the healthy control group (p < 0.1, but not individuals with AD.Conclusion: The current study provides proof of concept of a novel resting state fMRI analysis technique that is non-invasive, easily accessible, and clinically compatible. To further explore the potential of SDBOLD as a biomarker of AD, additional studies in larger, longitudinal samples are needed to better understand the changes in SDBOLD that characterize earlier stages of disease progression and their underlying psychophysiological
Directory of Open Access Journals (Sweden)
Trajanovska Sonja
2012-01-01
Full Text Available Our research into 52 profiles of the littoral zone of the Macedonian part of Lake Ohrid and numerous samples taken from its surroundings has resulted in a detailed picture of the composition of the Charophyta vegetation in the lake. The results of the research also include data regarding the species composition and present state of Nitella. The dominant species of Nitella is Nitella opaca, which is characterized by a specific distribution, morphological variability and ecology. The present state of Nitella is not steady, especially in the watershed of the lake, since in this area there are some permanent changes in the hydrology of the terrain. Therefore, there is a need to establish long-term and complex monitoring which will result in the prompt detection of risk factors and influences, thereby enabling a rapid reaction to a possible newly emerged negative state.
Variability in temperature, precipitation and river discharge in the Baltic States
Energy Technology Data Exchange (ETDEWEB)
Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Sarauskiene, D. (Lithuanian Energy Inst., Kaunas (Lithuania), Lab. of Hydrology); Reihan, A. (Tallinn Univ. of Technology (Estonia), Inst. of Environmental Engineering); Koltsova, T.; Lizuma, L. (Latvian Hydrometeorological Agency, Riga (LV))
2012-07-01
The climate change impact on water resources is observed in all the Baltic States. These processes became more evident in the last decades. Although the territory of the Baltic States (Lithuania, Latvia, Estonia) is not large (175000 km2), the climatic differences are quite considerable. We performed a regionalization of the territory of the Baltic States depending on the conditions of river runoff formation which can be defined according to percentages of the river feeding sources (precipitation, snowmelt, groundwater). Long-term series of temperature (40 stations), precipitation (59 stations) and river discharge (77 stations) were used to compose ten regional series. This paper addresses: (1) variability in long-term regional series of temperature, precipitation and river discharge over a long period (1922-2007); (2) changes in regional series, comparing the periods 1991-2007 and 1931-1960 with the reference period (1961-1990), and (3) the impact of temperature and precipitation changes on regional river discharge. (orig.)
An analytical approach to separate climate and human contributions to basin streamflow variability
Li, Changbin; Wang, Liuming; Wanrui, Wang; Qi, Jiaguo; Linshan, Yang; Zhang, Yuan; Lei, Wu; Cui, Xia; Wang, Peng
2018-04-01
Climate variability and anthropogenic regulations are two interwoven factors in the ecohydrologic system across large basins. Understanding the roles that these two factors play under various hydrologic conditions is of great significance for basin hydrology and sustainable water utilization. In this study, we present an analytical approach based on coupling water balance method and Budyko hypothesis to derive effectiveness coefficients (ECs) of climate change, as a way to disentangle contributions of it and human activities to the variability of river discharges under different hydro-transitional situations. The climate dominated streamflow change (ΔQc) by EC approach was compared with those deduced by the elasticity method and sensitivity index. The results suggest that the EC approach is valid and applicable for hydrologic study at large basin scale. Analyses of various scenarios revealed that contributions of climate change and human activities to river discharge variation differed among the regions of the study area. Over the past several decades, climate change dominated hydro-transitions from dry to wet, while human activities played key roles in the reduction of streamflow during wet to dry periods. Remarkable decline of discharge in upstream was mainly due to human interventions, although climate contributed more to runoff increasing during dry periods in the semi-arid downstream. Induced effectiveness on streamflow changes indicated a contribution ratio of 49% for climate and 51% for human activities at the basin scale from 1956 to 2015. The mathematic derivation based simple approach, together with the case example of temporal segmentation and spatial zoning, could help people understand variation of river discharge with more details at a large basin scale under the background of climate change and human regulations.
Overcoming state within the Friedrich Nietzsche’s irrational approach
Directory of Open Access Journals (Sweden)
A. F. Zakharchuk
2014-10-01
Full Text Available The article analyzes the views of Nietzsche on the nature and significance of the state in the context of socio-political issues. Examines how the criticism of Nietzsche for the state’s phenomenon is related to his irrational approach to the socio-political sphere, and therefore also raises the question of the possibility of attracting these Friedrich Nietzsche’s ideas regarding the institution of the state to understanding contemporary socio-political processes. For the disclosure of the above tasks in the work undertaken analysis of the Friedrich Nietzsche’s ideas in terms of their correlation with some general philosophical ideas of the German philosopher. In particular understanding of Nietzsche role of the state has been analyzed in the context of ideas like the idea of a hierarchical society, the idea of the superman, the idea of true morality. These ideas go beyond the purely social and philosophical beliefs of the thinker, but they are essential for understanding the logic and purposes of the consideration of the Nietzschean idea of the state. These ideas have been analyzed in the study mainly critically, in particular given the Nietzsche’s controversial assessment of state as a negative phenomenon and situational positive assessment of the state’s role. It is noted that this duality of Nietzsche in this issue is just due to the formulation of more general philosophical problems then was stated above. At the same time, the work focuses on the possibility of positive reading Nietzsche’s position on the state, which is associated with the idea of the free will of the individual opposed to the dictates of the enslaved majority.
Cárdenas-Castro, Manuel; Faúndez-Abarca, Ximena; Arancibia-Martini, Héctor; Ceruti-Mahn, Cristián
2017-08-01
The present study explores reports of growth in survivors and family members of victims of state terrorism ( N = 254) in Chile from 1973 to 1990. The results indicate the presence of reports of posttraumatic growth ( M = 4.69) and a positive and statistically significant correlation with variables related to the life impact of the stressful events ( r = .46), social sharing of emotions ( r = .32), deliberate rumination ( r = .37), positive reappraisal ( r = .35), reconciliation ( r = .39), spiritual practices ( r = .33), and meaning in life ( r = .51). The relationship between growth and forgiveness is not statistically significant. The variables that best predict posttraumatic growth are positive reappraisal (β = .28), life impact (β = .24), meaning in life β = .23), and reconciliation (β = .20). The forward-method hierarchical model indicates that these variables are significant predictors of growth levels, R 2 = .53, F(8, 210) = 30.08, p state terrorism manage to grow after these experiences, and the redefinition of meaning in life and the positive reappraisal of the traumatic experiences are the elements that make it possible to create a new narrative about the past.
State space model extraction of thermohydraulic systems – Part I: A linear graph approach
International Nuclear Information System (INIS)
Uren, K.R.; Schoor, G. van
2013-01-01
Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state
First, Matthew R.; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; Drake, Lisa A.
2018-03-01
Variable fluorescence fluorometry, an analytical approach that estimates the fluorescence yield of chlorophyll a (F0, a proximal measure of algal concentration) and photochemical yield (FV/FM, an indicator of the physiological status of algae) was evaluated as a means to rapidly assess photoautotrophs. Specifically, it was used to gauge the efficacy of ballast water treatment designed to reduce the transport and delivery of potentially invasive organisms. A phytoflagellate, Tetraselmis spp. (10-12 μm) and mixed communities of ambient protists were examined in both laboratory experiments and large-scale field trials simulating 5-d hold times in mock ballast tanks. In laboratory incubations, ambient organisms held in the dark exhibited declining F0 and FV/FM measurements relative to organisms held under lighted conditions. In field experiments, increases and decreases in F0 and FV/FM over the tank hold time corresponded to those of microscope counts of organisms in two of three trials. In the third trial, concentrations of organisms ≥ 10 and protists) increased while F0 and FV/FM decreased. Rapid and sensitive, variable fluorescence fluorometry is appropriate for detecting changes in organism concentrations and physiological status in samples dominated by microalgae. Changes in the heterotrophic community, which may become more prevalent in light-limited ballast tanks, would not be detected via variable fluorescence fluorometry, however.
Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state
Energy Technology Data Exchange (ETDEWEB)
Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)
1995-04-01
A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.
Ockey, Gary
2011-01-01
Drawing on current theories in personality, second-language (L2) oral ability, and psychometrics, this study investigates the extent to which self-consciousness and assertiveness are explanatory variables of L2 oral ability. Three hundred sixty first-year Japanese university students who were studying English as a foreign language participated in…
Spatial variability of soil carbon across Mexico and the United States
Vargas, R.; Guevara, M.; Cruz Gaistardo, C.; Paz, F.; de Jong, B.; Etchevers, J.
2015-12-01
Soil organic carbon (SOC) is directly linked to soil quality, food security, and land use/global environmental change. We use publicly available information on SOC and couple it with digital elevation models and derived terrain attributes using a machine learning approach. We found a strong spatial dependency of SOC across the United States, but less spatial dependency of SOC across Mexico. Using High Performance Computing (HPC) we derived a 1 km resolution map of SOC across Mexico and the United States. We tested different machine learning methods (e.g., kernel based, tree based and/or Geo-statistics approaches) for computational efficiency and statistical accuracy. Using random forest combined with geo-statistics we were able to explain >70% of SOC variance for Mexico and >40% in the case of the United States via cross validation. These results compare with other published estimates of SOC at 1km resolution that only explain <30% of SOC variance across the world. Topographic attributes derived from digital elevation models are freely available globally at fine spatial resolution (<100 m), and this information allowed us to make predictions of SOC at fine scales. We further tested this approach using SOC information from the International Soil Carbon Network to predict SOC in other regions of the world. We conclude that this approach (using public information and open source platforms for data analysis) could be implemented to predict detailed explicit information of SOC across different spatial scales.
Security proof of continuous-variable quantum key distribution using three coherent states
Brádler, Kamil; Weedbrook, Christian
2018-02-01
We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.
Directory of Open Access Journals (Sweden)
Delphine eSarafian
2013-07-01
Full Text Available Limitations of current methods: The assessment of human variability in various compartments of daily energy expenditure (EE under standardized conditions is well defined at rest (as basal metabolic rate and thermic effect of feeding, and currently under validation for assessing the energy cost of low-intensity dynamic work. However, because physical activities of daily life consist of a combination of both dynamic and isometric work, there is also a need to develop standardized tests for assessing human variability in the energy cost of low-intensity isometric work.Experimental objectives: Development of an approach to study human variability in isometric thermogenesis by incorporating a protocol of intermittent leg press exercise of varying low-intensity isometric loads with measurements of EE by indirect calorimetry. Results: EE was measured in the seated position with the subject at rest or while intermittently pressing both legs against a press-platform at 5 low-intensity isometric loads (+5, +10, + 15, +20 and +25 kg force, each consisting of a succession of 8 cycles of press (30 s and rest (30 s. EE, integrated over each 8-min period of the intermittent leg press exercise, was found to increase linearly across the 5 isometric loads with a correlation coefficient (r > 0.9 for each individual. The slope of this EE-Load relationship, which provides the energy cost of this standardized isometric exercise expressed per kg force applied intermittently (30 s in every min, was found to show good repeatability when assessed in subjects who repeated the same experimental protocol on 3 separate days: its low intra-individual coefficient of variation (CV of ~ 10% contrasted with its much higher inter-individual CV of 35%; the latter being mass-independent but partly explained by height. Conclusion: This standardized approach to study isometric thermogenesis opens up a new avenue for research in EE phenotyping and metabolic predisposition to obesity
An efficient algebraic approach to observability analysis in state estimation
Energy Technology Data Exchange (ETDEWEB)
Pruneda, R.E.; Solares, C.; Conejo, A.J. [University of Castilla-La Mancha, 13071 Ciudad Real (Spain); Castillo, E. [University of Cantabria, 39005 Santander (Spain)
2010-03-15
An efficient and compact algebraic approach to state estimation observability is proposed. It is based on transferring rows to columns and vice versa in the Jacobian measurement matrix. The proposed methodology provides a unified approach to observability checking, critical measurement identification, determination of observable islands, and selection of pseudo-measurements to restore observability. Additionally, the observability information obtained from a given set of measurements can provide directly the observability obtained from any subset of measurements of the given set. Several examples are used to illustrate the capabilities of the proposed methodology, and results from a large case study are presented to demonstrate the appropriate computational behavior of the proposed algorithms. Finally, some conclusions are drawn. (author)
A New All Solid State Approach to Gaseous Pollutant Detection
Brown, V.; Tamstorf, K.
1971-01-01
Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.
Prospects for regional safeguards systems - State-level Approach
International Nuclear Information System (INIS)
Peixoto, O.J.M.
2013-01-01
The increased co-operation with Regional Safeguard's System (RSAC) is a relevant tool for strengthening effectiveness and improving the efficiency of the international safeguard. The new safeguards system that emerges from the application of the Additional Protocol (INFCIRC/540) and the full use of State-level Concept is a challenge and an opportunity for effectively incorporate RSAC into the international safeguards scheme. The challenge is to determine how the co-operation and coordination will be implemented on this new safeguards scheme. This paper presents some discussions and prospects on the issues to be faced by RSAC and IAEA during the implementation of State-level Approach (SLA) using all information available. It is also discussed how different levels of co-operation could be achieved when SLA is applied by IAEA safeguards. The paper is followed by the slides of the presentation. (authors)
Australian Strategic Approaches to Managing National and State Diversity
Directory of Open Access Journals (Sweden)
Lesleyanne Hawthorne
2015-11-01
Full Text Available Australia is a global exemplar of nation-building through government planned and administered skilled, family and humanitarian migration programs. By 2011 26% of the population were immigrants, at a time when extraordinary linguistic, religious, racial and cultural diversity were evident. The federal government’s role since the 1901 establishment of the Commonwealth of Australia has spanned migration policy formation, selection, admission, compliance and naturalization functions. The settlement responsibilities of the eight state and territory governments have also grown – a process facilitated by generally amicable federal – subnational relations. Within this context this article describes contemporary Australian approaches to managing linguistic, religious and artistic diversity, comparing federal and state government roles in a period associated with significant multicultural challenges.
Metallic stereostructured layer: An approach for broadband polarization state manipulation
International Nuclear Information System (INIS)
Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu
2014-01-01
In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light
Complex state variable- and disturbance observer-based current controllers for AC drives
DEFF Research Database (Denmark)
Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede
2013-01-01
In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....
Comparative Study of Monsoon Rainfall Variability over India and the Odisha State
Directory of Open Access Journals (Sweden)
K C Gouda
2017-10-01
Full Text Available Indian summer monsoon (ISM plays an important role in the weather and climate system over India. The rainfall during monsoon season controls many sectors from agriculture, food, energy, and water, to the management of disasters. Being a coastal province on the eastern side of India, Odisha is one of the most important states affected by the monsoon rainfall and associated hydro-meteorological systems. The variability of monsoon rainfall is highly unpredictable at multiple scales both in space and time. In this study, the monsoon variability over the state of Odisha is studied using the daily gridded rainfall data from India Meteorological Department (IMD. A comparative analysis of the behaviour of monsoon rainfall at a larger scale (India, regional scale (Odisha, and sub-regional scale (zones of Odisha is carried out in terms of the seasonal cycle of monsoon rainfall and its interannual variability. It is seen that there is no synchronization in the seasonal monsoon category (normal/excess/deficit when analysed over large (India and regional (Odisha scales. The impact of El Niño, La Niña, and the Indian Ocean Dipole (IOD on the monsoon rainfall at both scales (large scale and regional scale is analysed and compared. The results show that the impact is much more for rainfall over India, but it has no such relation with the rainfall over Odisha. It is also observed that there is a positive (negative relation of the IOD with the seasonal monsoon rainfall variability over Odisha (India. The correlation between the IAV of monsoon rainfall between the large scale and regional scale was found to be 0.46 with a phase synchronization of 63%. IAV on a sub-regional scale is also presented.
Variable system: An alternative approach for the analysis of mediated moderation.
Kwan, Joyce Lok Yin; Chan, Wai
2018-06-01
Mediated moderation (meMO) occurs when the moderation effect of the moderator (W) on the relationship between the independent variable (X) and the dependent variable (Y) is transmitted through a mediator (M). To examine this process empirically, 2 different model specifications (Type I meMO and Type II meMO) have been proposed in the literature. However, both specifications are found to be problematic, either conceptually or statistically. For example, it can be shown that each type of meMO model is statistically equivalent to a particular form of moderated mediation (moME), another process that examines the condition when the indirect effect from X to Y through M varies as a function of W. Consequently, it is difficult for one to differentiate these 2 processes mathematically. This study therefore has 2 objectives. First, we attempt to differentiate moME and meMO by proposing an alternative specification for meMO. Conceptually, this alternative specification is intuitively meaningful and interpretable, and, statistically, it offers meMO a unique representation that is no longer identical to its moME counterpart. Second, using structural equation modeling, we propose an integrated approach for the analysis of meMO as well as for other general types of conditional path models. VS, a computer software program that implements the proposed approach, has been developed to facilitate the analysis of conditional path models for applied researchers. Real examples are considered to illustrate how the proposed approach works in practice and to compare its performance against the traditional methods. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.
Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M
2018-05-30
Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.
Four-State Continuous-Variable Quantum Key Distribution with Photon Subtraction
Li, Fei; Wang, Yijun; Liao, Qin; Guo, Ying
2018-06-01
Four-state continuous-variable quantum key distribution (CVQKD) is one of the discretely modulated CVQKD which generates four nonorthogonal coherent states and exploits the sign of the measured quadrature of each state to encode information rather than uses the quadrature \\hat {x} or \\hat {p} itself. It has been proven that four-state CVQKD is more suitable than Gaussian modulated CVQKD in terms of transmission distance. In this paper, we propose an improved four-state CVQKD using an non-Gaussian operation, photon subtraction. A suitable photon-subtraction operation can be exploited to improve the maximal transmission of CVQKD in point-to-point quantum communication since it provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance. Furthermore, by taking finite-size effect into account we obtain a tighter bound of the secure distance, which is more practical than that obtained in the asymptotic limit.
Energy Technology Data Exchange (ETDEWEB)
Baudisch, H.
1968-03-15
The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.
Energy Technology Data Exchange (ETDEWEB)
Kumar, V; Mukherjee, S [Cornell Univ., Ithaca, N.Y. (USA)
1977-03-01
A computational technique in terms of stress, strain and displacement rates is presented for the solution of boundary value problems for metallic structural elements at uniform elevated temperatures subjected to time varying loads. This method can accommodate any number of constitutive relations with state variables recently proposed by other researchers to model the inelastic deformation of metallic media at elevated temperatures. Numerical solutions are obtained for several structural elements subjected to steady loads. The constitutive relations used for these numerical solutions are due to Hart. The solutions are discussed in the context of the computational scheme and Hart's theory.
Seeley, Saren H; Yanez, Betina; Stanton, Annette L; Hoyt, Michael A
2017-08-01
Expressing and understanding one's own emotional responses to negative events, particularly those that challenge the attainment of important life goals, is thought to confer physiological benefit. Individual preferences and/or abilities in approaching emotions might condition the efficacy of interventions designed to encourage written emotional processing (EP). This study examines the physiological impact (as indexed by heart rate variability (HRV)) of an emotional processing writing (EPW) task as well as the moderating influence of a dispositional preference for coping through emotional approach (EP and emotional expression (EE)), in response to a laboratory stress task designed to challenge an important life goal. Participants (n = 98) were randomly assigned to either EPW or fact control writing (FCW) following the stress task. Regression analyses revealed a significant dispositional EP by condition interaction, such that high EP participants in the EPW condition demonstrated higher HRV after writing compared to low EP participants. No significant main effects of condition or EE coping were observed. These findings suggest that EPW interventions may be best suited for those with preference or ability to process emotions related to a stressor or might require adaptation for those who less often cope through emotional approach.
Guzik, Przemyslaw; Piekos, Caroline; Pierog, Olivia; Fenech, Naiman; Krauze, Tomasz; Piskorski, Jaroslaw; Wykretowicz, Andrzej
2018-05-01
We compared classic ECG-derived versus a mobile approach to heart rate variability (HRV) measurement. 29 young adult healthy volunteers underwent a simultaneous recording of heart rate using an ECG and a chest heart rate monitor at supine rest, during mental stress and active standing. Mean RR interval, Standard Deviation of Normal-to-Normal (SDNN) of RR intervals, and Root Mean Square of the Successive Differences (RMSSD) between RR intervals were computed in 168 pairs of 5-minute epochs by in-house software on a PC (only sinus beats) and by mobile application "ELITEHRV" on a smartphone (no beat type identification). ECG analysis showed that 33.9% of the recordings contained at least one non-sinus beat or artefact, the mobile app did not report this. The mean RR intervals were significantly longer (p = 0.0378), while SDNN (p = 0.0001) and RMSSD (p = 0.0199) were smaller for the mobile approach. Measures of identical HRV parameters by ECG-based and mobile approaches are not equivalent. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of optically variable devices using a photometric light-field approach
Soukup, Daniel; Å tolc, Svorad; Huber-Mörk, Reinhold
2015-03-01
Diffractive Optically Variable Image Devices (DOVIDs), sometimes loosely referred to as holograms, are popular security features for protecting banknotes, ID cards, or other security documents. Inspection, authentication, as well as forensic analysis of these security features are still demanding tasks requiring special hardware tools and expert knowledge. Existing equipment for such analyses is based either on a microscopic analysis of the grating structure or a point-wise projection and recording of the diffraction patterns. We investigated approaches for an examination of DOVID security features based on sampling the Bidirectional Reflectance Distribution Function (BRDF) of DOVIDs using photometric stereo- and light-field-based methods. Our approach is demonstrated on the practical task of automated discrimination between genuine and counterfeited DOVIDs on banknotes. For this purpose, we propose a tailored feature descriptor which is robust against several expected sources of inaccuracy but still specific enough for the given task. The suggested approach is analyzed from both theoretical as well as practical viewpoints and w.r.t. analysis based on photometric stereo and light fields. We show that especially the photometric method provides a reliable and robust tool for revealing DOVID behavior and authenticity.
Directory of Open Access Journals (Sweden)
Luisa F. Escobar-Dávila
2013-06-01
Full Text Available This paper presents the mathematical modeling of the Furuta Pendu-lum by power functions, taking into account the non linear own dynamics of the physical systems and considering the existing couplings between the electric and mechanic devices. A control process based on feedback of state variables (FSV for the equilibrium point is developed and two topics for the non linear zone are addressed. First of all, functions are implemented to represent the energetic states of the plant in a global way and the operation regions are established (“Swing up” zone, and later Artificial Neural Networks (ANN are employed to simulate the behavior of the energy functions. Finally, it is presented the combination between the control techniques, considering the own constrains of the actuators and sensors used, besides of this, a study is done in a simulated environment of the physical phenomena that may disturb system behavior, and the capacity, sensitivity and robustness of the controller is verified.
Kaneda, Toru; Suzuki, Toshiyasu
2009-07-01
Pulse oximeter expressed by SpO2 is used for monitoring respiratory state during operation and in ICU. Perfusion index (PI) and pleth variability index (PVI) as new indexes are calculated from pulse oximeter (Masimo SET Radical-7, Masimo Corp., USA, 1998) waveforms. And these indices were used as parameters to evaluate the circulatory state. For PI calculation, the pulsatile infrared signal is indexed against the nonpulsatile infrared signal and expressed as a percentage. It might thus be of future value in assessment of perioperative changes in peripheral perfusion. PVI is a measure of a dynamic change in PI that occurs during complete respiratory cycle. It might be thought that PVI, an index automatically derived from the pulse oximeter waveform analysis, had potentially clinical applications for noninvasive hypovolemia detection and fluid responsiveness monitoring.
Henseler, Jorg; Chin, Wynne W.
2010-01-01
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Gan, L.; Yang, F.; Shi, Y. F.; He, H. L.
2017-11-01
Many occasions related to batteries demand to know how much continuous and instantaneous power can batteries provide such as the rapidly developing electric vehicles. As the large-scale applications of lithium-ion batteries, lithium-ion batteries are used to be our research object. Many experiments are designed to get the lithium-ion battery parameters to ensure the relevance and reliability of the estimation. To evaluate the continuous and instantaneous load capability of a battery called state-of-function (SOF), this paper proposes a fuzzy logic algorithm based on battery state-of-charge(SOC), state-of-health(SOH) and C-rate parameters. Simulation and experimental results indicate that the proposed approach is suitable for battery SOF estimation.
Dependence of isobar-analog state properties on variable part of Coulomb potential
International Nuclear Information System (INIS)
Dzhafarov, I.G.; Kuliev, A.A.; Salamov, D.I.
1986-01-01
Within the framework of the self-consistent approach and with the method of strength functions the fragmentation of isobar-analog state (IAS) properties for all isobarie 0 + -states is investigated. Microscopic values of IAS energy, matrix elements of allowed and forbidden Fermi transitions as well as isospin impurity values in ground states of parent nuclei are obtained. Numerical calculations carried out for 42 Ca 42 Sc, 48 Ca 48 Sc, 64 Zn 64 Ga, 66 Zn 66 Ga, 90 Zr 90 Nb, 208 Pb 208 Bi isobaric nuclei with Woods-Saxon potential, are compared with predictions of different approches and experiment. The developed model by the authors permits to describe sufficiently well the experimental data
Impact of climate variability on runoff in the north-central United States
Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.
2014-01-01
Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.
Variable speed wind turbine control by discrete-time sliding mode approach.
Torchani, Borhen; Sellami, Anis; Garcia, Germain
2016-05-01
The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Some issues in the loop variable approach to open strings and an extension to closed strings
International Nuclear Information System (INIS)
Sathiapalan, B.
1994-01-01
Some issues in the loop variable renormalization group approach to gauge-invariant equations for the free fields of the open string are discussed. It had been shown in an earlier paper that this leads to a simple form of the gauge transformation law. We discuss in some detail some of the curious features encountered there. The theory looks a little like a massless theory in one higher dimension that can be dimensionally reduced to give a massive theory. We discuss the origin of some constraints that are needed for gauge invariance and also for reducing the set of fields to that of standard string theory. The mechanism of gauge invariance and the connection with the Virasoro algebra is a little different from the usual story and is discussed. It is also shown that these results can be extended in a straightforward manner to closed strings. (orig.)
A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.
Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian
2016-09-01
Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
International Nuclear Information System (INIS)
Kumar, V.; Mukherjee, S.
1977-01-01
In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory
Continuous-variable entanglement distillation of non-Gaussian mixed states
International Nuclear Information System (INIS)
Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.
2010-01-01
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance.
Ortega, E; Wang, C J K
2018-03-01
Heart rate variability (HRV) is commonly used in sport science for monitoring the physiology of athletes but not as an indicator of physiological state from a psychological perspective. Since HRV is established to be an indicator of emotional responding, it could be an objective means of quantifying an athlete's subjective physiological state before competition. A total of 61 sport shooters participated in this study, of which 21 were novice shooters, 19 were intermediate shooters, and 21 were advanced level shooters. HRV, self-efficacy, and use of mental skills were assessed before they completed a standard shooting performance task of 40 shots, as in a competition qualifying round. The results showed that HRV was significantly positively correlated with self-efficacy and performance and was a significant predictor of shooting performance. In addition, advanced shooters were found to have significantly lower average heart rate before shooting and used more self-talk, relaxation, imagery, and automaticity compared to novice and intermediate shooters. HRV was found to be useful in identifying the physiological state of an athlete before competing, and as such, coaches and athletes can adopt practical strategies to improve the pre-performance physiological state as a means to optimize performance.
Porta, Alberto; Bari, Vlasta; Ranuzzi, Giovanni; De Maria, Beatrice; Baselli, Giuseppe
2017-09-01
We propose a multiscale complexity (MSC) method assessing irregularity in assigned frequency bands and being appropriate for analyzing the short time series. It is grounded on the identification of the coefficients of an autoregressive model, on the computation of the mean position of the poles generating the components of the power spectral density in an assigned frequency band, and on the assessment of its distance from the unit circle in the complex plane. The MSC method was tested on simulations and applied to the short heart period (HP) variability series recorded during graded head-up tilt in 17 subjects (age from 21 to 54 years, median = 28 years, 7 females) and during paced breathing protocols in 19 subjects (age from 27 to 35 years, median = 31 years, 11 females) to assess the contribution of time scales typical of the cardiac autonomic control, namely in low frequency (LF, from 0.04 to 0.15 Hz) and high frequency (HF, from 0.15 to 0.5 Hz) bands to the complexity of the cardiac regulation. The proposed MSC technique was compared to a traditional model-free multiscale method grounded on information theory, i.e., multiscale entropy (MSE). The approach suggests that the reduction of HP variability complexity observed during graded head-up tilt is due to a regularization of the HP fluctuations in LF band via a possible intervention of sympathetic control and the decrement of HP variability complexity observed during slow breathing is the result of the regularization of the HP variations in both LF and HF bands, thus implying the action of physiological mechanisms working at time scales even different from that of respiration. MSE did not distinguish experimental conditions at time scales larger than 1. Over a short time series MSC allows a more insightful association between cardiac control complexity and physiological mechanisms modulating cardiac rhythm compared to a more traditional tool such as MSE.
Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio
Directory of Open Access Journals (Sweden)
Zhenzhou Zhao
2018-06-01
Full Text Available This paper presents a new variable pitch (VP approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT, by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR corresponding to the peak power coefficient of the fixed pitch (FP-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA, resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated.
A hybrid approach to fault diagnosis of roller bearings under variable speed conditions
Wang, Yanxue; Yang, Lin; Xiang, Jiawei; Yang, Jianwei; He, Shuilong
2017-12-01
Rolling element bearings are one of the main elements in rotating machines, whose failure may lead to a fatal breakdown and significant economic losses. Conventional vibration-based diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speeds. This constraint limits the bearing diagnosis to the industrial application significantly. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions is proposed in this work, based on computed order tracking (COT) and variational mode decomposition (VMD)-based time frequency representation (VTFR). COT is utilized to resample the non-stationary vibration signal in the angular domain, while VMD is used to decompose the resampled signal into a number of band-limited intrinsic mode functions (BLIMFs). A VTFR is then constructed based on the estimated instantaneous frequency and instantaneous amplitude of each BLIMF. Moreover, the Gini index and time-frequency kurtosis are both proposed to quantitatively measure the sparsity and concentration measurement of time-frequency representation, respectively. The effectiveness of the VTFR for extracting nonlinear components has been verified by a bat signal. Results of this numerical simulation also show the sparsity and concentration of the VTFR are better than those of short-time Fourier transform, continuous wavelet transform, Hilbert-Huang transform and Wigner-Ville distribution techniques. Several experimental results have further demonstrated that the proposed method can well detect bearing faults under variable speed conditions.
Directory of Open Access Journals (Sweden)
Murat Selim Çepni
2017-03-01
Full Text Available Several studies worldwide have been developed that seek to explain the occurrence of traffic accidents from different perspectives. The analyses have addressed legal perspectives, technical attributes of vehicles and infrastructure as well as the psychological, behavioral and socio-economic components of the road system users. Recently, some analysis techniques based on the use of Geographic Information Systems (GIS have been used, which allow the generation of spatial distribution maps, models and risk estimates from a spatial perspective. Sometimes analyses of traffic accidents are performed using quantitative statistical techniques, which place significant importance on the evolution of accidents. Studies such as those in references have shown that conventional statistical models are sometimes inadequate to model the frequency of traffic accidents, as they may provide erroneous inferences. GIS approach has been used to explore different spatial and temporal visualization technologies to reveal accident patterns and significant factors relating to vehicle crashes, or as a management system for accident analysis and the determination of hot spots. This paper examines the relationship between urban road accidents and variables related to road infrastructure, environment and traffic volumes. Some accident-prone sections in the city of Kocaeli are specifically identified by GIS tools. Urban road accidents in Kocaeli are a serious problem and it is believed that accidents can be related to infrastructure characteristics. The study aimed to establish the relationship between urban road accidents and the road infrastructure variables and revealed some possible accident prone locations for the period of 2013 and 2015 in Kocaeli city
A Synergetic Approach to Describe the Stability and Variability of Motor Behavior
Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter
At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.
Molina, A; Guiñon, L; Perez, A; Segurana, A; Bedini, J L; Reverter, J C; Merino, A
2018-02-05
It is important for clinical laboratories to maintain under control the possible sources of error in its analytical determinations. The objective of this work is to perform an analysis of the total error committed by laboratories using the data extracted from the Spanish External Quality Assessment Program in Hematology and to compare them with the specifications based on the biological variability proposed by the Ricós group. We analyzed a total of 3 89 000 results during the period 2015-2016 from the following quantitative schemes of Spanish External Quality Assessment Program: complete blood count, blood coagulation tests, differential leukocyte count, reticulocytes, hemoglobin A 2 , antithrombin, factor VIII, protein C, and von Willebrand factor. It has been considered as an indicator of the current performance the value of total error that 90% of laboratories are able to achieve, taking into account 75% of their results. We found some magnitudes whose biological variability specifications are achievable by most of the laboratories for either minimum, desirable, or optimum criteria: white blood cells, red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, platelets, fibrinogen, neutrophils, lymphocytes, eosinophils, von Willebrand factor, and protein C. However, current performance for mean corpuscular hemoglobin concentration and hemoglobin A 2 only allows to meet the specifications based on the state of the art. Our results reflect the feasibility of establishing specifications based on biological variability criteria or the state of the art, which may help to select the proper criteria for each parameter. © 2018 John Wiley & Sons Ltd.
ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES
International Nuclear Information System (INIS)
Yu Wenfei; Zhang Wenda
2013-01-01
We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.
Gonzalez, Robert; Suppes, Trisha; Zeitzer, Jamie; McClung, Colleen; Tamminga, Carol; Tohen, Mauricio; Forero, Angelica; Dwivedi, Alok; Alvarado, Andres
2018-02-19
Multiple types of chronobiological disturbances have been reported in bipolar disorder, including characteristics associated with general activity levels, sleep, and rhythmicity. Previous studies have focused on examining the individual relationships between affective state and chronobiological characteristics. The aim of this study was to conduct a variable cluster analysis in order to ascertain how mood states are associated with chronobiological traits in bipolar I disorder (BDI). We hypothesized that manic symptomatology would be associated with disturbances of rhythm. Variable cluster analysis identified five chronobiological clusters in 105 BDI subjects. Cluster 1, comprising subjective sleep quality was associated with both mania and depression. Cluster 2, which comprised variables describing the degree of rhythmicity, was associated with mania. Significant associations between mood state and cluster analysis-identified chronobiological variables were noted. Disturbances of mood were associated with subjectively assessed sleep disturbances as opposed to objectively determined, actigraphy-based sleep variables. No associations with general activity variables were noted. Relationships between gender and medication classes in use and cluster analysis-identified chronobiological characteristics were noted. Exploratory analyses noted that medication class had a larger impact on these relationships than the number of psychiatric medications in use. In a BDI sample, variable cluster analysis was able to group related chronobiological variables. The results support our primary hypothesis that mood state, particularly mania, is associated with chronobiological disturbances. Further research is required in order to define these relationships and to determine the directionality of the associations between mood state and chronobiological characteristics.
Energy Technology Data Exchange (ETDEWEB)
Yang, Jinzhong, E-mail: jyang4@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A.; Reed, Valerie K.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Lifei; Balter, Peter; Court, Laurence E. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dong, Lei [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Scripps Proton Therapy Center, San Diego, California (United States)
2014-05-01
Purpose: To develop a new approach for interobserver variability analysis. Methods and Materials: Eight radiation oncologists specializing in breast cancer radiation therapy delineated a patient's left breast “from scratch” and from a template that was generated using deformable image registration. Three of the radiation oncologists had previously received training in Radiation Therapy Oncology Group consensus contouring for breast cancer atlas. The simultaneous truth and performance level estimation algorithm was applied to the 8 contours delineated “from scratch” to produce a group consensus contour. Individual Jaccard scores were fitted to a beta distribution model. We also applied this analysis to 2 or more patients, which were contoured by 9 breast radiation oncologists from 8 institutions. Results: The beta distribution model had a mean of 86.2%, standard deviation (SD) of ±5.9%, a skewness of −0.7, and excess kurtosis of 0.55, exemplifying broad interobserver variability. The 3 RTOG-trained physicians had higher agreement scores than average, indicating that their contours were close to the group consensus contour. One physician had high sensitivity but lower specificity than the others, which implies that this physician tended to contour a structure larger than those of the others. Two other physicians had low sensitivity but specificity similar to the others, which implies that they tended to contour a structure smaller than the others. With this information, they could adjust their contouring practice to be more consistent with others if desired. When contouring from the template, the beta distribution model had a mean of 92.3%, SD ± 3.4%, skewness of −0.79, and excess kurtosis of 0.83, which indicated a much better consistency among individual contours. Similar results were obtained for the analysis of 2 additional patients. Conclusions: The proposed statistical approach was able to measure interobserver variability quantitatively
Using latent variable approach to estimate China's economy-wide energy rebound effect over 1954–2010
International Nuclear Information System (INIS)
Shao, Shuai; Huang, Tao; Yang, Lili
2014-01-01
The energy rebound effect has been a significant issue in China, which is undergoing economic transition, since it reflects the effectiveness of energy-saving policy relying on improved energy efficiency. Based on the IPAT equation and Brookes' explanation of the rebound effect, this paper develops an alternative estimation model of the rebound effect. By using the estimation model and latent variable approach, which is achieved through a time-varying coefficient state space model, we estimate China's economy-wide energy rebound effect over 1954–2010. The results show that the rebound effect evidently exists in China as a result of the annual average of 39.73% over 1954–2010. Before and after the implementation of China's reform and opening-up policy in 1978, the rebound effects are 47.24% and 37.32%, with a strong fluctuation and a circuitously downward trend, respectively, indicating that a stable political environment and the development of market economy system facilitate the effectiveness of energy-saving policy. Although the energy-saving effect of improving energy efficiency has been partly realised, there remains a large energy-saving potential in China. - Highlights: • We present an improved estimation methodology of economy-wide energy rebound effect. • We use the latent variable approach to estimate China's economy-wide rebound effect. • The rebound exists in China and varies before and after reform and opening-up. • After 1978, the average rebound is 37.32% with a circuitously downward trend. • Traditional Solow remainder method underestimates the rebound in most cases
Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States
Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.
2017-12-01
Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.
Muñoz, Joel; Alcaide, Daniel; Ocaña, Jordi
2016-05-30
The 2010 US Food and Drug Administration and European Medicines Agency regulatory approaches to establish bioequivalence in highly variable drugs are both based on linearly scaling the bioequivalence limits, both take a 'scaled average bioequivalence' approach. The present paper corroborates previous work suggesting that none of them adequately controls type I error or consumer's risk, so they result in invalid test procedures in the neighbourhood of a within-subject coefficient of variation osf 30% for the reference (R) formulation. The problem is particularly serious in the US Food and Drug Administration regulation, but it is also appreciable in the European Medicines Agency one. For the partially replicated TRR/RTR/RRT and the replicated TRTR/RTRT crossover designs, we quantify these type I error problems by means of a simulation study, discuss their possible causes and propose straightforward improvements on both regulatory procedures that improve their type I error control while maintaining an adequate power. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Penny, Robert D., E-mail: robert.d.penny@leidos.com [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Crowley, Tanya M.; Gardner, Barbara M.; Mandell, Myron J.; Guo, Yanlin; Haas, Eric B.; Knize, Duane J.; Kuharski, Robert A.; Ranta, Dale; Shyffer, Ryan [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Labov, Simon; Nelson, Karl; Seilhan, Brandon [Lawrence Livermore National Laboratory, Livermore, CA (United States); Valentine, John D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2015-06-01
A novel approach and algorithm have been developed to rapidly detect and localize both moving and static radiological/nuclear (R/N) sources from an airborne platform. Current aerial systems with radiological sensors are limited in their ability to compensate for variable naturally occurring radioactive material (NORM) background. The proposed approach suppresses the effects of NORM background by incorporating additional information to segment the survey area into regions over which the background is likely to be uniform. The method produces pixelated Source Activity Maps (SAMs) of both target and background radionuclide activity over the survey area. The task of producing the SAMs requires (1) the development of a forward model which describes the transformation of radionuclide activity to detector measurements and (2) the solution of the associated inverse problem. The inverse problem is ill-posed as there are typically fewer measurements than unknowns. In addition the measurements are subject to Poisson statistical noise. The Maximum-Likelihood Expectation-Maximization (MLEM) algorithm is used to solve the inverse problem as it is well suited for under-determined problems corrupted by Poisson noise. A priori terrain information is incorporated to segment the reconstruction space into regions within which we constrain NORM background activity to be uniform. Descriptions of the algorithm and examples of performance with and without segmentation on simulated data are presented.
Lloret-Linares, Célia; Daali, Youssef; Chevret, Sylvie; Nieto, Isabelle; Molière, Fanny; Courtet, Philippe; Galtier, Florence; Richieri, Raphaëlle-Marie; Morange, Sophie; Llorca, Pierre-Michel; El-Hage, Wissam; Desmidt, Thomas; Haesebaert, Frédéric; Vignaud, Philippe; Holtzmann, Jerôme; Cracowski, Jean-Luc; Leboyer, Marion; Yrondi, Antoine; Calvas, Fabienne; Yon, Liova; Le Corvoisier, Philippe; Doumy, Olivier; Heron, Kyle; Montange, Damien; Davani, Siamak; Déglon, Julien; Besson, Marie; Desmeules, Jules; Haffen, Emmanuel; Bellivier, Frank
2017-11-07
It is well known that the standard doses of a given drug may not have equivalent effects in all patients. To date, the management of depression remains mainly empirical and often poorly evaluated. The development of a personalized medicine in psychiatry may reduce treatment failure, intolerance or resistance, and hence the burden and costs of mood depressive disorders. The Geneva Cocktail Phenotypic approach presents several advantages including the "in vivo" measure of different cytochromes and transporter P-gp activities, their simultaneous determination in a single test, avoiding the influence of variability over time on phenotyping results, the administration of low dose substrates, a limited sampling strategy with an analytical method developed on DBS analysis. The goal of this project is to explore the relationship between the activity of drug-metabolizing enzymes (DME), assessed by a phenotypic approach, and the concentrations of Venlafaxine (VLX) + O-demethyl-venlafaxine (ODV), the efficacy and tolerance of VLX. This study is a multicentre prospective non-randomized open trial. Eligible patients present a major depressive episode, MADRS over or equal to 20, treatment with VLX regardless of the dose during at least 4 weeks. The Phenotype Visit includes VLX and ODV concentration measurement. Following the oral absorption of low doses of omeprazole, midazolam, dextromethorphan, and fexofenadine, drug metabolizing enzymes activity is assessed by specific metabolite/probe concentration ratios from a sample taken 2 h after cocktail administration for CYP2C19, CYP3A4, CYP2D6; and by the determination of the limited area under the curve from the capillary blood samples taken 2-3 and 6 h after cocktail administration for CYP2C19 and P-gp. Two follow-up visits will take place between 25 and 40 days and 50-70 days after inclusion. They include assessment of efficacy, tolerance and observance. Eleven french centres are involved in recruitment, expected to be
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.
2016-01-01
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda
2016-02-12
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Directory of Open Access Journals (Sweden)
Oscar D. Montoya-Giraldo
2014-01-01
Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.
Sabatini, Angelo Maria
2012-01-01
In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.
Directory of Open Access Journals (Sweden)
Angelo Maria Sabatini
2012-06-01
Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman
2015-01-01
This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...
Onyekuru, Bruno U.; Ibegbunam, Josephat
2015-01-01
Quality personality traits and socio-demographic variables are essential elements of effective counselling. This correlational study investigated personality traits and socio-demographic variables as predictors of counselling effectiveness of counsellors in Enugu State. The instruments for data collection were Personality Traits Assessment Scale…
De Ruiter, Naomi M. P.; Den Hartigh, Ruud J. R.; Cox, Ralf F. A.; Van Geert, Paul L. C.; Kunnen, E. Saskia
2015-01-01
Research regarding the variability of state self-esteem (SSE) commonly focuses on the magnitude of variability. In this article we provide the first empirical test of the temporalstructure of SSE as a real-time process during parent-adolescent interactions. We adopt a qualitative phenomenological
Socioeconomic inequality of cancer mortality in the United States: a spatial data mining approach
Directory of Open Access Journals (Sweden)
Lam Nina SN
2006-02-01
Full Text Available Abstract Background The objective of this study was to demonstrate the use of an association rule mining approach to discover associations between selected socioeconomic variables and the four most leading causes of cancer mortality in the United States. An association rule mining algorithm was applied to extract associations between the 1988–1992 cancer mortality rates for colorectal, lung, breast, and prostate cancers defined at the Health Service Area level and selected socioeconomic variables from the 1990 United States census. Geographic information system technology was used to integrate these data which were defined at different spatial resolutions, and to visualize and analyze the results from the association rule mining process. Results Health Service Areas with high rates of low education, high unemployment, and low paying jobs were found to associate with higher rates of cancer mortality. Conclusion Association rule mining with geographic information technology helps reveal the spatial patterns of socioeconomic inequality in cancer mortality in the United States and identify regions that need further attention.
Atzori, A S; Tedeschi, L O; Cannas, A
2013-05-01
The economic efficiency of dairy farms is the main goal of farmers. The objective of this work was to use routinely available information at the dairy farm level to develop an index of profitability to rank dairy farms and to assist the decision-making process of farmers to increase the economic efficiency of the entire system. A stochastic modeling approach was used to study the relationships between inputs and profitability (i.e., income over feed cost; IOFC) of dairy cattle farms. The IOFC was calculated as: milk revenue + value of male calves + culling revenue - herd feed costs. Two databases were created. The first one was a development database, which was created from technical and economic variables collected in 135 dairy farms. The second one was a synthetic database (sDB) created from 5,000 synthetic dairy farms using the Monte Carlo technique and based on the characteristics of the development database data. The sDB was used to develop a ranking index as follows: (1) principal component analysis (PCA), excluding IOFC, was used to identify principal components (sPC); and (2) coefficient estimates of a multiple regression of the IOFC on the sPC were obtained. Then, the eigenvectors of the sPC were used to compute the principal component values for the original 135 dairy farms that were used with the multiple regression coefficient estimates to predict IOFC (dRI; ranking index from development database). The dRI was used to rank the original 135 dairy farms. The PCA explained 77.6% of the sDB variability and 4 sPC were selected. The sPC were associated with herd profile, milk quality and payment, poor management, and reproduction based on the significant variables of the sPC. The mean IOFC in the sDB was 0.1377 ± 0.0162 euros per liter of milk (€/L). The dRI explained 81% of the variability of the IOFC calculated for the 135 original farms. When the number of farms below and above 1 standard deviation (SD) of the dRI were calculated, we found that 21
Variability of apparently homogeneous soilscapes in São Paulo state, Brazil: I. spatial analysis
Directory of Open Access Journals (Sweden)
M. van Den Berg
2000-06-01
Full Text Available The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation. Statistical methods used were: nested analysis of variance (for 11 fields, semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS. Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour, varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.
Garrett, Robert G.
2009-01-01
To support the development of protocols for the proposed North American Soil Geochemical Landscapes project, whose objective is to establish baselines for the geochemistry of North American soils, two continental-scale transects across the United States and Canada were sampled in 2004. The sampling employed a spatially stratified random sampling design in order to estimate the variability between 40-km linear sampling units, within them, at sample sites, and due to sample preparation and analytical chemical procedures. The 40-km scale was chosen to be consistent with the density proposed for the continental-scale project. The two transects, north–south (N–S) from northern Manitoba to the USA–Mexico border near El Paso, Texas, and east–west (E–W) from the Virginia shore north of Washington, DC, to north of San Francisco, California, closely following the 38th parallel, have been studied individually. The purpose of this study was to determine if statistically significant systematic spatial variation occurred along the transects. Data for 38 major, minor and trace elements in A- and C-horizon soils where less than 5% of the data were below the detection limit were investigated by Analysis of Variance (ANOVA). A total of 15 elements (K, Na, As, Ba, Be, Ce, La, Mn, Nb, P, Rb, Sb, Th, Tl and W) demonstrated statistically significant (p<0.05) variability at the between-40-km scale for both horizons along both transects. Only Cu failed to demonstrate significant variability at the between-40-km scale for both soil horizons along both transects.
Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil
Directory of Open Access Journals (Sweden)
José Avelino Cardoso
2014-04-01
Full Text Available Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K, medium (potential acidity, Ca and Mg and low (pH, organic matter and clay content. Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.
Building the nodal nuclear data dependences in a many-dimensional state-variable space
International Nuclear Information System (INIS)
Dufek, Jan
2011-01-01
Highlights: → The Abstract and Introduction are revised to reflect reviewers' comments. → Section is revised and simplified. → The third paragraph in Section is revised. → All typos are fixed. - Abstract: We present new methods for building the polynomial-regression based nodal nuclear data models. The data models can reflect dependences on a large number of state variables, and they can consider various history effects. Suitable multivariate polynomials that approximate the nodal data dependences are identified efficiently in an iterative manner. The history effects are analysed using a new sampling scheme for lattice calculations where the traditional base burnup and branch calculations are replaced by a large number of diverse burnup histories. The total number of lattice calculations is controlled so that the data models are built to a required accuracy.
DEFF Research Database (Denmark)
Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka
2005-01-01
The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...
Effect of normal impurities on anisotropic superconductors with variable density of states
Whitmore, M. D.; Carbotte, J. P.
1982-06-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.
Effect of normal impurities on anisotropic superconductors with variable density of states
International Nuclear Information System (INIS)
Whitmore, M.D.; Carbotte, J.P.
1982-01-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron--electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(epsilon-c), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T/sub c/ by both the anisotropy and the peak in N(epsilon-c) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak
Balzan, Mario V
2012-01-01
Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the
Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.
Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M; Emmenegger, Yann; Franken, Paul
2013-03-01
Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Mouse sleep laboratory. Male mice. Sleep deprivation. The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.
Determination of interfacial states in solid heterostructures using a variable-energy positron beam
Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.
1993-01-01
A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.
Origin of the OFF state variability in ReRAM cells
International Nuclear Information System (INIS)
Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Prodromakis, Themistoklis; Berdan, Radu; Papavassiliou, Christos
2014-01-01
This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO 2 and In 2 O 3 : SnO 2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO 2 or ITO active cores over 5 × 5 µm 2 and 100 × 100 µm 2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO 2 -based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states. (paper)
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The interannual variability of the At lantic tropical cyclone (TC) frequency is well known. Separately,recent studies have also suggested that a much longer, multidecadal (40-60 year) trend might be emerging from the recent increase in Atlantic TC activity. However, the overall structure of the intrinsic frequencies (or temporal modes) of Atlantic TC activity is not yet known. The focus of this study is to systematically analyze the intrinsic frequencies of Atlantic TC activity using hurricane and tropical storm landfall data collected along the southeast coast (SEC) of the United States. Based on an Empirical Mode Decomposition (EMD) analysis of the frequency of landfall TCs along the SEC from 1887-1999, we have found that Atlantic TC activity has four primary, temporal modes. The interannual and multidecadal modes reported in the published literature are two such modes. After identifying all primary modes, the relative importance of each mode and its physical cause can be analyzed. For example, the most energetic mode is the interannual mode (2-7 year period). This mode is known to be associated with the 2-7 year El Nino / La Ni na cycle. The average number of annual landfalling TCs along the SEC decreased by 24% during El Nino years, but did not show significant increase during weak and moderate La Nina years. However, intense La Nina years were generally associated with more than average landfalling TCs along the SEC. The effects of El Nino and La Nina also became more significant when only hurricanes were considered. The significance of the effects of El Nino and La Nina on landfalling TCs and hurricanes in different US southeast coastal states showed significant differences.
Energy Technology Data Exchange (ETDEWEB)
Leng, Guoyong
2017-12-01
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated
Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair
Lightsey, Harry M.; Kantrowitz, David E.; Swindell, Hasani W.; Trofa, David P.; Ahmad, Christopher S.; Lynch, T. Sean
2018-01-01
Background: The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. Purpose: To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Study Design: Cross-sectional study. Methods: Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Results: Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises
Variability of United States Online Rehabilitation Protocols for Proximal Hamstring Tendon Repair.
Lightsey, Harry M; Kantrowitz, David E; Swindell, Hasani W; Trofa, David P; Ahmad, Christopher S; Lynch, T Sean
2018-02-01
The optimal postoperative rehabilitation protocol following repair of complete proximal hamstring tendon ruptures is the subject of ongoing investigation, with a need for more standardized regimens and evidence-based modalities. To assess the variability across proximal hamstring tendon repair rehabilitation protocols published online by United States (US) orthopaedic teaching programs. Cross-sectional study. Online proximal hamstring physical therapy protocols from US academic orthopaedic programs were reviewed. A web-based search using the search term complete proximal hamstring repair rehabilitation protocol provided an additional 14 protocols. A comprehensive scoring rubric was developed after review of all protocols and was used to assess each protocol for both the presence of various rehabilitation components and the point at which those components were introduced. Of 50 rehabilitation protocols identified, 35 satisfied inclusion criteria and were analyzed. Twenty-five protocols (71%) recommended immediate postoperative bracing: 12 (34%) prescribed knee bracing, 8 (23%) prescribed hip bracing, and 5 (14%) did not specify the type of brace recommended. Fourteen protocols (40%) advised immediate nonweightbearing with crutches, while 16 protocols (46%) permitted immediate toe-touch weightbearing. Advancement to full weightbearing was allowed at a mean of 7.1 weeks (range, 4-12 weeks). Most protocols (80%) recommended gentle knee and hip passive range of motion and active range of motion, starting at a mean 1.4 weeks (range, 0-3 weeks) and 4.0 weeks (range, 0-6 weeks), respectively. However, only 6 protocols (17%) provided specific time points to initiate full hip and knee range of motion: a mean 8.0 weeks (range, 4-12 weeks) and 7.8 weeks (range, 0-12 weeks), respectively. Considerable variability was noted in the inclusion and timing of strengthening, stretching, proprioception, and cardiovascular exercises. Fifteen protocols (43%) required completion of
A statistical state dynamics approach to wall turbulence.
Farrell, B F; Gayme, D F; Ioannou, P J
2017-03-13
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Directory of Open Access Journals (Sweden)
Malinda L. Pennington
2014-01-01
Full Text Available In light of the steady rise in the prevalence of students with autism, this study examined the definition of autism published by state education agencies (SEAs, as well as SEA-indicated evaluation procedures for determining student qualification for autism. We compared components of each SEA definition to aspects of autism from two authoritative sources: Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR and Individuals with Disabilities Education Improvement Act (IDEA-2004. We also compared SEA-indicated evaluation procedures across SEAs to evaluation procedures noted in IDEA-2004. Results indicated that many more SEA definitions incorporate IDEA-2004 features than DSM-IV-TR features. However, despite similar foundations, SEA definitions of autism displayed considerable variability. Evaluation procedures were found to vary even more across SEAs. Moreover, within any particular SEA there often was little concordance between the definition (what autism is and evaluation procedures (how autism is recognized. Recommendations for state and federal policy changes are discussed.
Directory of Open Access Journals (Sweden)
Auditya Purwandini Sutarto
2010-06-01
Full Text Available The widespread implementation of advanced and complex systems requires predominantly operators’ cognitive functions and less importance of human manual control. On the other hand, most operators perform their cognitive functions below their peak cognitive capacity level due to fatigue, stress, and boredom. Thus, there is a need to improve their cognitive functions during work. The goal of this paper is to present a psychophysiology training approach derived from cardiovascular response named heart rate variability (HRV biofeedback. Description of resonant frequency biofeedback - a specific HRV training protocol - is discussed as well as its supported researches for the performance enhancement. HRV biofeedback training works by teaching people to recognize their involuntary HRV and to control patterns of this physiological response. The training is directed to increase HRV amplitude that promotes autonomic nervous system balance. This balance is associated with improved physiological functioning as well as psychological benefits. Most individuals can learn HRV biofeedback training easily which involves slowing the breathing rate (around six breaths/min to each individual’s resonant frequency at which the amplitude of HRV is maximized. Maximal control over HRV can be obtained in most people after approximately four sessions of training. Recent studies have demonstrated the effectiveness of HRV biofeedback to the improvement of some cognitive functions in both simulated and real industrial operators.
Retention and Curve Number Variability in a Small Agricultural Catchment: The Probabilistic Approach
Directory of Open Access Journals (Sweden)
Kazimierz Banasik
2014-04-01
Full Text Available The variability of the curve number (CN and the retention parameter (S of the Soil Conservation Service (SCS-CN method in a small agricultural, lowland watershed (23.4 km2 to the gauging station in central Poland has been assessed using the probabilistic approach: distribution fitting and confidence intervals (CIs. Empirical CNs and Ss were computed directly from recorded rainfall depths and direct runoff volumes. Two measures of the goodness of fit were used as selection criteria in the identification of the parent distribution function. The measures specified the generalized extreme value (GEV, normal and general logistic (GLO distributions for 100-CN and GLO, lognormal and GEV distributions for S. The characteristics estimated from theoretical distribution (median, quantiles were compared to the tabulated CN and to the antecedent runoff conditions of Hawkins and Hjelmfelt. The distribution fitting for the whole sample revealed a good agreement between the tabulated CN and the median and between the antecedent runoff conditions (ARCs of Hawkins and Hjelmfelt, which certified a good calibration of the model. However, the division of the CN sample due to heavy and moderate rainfall depths revealed a serious inconsistency between the parameters mentioned. This analysis proves that the application of the SCS-CN method should rely on deep insight into the probabilistic properties of CN and S.
Directory of Open Access Journals (Sweden)
Julie Baussand
2009-09-01
Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.
Directory of Open Access Journals (Sweden)
Marc A. Rosen
2012-08-01
Full Text Available The temperature response in the soil surrounding multiple boreholes is evaluated analytically and numerically. The assumption of constant heat flux along the borehole wall is examined by coupling the problem to the heat transfer problem inside the borehole and presenting a model with variable heat flux along the borehole length. In the analytical approach, a line source of heat with a finite length is used to model the conduction of heat in the soil surrounding the boreholes. In the numerical method, a finite volume method in a three dimensional meshed domain is used. In order to determine the heat flux boundary condition, the analytical quasi-three-dimensional solution to the heat transfer problem of the U-tube configuration inside the borehole is used. This solution takes into account the variation in heating strength along the borehole length due to the temperature variation of the fluid running in the U-tube. Thus, critical depths at which thermal interaction occurs can be determined. Finally, in order to examine the validity of the numerical method, a comparison is made with the results of line source method.
Fletcher, Jason M
2015-07-01
This paper provides some of the first evidence of peer effects in college enrollment decisions. There are several empirical challenges in assessing the influences of peers in this context, including the endogeneity of high school, shared group-level unobservables, and identifying policy-relevant parameters of social interactions models. This paper addresses these issues by using an instrumental variables/fixed effects approach that compares students in the same school but different grade-levels who are thus exposed to different sets of classmates. In particular, plausibly exogenous variation in peers' parents' college expectations are used as an instrument for peers' college choices. Preferred specifications indicate that increasing a student's exposure to college-going peers by ten percentage points is predicted to raise the student's probability of enrolling in college by 4 percentage points. This effect is roughly half the magnitude of growing up in a household with married parents (vs. an unmarried household). Copyright © 2015 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
João C. O. Marra
2016-01-01
Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.
Analysis of Life Histories: A State Space Approach
Directory of Open Access Journals (Sweden)
Rajulton, Fernando
2001-01-01
Full Text Available EnglishThe computer package LIFEHIST written by the author, is meant for analyzinglife histories through a state-space approach. Basic ideas on which the various programs have beenbuilt are described in this paper in a non-mathematical language. Users can use various programs formultistate analyses based on Markov and semi-Markov frameworks and sequences of transitions implied inlife histories. The package is under constant revision and programs for using a few specific modelsthe author thinks will be useful for analyzing longitudinal data will be incorporated in the nearfuture.FrenchLe système d'ordinateur LIFEHIST écrit par l'auteur est établi pour analyser desévénements au cours de la vie par une approche qui tient compte des états aucours du temps. Les idées fondamentales à la base des divers programmes dumodule sont décrites dans un langage non-mathématique. Le systèmeLIFEHIST peut être utilisé pour des analyses Markov et semi-Markov desséquences d’événements au cours de la vie. Le module est sous révisionconstante, et des programmes que l’auteur compte ajouter pour l'usage dedonnées longitudinales sont décrit.
Directory of Open Access Journals (Sweden)
Jessie M H Szostakiwskyj
Full Text Available Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty, and within trial (fixation, post-stimulus, and post-response. We calculated variability with multiscale entropy (MSE, and additionally examined spectral power density (SPD from electroencephalography (EEG in children aged 8-14, and in adults aged 18-33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales. Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain.
Carter, James L.; Resh, Vincent H.
2013-01-01
Biomonitoring programs based on benthic macroinvertebrates are well-established worldwide. Their value, however, depends on the appropriateness of the analytical techniques used. All United States State, benthic macroinvertebrate biomonitoring programs were surveyed regarding the purposes of their programs, quality-assurance and quality-control procedures used, habitat and water-chemistry data collected, treatment of macroinvertebrate data prior to analysis, statistical methods used, and data-storage considerations. State regulatory mandates (59 percent of programs), biotic index development (17 percent), and Federal requirements (15 percent) were the most frequently reported purposes of State programs, with the specific tasks of satisfying the requirements for 305b/303d reports (89 percent), establishment and monitoring of total maximum daily loads, and developing biocriteria being the purposes most often mentioned. Most states establish reference sites (81 percent), but classify them using State-specific methods. The most often used technique for determining the appropriateness of a reference site was Best Professional Judgment (86 percent of these states). Macroinvertebrate samples are almost always collected by using a D-frame net, and duplicate samples are collected from approximately 10 percent of sites for quality assurance and quality control purposes. Most programs have macroinvertebrate samples processed by contractors (53 percent) and have identifications confirmed by a second taxonomist (85 percent). All States collect habitat data, with most using the Rapid Bioassessment Protocol visual-assessment approach, which requires ~1 h/site. Dissolved oxygen, pH, and conductivity are measured in more than 90 percent of programs. Wide variation exists in which taxa are excluded from analyses and the level of taxonomic resolution used. Species traits, such as functional feeding groups, are commonly used (96 percent), as are tolerance values for organic pollution
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongjun [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Weifang Vocational College, Weifang 261041 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Quanlong [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)
2011-07-18
This Letter designs an asynchronous hyper chaotic secure communication system, which possesses high stability against noise, using dynamic delay and state variables switching to ensure the high security. The relationship between the bit error ratio (BER) and the signal-to-noise ratio (SNR) is analyzed by simulation tests, the results show that the BER can be ensured to reach zero by proportionally adjusting the amplitudes of the state variables and the noise figure. The modules of the transmitter and receiver are implemented, and numerical simulations demonstrate the effectiveness of the system. -- Highlights: → Asynchronous anti-noise hyper chaotic secure communication system. → Dynamic delay and state switching to ensure the high security. → BER can reach zero by adjusting the amplitudes of state variables and noise figure.
Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.
2014-12-01
The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.
Gates, Nicholas R.
The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
International Nuclear Information System (INIS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-01-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise
Kim, T. W.; Park, G. H.
2014-12-01
Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal
Ciffroy, Philippe; Charlatchka, Rayna; Ferreira, Daniel; Marang, Laura
2013-07-01
The biotic ligand model (BLM) theoretically enables the derivation of environmental quality standards that are based on true bioavailable fractions of metals. Several physicochemical variables (especially pH, major cations, dissolved organic carbon, and dissolved metal concentrations) must, however, be assigned to run the BLM, but they are highly variable in time and space in natural systems. This article describes probabilistic approaches for integrating such variability during the derivation of risk indexes. To describe each variable using a probability density function (PDF), several methods were combined to 1) treat censored data (i.e., data below the limit of detection), 2) incorporate the uncertainty of the solid-to-liquid partitioning of metals, and 3) detect outliers. From a probabilistic perspective, 2 alternative approaches that are based on log-normal and Γ distributions were tested to estimate the probability of the predicted environmental concentration (PEC) exceeding the predicted non-effect concentration (PNEC), i.e., p(PEC/PNEC>1). The probabilistic approach was tested on 4 real-case studies based on Cu-related data collected from stations on the Loire and Moselle rivers. The approach described in this article is based on BLM tools that are freely available for end-users (i.e., the Bio-Met software) and on accessible statistical data treatments. This approach could be used by stakeholders who are involved in risk assessments of metals for improving site-specific studies. Copyright © 2013 SETAC.
Homeostatic and Circadian Contribution to EEG and Molecular State Variables of Sleep Regulation
Curie, Thomas; Mongrain, Valérie; Dorsaz, Stéphane; Mang, Géraldine M.; Emmenegger, Yann; Franken, Paul
2013-01-01
Study Objectives: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. Design: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. Setting: Mouse sleep laboratory. Participants: Male mice. Interventions: Sleep deprivation. Results: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. Conclusions: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. Citation: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state
Directory of Open Access Journals (Sweden)
Markus Krauss
Full Text Available Interindividual variability in anatomical and physiological properties results in significant differences in drug pharmacokinetics. The consideration of such pharmacokinetic variability supports optimal drug efficacy and safety for each single individual, e.g. by identification of individual-specific dosings. One clear objective in clinical drug development is therefore a thorough characterization of the physiological sources of interindividual variability. In this work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK approach for the mechanistically and physiologically realistic identification of interindividual variability. The consideration of a generic and highly detailed mechanistic PBPK model structure enables the integration of large amounts of prior physiological knowledge, which is then updated with new experimental data in a Bayesian framework. A covariate model integrates known relationships of physiological parameters to age, gender and body height. We further provide a framework for estimation of the a posteriori parameter dependency structure at the population level. The approach is demonstrated considering a cohort of healthy individuals and theophylline as an application example. The variability and co-variability of physiological parameters are specified within the population; respectively. Significant correlations are identified between population parameters and are applied for individual- and population-specific visual predictive checks of the pharmacokinetic behavior, which leads to improved results compared to present population approaches. In the future, the integration of a generic PBPK model into an hierarchical approach allows for extrapolations to other populations or drugs, while the Bayesian paradigm allows for an iterative application of the approach and thereby a continuous updating of physiological knowledge with new data. This will facilitate decision making e.g. from preclinical to
Importance of the macroeconomic variables for variance prediction: A GARCH-MIDAS approach
DEFF Research Database (Denmark)
Asgharian, Hossein; Hou, Ai Jun; Javed, Farrukh
2013-01-01
This paper aims to examine the role of macroeconomic variables in forecasting the return volatility of the US stock market. We apply the GARCH-MIDAS (Mixed Data Sampling) model to examine whether information contained in macroeconomic variables can help to predict short-term and long-term compone......This paper aims to examine the role of macroeconomic variables in forecasting the return volatility of the US stock market. We apply the GARCH-MIDAS (Mixed Data Sampling) model to examine whether information contained in macroeconomic variables can help to predict short-term and long...
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
Dimitriev, Dimitriy A; Saperova, Elena V; Dimitriev, Aleksey D
2016-01-01
Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV) in humans. The present study investigated whether changes in state anxiety (SA) can also modulate nonlinear dynamics of heart rate. A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR) were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA. Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE), and pointwise correlation dimension (PD2), and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1) during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2), and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure), entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA. The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.
Leti, Thomas; Bricout, Véronique A
2013-01-01
The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.
State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students.
Directory of Open Access Journals (Sweden)
Dimitriy A Dimitriev
Full Text Available Clinical and experimental research studies have demonstrated that the emotional experience of anxiety impairs heart rate variability (HRV in humans. The present study investigated whether changes in state anxiety (SA can also modulate nonlinear dynamics of heart rate.A group of 96 students volunteered to participate in the study. For each student, two 5-minute recordings of beat intervals (RR were performed: one during a rest period and one just before a university examination, which was assumed to be a real-life stressor. Nonlinear analysis of HRV was performed. The Spielberger's State-Trait Anxiety Inventory was used to assess the level of SA.Before adjusting for heart rate, a Wilcoxon matched pairs test showed significant decreases in Poincaré plot measures, entropy, largest Lyapunov exponent (LLE, and pointwise correlation dimension (PD2, and an increase in the short-term fractal-like scaling exponent of detrended fluctuation analysis (α1 during the exam session, compared with the rest period. A Pearson analysis indicated significant negative correlations between the dynamics of SA and Poincaré plot axes ratio (SD1/SD2, and between changes in SA and changes in entropy measures. A strong negative correlation was found between the dynamics of SA and LLE. A significant positive correlation was found between the dynamics of SA and α1. The decreases in Poincaré plot measures (SD1, complex correlation measure, entropy measures, and LLE were still significant after adjusting for heart rate. Corrected α1 was increased during the exam session. As before, the dynamics of adjusted LLE was significantly correlated with the dynamics of SA.The qualitative increase in SA during academic examination was related to the decrease in the complexity and size of the Poincaré plot through a reduction of both the interbeat interval and its variation.
Directory of Open Access Journals (Sweden)
Vojinovič Borut
2005-01-01
Full Text Available Financial development is correlated with several underlying regulatory variables (such as indicators of investor protection, market transparency variables for corporate governance growth and rules for capital market development, which are under the control of national legislators and EU directives. This paper provides estimates of the relationship between financial market development and corporate growth and assesses the impact of financial market integration on this relationship with reference to European Union (EU countries. The regression results obtained using this panel support the hypothesis that financial development promotes growth particularly in industries that are more financially dependent on external finance. For policy purposes, analyzing changes in these regulatory variables may be a more interesting exercise than analyzing integration of the financial systems themselves. Since assuming that EU countries will raise its regulatory and legal standards to the U.S. standards appears unrealistic, in this case we examine a scenario where EU countries raise their standards to the highest current EU standard.
Directory of Open Access Journals (Sweden)
Michael Adam Rieger
2016-09-01
Full Text Available Mice produce ultrasonic vocalizations (USV in multiple communicative contexts, including adult social interaction (e.g., male to female courtship, as well as pup calls when separated from the dam. Assessment of pup USV has been widely applied in models of social and communicative disorders, dozens of which have shown alterations to this conserved behavior. However, features such as call production rate can vary substantially even within experimental groups and it is unclear to what extent aspects of USV represent stable trait-like influences or are vulnerable to an animal's state. To address this question, we have employed a mixed modeling approach to describe consistency in USV features across time, leveraging multiple large cohorts recorded from two strains, and across ages/times. We find that most features of pup USV show consistent patterns within a recording session, but inconsistent patterns across postnatal development. This supports the conclusion that pup USV is most strongly influenced by state-like variables. In contrast, adult USV call rate and call duration show higher consistency across sessions and may reflect a stable trait. However, spectral features of adult song such as the presence of pitch jumps do not show this level of consistency, suggesting that pitch modulation is more susceptible to factors affecting the animal's state at the time of recording. Overall, the utility of this work is threefold. First, as variability necessarily affects the sensitivity of the assay to detect experimental perturbation, we hope the information provided here will be used to help researchers plan sufficiently powered experiments, as well as prioritize specific ages to study USV behavior and to decide which features to consider most strongly in analysis. Second, via the mouseTube platform, we have provided these hundreds of recordings and associated data to serve as a shared resource for other researchers interested in either benchmark data for
k– fading channels: a finite state Markov modelling approach
Indian Academy of Sciences (India)
C Priyanka
2018-02-07
Feb 7, 2018 ... 1 Department of Electronics and Communication Engineering, SRM University, ... probability; level crossing rate; state-transition probability; state-time duration. 1. ... statistics of the mobile radio signals are described by dif-.
Directory of Open Access Journals (Sweden)
Lei Fu
2017-10-01
Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.
Possession States: Approaches to Clinical Evaluation and Classification
Directory of Open Access Journals (Sweden)
S. McCormick
1992-01-01
Full Text Available The fields of anthropology and sociology have produced a large quantity of literature on possession states, physicians however rarely report on such phenomena. As a result clinical description of possession states has suffered, even though these states may be more common and less deviant than supposed. Both ICD-10 and DSM-IV may include specific criteria for possession disorders. The authors briefly review Western notions about possession and kindred states and present guidelines for evaluation and classification.
Modeling lake trophic state: a random forest approach
Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...
Inter-Annual Variability Of Rainfall In Some States Of Southern Nigeria
Directory of Open Access Journals (Sweden)
Egor
2015-08-01
Full Text Available Abstract The study inter-annual variability of rainfall in some states in Southern Nigeria focuses on analyzing the trends and fluctuations in annual rainfall over six states in Southern Nigeria covering a period of 1972 2012. In order to ascertain the variabilitys and to model the annual rainfall for future prediction to enhance policy implementation the quantitative and descriptive analysis techniques was employed. The rainfall series were analyzed for fluctuations using Standardized Anomaly Index SAI whereas the trends were examined using Statistical Package for Social Science Software SPSS 17.0. At 95 percent confidence level observations in the stations may be signals that the wetter period dominates the drier periods in this study. Each of the series contains two distinct periods when the rainfall anomalies negative and positive of a particular type were most significant. The period where the annual rainfall is above one standard deviation from the mean annual rainfall is considered Wet and the period below one standard deviation from the mean annual rainfall is considered Dry for each station. The results of the linear trend lines revealed an increase in rainfall supply over the period of study especially of recent. The annual rate of increase in rainfall over the period of investigation 1972 - 2012 were 15.21mmyear for Calabar 2.18mmyear for Port Harcourt 22.23mmyear for Owerri 3.25mmyear for Benin City 5.08mmyear for Enugu and 16.29mmyear for Uyo respectively. The variability in amount of annual rainfall revealed that in 2012 Calabar received the highest amount of rainfall of about 4062.70mm and the least value of 2099.4mm in 1973. In Porthacourt the highest amount of rainfall occurred in 1993 with a value of 3911.70mm and the least value in 1983 with a value of 1816.4mm. Owerri recorded the highest amount of rainfall of about 3064.0mm in 2011 and the least value occurred in 1986 with a value of 1228.4mm. In 1976 Benin received the
Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
International Nuclear Information System (INIS)
Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.
2015-01-01
Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general
International Nuclear Information System (INIS)
Sen, P.; Tan, John K.G.; Spencer, David
1999-01-01
Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored
Directory of Open Access Journals (Sweden)
Qian Wang
2017-01-01
Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.
Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.
Rawitscher, George H.; Koltracht, Israel
2002-08-01
An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.
Directory of Open Access Journals (Sweden)
Prashant Goswami
Full Text Available Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance and change in host (human population, in the change in disease load.We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases.For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence.The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India. Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers
2015-01-01
We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...
DEFF Research Database (Denmark)
Panduro, Toke Emil; Thorsen, Bo Jellesmark
2014-01-01
Hedonic models in environmental valuation studies have grown in terms of number of transactions and number of explanatory variables. We focus on the practical challenge of model reduction, when aiming for reliable parsimonious models, sensitive to omitted variable bias and multicollinearity. We...
Tracy, Allison J.; Erkut, Sumru; Porche, Michelle V.; Kim, Jo; Charmaraman, Linda; Grossman, Jennifer M.; Ceder, Ineke; Garcia, Heidie Vazquez
2010-01-01
In this article, we operationalize identification of mixed racial and ethnic ancestry among adolescents as a latent variable to (a) account for measurement uncertainty, and (b) compare alternative wording formats for racial and ethnic self-categorization in surveys. Two latent variable models were fit to multiple mixed-ancestry indicator data from…
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
International Nuclear Information System (INIS)
Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Yu Hui
2011-01-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH 4 + -N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: → A genetic algorithm aided stepwise cluster analysis method in food waste composting. → Nonlinear relationships between the selected state variables and the C/N ratio. → Introduced proxy tables save around 70% computational
Energy Technology Data Exchange (ETDEWEB)
Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huangg@iseis.org [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Energy and Environmental Research Academy, North China Electric Power University, Beijing, 102206 (China); Zeng Guangming [MOE Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082 (China); Qin Xiaosheng [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu Hui [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)
2011-03-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH{sub 4}{sup +}-N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: {yields} A genetic algorithm aided stepwise cluster analysis method in food waste composting. {yields} Nonlinear relationships between the selected state variables and the C/N ratio. {yields} Introduced proxy tables
Energy Technology Data Exchange (ETDEWEB)
Senechal, U.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik
2011-07-01
Temporal analysis of products (TAP) is a valuable tool for characterization of porous catalytic structures. Established TAP-modeling requires a spatially constant diffusion coefficient and neglect convective flows, which is only valid in Knudsen diffusion regime. Therefore in experiments, the number of molecules per pulse must be chosen accordingly. New approaches for variable process conditions are highly required. Thus, a new theoretical model is developed for estimating the number of molecules per pulse to meet these requirements under any conditions and at any time. The void volume is calculated as the biggest sphere fitting between three pellets. The total number of pulsed molecules is assumed to fill the first void volume at the inlet immediately. Molecule numbers from these calculations can be understood as maximum possible molecules at any time in the reactor to be in Knudsen diffusion regime, i.e., above the Knudsen number of 2. Moreover, a new methodology for generating a full three-dimensional geometrical representation of beds is presented and used for numerical simulations to investigate spatial effects. Based on a freely available open-source game physics engine library (BULLET), beds of arbitrary-sized pellets can be generated and transformed to CFD-usable geometry. In CFD-software (ANSYS CFX registered) a transient diffusive transport equation with time-dependent inlet boundary conditions is solved. Three different pellet diameters were investigated with 1e18 molecules per pulse, which is higher than the limit from the theoretical calculation. Spatial and temporal distributions of transported species show regions inside the reactor, where non-Knudsen conditions exist. From this results, the distance from inlet can be calculated where the theoretical pressure limit (Knudsen number equals 2) is obtained, i.e., from this point to the end of the reactor Knudsen regime can be assumed. Due to linear dependency of pressure and concentration (assuming ideal
International Nuclear Information System (INIS)
Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi
2010-01-01
One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.
Long-Term Memory: A State-Space Approach
Kiss, George R.
1972-01-01
Some salient concepts derived from the information sciences and currently used in theories of human memory are critically reviewed. The application of automata theory is proposed as a new approach in this field. The approach is illustrated by applying it to verbal memory. (Author)
Whole-of-Government Approaches to Fragile States in Africa
DEFF Research Database (Denmark)
Olsen, Gorm Rye
2013-01-01
For a number of years fragile states have been high on the foreign policy agendas of the USA and the EU. Both actors look upon fragile states with great concern and consider them as security threats. Officially they give priority to ‘whole-of-government approaches’ (wga) when addressing the threats...
The generalized pseudospectral approach to the bound states of the ...
Indian Academy of Sciences (India)
physics [6,7], solid-state physics [8,9], chemical physics [10], etc. ... coupling region and for the lower states, there is a lack of good quality ... relativistic framework for solving the radial Schrödinger equation (SE) of a single- ... throughout this article. ... the usual radial and angular momentum quantum numbers respectively.
Senkel, Luise
2016-01-01
This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo
2017-10-01
Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Directory of Open Access Journals (Sweden)
V. R. N. Pauwels
2013-09-01
Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Czech Academy of Sciences Publication Activity Database
Pudil, Pavel; Somol, Petr
2008-01-01
Roč. 16, č. 4 (2008), s. 37-55 ISSN 0572-3043 R&D Projects: GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : variable selection * decision making Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2008/RO/pudil-identifying%20the%20most%20informative%20variables%20for%20decision- making %20problems%20a%20survey%20of%20recent%20approaches%20and%20accompanying%20problems.pdf
Teleported State and its Fidelity in Quantum Teleportation of Continuous Variables
Institute of Scientific and Technical Information of China (English)
LI Fu-Li; LI Hong-Rong; ZHANG Jun-Xiang; ZHU Shi-Yao
2003-01-01
When given an unknown quantum state which may be either a pure or a mixed state in the coherent state representation, we show that explicit expressions for the teleported state and its fidelity in the teleportation process (S. L. Braunstein and H. J. Kimble 1998 Phys. Rev. Lett. 80 869) can be obtained without explicit expansions for the two-mode squeezed vacuum state and the Bell basis in a specified representation.
THE NEED FOR STATE IN THE ECONOMY- EPISTEMOLOGICAL APPROACH
Directory of Open Access Journals (Sweden)
ANCA-ŞTEFANIA SAVA
2010-01-01
Full Text Available The aim of this paper is to discuss the need for state in the economy, in an epistemological viewpoint. It presents in a critical manner the ideas on the state of the mercantilism and physiocracy representatives, of the classical and Keynesian economists and of the so-called current „the new liberal orthodoxy”. It is noticed that the need for a minimal state, as a condition of proper functioning of the society, has been justified even by those who have criticized it (classical liberals, being recognized that a society can not be conceived anarchic and utopian. If during ’29-’33s, the philosophy of laisser-faire was replaced by the Keynesian doctrine, and ’70s have placed the welfare state in a crisis of legitimacy, starting from 2008 we can talk of a resurgence of the Keynesian paradigm, according to which government intervention is seen as a way to stimulate the economic recovery.
Theoretical approaches to control spin dynamics in solid-state ...
Indian Academy of Sciences (India)
We present fundamental theories in the history of NMR, namely, the average Hamiltonian and Floquet theories. We also ..... The results are better illustrated in a double ...... Matter 17 4501. 94. Ernst M 2006 Germany: Solid-State NMR Summer.
The Soft State of Cygnus X-1 Observed With NuSTAR: A Variable Corona and a Stable Inner Disk
DEFF Research Database (Denmark)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.
2016-01-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variabilit...
X. Li; S. Zhong; X. Bian; W.E. Heilman
2010-01-01
The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...
Akpan, Charles P.; Archibong, Ijeoma A.
2012-01-01
The study sought to find out the predictive effect of self-concept, self-efficacy, self-esteem and locus of control on the instructional and motivational leadership roles performance effectiveness of administrators of public secondary schools in Cross River State of Nigeria. The relative contribution of each of the independent variables to the…
Fejoh, Johnson
2016-01-01
This study investigated the influence of bio-social variables - educational status, age and family socio-economic background on teacher union leaders' adherence to democratic principles in Ogun State of Nigeria. The study employed the ex-post-facto research design. Five hypotheses were generated and tested using an instrument titled "union…
Fogel, Benjamin N; Nguyen, Hong Loan T; Smink, Gayle; Sekhar, Deepa L
2018-04-01
We conducted an inventory of state-based recommendations for follow-up of alpha thalassemia silent carrier and trait identified on newborn screen. We found wide variability in the nature and timing of these recommendations. We recommend a standardized recommendation to guide pediatricians in evidenced-based care for this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Akpochafo, G. O.
2014-01-01
This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…
A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process
Directory of Open Access Journals (Sweden)
Yuehjen E. Shao
2012-01-01
Full Text Available The monitoring of a multivariate process with the use of multivariate statistical process control (MSPC charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid scheme which is composed of independent component analysis (ICA and support vector machine (SVM to determine the fault quality variables when a step-change disturbance existed in a multivariate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T2 MSPC chart to generate independent components (ICs. The hidden information of the fault quality variables can be identified in these ICs. The ICs are then served as the input variables of the classifier SVM for performing the classification process. The performance of various process designs is investigated and compared with the typical classification method. Using the proposed approach, the fault quality variables for a multivariate process can be accurately and reliably determined.
Survey of state approaches to solar energy incentives
Energy Technology Data Exchange (ETDEWEB)
Johnson, S. B.
1979-07-01
A comprehensive survey is presented of state statutes designed to encourage the application of solar technology. A large majority of the states have enacted financial incentives designed to stimulate solar energy use. Commonly, these incentives include preferential property tax treatment of solar systems, and income tax benefits to solar users. There are a wide variety of other tax breaks as well, including excise and franchise tax incentives. Some states have recently developed loan or grant programs for solar installations. Other states have addressed aspects of real property and land-use planning law, which have served as barriers to either the installation of solar technology or access to sunlight. In addition to removing such obstacles as restrictive convenants and zoning limitations, the legislation of several states provides affirmative recognition of the potential of real property law to serve as a spur to solar development, through solar easements, planning and zoning, and public nuisance. A small number of states have legislated in the field of utility regulation, addressing important questions of (1) nondiscriminatory rates for utility backup to solar systems and public utility commissions, and (2) utility involvement in solar energy applicatons.
Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui
2011-03-01
It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.
The Development of Verbal and Visual Working Memory Processes: A Latent Variable Approach
Koppenol-Gonzalez, Gabriela V.; Bouwmeester, Samantha; Vermunt, Jeroen K.
2012-01-01
Working memory (WM) processing in children has been studied with different approaches, focusing on either the organizational structure of WM processing during development (factor analytic) or the influence of different task conditions on WM processing (experimental). The current study combined both approaches, aiming to distinguish verbal and…
Variability in University Students' Use of Technology: An "Approaches to Learning" Perspective
Mimirinis, Mike
2016-01-01
This study reports the results of a cross-case study analysis of how students' approaches to learning are demonstrated in blended learning environments. It was initially propositioned that approaches to learning as key determinants of the quality of student learning outcomes are demonstrated specifically in how students utilise technology in…
Energy-saving approaches to solid state street lighting
Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras
2011-10-01
We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.
Behnke, Ruben John
The objective of this dissertation was to show that there is now enough observed humidity data available so that estimates of humidity, along with their necessary assumptions, can be replaced by measured humidity data. The range of applications that depend on humidity data is huge, ranging from water use efficiency of plants and plant stress to human health and agricultural practices. Biases due to the use of estimated humidity can be expected to have short and long impacts, decreasing the accuracy and precision of these, and many other, applications. Data from local, regional, and national observation networks was gathered, and custom quality control routines were written to remove bad data points from over 45000 stations, leaving 12533 usable stations. While still not at the same number of observations as temperature or precipitation, this number is nearly ten times as high as two decades ago. The work I performed consists of three major components, corresponding to the three main chapters of this dissertation. In chapter one, I describe data sources and quality control methods, along with some basic statistics of humidity, describing which geographic variables often used to predict temperature and precipitation can be used to do the same for humidity. Chapter two defines specific diurnal patterns (or "types") of dew point across the United States, including their attributes, causes, and potential influences. Chapter three analyzes biases in evapotranspiration, heat indices, and relative humidity levels that are a direct result of using estimated humidity data. Chapter four discusses contributions this work makes to the scientific community, and potential further research to build on what is presented here. While it may seem that the science of humidity should be well beyond data gathering and bias analysis, the fact remains that humidity is still very commonly estimated through the use of minimum temperature, and diurnal changes in dew point are often ignored
International Nuclear Information System (INIS)
Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico
2014-01-01
Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach
Pinegger, Andreas; Faller, Josef; Halder, Sebastian; Wriessnegger, Selina C.; Müller-Putz, Gernot R.
2015-02-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) were proven to be a reliable synchronous communication method. For everyday life situations, however, this synchronous mode is impractical because the system will deliver a selection even if the user is not paying attention to the stimulation. So far, research into attention-aware visual ERP-BCIs (i.e., asynchronous ERP-BCIs) has led to variable success. In this study, we investigate new approaches for detection of user engagement. Approach. Classifier output and frequency-domain features of electroencephalogram signals as well as the hybridization of them were used to detect the user's state. We tested their capabilities for state detection in different control scenarios on offline data from 21 healthy volunteers. Main results. The hybridization of classifier output and frequency-domain features outperformed the results of the single methods, and allowed building an asynchronous P300-based BCI with an average correct state detection accuracy of more than 95%. Significance. Our results show that all introduced approaches for state detection in an asynchronous P300-based BCI can effectively avoid involuntary selections, and that the hybrid method is the most effective approach.
Jordan, Pascal; Shedden-Mora, Meike C; Löwe, Bernd
To obtain predictors of suicidal ideation, which can also be used for an indirect assessment of suicidal ideation (SI). To create a classifier for SI based on variables of the Patient Health Questionnaire (PHQ) and sociodemographic variables, and to obtain an upper bound on the best possible performance of a predictor based on those variables. From a consecutive sample of 9025 primary care patients, 6805 eligible patients (60% female; mean age = 51.5 years) participated. Advanced methods of machine learning were used to derive the prediction equation. Various classifiers were applied and the area under the curve (AUC) was computed as a performance measure. Classifiers based on methods of machine learning outperformed ordinary regression methods and achieved AUCs around 0.87. The key variables in the prediction equation comprised four items - namely feelings of depression/hopelessness, low self-esteem, worrying, and severe sleep disturbances. The generalized anxiety disorder scale (GAD-7) and the somatic symptom subscale (PHQ-15) did not enhance prediction substantially. In predicting suicidal ideation researchers should refrain from using ordinary regression tools. The relevant information is primarily captured by the depression subscale and should be incorporated in a nonlinear model. For clinical practice, a classification tree using only four items of the whole PHQ may be advocated. Copyright © 2018 Elsevier Inc. All rights reserved.
Sums and Products of Jointly Distributed Random Variables: A Simplified Approach
Stein, Sheldon H.
2005-01-01
Three basic theorems concerning expected values and variances of sums and products of random variables play an important role in mathematical statistics and its applications in education, business, the social sciences, and the natural sciences. A solid understanding of these theorems requires that students be familiar with the proofs of these…
Directory of Open Access Journals (Sweden)
Günther Klonner
Full Text Available The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value, habitat use (agricultural and ruderal habitats, occurrence under the montane belt, and propagule pressure (frequency were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.
Nieto-Moreno, V.; Martínez-Ruiz, F.; Giralt, S.; Jimenéz-Espejo, F.; Gallego-Torres, D.; Rodrigo-Gámiz, M.; Garcia-Orellana, J.; Ortega-Huertas, M.; de Lange, G.J.
2011-01-01
Climate variability in the western Mediterranean is reconstructed for the last 4000 yr using marine sediments recovered in the west Algerian-Balearic basin, near the Alboran basin. Fluctuations in chemical and mineralogical sediment composition as well as grain size distribution are linked to
Bhaskar, Ankush; Ramesh, Durbha Sai; Vichare, Geeta; Koganti, Triven; Gurubaran, S.
2017-12-01
Identification and quantification of possible drivers of recent global temperature variability remains a challenging task. This important issue is addressed adopting a non-parametric information theory technique, the Transfer Entropy and its normalized variant. It distinctly quantifies actual information exchanged along with the directional flow of information between any two variables with no bearing on their common history or inputs, unlike correlation, mutual information etc. Measurements of greenhouse gases: CO2, CH4 and N2O; volcanic aerosols; solar activity: UV radiation, total solar irradiance ( TSI) and cosmic ray flux ( CR); El Niño Southern Oscillation ( ENSO) and Global Mean Temperature Anomaly ( GMTA) made during 1984-2005 are utilized to distinguish driving and responding signals of global temperature variability. Estimates of their relative contributions reveal that CO2 ({˜ } 24 %), CH4 ({˜ } 19 %) and volcanic aerosols ({˜ }23 %) are the primary contributors to the observed variations in GMTA. While, UV ({˜ } 9 %) and ENSO ({˜ } 12 %) act as secondary drivers of variations in the GMTA, the remaining play a marginal role in the observed recent global temperature variability. Interestingly, ENSO and GMTA mutually drive each other at varied time lags. This study assists future modelling efforts in climate science.
Quantum tele-amplification with a continuous-variable superposition state
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo
2013-01-01
-enhanced functions such as coherent-state quantum computing (CSQC), quantum metrology and a quantum repeater could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we......Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum...... demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...
Directory of Open Access Journals (Sweden)
Rodrigo Wiff
2012-03-01
Full Text Available Alfonsino (Beryx splendens is a species associated with seamounts, with an important fishery in Juan Fernandez archipelago, Chile (33°40'S, 79°00'W. Since 2004, this resource has been managed by catch quotas estimated from stock assessment models. The alfonsino model involves high levels of uncertainty for several reasons including a lack of knowledge of aspects of the population dynamics and poorly informative time-series that feed the proposed evaluation models. This work evaluated three hypotheses regarding population dynamics and their influence on the main state variables (biomass, recruitment of the model using age-structured and dynamic biomass models. The hypotheses corresponded to de-recruitment of older individuals, non-linearity between standardized catch per unit effort, and population abundance as well as variations of the relative importance of length structures. According to the results, the depletion of the spawning biomass between 1998 and 2008 varied between 9 and 56%, depending on the combination of hypotheses used in the model. This indicates that state variables in alfonsino are not robust to the available information; rather, they depend strongly on the hypothesis of population dynamics. The discussion is focused on interpreting the causes of the changes in the state variables in light of a conceptual model for population dynamics in alfonsino and which pieces of information would be necessary to reduce the associated uncertainty.El alfonsino (Beryx splendens es una especie asociada a montes submarinos. En Chile sustenta una importante pesquería en el archipiélago de Juan Fernández (33°40'S, 79°00'W. Desde el año 2004, este recurso es administrado a través de cuotas anuales de capturas, las cuales son estimadas desde un modelo de evaluación de stock. La modelación de la población de alfonsino se caracteriza por una alta incertidumbre, debido a diversas fuentes, como son desconocimiento de aspectos de su din
Directory of Open Access Journals (Sweden)
Gu NY
2008-12-01
Full Text Available There are limited studies on quantifying the impact of patient satisfaction with pharmacist consultation on patient medication adherence. Objectives: The objective of this study is to evaluate the effect of patient satisfaction with pharmacist consultation services on medication adherence in a large managed care organization. Methods: We analyzed data from a patient satisfaction survey of 6,916 patients who had used pharmacist consultation services in Kaiser Permanente Southern California from 1993 to 1996. We compared treating patient satisfaction as exogenous, in a single-equation probit model, with a bivariate probit model where patient satisfaction was treated as endogenous. Different sets of instrumental variables were employed, including measures of patients' emotional well-being and patients' propensity to fill their prescriptions at a non-Kaiser Permanente (KP pharmacy. The Smith-Blundell test was used to test whether patient satisfaction was endogenous. Over-identification tests were used to test the validity of the instrumental variables. The Staiger-Stock weak instrument test was used to evaluate the explanatory power of the instrumental variables. Results: All tests indicated that the instrumental variables method was valid and the instrumental variables used have significant explanatory power. The single equation probit model indicated that the effect of patient satisfaction with pharmacist consultation was significant (p<0.010. However, the bivariate probit models revealed that the marginal effect of pharmacist consultation on medication adherence was significantly greater than the single equation probit. The effect increased from 7% to 30% (p<0.010 after controlling for endogeneity bias. Conclusion: After appropriate adjustment for endogeneity bias, patients satisfied with their pharmacy services are substantially more likely to adhere to their medication. The results have important policy implications given the increasing focus
Directory of Open Access Journals (Sweden)
Joachim Almquist
Full Text Available The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient
The finite state projection approach to analyze dynamics of heterogeneous populations
Johnson, Rob; Munsky, Brian
2017-06-01
Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.
steady and dynamic states analysis of induction motor: fea approach
African Journals Online (AJOL)
HOD
The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...
Prevalent Approaches to Professional Development in State 4-H Programs
Smith, Martin H.; Worker, Steven M.; Schmitt-McQuitty, Lynn; Meehan, Cheryl L.; Lewis, Kendra M.; Schoenfelder, Emily; Brian, Kelley
2017-01-01
High-quality 4-H programming requires effective professional development of educators. Through a mixed methods study, we explored professional development offered through state 4-H programs. Survey results revealed that both in-person and online delivery modes were used commonly for 4-H staff and adult volunteers; for teen volunteers, in-person…
Test-state approach to the quantum search problem
International Nuclear Information System (INIS)
Sehrawat, Arun; Nguyen, Le Huy; Englert, Berthold-Georg
2011-01-01
The search for 'a quantum needle in a quantum haystack' is a metaphor for the problem of finding out which one of a permissible set of unitary mappings - the oracles - is implemented by a given black box. Grover's algorithm solves this problem with quadratic speedup as compared with the analogous search for 'a classical needle in a classical haystack'. Since the outcome of Grover's algorithm is probabilistic - it gives the correct answer with high probability, not with certainty - the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize 'a classical search for the quantum needle' which is deterministic - it always gives a definite answer after a finite number of steps - and 3.41 times as fast as the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover's algorithm.
Dimerization of Carboxylic Acids: An Equation of State Approach
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas
2017-01-01
The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...
Abatzoglou, John T.; Ficklin, Darren L.
2017-09-01
The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.
State network approach to characteristics of financial crises
Qiu, Lu; Gu, Changgui; Xiao, Qin; Yang, Huijie; Wu, Guolin
2018-02-01
Extensive works have reported that a financial crisis can induce significant changes to topological structure of a stock network constructed with cross-correlations between stocks. But there are still some problems to be answered, such as what is the relationship between different crises in history and how to classify them? In the present work, we propose a new network-based solution to extract and display the relationships between the crises. The Dow Jones stock market is investigated as a typical example. The cross-correlation matrix between stocks is used to measure the state of stock market, called state matrix. All the states cluster into six sub-categories. A state network is constructed further to display the relationships between all the states, which contains a total of nine communities. It is found that three crises C , D and E (refer to the Lehman's bankruptcy in 2008, the Euro-zone and International Monetary Fund decide the first bailout for Greece in 2010, and the European sovereign debt crisis in 2011, respectively) belong to a specific sub-category and cluster in a single community. The mid-stage of C is closely linked with E, while the other stages with D. The other two crises A and B (refer to the financial crisis in Asia in 1997, and the burst of "dot-com bubble" in 2002, respectively) belong to another sub-category and gather in a corner of another single community. A and B are linked directly with C and D by two edges. By this way, we give a clear picture of the relationships between the crises.
Fernandes, José Antonio; Lozano, Jose A.; Iñ za, Iñ aki; Irigoien, Xabier; Pé rez, Aritz; Rodrí guez, Juan Diego
2013-01-01
A multi-species approach to fisheries management requires taking into account the interactions between species in order to improve recruitment forecasting of the fish species. Recent advances in Bayesian networks direct the learning of models
National Aeronautics and Space Administration — Among various approaches for implementing prognostic algorithms data-driven algorithms are popular in the industry due to their intuitive nature and relatively fast...
Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R
2017-07-15
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.
Approaches to state regulation of the energy sector
International Nuclear Information System (INIS)
Shervashidze, N.; Stojchev, D.
1995-01-01
Theory and practice of economical regulation by repaying coefficient and by partial co-ordinated expenses are discussed. The example of England, Ireland, Wales and US are pointed out as showing the features of both approaches being quite interesting for Bulgarian energy sector, facing the introduction of modern economical regulation. The specific character of Bulgarian energy sector is described and some conclusions are drawn concerning appropriate regulating methods. 6 refs. (orig.)
A Parallel Approach in Computing Correlation Immunity up to Six Variables
2015-07-24
failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 23 JUL 2015 2. REPORT TYPE...second step, we specify that a condition hold across all assignments of values to the variables chosen in the first step. For pedagogical reasons, we could...table of the function whose correlation immunity is currently being computed. When this circuit is used in exhaustive enumeration, the Function
Implementation of upper limit calculation for a poisson variable by bayesian approach
International Nuclear Information System (INIS)
Zhu Yongsheng
2008-01-01
The calculation of Bayesian confidence upper limit for a Poisson variable including both signal and background with and without systematic uncertainties has been formulated. A Fortran 77 routine, BPULE, has been developed to implement the calculation. The routine can account for systematic uncertainties in the background expectation and signal efficiency. The systematic uncertainties may be separately parameterized by a Gaussian, Log-Gaussian or flat probability density function (pdf). Some technical details of BPULE have been discussed. (authors)
Forejt, Martin; Brázdová, Zuzana Derflerová; Novák, Jan; Zlámal, Filip; Forbelská, Marie; Bienert, Petr; Mořkovská, Petra; Zavřelová, Miroslava; Pohořalá, Aneta; Jurášková, Miluše; Salah, Nabil; Bienertová-Vašků, Julie
2017-12-01
It is known that total energy intake and its distribution during the day influences human anthropometric characteristics. However, possible association between variability in total energy intake and obesity has thus far remained unexamined. This study was designed to establish the influence of energy intake variability of each daily meal on the anthropometric characteristics of obesity. A total of 521 individuals of Czech Caucasian origin aged 16–73 years (390 women and 131 men) were included in the study, 7-day food records were completed by all study subjects and selected anthropometric characteristics were measured. The interquartile range (IQR) of energy intake was assessed individually for each meal of the day (as a marker of energy intake variability) and subsequently correlated with body mass index (BMI), body fat percentage (%BF), waist-hip ratio (WHR), and waist circumference (cW). Four distinct models were created using multiple logistic regression analysis and backward stepwise logistic regression. The most precise results, based on the area under the curve (AUC), were observed in case of the %BF model (AUC=0.895) and cW model (AUC=0.839). According to the %BF model, age (p<0.001) and IQR-lunch (p<0.05) seem to play an important prediction role for obesity. Likewise, according to the cW model, age (p<0.001), IQR-breakfast (p<0.05) and IQR-dinner (p <0.05) predispose patients to the development of obesity. The results of our study show that higher variability in the energy intake of key daily meals may increase the likelihood of obesity development. Based on the obtained results, it is necessary to emphasize the regularity in meals intake for maintaining proper body composition. Copyright© by the National Institute of Public Health, Prague 2017
A novel Gaussian model based battery state estimation approach: State-of-Energy
International Nuclear Information System (INIS)
He, HongWen; Zhang, YongZhi; Xiong, Rui; Wang, Chun
2015-01-01
Highlights: • The Gaussian model is employed to construct a novel battery model. • The genetic algorithm is used to implement model parameter identification. • The AIC is used to decide the best hysteresis order of the battery model. • A novel battery SoE estimator is proposed and verified by two kinds of batteries. - Abstract: State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that different kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to construct the battery model. What is more, the genetic algorithm is employed to locate the optimal parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best hysteresis order of the combined battery model. Results from a comparative analysis show that the first-order hysteresis battery model is thought of being the best based on the AIC values. (3) The central difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is considered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error is within 1% for both LiFePO 4 and LiMn 2 O 4 battery datasets
Martin, Royce Ann
The purpose of this study was to determine the extent that student scores on a researcher-constructed quantitative and document literacy test, the Aviation Documents Delineator (ADD), were associated with (a) learning styles (imaginative, analytic, common sense, dynamic, and undetermined), as identified by the Learning Type Measure, (b) program curriculum (aerospace administration, professional pilot, both aerospace administration and professional pilot, other, or undeclared), (c) overall cumulative grade point average at Indiana State University, and (d) year in school (freshman, sophomore, junior, or senior). The Aviation Documents Delineator (ADD) was a three-part, 35 question survey that required students to interpret graphs, tables, and maps. Tasks assessed in the ADD included (a) locating, interpreting, and describing specific data displayed in the document, (b) determining data for a specified point on the table through interpolation, (c) comparing data for a string of variables representing one aspect of aircraft performance to another string of variables representing a different aspect of aircraft performance, (d) interpreting the documents to make decisions regarding emergency situations, and (e) performing single and/or sequential mathematical operations on a specified set of data. The Learning Type Measure (LTM) was a 15 item self-report survey developed by Bernice McCarthy (1995) to profile an individual's processing and perception tendencies in order to reveal different individual approaches to learning. The sample used in this study included 143 students enrolled in Aerospace Technology Department courses at Indiana State University in the fall of 1996. The ADD and the LTM were administered to each subject. Data collected in this investigation were analyzed using a stepwise multiple regression analysis technique. Results of the study revealed that the variables, year in school and GPA, were significant predictors of the criterion variables, document
Drivers of Variability in Public-Supply Water Use Across the Contiguous United States
Worland, Scott C.; Steinschneider, Scott; Hornberger, George M.
2018-03-01
This study explores the relationship between municipal water use and an array of climate, economic, behavioral, and policy variables across the contiguous U.S. The relationship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18 covariates, and three higher-level grouping variables. Additionally, a second analysis is included for 83 cities where water price and water conservation policy information is available. A hierarchical model using the nine climate regions (product of National Oceanic and Atmospheric Administration) as the higher-level groups results in the best out-of-sample performance, as estimated by the Widely Available Information Criterion, compared to counties grouped by urban continuum classification or primary economic activity. The regression coefficients indicate that the controls on water use are not uniform across the nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to social variables, whereas counties in the Southwest and East North Central climate regions are more sensitive to environmental variables. For the national city-level model, it appears that arid cities with a high cost of living and relatively low water bills sell more water per customer, but as with the county-level model, the effect of each variable depends heavily on where a city is located.
Economies of scale in the Korean district heating system: A variable cost function approach
International Nuclear Information System (INIS)
Park, Sun-Young; Lee, Kyoung-Sil; Yoo, Seung-Hoon
2016-01-01
This paper aims to investigate the cost efficiency of South Korea’s district heating (DH) system by using a variable cost function and cost-share equation. We employ a seemingly unrelated regression model, with quarterly time-series data from the Korea District Heating Corporation (KDHC)—a public utility that covers about 59% of the DH system market in South Korea—over the 1987–2011 period. The explanatory variables are price of labor, price of material, capital cost, and production level. The results indicate that economies of scale are present and statistically significant. Thus, expansion of its DH business would allow KDHC to obtain substantial economies of scale. According to our forecasts vis-à-vis scale economies, the KDHC will enjoy cost efficiency for some time yet. To ensure a socially efficient supply of DH, it is recommended that the KDHC expand its business proactively. With regard to informing policy or regulations, our empirical results could play a significant role in decision-making processes. - Highlights: • We examine economies of scale in the South Korean district heating sector. • We focus on Korea District Heating Corporation (KDHC), a public utility. • We estimate a translog cost function, using a variable cost function. • We found economies of scale to be present and statistically significant. • KDHC will enjoy cost efficiency and expanding its supply is socially efficient.
Vidal, Anthony; Wu, Will; Nakajima, Mimi; Becker, James
2017-09-19
The purpose of this study was to examine the effects of focus of attention cues on movement coordination and coordination variability in the lower extremity. Twenty participants performed the standing long jump under both internal and external focus of attention conditions. A modified vector coding technique was used to evaluate the influence of attentional focus cues on lower extremity coordination patterns and coordination variability during the jumps. Participants jumped significantly further under an external focus of attention condition compared with an internal focus of attention condition (p = .035, effect size = .29). Focus of attention also influenced coordination between the ankle and knee, F(6, 19) = 2.87, p = .012, effect size = .388, with participants primarily using their knees under the internal focus of attention, and using both their ankles and knees under the external focus of attention. Attentional focus cues did not influence ankle-knee, F(1, 19) = 0.02, p = .98, effect size = .02, or hip-knee, F(1, 19) = 5.00, p = .49, effect size = .16, coordination variability. Results suggest that while attentional focus may not directly influence movement coordination condition, there is still a change in movement strategy resulting in greater jump distances following an external focus of attention.
Psychological variables implied in the therapeutic effect of ayahuasca: A contextual approach.
Franquesa, Alba; Sainz-Cort, Alberto; Gandy, Sam; Soler, Joaquim; Alcázar-Córcoles, Miguel Ángel; Bouso, José Carlos
2018-04-04
Ayahuasca is a psychedelic decoction originating from Amazonia. The ayahuasca-induced introspective experience has been shown to have potential benefits in the treatment of several pathologies, to protect mental health and to improve neuropsychological functions and creativity, and boost mindfulness. The underlying psychological processes related to the use of ayahuasca in a psychotherapeutic context are not yet well described in the scientific literature, but there is some evidence to suggest that psychological variables described in psychotherapies could be useful in explaining the therapeutic effects of the brew. In this study we explore the link between ayahuasca use and Decentering, Values and Self, comparing subjects without experience of ayahuasca (n = 41) with subjects with experience (n = 81). Results confirm that ayahuasca users scored higher than non-users in Decentering and Positive self, but not in Valued living, Life fulfillment, Self in social relations, Self in close relations and General self. Scores in Decentering were higher in the more experienced subjects (more than 15 occasions) than in those with less experience (less than 15 occasions). Our results show that psychological process variables may explain the outcomes in ayahuasca psychotherapy. The introduction of these variables is warranted in future ayahuasca therapeutic studies. Copyright © 2018 Elsevier B.V. All rights reserved.
A New Statistical Approach to the Optical Spectral Variability in Blazars
Directory of Open Access Journals (Sweden)
Jose A. Acosta-Pulido
2016-12-01
Full Text Available We present a spectral variability study of a sample of about 25 bright blazars, based on optical spectroscopy. Observations cover the period from the end of 2008 to mid 2015, with an approximately monthly cadence. Emission lines have been identified and measured in the spectra, which permits us to classify the sources into BL Lac-type or FSRQs, according to the commonly used EW limit. We have obtained synthetic photometry and produced colour-magnitude diagrams which show different trends associated with the object classes: generally, BL Lacs tend to become bluer when brighter and FSRQs become redder when brighter, although several objects exhibit both trends, depending on brightness. We have also applied a pattern recognition algorithm to obtain the minimum number of physical components which can explain the variability of the optical spectrum. We have used NMF (Non-Negative Matrix Factorization instead of PCA (Principal Component Analysis to avoid un-realistic negative components. For most targets we found that 2 or 3 meta-components are enough to explain the observed spectral variability.
Krüger, Melanie; Straube, Andreas; Eggert, Thomas
2017-01-01
In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is
Ground-state correlations within a nonperturbative approach
Czech Academy of Sciences Publication Activity Database
De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, Petr
2017-01-01
Roč. 95, č. 2 (2017), č. článku 024306. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : ground state * harmonic oscillator frequency * space dimensions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016
Directory of Open Access Journals (Sweden)
Nico Franz
2016-09-01
Full Text Available Overview. Taxonomic names are imperfect identifiers of specific and sometimes conflicting taxonomic perspectives in aggregated biodiversity data environments. The inherent ambiguities of names can be mitigated using syntactic and semantic conventions developed under the taxonomic concept approach. These include: (1 representation of taxonomic concept labels (TCLs: name sec. source to precisely identify name usages and meanings, (2 use of parent/child relationships to assemble separate taxonomic perspectives, and (3 expert provision of Region Connection Calculus articulations (RCC–5: congruence, [inverse] inclusion, overlap, exclusion that specify how data identified to different-sourced TCLs can be integrated. Application of these conventions greatly increases trust in biodiversity data networks, most of which promote unitary taxonomic 'syntheses' that obscure the actual diversity of expert-held views. Better design solutions allow users to control the taxonomic variable and thereby assess the robustness of their biological inferences under different perspectives. A unique constellation of prior efforts – including the powerful Symbiota collections software platform, the Euler/X multi-taxonomy alignment toolkit, and the "Weakley Flora" which entails 7,000 concepts and more than 75,000 RCC–5 articulations – provides the opportunity to build a first full-scale concept resolution service for SERNEC, the SouthEast Regional Network of Expertise and Collections, currently with 60 member herbaria and 2 million occurrence records. Intellectual merit. We have developed a multi-dimensional, step-wise plan to transition SERNEC's data culture from name- to concept-based practices. (1 We will engage SERNEC experts through annual, regional workshops and follow-up interactions that will foster buy-in and ultimately the completion of 12 community-identified use cases. (2. We will leverage RCC–5 data from the Weakley Flora and further development of
An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States
2015-12-22
AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a. CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a
Statistical Analysis of Poverty in Oyo-State: A Q 2 -Approach ...
African Journals Online (AJOL)
The limited scope of uni-dimensional money-metric approach of analyzing poverty based on either expenditure or income has made approaches that allow poverty to be studied at several dimensions a necessity. It is in the light of this, that this study was aimed at analyzing poverty in Oyo State using a Q2-approach.
Explaining state-to-state differences in seat belt use : an analysis of socio-demographic variables.
2011-02-01
"Despite the extensive evidence about the benefits of seat belt use, there is a great deal of variation in use within the US. For example, the national average for seat belt use in 2009 was 84 percent while the state-level averages ranged from 68 per...
Long term variability of Cygnus X-1. V. State definitions with all sky monitors
Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.
2013-06-01
We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.
Hu, Yong; Olguin, Hernan; Gutheil, Eva
2017-05-01
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new
She Son Gun
2014-01-01
Approaches to development of classification of the state methods of regulation of economy are considered. On the basis of the provided review the complex method of state regulation of business activity is reasonable. The offered principles allow improving public administration and can be used in industry concepts and state programs on support of small business in fishery.
Rotational states in deformed nuclei: An analytic approach
International Nuclear Information System (INIS)
Bentz, W.; Arima, A.; Enders, J.; Wambach, J.; Richter, A.
2011-01-01
The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities in describing the rotational states is emphasized. We show explicitly how the rotor picture emerges from the isoscalar Goldstone modes and how the two-rotor model emerges from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules in deformed nuclei and make the connection to empirical information.
Comparison of Numerical Approaches to a Steady-State Landscape Equation
Bachman, S.; Peckham, S.
2008-12-01
A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a
International Nuclear Information System (INIS)
Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.
1999-01-01
We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society
A cross-scale approach to understand drought-induced variability of sagebrush ecosystem productivity
Assal, T.; Anderson, P. J.
2016-12-01
Sagebrush (Artemisia spp.) mortality has recently been reported in the Upper Green River Basin (Wyoming, USA) of the sagebrush steppe of western North America. Numerous causes have been suggested, but recent drought (2012-13) is the likely mechanism of mortality in this water-limited ecosystem which provides critical habitat for many species of wildlife. An understanding of the variability in patterns of productivity with respect to climate is essential to exploit landscape scale remote sensing for detection of subtle changes associated with mortality in this sparse, uniformly vegetated ecosystem. We used the standardized precipitation index to characterize drought conditions and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (250-m resolution) to characterize broad characteristics of growing season productivity. We calculated per-pixel growing season anomalies over a 16-year period (2000-2015) to identify the spatial and temporal variability in productivity. Metrics derived from Landsat satellite imagery (30-m resolution) were used to further investigate trends within anomalous areas at local scales. We found evidence to support an initial hypothesis that antecedent winter drought was most important in explaining reduced productivity. The results indicate drought effects were inconsistent over space and time. MODIS derived productivity deviated by more than four standard deviations in heavily impacted areas, but was well within the interannual variability in other areas. Growing season anomalies highlighted dramatic declines in productivity during the 2012 and 2013 growing seasons. However, large negative anomalies persisted in other areas during the 2014 growing season, indicating lag effects of drought. We are further investigating if the reduction in productivity is mediated by local biophysical properties. Our analysis identified spatially explicit patterns of ecosystem properties altered by severe drought which are consistent with
Field Scale Studies on the Spatial Variability of Soil Quality Indicators in Washington State, USA
Directory of Open Access Journals (Sweden)
Jeffrey L. Smith
2011-01-01
Full Text Available Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.
Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi. Bian
2018-01-01
Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...
Puffed-up but shaky selves : State self-esteem level and variability in narcissists
Geukes, K.; Nestler, S.; Hutteman, R.; Dufner, M.; Küfner, A.C.P.; Egloff, B.; Denissen, J.J.A.; Back, M.D.
2017-01-01
Different theoretical conceptualizations characterize grandiose narcissists by high, yet fragile self-esteem. Empirical evidence, however, has been inconsistent, particularly regarding the relationship between narcissism and self-esteem fragility (i.e., self-esteem variability). Here, we aim at
Directory of Open Access Journals (Sweden)
Lorena Olmos-Pérez
2017-05-01
Full Text Available The high mortality of cephalopod early stages is the main bottleneck to grow them from paralarvae to adults in culture conditions, probably because the inadequacy of the diet that results in malnutrition. Since visual analysis of digestive tract contents of paralarvae provides little evidence of diet composition, the use of molecular tools, particularly next generation sequencing (NGS platforms, offers an alternative to understand prey preferences and nutrient requirements of wild paralarvae. In this work, we aimed to determine the diet of paralarvae of the loliginid squid Alloteuthis media and to enhance the knowledge of the diet of recently hatched Octopus vulgaris paralarvae collected in different areas and seasons in an upwelling area (NW Spain. DNA from the dissected digestive glands of 32 A. media and 64 O. vulgaris paralarvae was amplified with universal primers for the mitochondrial gene COI, and specific primers targeting the mitochondrial gene 16S gene of arthropods and the mitochondrial gene 16S of Chordata. Following high-throughput DNA sequencing with the MiSeq run (Illumina, up to 4,124,464 reads were obtained and 234,090 reads of prey were successfully identified in 96.87 and 81.25% of octopus and squid paralarvae, respectively. Overall, we identified 122 Molecular Taxonomic Units (MOTUs belonging to several taxa of decapods, copepods, euphausiids, amphipods, echinoderms, molluscs, and hydroids. Redundancy analysis (RDA showed seasonal and spatial variability in the diet of O. vulgaris and spatial variability in A. media diet. General Additive Models (GAM of the most frequently detected prey families of O. vulgaris revealed seasonal variability of the presence of copepods (family Paracalanidae and ophiuroids (family Euryalidae, spatial variability in presence of crabs (family Pilumnidae and preference in small individual octopus paralarvae for cladocerans (family Sididae and ophiuroids. No statistically significant variation in
Long term variability of Cygnus X-1. V. State definitions with all sky monitors
Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M.A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G.L.; Hanke, M.; Kühnel, M.; Markoff, S.; Pooley, G.G.; Rothschild, R.E.; Tomsick, J.A.; Wilson-Hodge, C.A.; Wilms, J.
2013-01-01
We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different
Putting Encyclopaedia Knowledge into Structural Form: Finite State Transducers Approach
Directory of Open Access Journals (Sweden)
Pajić Vesna
2011-06-01
Full Text Available In biology and functional genomics in particular, understanding the dependence and interplay between different genome and ecological characteristics of organisms is a very challenging problem. There are some public databases which combine this kind of information, but there is still much more information about microbes and other organisms that reside in unstructured and semi-structured documents, such as encyclopaedias. In this paper we present a method for extracting information from semi-structured resources, such as encyclopaedias, based on finite state transducers, consisting of two clearly distinguished phases. The first phase strongly relies on the analysis of the document structure and it is used for locating records of data in the text. The second phase is based on the finite state transducers created for extracting the data, which can be modified so as to achieve the preferred efficiency and it is used for extracting the particular characteristic from the text. We show how the two phase method is applied to the text of the encyclopaedia “Systematic Bacteriology”. A fully structured database with genotype and phenotype characteristics of organisms has been created from the encyclopaedia unstructured descriptions.
Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.
The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical
A new Approach to Variable-Topology Shape Design Using a Constraint on the Perimeter
DEFF Research Database (Denmark)
Haber, R.B; Bendsøe, Martin P.; Jog, C.S.
1996-01-01
the number of holes in the optimal design and to establish their characteristic length scale. Finite element procedures based on this approach generate practical designs that are convergent with respect to grid refinement. Thus, an arbitrary level of geometric resolution can be achieved, so single...
Upper limit for Poisson variable incorporating systematic uncertainties by Bayesian approach
International Nuclear Information System (INIS)
Zhu, Yongsheng
2007-01-01
To calculate the upper limit for the Poisson observable at given confidence level with inclusion of systematic uncertainties in background expectation and signal efficiency, formulations have been established along the line of Bayesian approach. A FORTRAN program, BPULE, has been developed to implement the upper limit calculation
Es'kov, E K; Es'kova, M D
2014-01-01
High variability of cells size is used selectively for reproduction of working bees and drones. A decrease in both distance between cells and cells size themselves causes similar effects to body mass and morphometric traits of developing individuals. Adaptation of honey bees to living in shelters has led to their becoming tolerant to hypoxia. Improvement of ethological and physiological mechanisms of thermal regulation is associated with limitation of ecological valence and acquiring of stenothermic features by breed. Optimal thermal conditions for breed are limited by the interval 33-34.5 degrees C. Deviations of temperature by 3-4 degrees C beyond this range have minimum lethal effect at embryonic stage of development and medium effect at the stage of pre-pupa and pupa. Developing at the low bound of the vital range leads to increasing, while developing at the upper bound--to decreasing of body mass, mandibular and hypopharyngeal glands, as well as other organs, which, later, affects the variability of these traits during the adult stage of development. Eliminative and teratogenic efficiency of ecological factors that affect a breed is most often manifested in underdevelopment of wings. However, their size (in case of wing laminas formation). is characterized by relatively low variability and size-dependent asymmetry. Asymmetry variability of wings and other pair organs is expressed through realignment of size excess from right- to left-side one with respect to their increase. Selective elimination by those traits whose emerging probability increases as developmental conditions deviate from the optimal ones promotes restrictions on individual variability. Physiological mechanisms that facilitate adaptability enhancement under conditions of increasing anthropogenic contamination of eivironment and trophic substrates consumed by honey bees, arrear to be toxicants accumulation in rectum and crops' ability to absorb contaminants from nectar in course of its
International Nuclear Information System (INIS)
Chen, Haixia; Zhang, Jing
2007-01-01
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning
Energy Technology Data Exchange (ETDEWEB)
Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)
2016-06-15
The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
Christiansen, Bo
2015-04-01
Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.
Santos, José António; Galante-Oliveira, Susana; Barroso, Carlos
2011-03-01
The current work presents an innovative statistical approach to model ordinal variables in environmental monitoring studies. An ordinal variable has values that can only be compared as "less", "equal" or "greater" and it is not possible to have information about the size of the difference between two particular values. The example of ordinal variable under this study is the vas deferens sequence (VDS) used in imposex (superimposition of male sexual characters onto prosobranch females) field assessment programmes for monitoring tributyltin (TBT) pollution. The statistical methodology presented here is the ordered logit regression model. It assumes that the VDS is an ordinal variable whose values match up a process of imposex development that can be considered continuous in both biological and statistical senses and can be described by a latent non-observable continuous variable. This model was applied to the case study of Nucella lapillus imposex monitoring surveys conducted in the Portuguese coast between 2003 and 2008 to evaluate the temporal evolution of TBT pollution in this country. In order to produce more reliable conclusions, the proposed model includes covariates that may influence the imposex response besides TBT (e.g. the shell size). The model also provides an analysis of the environmental risk associated to TBT pollution by estimating the probability of the occurrence of females with VDS ≥ 2 in each year, according to OSPAR criteria. We consider that the proposed application of this statistical methodology has a great potential in environmental monitoring whenever there is the need to model variables that can only be assessed through an ordinal scale of values.
Directory of Open Access Journals (Sweden)
C. Martín-Puertas
2010-12-01
Full Text Available A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G and terrestrial (Zoñar Lake, Andalucia, Spain geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP. Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.
What variables are important in predicting bovine viral diarrhea virus? A random forest approach.
Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo
2015-07-24
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.
John W. Coulston
2011-01-01
Tropospheric ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Several plant species, including commercially important timber species, are sensitive to elevated ozone levels. Exposure to elevated ozone can cause growth reduction and foliar injury and make trees more susceptible to secondary stressors such as insects and pathogens (...
International Nuclear Information System (INIS)
Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong
2014-01-01
By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced
The evolution of the disc variability along the hard state of the black hole transient GX 339-4
De Marco, B.; Ponti, G.; Muñoz-Darias, T.; Nandra, K.
2015-12-01
We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high-frequency (5-20 Hz) fractional rms at high energies, with less than 10 per cent scatter. This reinforces previous claims suggesting that the high-frequency PSD solely scales with black hole mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ˜30 per cent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.
State officials and illicit asset-grabbing: The Roman approach
Directory of Open Access Journals (Sweden)
Apsitis A.
2018-01-01
Full Text Available The article reflects author’s findings regarding the regulation found in Roman legal sources, which is directed against corruptive activities of persons in public state positions, in particular in relation to unlawful seizure of assets belonging to citizens. Legal mechanisms are examined in relation to cases of force (vis-Latin and fear (metus-Latin application. The Code of Justinian (Codex Iustinianus and The Digest (Digesta contained regulation in relation to interpretation and application of The Julian Law on Extortion (Lex Iulia repetundarum, 59 B.C. in cases of all types of extortion and bribery with the involvement of public office administering persons, including judges and arbitrators, are examined.
Geothermal research at Oklahoma State University: An integrated approach
Energy Technology Data Exchange (ETDEWEB)
Smith, M.D.
1997-12-31
Oklahoma State University and the International Ground Source Heat Pump Association (IGSHPA) are active in providing technical support to government and industry through technology transfer, technology development, technical assistance, and business development support. Technology transfer includes geothermal heat pump (GHP) system training for installers and architects and engineers, national teleconferences, brochures, and other publications. Technology development encompasses design software development, GLHEPRO, in-situ thermal conductivity testing methods and verification of data reduction techniques, and specifications and standards for GHP systems. Examples of technical assistance projects are a Navy officers quarters and a NASA Visitors Center which required design assistance and supporting information in reducing the life cycle cost to make them viable projects.
Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon
2018-05-18
We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.
Directory of Open Access Journals (Sweden)
Min-Uk Kim
2018-05-01
Full Text Available We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA tools. We used OCA tools Korea Offsite Risk Assessment (KORA and Areal Location of Hazardous Atmospheres (ALOHA in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH3, 35% hydrogen chloride (HCl, 50% hydrofluoric acid (HF, and 69% nitric acid (HNO3. The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.
Directory of Open Access Journals (Sweden)
V. Nieto-Moreno
2011-12-01
Full Text Available Climate variability in the western Mediterranean is reconstructed for the last 4000 yr using marine sediments recovered in the west Algerian-Balearic Basin, near the Alboran Basin. Fluctuations in chemical and mineralogical sediment composition as well as grain size distribution are linked to fluvial-eolian oscillations, changes in redox conditions and paleocurrent intensity. Multivariate analyses allowed us to characterize three main groups of geochemical and mineralogical proxies determining the sedimentary record of this region. These three statistical groups were applied to reconstruct paleoclimate conditions at high resolution during the Late Holocene. An increase in riverine input (fluvial-derived elements – Rb/Al, Ba/Al, REE/Al, Si/Al, Ti/Al, Mg/Al and K/Al ratios, and a decrease in Saharan eolian input (Zr/Al ratio depict the Roman Humid Period and the Little Ice Age, while drier environmental conditions are recognized during the Late Bronze Age-Iron Age, the Dark Ages and the Medieval Climate Anomaly. Additionally, faster bottom currents and more energetic hydrodynamic conditions for the former periods are evidenced by enhanced sortable silt (10-63 μm and quartz content, and by better oxygenated bottom waters – as reflected by decreasing redox-sensitive elements (V/Al, Cr/Al, Ni/Al and Zn/Al ratios. In contrast, opposite paleoceanographic conditions are distinguished during the latter periods, i.e. the Late Bronze Age-Iron Age, the Dark Ages and the Medieval Climate Anomaly. Although no Ba excess was registered, other paleoproductivity indicators (total organic carbon content, Br/Al ratio, and organometallic ligands such as U and Cu display the highest values during the Roman Humid Period, and together with increasing preservation of organic matter, this period exhibits by far the most intense productivity of the last 4000 yr. Fluctuations in detrital input into the basin as the main process managing deposition, reflected by the
Variability and conservation of structural domains in divide-and-conquer approaches
Energy Technology Data Exchange (ETDEWEB)
Wiegand, Thomas [ETH Zurich, Physical Chemistry (Switzerland); Gardiennet, Carole [CNRS, Université de Lorraine, CRM2, UMR 7036 (France); Cadalbert, Riccardo [ETH Zurich, Physical Chemistry (Switzerland); Lacabanne, Denis; Kunert, Britta; Terradot, Laurent, E-mail: laurent.terradot@ibcp.fr; Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)
2016-06-15
The use of protein building blocks for the structure determination of multidomain proteins and protein–protein complexes, also known as the “divide and conquer” approach, is an important strategy for obtaining protein structures. Atomic-resolution X-ray or NMR data of the individual domains are combined with lower-resolution electron microscopy maps or X-ray data of the full-length protein or the protein complex. Doing so, it is often assumed that the individual domain structures remain invariant in the context of the superstructure. In this work, we show the potentials and limitations of NMR to validate this approach at the example of the dodecameric DnaB helicase from Helicobacter pylori. We investigate how sequentially assigned spectra, as well as unassigned spectral fingerprints can be used to indicate the conservation of individual domains, and also to highlight conformational differences.
Auditya Purwandini Sutarto; Muhammad Nubli Abdul Wahab; Nora Mat Zin
2010-01-01
The widespread implementation of advanced and complex systems requires predominantly operators’ cognitive functions and less importance of human manual control. On the other hand, most operators perform their cognitive functions below their peak cognitive capacity level due to fatigue, stress, and boredom. Thus, there is a need to improve their cognitive functions during work. The goal of this paper is to present a psychophysiology training approach derived from cardiovascular response ...
2012-10-01
The United States and European Union (EU) share many of the same transportation research issues, challenges, and goals. They also share a belief that cooperative vehicle (also termed connected vehicle) systems, based on vehicle-to-vehicle and vehicle...
Thompson, Rachel M; Thurm, Cary W; Rothstein, David H
2016-10-01
To evaluate perioperative red blood cell (RBC) ordering and interhospital variability patterns in pediatric patients undergoing surgical interventions at US children's hospitals. This is a multicenter cross-sectional study of children aged blood type and crossmatch were included when done on the day before or the day of the surgical procedure. The RBC transfusions included were those given on the day of or the day after surgery. The type and crossmatch-to-transfusion ratio (TCTR) was calculated for each surgical procedure. An adjusted model for interhospital variability was created to account for variation in patient population by age, sex, race/ethnicity, payer type, and presence/number of complex chronic conditions (CCCs) per patient. A total of 357 007 surgical interventions were identified across all participating hospitals. Blood type and crossmatch was performed 55 632 times, and 13 736 transfusions were provided, for a TCTR of 4:1. There was an association between increasing age and TCTR (R(2) = 0.43). Patients with multiple CCCs had lower TCTRs, with a stronger relationship (R(2) = 0.77). There was broad variability in adjusted TCTRs among hospitals (range, 2.5-25). The average TCTR in US children's hospitals was double that of adult surgical data, and was associated with wide interhospital variability. Age and the presence of CCCs markedly influenced this ratio. Studies to evaluate optimal preoperative RBC ordering and standardization of practices could potentially decrease unnecessary costs and wasted blood. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Chen, C.-K.; Liao, T.-L.; Yan, J.-J.
2009-01-01
On the basis of variable structure control (VSC), an active queue management (AQM) controller is presented for a class of TCP communication networks. In the TCP/IP networks, the packet drop probability is limited between 0 and 1. Therefore, we modeled TCP/AQM as a rate-based non-linear system with a saturated input. The objective of the VSC-based AQM controller is to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop TCP non-linear system with saturated input. The performance and effectiveness of the proposed control law are then validated for different network scenarios through numerical simulations in both MATLAB and Network Simulator-2 (NS-2). Both sets of simulation results have confirmed that the proposed scheme outperforms other AQM schemes.
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-K. [Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Liao, T.-L. [Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: tlliao@mail.ncku.edu; Yan, J.-J. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)
2009-04-15
On the basis of variable structure control (VSC), an active queue management (AQM) controller is presented for a class of TCP communication networks. In the TCP/IP networks, the packet drop probability is limited between 0 and 1. Therefore, we modeled TCP/AQM as a rate-based non-linear system with a saturated input. The objective of the VSC-based AQM controller is to achieve the desired queue size and to guarantee the asymptotic stability of the closed-loop TCP non-linear system with saturated input. The performance and effectiveness of the proposed control law are then validated for different network scenarios through numerical simulations in both MATLAB and Network Simulator-2 (NS-2). Both sets of simulation results have confirmed that the proposed scheme outperforms other AQM schemes.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states
International Nuclear Information System (INIS)
Tong, D.M.; Oh, C.H.; Sjoeqvist, Erik; Filipp, Stefan; Kwek, L.C.
2005-01-01
Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed-state concept proposed in [Phys. Rev. Lett. 90, 050403 (2003)] to degenerate density operators. The first- and second-order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states
Water-mediated variability in the structure of relaxed-state haemoglobin
International Nuclear Information System (INIS)
Kaushal, Prem Singh; Sankaranarayanan, R.; Vijayan, M.
2008-01-01
Partial dehydration of high-salt horse methaemoglobin crystals tends to shift the structure from the R state to the R2 state, in agreement with previous observations that movements in the molecule resulting from changes in water content mimic those involved in protein action. The crystal structure of high-salt horse methaemoglobin has been determined at environmental relative humidities (r.h.) of 88, 79, 75 and 66%. The molecule is in the R state in the native and the r.h. 88% crystals. At r.h. 79%, the water content of the crystal is reduced and the molecule appears to move towards the R2 state. The crystals undergo a water-mediated transformation involving a doubling of one of the unit-cell parameters and an increase in water content when the environmental humidity is further reduced to r.h. 75%. The water content is now similar to that in the native crystals and the molecules are in the R state. The crystal structure at r.h. 66% is similar, but not identical, to that at r.h. 75%, but the solvent content is substantially reduced and the molecules have a quaternary structure that is in between those corresponding to the R and R2 states. Thus, variation in hydration leads to variation in the quaternary structure. Furthermore, partial dehydration appears to shift the structure from the R state to the R2 state. This observation is in agreement with the earlier conclusion that the changes in protein structure that accompany partial dehydration are similar to those that occur during protein action
Intraindividual variability in inhibitory function in adults with ADHD--an ex-Gaussian approach.
Directory of Open Access Journals (Sweden)
Dennis Gmehlin
Full Text Available OBJECTIVE: Attention deficit disorder (ADHD is commonly associated with inhibitory dysfunction contributing to typical behavioral symptoms like impulsivity or hyperactivity. However, some studies analyzing intraindividual variability (IIV of reaction times in children with ADHD (cADHD question a predominance of inhibitory deficits. IIV is a measure of the stability of information processing and provides evidence that longer reaction times (RT in inhibitory tasks in cADHD are due to only a few prolonged responses which may indicate deficits in sustained attention rather than inhibitory dysfunction. We wanted to find out, whether a slowing in inhibitory functioning in adults with ADHD (aADHD is due to isolated slow responses. METHODS: Computing classical RT measures (mean RT, SD, ex-Gaussian parameters of IIV (which allow a better separation of reaction time (mu, variability (sigma and abnormally slow responses (tau than classical measures as well as errors of omission and commission, we examined response inhibition in a well-established GoNogo task in a sample of aADHD subjects without medication and healthy controls matched for age, gender and education. RESULTS: We did not find higher numbers of commission errors in aADHD, while the number of omissions was significantly increased compared with controls. In contrast to increased mean RT, the distributional parameter mu did not document a significant slowing in aADHD. However, subjects with aADHD were characterized by increased IIV throughout the entire RT distribution as indicated by the parameters sigma and tau as well as the SD of reaction time. Moreover, we found a significant correlation between tau and the number of omission errors. CONCLUSIONS: Our findings question a primacy of inhibitory deficits in aADHD and provide evidence for attentional dysfunction. The present findings may have theoretical implications for etiological models of ADHD as well as more practical implications for
Magnetic coupling between liquid 3He and a solid state substrate: a new approach
Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko
2000-07-01
We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.
The United States Approach to PLiM for LTO
International Nuclear Information System (INIS)
2015-01-01
The organizational structure for PLiM in the United States of America varies widely from plant to plant. For example, some plants may have a dedicated PLiM organization that coordinates the PLiM activities and provides the PLiM study results to the appropriate plant organizations (e.g. maintenance, engineering and operations) for implementation. Other plants may not have a dedicated PLiM organization, but rely on various organizations (e.g. design engineering, system engineering and maintenance) to conduct needed PLiM studies for LTO on a case by case (e.g. by component groups, such as piping, cables and transformers) or by individual components (turbine generator or steam generator). The organizational structure for preparing an LRA varies from utility to utility, but a typical structure is based on creating a project team to address each major discipline of the needed studies. The team members may be from utility organizations, contracted consultants who specialize in preparing LRAs, or a combination of the two groups, which is most common. A typical organizational structure is shown. The team typically consists of 10 to 20 full time members, with several other part time support members from various expert organizations (both utility and contracted consultants) needed to perform the engineering, ageing management and environmental studies and to prepare the supporting documentation for the LRA project
International Nuclear Information System (INIS)
Kustova, Elena V.; Kremer, Gilberto M.
2014-01-01
Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure
Energy Technology Data Exchange (ETDEWEB)
Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)
2014-12-05
Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.
International Nuclear Information System (INIS)
Szereszewski, A; Sym, A
2015-01-01
The standard method of separation of variables in PDEs called the Stäckel–Robertson–Eisenhart (SRE) approach originated in the papers by Robertson (1928 Math. Ann. 98 749–52) and Eisenhart (1934 Ann. Math. 35 284–305) on separability of variables in the Schrödinger equation defined on a pseudo-Riemannian space equipped with orthogonal coordinates, which in turn were based on the purely classical mechanics results by Paul Stäckel (1891, Habilitation Thesis, Halle). These still fundamental results have been further extended in diverse directions by e.g. Havas (1975 J. Math. Phys. 16 1461–8; J. Math. Phys. 16 2476–89) or Koornwinder (1980 Lecture Notes in Mathematics 810 (Berlin: Springer) pp 240–63). The involved separability is always ordinary (factor R = 1) and regular (maximum number of independent parameters in separation equations). A different approach to separation of variables was initiated by Gaston Darboux (1878 Ann. Sci. E.N.S. 7 275–348) which has been almost completely forgotten in today’s research on the subject. Darboux’s paper was devoted to the so-called R-separability of variables in the standard Laplace equation. At the outset he did not make any specific assumption about the separation equations (this is in sharp contrast to the SRE approach). After impressive calculations Darboux obtained a complete solution of the problem. He found not only eleven cases of ordinary separability Eisenhart (1934 Ann. Math. 35 284–305) but also Darboux–Moutard–cyclidic metrics (Bôcher 1894 Ueber die Reihenentwickelungen der Potentialtheorie (Leipzig: Teubner)) and non-regularly separable Dupin-cyclidic metrics as well. In our previous paper Darboux’s approach was extended to the case of the stationary Schrödinger equation on Riemannian spaces admitting orthogonal coordinates. In particular the class of isothermic metrics was defined (isothermicity of the metric is a necessary condition for its R-separability). An important sub
Miller, William H; Cotton, Stephen J
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
A state space approach for the eigenvalue problem of marine risers
Alfosail, Feras; Nayfeh, Ali H.; Younis, Mohammad I.
2017-01-01
A numerical state-space approach is proposed to examine the natural frequencies and critical buckling limits of marine risers. A large axial tension in the riser model causes numerical limitations. These limitations are overcome by using
Solid-state dosimeters: A new approach for mammography measurements
International Nuclear Information System (INIS)
Brateman, Libby F.; Heintz, Philip H.
2015-01-01
Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the SStD and
The long-term variability of cosmic ray protons in the heliosphere: A modeling approach
Directory of Open Access Journals (Sweden)
M.S. Potgieter
2013-05-01
Full Text Available Galactic cosmic rays are charged particles created in our galaxy and beyond. They propagate through interstellar space to eventually reach the heliosphere and Earth. Their transport in the heliosphere is subjected to four modulation processes: diffusion, convection, adiabatic energy changes and particle drifts. Time-dependent changes, caused by solar activity which varies from minimum to maximum every ∼11 years, are reflected in cosmic ray observations at and near Earth and along spacecraft trajectories. Using a time-dependent compound numerical model, the time variation of cosmic ray protons in the heliosphere is studied. It is shown that the modeling approach is successful and can be used to study long-term modulation cycles.
Controlled dense coding for continuous variables using three-particle entangled states
Jing Zhang; Kun Chi Peng; 10.1103/PhysRevA.66.032318
2002-01-01
A simple scheme to realize quantum controlled dense coding with a bright tripartite entangled state light generated from nondegenerate optical parametric amplifiers is proposed in this paper. The quantum channel between Alice and Bob is controlled by Claire. As a local oscillator and balanced homodyne detector are not needed, the proposed protocol is easy to be realized experimentally. (15 refs)
Quantitative Analysis of Variables Affecting Nursing Program Completion at Arizona State University
Herrera, Cheryl
2013-01-01
This study is designed to understand the patterns of selection, preparation, retention and graduation of undergraduate pre-licensure clinical nursing students in the College of Nursing and Health Innovation at Arizona State University enrolled in 2007 and 2008. The resulting patterns may guide policy decision making regarding future cohorts in…
Henry F. Diaz
2004-01-01
Mountain ecosystems of the Western United States are complex and include cold desert biomes, such as those found in Nevada; subpolar biomes found in the upper treeline zone; and tundra ecosystems, occurring above timberline. Many studies (for example, Thompson 2000) suggest that high-elevation environments, comprising glaciers, snow, permafrost, water, and the...
International Nuclear Information System (INIS)
Cho, Joung-min; Akiyama, Yuto; Kakinuma, Tomoyuki; Mori, Takehiko
2013-01-01
We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V G above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge
Can, Süleyman
2015-01-01
In order to give the best and accurate orientation to teachers working in school organizations, it seems to be necessary to determine their motivation level. Thus, the purpose of the current study is to determine the motivation level of teachers working in state elementary and secondary schools. Moreover, the study also looks at the relationships…
Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin
2015-01-01
In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 Â°C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...
Morawetz, Carmen; Alexandrowicz, Rainer W; Heekeren, Hauke R
2017-04-01
The experience of emotions and their cognitive control are based upon neural responses in prefrontal and subcortical regions and could be affected by personality and temperamental traits. Previous studies established an association between activity in reappraisal-related brain regions (e.g., inferior frontal gyrus and amygdala) and emotion regulation success. Given these relationships, we aimed to further elucidate how individual differences in emotion regulation skills relate to brain activity within the emotion regulation network on the one hand, and personality/temperamental traits on the other. We directly examined the relationship between personality and temperamental traits, emotion regulation success and its underlying neuronal network in a large sample (N = 82) using an explicit emotion regulation task and functional MRI (fMRI). We applied a multimethodological analysis approach, combing standard activation-based analyses with structural equation modeling. First, we found that successful downregulation is predicted by activity in key regions related to emotion processing. Second, the individual ability to successfully upregulate emotions is strongly associated with the ability to identify feelings, conscientiousness, and neuroticism. Third, the successful downregulation of emotion is modulated by openness to experience and habitual use of reappraisal. Fourth, the ability to regulate emotions is best predicted by a combination of brain activity and personality as well temperamental traits. Using a multimethodological analysis approach, we provide a first step toward a causal model of individual differences in emotion regulation ability by linking biological systems underlying emotion regulation with descriptive constructs. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions
Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.
2017-12-01
Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more
Energy Technology Data Exchange (ETDEWEB)
Sugasawa, F [Tamagawa University, Tokyo (Japan); Mori, H [Nissan Motor Co. Ltd., Tokyo (Japan)
1997-10-01
The analysis method using the system matrix for state variables can not be applied to the analysis for the system has Complex Cornering Stiffness. The reason is there are differential terms in the state variables. It is found that the differential terms m the state variables can be changed to the constant terms in another state variables. 4 refs., 9 figs.
Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.
2016-01-01
Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948
An excited-state approach within full configuration interaction quantum Monte Carlo
International Nuclear Information System (INIS)
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-01-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available
International Nuclear Information System (INIS)
Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol
2010-01-01
The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.
Directory of Open Access Journals (Sweden)
Novák Jiří
2013-12-01
Full Text Available The similarity search in theoretical mass spectra generated from protein sequence databases is a widely accepted approach for identification of peptides from query mass spectra produced by shotgun proteomics. Growing protein sequence databases and noisy query spectra demand database indexing techniques and better similarity measures for the comparison of theoretical spectra against query spectra. We employ a modification of previously proposed parameterized Hausdorff distance for comparisons of mass spectra. The new distance outperforms the original distance, the angle distance and state-of-the-art peptide identification tools OMSSA and X!Tandem in the number of identified peptides even though the q-value is only 0.001. When a precursor mass filter is used as a database indexing technique, our method outperforms OMSSA in the speed of search. When variable modifications are not searched, the search time is similar to X!Tandem. We show that the precursor mass filter is an efficient database indexing technique for high-accuracy data even though many variable modifications are being searched. We demonstrate that the number of identified peptides is bigger when variable modifications are searched separately by more search runs of a peptide identification engine. Otherwise, the false discovery rates are affected by mixing unmodified and modified spectra together resulting in a lower number of identified peptides. Our method is implemented in the freely available application SimTandem which can be used in the framework TOPP based on OpenMS.
Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A
2001-05-01
Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments.
Sumargo, E.; Cayan, D. R.; Iacobellis, S.
2014-12-01
Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.
Young, Sean Gregory
The complex interactions between human health and the physical landscape and environment have been recognized, if not fully understood, since the ancient Greeks. Landscape epidemiology, sometimes called spatial epidemiology, is a sub-discipline of medical geography that uses environmental conditions as explanatory variables in the study of disease or other health phenomena. This theory suggests that pathogenic organisms (whether germs or larger vector and host species) are subject to environmental conditions that can be observed on the landscape, and by identifying where such organisms are likely to exist, areas at greatest risk of the disease can be derived. Machine learning is a sub-discipline of artificial intelligence that can be used to create predictive models from large and complex datasets. West Nile virus (WNV) is a relatively new infectious disease in the United States, and has a fairly well-understood transmission cycle that is believed to be highly dependent on environmental conditions. This study takes a geospatial approach to the study of WNV risk, using both landscape epidemiology and machine learning techniques. A combination of remotely sensed and in situ variables are used to predict WNV incidence with a correlation coefficient as high as 0.86. A novel method of mitigating the small numbers problem is also tested and ultimately discarded. Finally a consistent spatial pattern of model errors is identified, indicating the chosen variables are capable of predicting WNV disease risk across most of the United States, but are inadequate in the northern Great Plains region of the US.
Search for new physics in the all-hadronic final state with the MT2 variable
CMS Collaboration
2017-01-01
A search for new physics is performed using events with jets and a large transverse momentum imbalance, as measured through the $M_{T2}$ variable. The results are based on a sample of proton-proton collisions collected in 2016 at a center-of-mass energy of 13 TeV with the CMS detector and corresponding to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$. No excess above the standard model background is observed. The results are interpreted as limits on the masses of potential new particles in a variety of simplified models of R-parity conserving supersymmetry. Depending on the details of the model, $95\\%$ CL lower limits on the gluino and light-flavor squark masses are placed up to $2025$ and $1550~\\mathrm{GeV}$, respectively. In the case of top (bottom) squarks, the mass limits are as high as $1070~(1175)~\\mathrm{GeV}$.
Steady state performance evaluation of variable geometry twin-entry turbine
International Nuclear Information System (INIS)
Romagnoli, A.; Martinez-Botas, R.F.; Rajoo, S.
2011-01-01
This paper presents the results from an experimental investigation conducted on different turbine designs for an automotive turbocharger. The design progression was based on a commercial nozzleless unit that was modified into a variable geometry single and twin-entry turbine. The main geometrical parameters were kept constant for all the configurations and the turbine was tested under steady flow conditions. A significant depreciation in efficiency was measured between the single and twin-entry configuration due to the mixing effects. The nozzleless unit provides the best compromise in terms of performance at different speeds. The twin-entry turbine was also tested under partial and unequal admissions. Based on the test results a method to determine the swallowing capacity under partial admission given the full admission map is presented. The test results also showed that the turbine swallowing capacity under unequal admission is linked to the full admission case.
Modeling of water and solute transport under variably saturated conditions: state of the art
International Nuclear Information System (INIS)
Lappala, E.G.
1980-01-01
This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models
Saddlepoint expansions for sums of Markov dependent variables on a continuous state space
DEFF Research Database (Denmark)
Jensen, J.L.
1991-01-01
Based on the conjugate kernel studied in Iscoe et al. (1985) we derive saddlepoint expansions for either the density or distribution function of a sum f(X1)+...+f(Xn), where the Xi's constitute a Markov chain. The chain is assumed to satisfy a strong recurrence condition which makes the results...... here very similar to the classical results for i.i.d. variables. In particular we establish also conditions under which the expansions hold uniformly over the range of the saddlepoint. Expansions are also derived for sums of the form f(X1, X0)+f(X2, X1)+...+f(Xn, Xn-1) although the uniformity result...
Gravity wave control on ESF day-to-day variability: An empirical approach
Aswathy, R. P.; Manju, G.
2017-06-01
irregularities lie below and above the curve. The model is validated with data from the years 2001 (high solar activity), 2004 (moderate solar activity), and 1995 (low solar activity) which have not been used in the model development. Presently, the model is developed for autumnal equinox season, but the model development will be undertaken for other seasons also in a future work so that the seasonal variability is also incorporated. This model thus holds the potential to be developed into a full-fledged model which can predict occurrence of nocturnal ionospheric irregularities. Globally, concerted efforts are underway to predict these ionospheric irregularities. Hence, this study is extremely important from the point of view of predicting communication and navigation outages.
Directory of Open Access Journals (Sweden)
Suresh Kumar
2014-10-01
Full Text Available In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic, radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.
International Nuclear Information System (INIS)
Kumar, Suresh; Xu, Lixin
2014-01-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch
Silva, Paul Hindenburg Nobre de Vasconcelos; Lima, Maria Luiza Carvalho; Souza, Wayner Vieira; Moreira, Rafael da Silveira; Oliveira, Fernando José Moreira
2015-09-01
The objective of this article was to identify the association between motorcycle deaths and variables related to Samaja's theory of social reproduction in the period 2000-2005 in the state of Pernambuco. An ecological, case-control study was carried out, with municipalities as the unit of analysis. Cases were defined as the 20% of municipalities with the highest local empirical Bayesian coefficients for mortality due to motorcycle accidents, and controls as the 40% with the lowest coefficients. The municipalities with the greatest chances of high coefficients for mortality due to motorcycle accidents showed high population growth factors and increases in the total fleet of motorcycles, with low population densities, low GDP per capita, and more than 20 motorcycles per thousand inhabitants. We conclude that the variables related to macro-policies proved to have greater force in explaining higher chances of motorcycle death.
Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu
2012-01-01
The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.
Adaptations to the Whole of Government Approach by the United States Department of State
2010-06-11
Creswell, J. W. 1994. Research design: Qualitative and quantitative approach. California: Sage Publications, Inc. Denzin , N. K., and Y. S. Lincoln . 1994...the association of words, actions, and records of the people in the study (Denzen and Lincoln 1994). There are strengths and weaknesses to both
Analytical approach to the multi-state lasing phenomenon in quantum dot lasers
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2013-03-01
We introduce an analytical approach to describe the multi-state lasing phenomenon in quantum dot lasers. We show that the key parameter is the hole-to-electron capture rate ratio. If it is lower than a certain critical value, the complete quenching of ground-state lasing takes place at high injection levels. At higher values of the ratio, the model predicts saturation of the ground-state power. This explains the diversity of experimental results and their contradiction to the conventional rate equation model. Recently found enhancement of ground-state lasing in p-doped samples and temperature dependence of the ground-state power are also discussed.
An Approach for State Observation in Dynamical Systems Based on the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2013-01-01
This paper discusses a novel approach for state estimation in dynamical systems, with the special focus on hydraulic valve-cylinder drives. The proposed observer structure is based on the framework of the so-called twisting algorithm. This algorithm utilizes the sign of the state being the target...
State Higher Education Funding Models: An Assessment of Current and Emerging Approaches
Layzell, Daniel T.
2007-01-01
This article provides an assessment of the current and emerging approaches used by state governments in allocating funding for higher education institutions and programs. It reviews a number of desired characteristics or outcomes for state higher education funding models, including equity, adequacy, stability, and flexibility. Although there is…
Posner, Marc
2005-01-01
This report describes the Northeast Young Worker Resource Center. It begins with two case studies that demonstrate the value of the State team approach. The remainder of the document describes the experiences and activities of the State teams in the Northeast; the products developed by the teams for teens, parents, employers, school staff, health…
International Nuclear Information System (INIS)
Zhang Youhong
2011-01-01
The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.
Gorji, Taha; Sertel, Elif; Tanik, Aysegul
2017-12-01
Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters
International Nuclear Information System (INIS)
Quinn, J.J.
1996-01-01
Geostatistical analysis of hydraulic head data is useful in producing unbiased contour plots of head estimates and relative errors. However, at most sites being characterized, monitoring wells are generally present at different densities, with clusters of wells in some areas and few wells elsewhere. The problem that arises when kriging data at different densities is in achieving adequate resolution of the grid while maintaining computational efficiency and working within software limitations. For the site considered, 113 data points were available over a 14-mi 2 study area, including 57 monitoring wells within an area of concern of 1.5 mi 2 . Variogram analyses of the data indicate a linear model with a negligible nugget effect. The geostatistical package used in the study allows a maximum grid of 100 by 100 cells. Two-dimensional kriging was performed for the entire study area with a 500-ft grid spacing, while the smaller zone was modeled separately with a 100-ft spacing. In this manner, grid cells for the dense area and the sparse area remained small relative to the well separation distances, and the maximum dimensions of the program were not exceeded. The spatial head results for the detailed zone were then nested into the regional output by use of a graphical, object-oriented database that performed the contouring of the geostatistical output. This study benefitted from the two-scale approach and from very fine geostatistical grid spacings relative to typical data separation distances. The combining of the sparse, regional results with those from the finer-resolution area of concern yielded contours that honored the actual data at every measurement location. The method applied in this study can also be used to generate reproducible, unbiased representations of other types of spatial data
Giuliani, Claudia; Lazzaro, Lorenzo; Calamassi, Roberto; Calamai, Luca; Romoli, Riccardo; Fico, Gelsomina; Foggi, Bruno; Mariotti Lippi, Marta
2016-10-01
between this phytochemical approach and the traditional morphometrical analysis in studying the Helichrysum populations supports the validity of the VOC profile in solving taxonomic problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph
2016-12-01
Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
International Nuclear Information System (INIS)
Khasare, S.B.
2012-01-01
The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)
Gassara, H.; El Hajjaji, A.; Chaabane, M.
2017-07-01
This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.
Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis
Reynolds, Z. A.
2015-12-01
Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how
Directory of Open Access Journals (Sweden)
Gilioli Gianni
2011-10-01
Full Text Available Abstract Background Mechanistic models play an important role in many biological disciplines, and they can effectively contribute to evaluate the spatial-temporal evolution of mosquito populations, in the light of the increasing knowledge of the crucial driving role on vector dynamics played by meteo-climatic features as well as other physical-biological characteristics of the landscape. Methods In malaria eco-epidemiology landscape components (atmosphere, water bodies, land use interact with the epidemiological system (interacting populations of vector, human, and parasite. In the background of the eco-epidemiological approach, a mosquito population model is here proposed to evaluate the sensitivity of An. gambiae s.s. population to some peculiar thermal-pluviometric scenarios. The scenarios are obtained perturbing meteorological time series data referred to four Kenyan sites (Nairobi, Nyabondo, Kibwesi, and Malindi representing four different eco-epidemiological settings. Results Simulations highlight a strong dependence of mosquito population abundance on temperature variation with well-defined site-specific patterns. The upper extreme of thermal perturbation interval (+ 3°C gives rise to an increase in adult population abundance at Nairobi (+111% and Nyabondo (+61%, and a decrease at Kibwezi (-2% and Malindi (-36%. At the lower extreme perturbation (-3°C is observed a reduction in both immature and adult mosquito population in three sites (Nairobi -74%, Nyabondo -66%, Kibwezi -39%, and an increase in Malindi (+11%. A coherent non-linear pattern of population variation emerges. The maximum rate of variation is +30% population abundance for +1°C of temperature change, but also almost null and negative values are obtained. Mosquitoes are less sensitive to rainfall and both adults and immature populations display a positive quasi-linear response pattern to rainfall variation. Conclusions The non-linear temperature-dependent response is in
A rule-based approach to model checking of UML state machines
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
Directory of Open Access Journals (Sweden)
Gutkowska Justyna
2017-03-01
Full Text Available The study was conducted in 2015 in six spruce stands situated in different forest districts administratively belonging to the Regional Directorate of State Forests in Krosno. Each spruce population was represented by 30 trees and assessed in terms of their current health status. Genetic analyses were performed on shoot samples from each tree using nine nuclear DNA markers and one mitochondrial DNA marker (nad1. The health status of the trees was described according to the classification developed by Szczepkowski and Tarasiuk (2005 and the correlation between health classes and the level of genetic variability was computed with STATISTICA (α = 0.05.
Directory of Open Access Journals (Sweden)
X. Antonio-Némiga
2017-07-01
Full Text Available Comprender la naturaleza y magnitud de las variaciones climáticas regionales es fundamental para el desarrollo de políticas de adaptación y mitigación. Por ello, se evalúan los registros de temperatura máxima y mínima y precipitación en 92 estaciones meteorológicas del estado de México durante el periodo comprendido entre 1978 y 2000. Para hacerlo se calcularon los valores promedio y los coeficientes de variación de los registros. En ellos se buscan tendencias lineales de comportamiento y se calcula para cada estación el coeficiente de variación para encontrar aquellas estaciones que presentan mayor variabilidad. La misma variabilidad es expresada cartográfi- camente para para entender su distribución en el espacio y buscar relación con otras variables. Se encontró una tendencia estadísticamente significativa de creciente variabilidad en los registros de temperatura máxima de los meses de enero, abril y mayo y en los registros de temperatura mínima de mayo, junio y septiembre; así como una posible correlación entre la ubicación de las estaciones donde se registran mayores variaciones de temperatura máxima y los frentes de deforestación.
Influence of plant productivity over variability of soil respiration: a multi-scale approach
Curiel Yuste, J.
2009-04-01
general controlled by the seasonality of substrate supply by plants (via photosynthates translocation and/or litter) to soil. Although soil temperature and soil moisture exert a strong influence over the variation in SR, our results indicates that substrate supply by plant activity could exert a more important than previously expected role in the variability of soil respiration. 1. CREAF (Centre de Recerca Ecológica i Aplicacions Forestals), Unitat d'Ecofisiologia i Canvi Global CREAF-CEAB-CSIC, BELLATERRA (Barcelona), Spain (j.curiel@creaf.uab.es) 2. University of Antwerp (UA), Antwerp, Belgium (ivan.janssens@ua.ac.be) 3. Institute of Ecology, University of Innsbruck, Innsbruck, Austria (michael.bahn@uibk.ac.at) 4. UMR Ecologie et Ecophysiologie Forestières, Centre INRA de Nancy, France (longdoz@nancy.inra.fr) 5. ESPM, University of Calicornia at Berkeley, Berkeley, CA, US (baldocchi@nature.berkeley.edu) 6. The Woods Hole Research Center, Falmouth, USA (edavidson@whrc.org) 7. Max-Planck-Institute for Biogeochemistry, Jena, Germany (markus.reichstein@bgc-jena.mpg.de) 8. Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Czech Republic (manuel@brno.cas.cz) 9. Università degli studi della Tuscia, Viterbo, Italy (arriga@unitus.it) 10. Laurence Berkeley lab, Berkeley, CA, USA (mstorn@lbl.gov) 11. Gembloux Agricultural University, Gembloux, Belgium (aubinet.m@fsagx.ac.be) 12. Fundacion CEAM(Centro de Estudios Ambientales del Mediterráneo), Valencia, Spain (arnaud@ceam.es) 13. Institute of Hydrology and Meteorology, Technische Universität Dresden, Pienner, Germany (gruenwald@forst.tu-dresden.de) 14. Department of Environmental Sciences, Second University of Naples, Caserta, Italy (ilaria.inglima@unina2.it) 15. CNRS-CEFE Montpellier, France (Laurent.MISSON@cefe.cnrs.fr) 16. Agenzia Provinciale per l'Ambiente, Bolzano, Italy (leonar@inwind.it) 17. University of Helsinki Department of Forest Ecology, Helsinki, Finland (jukka
Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N.
2017-01-01
Nonequilibrium flows of a two-component oxygen mixture O2/O behind a shock wave are studied with due allowance for the state-to-state vibrational and chemical kinetics. The system of gas-dynamic equations is supplemented with kinetic equations including contributions of VT (TV)-exchange and dissociation processes. A method of the numerical solution of this system with the use of the ANSYS Fluent commercial software package is proposed, which is used in a combination with the authors' code that takes into account nonequilibrium kinetics. The computed results are compared with parameters obtained by solving the problem in the shock-fitting formulation. The vibrational temperature is compared with experimental data. The numerical tool proposed in the present paper is applied to study the flow around a cylinder.
Medina, H.; Romano, N.; Chirico, G. B.
2012-12-01
We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.
Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L
2015-07-21
We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.
Directory of Open Access Journals (Sweden)
Roriz Luciano Machado
2010-01-01
Full Text Available Knowledge of maximum daily rain and its return period in a region is an important tool to soil conservation, hydraulic engineering and preservation of road projects. The objective of this work was to evaluate the spatial variability of maximum annual daily rain considering different return periods, at the Rio de Janeiro State. The data set was composed by historical series of 119 rain gauges, for 36 years of observation. The return periods, estimated by Gumbel distribution, were 2, 5, 10, 25, 50 and 100 years. The spatial variability of the return periods was evaluated by semivariograms. All the return periods presented spatial dependence, with exponential and spherical model fitted to the experimental semivariograms. The parameters of the fitted semivariogram model were very similar; however, it was observed the presence of higher nugget effects for semivariograms of longer return periods. The values of maximum annual daily average rain in all the return periods increased from north to south and from countryside to the coast. In the region between the Serra do Mar range and the coast, besides increasing in magnitude, an increase in the spatial variability of the studied values with increasing return periods was also noticed. This behavior is probably caused by the orographic effect. The interpolated maps were more erratic for higher return periods and at the North, Northeast and Coastal Plain regions, in which the installation of new pluviometric stations are recommended.
Directory of Open Access Journals (Sweden)
Cristina Giner-Bartolome
2017-07-01
Full Text Available Background: Non-suicidal self-injury (NSSI is commonly present in individuals with eating disorders (EDs and is often employed as a maladaptive emotion regulation strategy to avoid or abate negative emotions. One of the most prevalent negative emotions experienced by self-injurers is anxiety; however, this emotion has not been extensively studied in this population. Thus, the aim of our study was to investigate the influence of anxiety on NSSI in patients with ED from two different dimensions: state anxiety and trait anxiety.Methods: The study comprised a total of 66 females: 12 ED patients with NSSI, 32 ED patients without a history of NSSI, and 22 healthy controls. State and trait anxiety were assessed by means of State-Trait Anxiety Inventory (STAI-S-T and physiological data [i.e., heart rate variability (HRV] were collected.Results: STAI-trait scores were significantly higher in ED patients with NSSI than ED patients without NSSI. Furthermore, when conducting logistic regression analyses higher STAI-trait scores were associated with NSSI in ED patients. However, no differences in STAI-state scores and HRV were found between ED patients with and without NSSI.Discussion: The present findings suggest that anxiety as a trait is associated with the use of maladaptive strategies (i.e., NSSI in ED patients. These results uphold the need to target trait anxiety in ED treatment in order to prevent possible NSSI behaviors.
Study of magnetized accretion flow with variable Γ equation of state
Singh, Kuldeep; Chattopadhyay, Indranil
2018-05-01
We present here the solutions of magnetized accretion flow on to a compact object with hard surface such as neutron stars. The magnetic field of the central star is assumed dipolar and the magnetic axis is assumed to be aligned with the rotation axis of the star. We have used an equation of state for the accreting fluid in which the adiabatic index is dependent on temperature and composition of the flow. We have also included cooling processes like bremsstrahlung and cyclotron processes in the accretion flow. We found all possible accretion solutions. All accretion solutions terminate with a shock very near to the star surface and the height of this primary shock does not vary much with either the spin period or the Bernoulli parameter of the flow, although the strength of the shock may vary with the period. For moderately rotating central star, there is possible formation of multiple sonic points in the flow and therefore, a second shock far away from the star surface may also form. However, the second shock is much weaker than the primary one near the surface. We found that if rotation period is below a certain value (P*), then multiple critical points or multiple shocks are not possible and P* depends upon the composition of the flow. We also found that cooling effect dominates after the shock and that the cyclotron and the bremsstrahlung cooling processes should be considered to obtain a consistent accretion solution.
Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.
2009-01-01
Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.
Genetic variability of populations of Nyssomyia neivai in the Northern State of Paraná, Brazil
Gasparotto, Jaqueline de Carvalho; da Costa-Ribeiro, Magda Clara Vieira; Thomaz-Soccol, Vanete; Liebel, Sandra Mara Rodrigues da Silva; Neitzke-Abreu, Herintha Coeto; Reinhold-Castro, Kárin Rosi; Cristovão, Edilson Colhera; Teodoro, Ueslei
2017-01-01
ABSTRACT The genetic study of sandfly populations needs to be further explored given the importance of these insects for public health. Were sequenced the NDH4 mitochondrial gene from populations of Nyssomyia neivai from Doutor Camargo, Lobato, Japira, and Porto Rico, municipalities in the State of Paraná, Brazil, to understand the genetic structure and gene flow. Eighty specimens of Ny. Neivai were sequenced, 20 from each municipality, and 269 base pairs were obtained. A total of 27 haplotypes and 28 polymorphic sites were found, along with a haplotypic diversity of 0.80696 and a nucleotide diversity of 0.00567. Haplotype H5, with 33 specimens, was the most common among the four populations. Only haplotypes H5 and H7 were present in all four populations. The population from Doutor Camargo showed the highest genetic diversity, and only this population shared haplotypes with those from the other municipalities. The highest number of haplotypes was sheared with Lobato which also had the highest number of unique haplotypes. This probably occurred because of constant anthropic changes that happened in the environment during the first half of the twentieth century, mainly after 1998. There was no significant correlation between genetic and geographical distances regarding these populations. However, the highest genetic and geographical distances, and the lowest gene flow were observed between Japira and Porto Rico. Geographical distance is a possible barrier between these municipalities through the blocking of haplotype sharing. PMID:28380111
Genetic variability of populations of Nyssomyia neivai in the Northern State of Paraná, Brazil
Directory of Open Access Journals (Sweden)
Jaqueline de Carvalho Gasparotto
Full Text Available ABSTRACT The genetic study of sandfly populations needs to be further explored given the importance of these insects for public health. Were sequenced the NDH4 mitochondrial gene from populations of Nyssomyia neivai from Doutor Camargo, Lobato, Japira, and Porto Rico, municipalities in the State of Paraná, Brazil, to understand the genetic structure and gene flow. Eighty specimens of Ny. Neivai were sequenced, 20 from each municipality, and 269 base pairs were obtained. A total of 27 haplotypes and 28 polymorphic sites were found, along with a haplotypic diversity of 0.80696 and a nucleotide diversity of 0.00567. Haplotype H5, with 33 specimens, was the most common among the four populations. Only haplotypes H5 and H7 were present in all four populations. The population from Doutor Camargo showed the highest genetic diversity, and only this population shared haplotypes with those from the other municipalities. The highest number of haplotypes was sheared with Lobato which also had the highest number of unique haplotypes. This probably occurred because of constant anthropic changes that happened in the environment during the first half of the twentieth century, mainly after 1998. There was no significant correlation between genetic and geographical distances regarding these populations. However, the highest genetic and geographical distances, and the lowest gene flow were observed between Japira and Porto Rico. Geographical distance is a possible barrier between these municipalities through the blocking of haplotype sharing.
Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P
2014-11-01
It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
Navarro-Fontestad, Carmen; González-Álvarez, Isabel; Fernández-Teruel, Carlos; Bermejo, Marival; Casabó, Vicente Germán
2012-01-01
The aim of the present work was to develop a new mathematical method for estimating the area under the curve (AUC) and its variability that could be applied in different preclinical experimental designs and amenable to be implemented in standard calculation worksheets. In order to assess the usefulness of the new approach, different experimental scenarios were studied and the results were compared with those obtained with commonly used software: WinNonlin® and Phoenix WinNonlin®. The results do not show statistical differences among the AUC values obtained by both procedures, but the new method appears to be a better estimator of the AUC standard error, measured as the coverage of 95% confidence interval. In this way, the new proposed method demonstrates to be as useful as WinNonlin® software when it was applicable. Copyright © 2011 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Miller, William H.; Cotton, Stephen J.
2016-01-01
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
Energy Technology Data Exchange (ETDEWEB)
Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
International Nuclear Information System (INIS)
Olteanu, S C; Belkoura, L; Aitouche, A
2014-01-01
The article's goals are to illustrate the feasibility of implementing a Takagi Sugeno state observer on an embedded microcontroller based platform and secondly to present a methodology for validating a physical embedded system using a Hardware In The Loop architecture, where a simulation software replaces the process. As an application, a three water tank system was chosen. For the validation part, LMS AMESim software is employed to reproduce the process behaviour. The interface to the embedded platform is assured by Simulink on a Windows operating system, chosen as it is the most commonly used operating system. The lack of real time behaviour of the operating system is compensated by a real time kernel that manages to offer deterministic response times. The Takagi-Sugeno observer in the case of this process has the complex form that considers the premise variables to be unmeasurable. The embedded system consists of two Arduino boards connected in parallel, thus offering distributed resources
Energy Technology Data Exchange (ETDEWEB)
Olteanu, S C; Belkoura, L [University of Lille 1 (France); Aitouche, A [HEI Lille (France)
2014-12-16
The article's goals are to illustrate the feasibility of implementing a Takagi Sugeno state observer on an embedded microcontroller based platform and secondly to present a methodology for validating a physical embedded system using a Hardware In The Loop architecture, where a simulation software replaces the process. As an application, a three water tank system was chosen. For the validation part, LMS AMESim software is employed to reproduce the process behaviour. The interface to the embedded platform is assured by Simulink on a Windows operating system, chosen as it is the most commonly used operating system. The lack of real time behaviour of the operating system is compensated by a real time kernel that manages to offer deterministic response times. The Takagi-Sugeno observer in the case of this process has the complex form that considers the premise variables to be unmeasurable. The embedded system consists of two Arduino boards connected in parallel, thus offering distributed resources.
Approaches for increasing the cooperation between Member States and IAEA under SSS
International Nuclear Information System (INIS)
Rheem, Karp-Soon; Park, Wan-Sou; Kim, Byung-Koo
1997-01-01
With introduction of the Strengthened Safeguards System (SSS), both the IAEA and Member States are concerned about the limited resources to carry out the SSS activity and the potential increase of additional cost and burdens. Even though the IAEA has recently prepared a procedure of the generalized New Partnership Approach (NPA), its wider application to the general Member States is difficult at the present time. For the generalized NPA necessitates that SSACs of the Member States have sufficient technical capability in safeguards to carry out the necessary activities. Unfortunately a few Member States seem to be qualified to have the sufficient technical capability that the IAEA desires. In this topic, a new approach to increase the cooperation between Member States and IAEA under SSS is proposed such that effective supports can be provided to all of its Member States that are not technically competent in terms of safeguards experience. This is realized by so called 'tunneling effort', meaning that desired goals are accomplished by efforts from both Member States and the IAEA. The Member States having high technical competence in safeguards provide technical assistance to the Member States that are not competent until they attain to a certain level in technical capability, while the IAEA provides the guidelines, and coordinates the process. The formal introduction of the Quality Control concept to the safeguards management is proposed as well so as to efficiently reduce burdens from the implementation of the SSS. (author)
Alzougool, Basil; Chang, Shanton; Gray, Kathleen
2017-09-01
There has been little research that provides a comprehensive account of the nature and aspects of information needs of informal carers. The authors have previously developed and validated a framework that accounts for major underlying states of information need. This paper aims to apply this framework to explore whether there are common demographic and socioeconomic characteristics that affect the information needs states of carers. A questionnaire about the information needs states was completed by 198 carers above 18 years old. We use statistical methods to look for similarities and differences in respondents' information needs states, in terms of the demographic and socioeconomic variables. At least one information needs state varies among carers, in terms of seven demographic and socioeconomic variables: the age of the patient(s) that they are caring for; the condition(s) of the patient(s) that they are caring for; the number of patients that they are caring for; their length of time as a carer; their gender; the country that they live in; and the population of the area that they live in. The findings demonstrate the utility of the information needs state framework. We outline some practical implications of the framework.
Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach
Pietanza, L. D.; Colonna, G.; Capitelli, M.
2017-12-01
Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.
International Nuclear Information System (INIS)
Morice, Erwan
2014-01-01
Fracture in quasi-brittle materials, such as ceramics or concrete, can be represented schematically by series of events of nucleation and coalescence of micro-cracks. Modeling this process is an important challenge for the reliability and life prediction of concrete structures, in particular the prediction of the permeability of damaged structures. A multi-scale approach is proposed. The global behavior is modeled within the fracture mechanics framework and the local behavior is modeled by the discrete element method. An approach was developed to condense the non linear behavior of the mortar. A model reduction technic is used to extract the relevant information from the discrete elements method. To do so, the velocity field is partitioned into mode I, II, linear and non-linear components, each component being characterized by an intensity factor and a fixed spatial distribution. The response of the material is hence condensed in the evolution of the intensity factors, used as non-local variables. A model was also proposed to predict the behavior of the crack for proportional and non-proportional mixed mode I+II loadings. An experimental campaign was finally conducted to characterize the fatigue and fracture behavior of mortar. The results show that fatigue crack growth can be of significant importance. The experimental velocity field determined, in the crack tip region, by DIC, were analyzed using the same technic as that used for analyzing the fields obtained by the discrete element method showing consistent results. (author)
Learning Approach on the Ground State Energy Calculation of Helium Atom
International Nuclear Information System (INIS)
Shah, Syed Naseem Hussain
2010-01-01
This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.
Directory of Open Access Journals (Sweden)
C. I. Meier
2016-10-01
Full Text Available Interannual variability of precipitation is traditionally described by fitting a probability model to yearly precipitation totals. There are three potential problems with this approach: a long record (at least 25–30 years is required in order to fit the model, years with missing rainfall data cannot be used, and the data need to be homogeneous, i.e., one has to assume stationarity. To overcome some of these limitations, we test an alternative methodology proposed by Eagleson (1978, based on the derived distribution (DD approach. It allows estimation of the probability density function (pdf of annual rainfall without requiring long records, provided that continuously gauged precipitation data are available to derive external storm properties. The DD approach combines marginal pdfs for storm depths and inter-arrival times to obtain an analytical formulation of the distribution of annual precipitation, under the simplifying assumptions of independence between events and independence between storm depth and time to the next storm. Because it is based on information about storms and not on annual totals, the DD can make use of information from years with incomplete data; more importantly, only a few years of rainfall measurements should suffice to estimate the parameters of the marginal pdfs, at least at locations where it rains with some regularity. For two temperate locations in different climates (Concepción, Chile, and Lugano, Switzerland, we randomly resample shortened time series to evaluate in detail the effects of record length on the DD, comparing the results with the traditional approach of fitting a normal (or lognormal distribution. Then, at the same two stations, we assess the biases introduced in the DD when using daily totalized rainfall, instead of continuously gauged data. Finally, for randomly selected periods between 3 and 15 years in length, we conduct full blind tests at 52 high-quality gauging stations in Switzerland
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-05-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.
Semansky, Rafael M
2012-07-01
In 2005, Maryland received a mental health transformation grant from the Substance Abuse and Mental Health Services Administration. Maryland's transformation efforts have differed from those in other grantee states and have evolved into a shared leadership approach that harnesses the power of leaders from all sectors of the community. This column describes Maryland's reform efforts, focusing in particular on the development of the position of a peer employment specialist to improve placement of consumers in employment. This shared leadership approach has the potential to enhance long-term sustainability of reform initiatives and uses fewer state resources.
An Information Retrieval Approach for Robust Prediction of Road Surface States.
Park, Jae-Hyung; Kim, Kwanho
2017-01-28
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.
Energy Technology Data Exchange (ETDEWEB)
Astier, D. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Depont, G. [Electricite de France (EDF/DPN), 93 - Saint-Denis (France); Van Dermarliere, Y. [Electricite de France (EDF/SEPTEN), 69 - Villeurbanne (France)
2004-07-01
This article presents the progressive implementation of the state-oriented approach (APE) for centralized control procedures in French nuclear power plants. The implementation began in the years 1982-83 and it concerned only the circuits involved in engineered safeguard systems such IS (safety injection), EAS (containment spray system) and GMPP (reactor coolant pump set). In 2003 the last PWR unit switched from the event oriented approach to APE for post-accidental situations.
Ho, M. W.; Devineni, N.; Cook, E. R.; Lall, U.
2017-12-01
As populations and associated economic activity in the US evolve, regional demands for water likewise change. For regions dependent on surface water, dams and reservoirs are critical to storing and managing releases of water and regulating the temporal and spatial availability of water in order to meet these demands. Storage capacities typically range from seasonal storage in the east to multi-annual and decadal-scale storage in the drier west. However, most dams in the US were designed with limited knowledge regarding the range, frequency, and persistence of hydroclimatic extremes. Demands for water supplied by these dams have likewise changed. Furthermore, many dams in the US are now reaching or have already exceeded their economic design life. The converging issues of aging dams, improved knowledge of hydroclimatic variability, and evolving demands for dam services result in a pressing need to evaluate existing reservoir capacities with respect to contemporary water demands, long term hydroclimatic variability, and service reliability into the future. Such an effort is possible given the recent development of two datasets that respectively address hydroclimatic variability in the conterminous United States over the past 555 years and human water demand related water stress over the same region. The first data set is a paleoclimate reconstruction of streamflow variability across the CONUS region based on a tree-ring informed reconstruction of the Palmer Drought Severity Index. This streamflow reconstruction suggested that wet spells with shorter drier spells were a key feature of 20th century streamflow compared with the preceding 450 years. The second data set in an annual cumulative drought index that is a measure of water balance based on water supplied through precipitation and water demands based on evaporative demands, agricultural, urban, and industrial demands. This index identified urban and regional hotspots that were particularly dependent on water