Sample records for state selective reactions

  1. State selective reactions of cosmic dust analogues at cryogenic temperatures

    International Nuclear Information System (INIS)

    Perry, James Samuel Anthony


    Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)

  2. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.


    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  3. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.


    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  4. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention. (United States)

    Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg


    Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks

  5. Fairness reactions to personnel selection methods: An international comparison between the Netherlands, the United States, France, Spain, Portugal, and Singapore

    NARCIS (Netherlands)

    Anderson, N.; Witvliet, C.


    This paper reports reactions to employee selection methods in the Netherlands and compares these findings internationally against six other previously published samples covering the United States, France, Spain, Portugal, and Singapore. A sample of 167 participants rated 10 popular assessment

  6. High-Resolution State-Selected Ion-Molecule Reaction Studies Using Pulsed Field Ionization Photoelectron-Secondary Ion Coincidence Method

    National Research Council Canada - National Science Library

    Qian, X


    We have developed an octopole-quadrupole photoionization apparatus at the Advanced Light Source for absolute integral cross-section measurements of rovibrational-state-selected ion-molecule reactions...

  7. The way toward theoretical description of state-selected reactions of O+ with methane

    Czech Academy of Sciences Publication Activity Database

    Hrušák, Jan; Paidarová, Ivana

    354-355, SI (2013), s. 372-377 ISSN 1387-3806 R&D Projects: GA ČR GAP208/11/0446 Institutional support: RVO:61388955 Keywords : methane oxidation * excited state * ab initio MCSCF calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.227, year: 2013

  8. Step Towards Modeling the Atmosphere of Titan: State-Selected Reactions of O+ with Methane

    Czech Academy of Sciences Publication Activity Database

    Hrušák, Jan; Paidarová, Ivana


    Roč. 46, č. 4 (2016), s. 419-424 ISSN 0169-6149 Grant - others:COST(XE) TD1308 Institutional support: RVO:61388955 Keywords : methane oxidation * excited states * transition dipole moments Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.000, year: 2016

  9. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M


    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  10. Rationalization of Product Selectivities in Asymmetric Horner-Wadsworth-Emmons Reactions by Use of a New Method for Transition-State Modeling

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter; Rein, Tobias


    A new method for creating a transition-state force field, based on quantum chemical normal-mode analysis, is described. The force field was used to rationalize the experimentally observed product selectivities in asymmetric Horner-Wadsworth-Emmons reactions between some chiral phosphonates and ch...

  11. Selectivity in heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Boucenna, A.


    One-two-and three-nucleon stripping reactions induced by 480 MeV 12 C and by 793 MeV 16 O have been studied on 12 C, 16 O, 28 Si, 40 Ca, and 54 Fe targets. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one and two orders of magnitude less for 2p- and 3 He-transfers, respectively. These reactions are governed by two selection rules contained in the semi-classical model of Brink: i) Large orbital final momentum states are selectively populated and ii) The most highly populated states correspond to no-flip transitions. Two-proton transfer reactions induced by 112 MeV 12 C on even Ni and Zn isotopes are found to be less selective than two-neutron transfer reactions induced by the same projectile on the same targets in a similar incident energy range. The additional collective aspects observed in the two-proton transfers are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. The energy of excited states is well reproduced by simple shell model calculations. Such estimates are useful in proposing spins of newly observed states, especially as the shapes of the measured angular distributions are independant of the final spin of the residual nucleus. The experimental results of two-proton and two-neutron stripping reactions and the simple shell model allow an estimate of two-body matrix elements describing the nucleon-nucleon interaction and of the Coulomb energy [fr

  12. Selected aspects of fusion reactions

    International Nuclear Information System (INIS)

    Lacroix, D.


    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  13. Overview of selective photo-reaction

    International Nuclear Information System (INIS)

    Arisawa, Takashi


    Selective reaction process especially isotope separation is a key technology for the development of the technologies related to the nuclear energy. However only a few species are separated on a production scale using the conventional processes such as thermal diffusion, chemical exchange reaction and distillation for lighter isotopes, and gas centrifuge and gaseous diffusion for uranium. As these methods are based on statistical thermodynamics and have low enrichment factors, they need repetitive operations of separation with many separating units combined together. Electro-magnetic separation method known as the one with high separation factor can be applied to most of the elements, but extremely low production rate is realized, which is uneconomical. From the above point of view, much attention has been pain to the laser process. This method can be applied to either gas, liquid or solid phase, and high separation factors are basically realized only in gaseous phase. Since the beginning of the studies on isotope separation in early 1970s, many ideas have been proposed for the selective photo-reaction process such as photoionization, multiphoton dissociation and state selective chemical reaction. As a result of experimental and theoretical efforts, large scale production of some isotopes have been intended. Production of deuterium by infrared multi-photodissociation method was studied aiming at the replacement of the conventional dual temperature exchange process, and lots of experiments have been achieved intensively for the uranium enrichment. A stepwise selective photoionization method has also been studied for the isotopic separation of many elements, especially uranium enrichment. To implement the laser processes on a large scale production system, advanced performances are required not only for the tunable laser systems but also for many related technologies such as atomic/molecular source, photo-reactor and extractor of products. (author)

  14. Reactions of State-Selected Atomic Oxygen Ions O+(S-4, D-2, P-2) with Methane

    Czech Academy of Sciences Publication Activity Database

    de Miranda, B. C.; Romanzin, C.; Chefdeville, M.; Vuitton, V.; Žabka, Ján; Polášek, Miroslav; Alcaraz, C.


    Roč. 119, č. 23 (2015), s. 6082-6098 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA14-19693S; GA MŠk(CZ) LD14024 Institutional support: RVO:61388955 Keywords : CHARGE-TRANSFER REACTIONS * PHOTOELECTRON-PHOTOION COINCIDENCE * TRANSLATIONAL ENERGY-DEPENDENCE Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  15. Substrate-Directed Catalytic Selective Chemical Reactions. (United States)

    Sawano, Takahiro; Yamamoto, Hisashi


    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  16. Unstable decay and state selection

    International Nuclear Information System (INIS)

    McKane, Alan; Tarlie, Martin


    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described that enables the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak-noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between nonlinearities and noise, and a naive approximation scheme that does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation that distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading-order contribution are at the heart of the method, and (iii) the final result involves quantities that are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas, such as state selection in lasers, activationless chemical reactions, and population dynamics in fluctuating environments

  17. Impact parameter selected nuclear temperatures of hot nuclei from excited state populations for 40Ar+197Au reactions at E/A=25MeV

    International Nuclear Information System (INIS)

    Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei


    Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)

  18. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.


    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  19. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions. (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B


    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  20. Bond-selective control of a gas-surface reaction (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  1. Toward the first study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase: The Mu+H2*(v=1) reaction by stimulated Raman pumping

    International Nuclear Information System (INIS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Matsuda, Yasuyuki; Pratt, Francis; Gumplinger, Peter; Momose, Takamasa; Torikai, Eiko; Fleming, Donald


    Stimulated Raman pumping (SRP) is used to produce H 2 in its first vibrational state, in order to measure, for the first time, the Mu+H 2 *(v=1)→MuH+H reaction rate at room temperature, as a prototypical example of new directions in gas-phase muonium chemistry, utilizing the pulsed muon beam and a new dedicated laser system at the RIKEN/RAL Laboratory. Reported here is a preliminary result but the final results are expected to provide definitive new tests of reaction rate theory on the highly accurate H 3 potential energy surface. The major difficulty in this experiment, compared to the standard SRP process, is to ensure a homogeneous excitation over a volume of several cm 3 and of sufficient intensity to ensure a measurable Mu relaxation rate. The techniques used to accomplish this are described. The experiment utilizes the 2nd harmonic output of a Nd:YAG laser (532 nm) with pulse energies up to 500 mJ at a repetition rate of 25 Hz. Different optical setups have been constructed and tested in order to optimize the number of laser-pumped H 2 molecules and their overlap with the stopping profile of the muon beam in the reaction cell (total volume ∼100x40x4mm 3 ). The first result of this experiment gives a measured relaxation rate due to laser excitation of λ*=0.085±0.051μs -1 , consistent with theory but limited by both low statistics and particularly a high background relaxation rate.

  2. Reactions to Graphic Health Warnings in the United States (United States)

    Nonnemaker, James M.; Choiniere, Conrad J.; Farrelly, Matthew C.; Kamyab, Kian; Davis, Kevin C.


    This study reports consumer reactions to the graphic health warnings selected by the Food and Drug Administration to be placed on cigarette packs in the United States. We recruited three sets of respondents for an experimental study from a national opt-in e-mail list sample: (i) current smokers aged 25 or older, (ii) young adult smokers aged 18-24…

  3. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem. (United States)

    Balcells, David; Clot, Eric; Eisenstein, Odile; Nova, Ainara; Perrin, Lionel


    Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though

  4. Reaction Hamiltonian and state-to-state description of chemical reactions

    International Nuclear Information System (INIS)

    Ruf, B.A.; Kresin, V.Z.; Lester, W.A. Jr.


    A chemical reaction is treated as a quantum transition from reactants to products. A specific reaction Hamiltonian (in second quantization formalism) is introduced. The approach leads to Franck-Condon-like factor, and adiabatic method in the framework of the nuclear motion problems. The influence of reagent vibrational state on the product energy distribution has been studied following the reaction Hamiltonian method. Two different cases (fixed available energy and fixed translational energy) are distinguished. Results for several biomolecular reactions are presented. 40 refs., 5 figs

  5. Chemical tailoring of teicoplanin with site-selective reactions. (United States)

    Pathak, Tejas P; Miller, Scott J


    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  6. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.


    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  7. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.


    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  8. Effect of excited states on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Sargood, D.G.


    Values of the ratio of the thermonuclear reaction rate of a reaction, with target nuclei in a thermal distribution of energy states, to the reaction rate with all target nuclei in their ground states are tabulated for neutron, proton and α-particle induced reactions on the naturally occurring nuclei from 20 Ne to 70 Zn, at temperatures of 1, 2, 3.5 and 5x10 9 K. The ratios are determined from reaction rates based on statistical model cross sections

  9. Evaluating candidate reactions to selection practices using organisational justice theory. (United States)

    Patterson, Fiona; Zibarras, Lara; Carr, Victoria; Irish, Bill; Gregory, Simon


    This study aimed to examine candidate reactions to selection practices in postgraduate medical training using organisational justice theory. We carried out three independent cross-sectional studies using samples from three consecutive annual recruitment rounds. Data were gathered from candidates applying for entry into UK general practice (GP) training during 2007, 2008 and 2009. Participants completed an evaluation questionnaire immediately after the short-listing stage and after the selection centre (interview) stage. Participants were doctors applying for GP training in the UK. Main outcome measures were participants' evaluations of the selection methods and perceptions of the overall fairness of each selection stage (short-listing and selection centre). A total of 23,855 evaluation questionnaires were completed (6893 in 2007, 10,497 in 2008 and 6465 in 2009). Absolute levels of perceptions of fairness of all the selection methods at both the short-listing and selection centre stages were consistently high over the 3years. Similarly, all selection methods were considered to be job-related by candidates. However, in general, candidates considered the selection centre stage to be significantly fairer than the short-listing stage. Of all the selection methods, the simulated patient consultation completed at the selection centre stage was rated as the most job-relevant. This is the first study to use a model of organisational justice theory to evaluate candidate reactions during selection into postgraduate specialty training. The high-fidelity selection methods are consistently viewed as more job-relevant and fairer by candidates. This has important implications for the design of recruitment systems for all specialties and, potentially, for medical school admissions. Using this approach, recruiters can systematically compare perceptions of the fairness and job relevance of various selection methods. © Blackwell Publishing Ltd 2011.

  10. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.


    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  11. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo


    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO 2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO 2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO 2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO 2 with ubiquitous amino acids present in natural waters.

  12. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)


    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  13. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.


    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  14. Selective free radical reactions using supercritical carbon dioxide. (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar


    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  15. Copper-catalysed selective hydroamination reactions of alkynes (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.


    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  16. Copper-catalyzed selective hydroamination reactions of alkynes (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.


    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  17. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.


    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  18. Search for low spin superdeformed states by transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blons, J; Goutte, D; Lepretre, A; Lucas, R; Meot, V; Paya, D; Phan, X H [DAPNIA SPhN CE Saclay 91191 Gif sur Yvette (France); Barreau, G; Doan, T P; Pedemay, G [CENBG, 33175 Gradignan (France); Becker, J A; Stoyer, M A [LLNL, Livermore, CA (United States)


    We present a specific experimental technique aiming to observe superdeformed isomeric states. Preliminary results on two proton transfer reaction on platinum targets leading to {sup 194}Hg are shown. (author). 6 refs., 5 figs.

  19. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems (United States)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  20. Optimal control of bond selectivity in unimolecular reactions

    International Nuclear Information System (INIS)

    Shi Shenghua; Rabitz, H.


    The optimal control theory approach to designing optimal fields for bond-selective unimolecular reactions is presented. A set of equations for determining the optimal fields, which will lead to the achievement of the objective of bond-selective dissociation is developed. The numerical procedure given for solving these equations requires the repeated calculation of the time propagator for the system with the time-dependent Hamiltonian. The splitting approximation combined with the fast Fourier transform algorithm is used for computing the short time propagator. As an illustrative example, a model linear triatomic molecule is treated. The model system consists of two Morse oscillators coupled via kinetic coupling. The magnitude of the dipoles of the two Morse oscillators are the same, the fundamental frequencies are almost the same, but the dissociation energies are different. The rather demanding objective under these conditions is to break the stronger bond while leaving the weaker one intact. It is encouraging that the present computational method efficiently gives rise to the optimal field, which leads to the excellent achievement of the objective of bond selective dissociation. (orig.)

  1. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)


    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  2. Periodic-orbit formula for quantum reactions through transition states

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Goussev, Arseni; Wiggins, Stephen


    Transition state theory forms the basis of computing reaction rates in chemical and other systems. Recently, it has been shown how transition state theory can rigorously be realized in phase space by using an explicit algorithm. The quantization has been demonstrated to lead to an efficient

  3. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants. (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S


    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  4. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van


    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  5. Attachment and selective attention: disorganization and emotional Stroop reaction time. (United States)

    Atkinson, Leslie; Leung, Eman; Goldberg, Susan; Benoit, Diane; Poulton, Lori; Myhal, Natalie; Blokland, Kirsten; Kerr, Sheila


    Although central to attachment theory, internal working models remain a useful heuristic in need of concretization. We compared the selective attention of organized and disorganized mothers using the emotional Stroop task. Both disorganized attachment and emotional Stroop response involve the coordination of strongly conflicting motivations under conditions of emotional arousal. Furthermore, much is known about the cognitive and neuromodulatory correlates of the Stroop that may inform attempts to substantiate the internal working model construct. We assessed 47 community mothers with the Adult Attachment Interview and the Working Model of the Child Interview in the third trimester of pregnancy. At 6 and 12 months postpartum, we assessed mothers with emotional Stroop tasks involving neutral, attachment, and emotion conditions. At 12 months, we observed their infants in the Strange Situation. Results showed that: disorganized attachment is related to relative Stroop reaction time, that is, unlike organized mothers, disorganized mothers respond to negative attachment/emotion stimuli more slowly than to neutral stimuli; relative speed of response is positively related to number of times the dyad was classified disorganized, and change in relative Stroop response time from 6 to 12 months is related to the match-mismatch status of mother and infant attachment classifications. We discuss implications in terms of automatic and controlled processing and, more specifically, cognitive threat tags, parallel distributed processing, and neuromodulation through norepinephrine and dopamine.

  6. Studies of combustion reactions at the state-resolved differential cross section level

    Energy Technology Data Exchange (ETDEWEB)

    Houston, P.L.; Suits, A.G.; Bontuyan, L.S.; Whitaker, B.J. [Cornell Univ., Ithaca, NY (United States)


    State-resolved differential reaction cross sections provide perhaps the most detailed information about the mechanism of a chemical reaction, but heretofore they have been extremely difficult to measure. This program explores a new technique for obtaining differential cross sections with product state resolution. The three-dimensional velocity distribution of state-selected reaction products is determined by ionizing the appropriate product, waiting for a delay while it recoils along the trajectory imparted by the reaction, and finally projecting the spatial distribution of ions onto a two dimensional screen using a pulsed electric field. Knowledge of the arrival time allows the ion position to be converted to a velocity, and the density of velocity projections can be inverted mathematically to provide the three-dimensional velocity distribution for the selected product. The main apparatus has been constructed and tested using photodissociations. The authors report here the first test results using crossed beams to investigate collisions between Ar and NO. Future research will both develop further the new technique and employ it to investigate methyl radical, formyl radical, and hydrogen atom reactions which are important in combustion processes. The authors intend specifically to characterize the reactions of CH{sub 3} with H{sub 2} and H{sub 2}CO; of HCO with O{sub 2}; and of H with CH{sub 4}, CO{sub 2}, and O{sub 2}.

  7. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold. (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu


    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H 2 + (X 2 Σ: v + = 1-3; N + = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔE lab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H 2 + (X 2 Σ: v + ; N + ) + Ne. Here, we present the integral cross sections [σ(v + ; N + )'s] for the H 2 + (v + = 1-3; N + = 0-3) + Ne → NeH + + H reaction observed in the center-of-mass kinetic energy (E cm ) range of 0.05-2.00 eV. The σ(v + = 1, N + = 1) exhibits a distinct E cm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v + -vibrational enhancements are observed for σ(v + = 1-3, N + ) in the E cm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v + = 3, N + ), a careful search leads to the observation of moderate N + -rotational enhancements at v + = 2: σ(v + = 2; N + = 0) quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  8. Velocity-selective dark states in rubidium

    International Nuclear Information System (INIS)

    Esslinger, T.


    There are two recent developments exerting a strong influence on atomic physics: cooling of atomic gases with laser light, and optics with matter waves. The report addresses both fields. A mechanism for the cooling of atoms is examined, with the wave character of the atom playing an important part in the process. A novel atomic beam experiment has been worked out and is reported which represents application of this cooling method to an alkali atom for the first time. The basic principle of the cooling process is that atoms are optically pumped into quantum states by means of interaction with a standing laser wave, the quantum states having a sharply defined momentum, decoupled from the light field. These states are called dark states, as their dipole moment does not couple to the field of a resonant laser wave. In a one-dimensional standing laser wave with spatially varying polarization, the dark state is delocalised. This state is called velocity-selective dark state (VSDS). So far, such VSDS have only been observed in helium atoms. We succeded for the first time in detecting the population of VSDS with an experiment using alkali atoms. Atoms of a cold rubidium beam are optically pumped into VSDS by way of interaction with a one-dimensional standing laser wave. (orig./MM) [de

  9. Unconventional exo selectivity in thermal normal-electron-demand Diels-Alder reactions (United States)

    Ho, Guo-Ming; Huang, Ci-Jhang; Li, Elise Yu-Tzu; Hsu, Sheng-Kai; Wu, Ti; Zulueta, Medel Manuel L.; Wu, Kevin Binchia; Hung, Shang-Cheng


    The Diels-Alder reaction is a useful tool for generating functionalized chiral molecules through the concerted cycloaddition of dienes and dienophiles leading to six-membered rings. Traditionally, the selective predictions of the products rely heavily on consideration of the secondary orbital interactions that stabilize the endo pathway. However, there remain some basic examples defying this notion and produce the exo-isomer as major product. Here we systematically evaluated of the structural features driving exo selectivity in thermal normal-electron-demand Diels-Alder reactions. Substitution at the Cβ position and the size and electronegativity of the electron-withdrawing group of the dienophile are contributing factors. Experimental and computational studies both point toward the steric and electrostatic forces between the substituents in both the diene and the dienophile that increase the likelihood of the exo pathway. For these substrates, the dominance of the endo pathway is reduced by transition state distortions and poor structural alignments of the reacting partners. We also noted the tilt of the dienophile with respect to the diene causing steric strain on the functionalities at the more advanced bond forming carbon-carbon position of the endo transition state. Insights into such factors may benefit synthetic planning and asserting control over this important named reaction.

  10. Features of Speech Reactions to Mental State Concepts

    Directory of Open Access Journals (Sweden)

    Ekaterina M. Alekseeva


    Full Text Available The article is devoted to the problem of mental state associative speech representation. The study involved 31 Russian-speaking subjects (27 females and 4 males at the age of 18 - 22 years old. The experimental procedure using DMDX program allowed to measure the time of speech response to stimuli - the concepts of 25 mental states. The average reaction time to the concepts of mental states, shown on the computer monitor, made 2114.68 milliseconds. The most rapid associative speech response was the response to the following stimuli: "ecstasy" (1452.54 msec, "meditation" (1569.26 msec, "tranquility" (1685.21 msec, the slowest response is the response to "interest" (2517.5 msec and "indecision" (2454.63 msec. In total, 448 associations were given to the concepts of 25 mental states by tested subjects - speech reactions, i.e. 17.9 associations per mental state on the average. The greatest number of speech associations (24 was given to the concept of love. The smallest number was given to the concept of ecstasy (11 associations. Associative fields of mental states (meditation, ecstasy, melancholy, tiredness, loneliness have the most pronounced core. The prospects of the study consist in the performance of a similar associative experiment among the representatives of another culture, as well as in the studying of an estimated and situational associative representation of mental states.

  11. Outpatient desensitization in selected patients with platinum hypersensitivity reactions. (United States)

    O'Malley, David M; Vetter, Monica Hagan; Cohn, David E; Khan, Ambar; Hays, John L


    Platinum-based chemotherapies are a standard treatment for both initial and recurrent gynecologic cancers. Given this widespread use, it is important to be aware of the features of platinum hypersensitivity reactions and the subsequent treatment of these reactions. There is also increasing interest in the development of desensitization protocols to allow patients with a history of platinum hypersensitivity to receive further platinum based therapy. In this review, we describe the management of platinum hypersensitivity reactions and the desensitization protocols utilized at our institution. We also describe the clinical categorizations utilized to triage patients to appropriate desensitization protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Selective vibrational excitation of the ethylene--fluorine reaction in a nitrogen matrix. II

    International Nuclear Information System (INIS)

    Frei, H.


    The product branching between 1,2-difluoroethane and vinyl fluoride (plus HF) of the selective vibrationally stimulated reaction of molecular fluorine with C 2 H 4 has been studied in a nitrogen matrix at 12 K and found to be the same for five different vibrational transitions of C 2 H 4 between 1896 and 4209 cm -1 . The HF/DF branching ratio of the reaction of F 2 with CH 2 CD 2 , trans-CHDCHD, and cis-CHDCHD was determined to be 1.1, independent of precursor C 2 H 2 D 2 isomer and particular mode which excited the reaction. These results, as well as the analysis of the mixtures of partially deuterated vinyl fluoride molecules produced by each C 2 H 2 D 2 isomer indicate that the product branching occurs by αβ elimination of HF(DF) from a vibrationally excited, electronic ground state 1,2-difluoroethane intermediate. Selective vibrational excitation of fluorine reactions in isotopically mixed matrices t-CHDCHD/C 2 H 4 /F 2 /N 2 and CH 2 CD 2 /C 2 H 4 /F 2 /N 2 , and in matrices C 2 H 2 /C 2 H 4 /F 2 /N 2 revealed a high degree of isotopic and molecular selectivity. The extent to which intermolecular energy transfer occurred is qualitatively explained in terms of dipole coupled vibrational energy transfer. A study of the loss of absorbance of the C 2 H 4 x F 2 pairs in case of ν 9 as a function of both the laser irradiation frequency within the absorption profile, and the ethylene concentration showed that the C 2 H 4 x F 2 absorption is inhomogeneously broadened. Substantial depletion of reactive pairs which did not absorb laser light is interpreted in terms of Forster transfer

  13. Criteria of reaction identification and selection of badly measured events

    International Nuclear Information System (INIS)

    Linetskij, A.R.; Lyubarskij, G.Ya.; Sagalovich, N.E.


    Basing on photoemulsion methods of studying channels of multiparticle nuclear reactions the metrological characteristics of a physical technique are described in the process of its development. To increase the accuracy of reaction identification the technique for picture measuring has been complicated by introducing calibration measurements of tracks of stopped in the emulsion primary α-particles. Callibration measurements have support assumptions on energy oscillations of the primary beam and made possible the employment of actual values of this energy instead of rated one during mathematical processing. By using simulation reactions the effect of errors in determining the contraction ratio has been estimated. It has been found that rather a small error in determining the contraction (+-20%) results in additional casting-out 8-15% of measured events

  14. Reactivity and selectivity of arenes in reactions with ozone

    International Nuclear Information System (INIS)

    Vysotskii, Yu.B.; Mestechkin, M.M.; Sivyakova, L.N.; Tyupalo, N.F.


    The reactions of arenes with ozone, distinguished by the variety of products (quinones, aldehydes, acids), are of interest not only from the theoretical standpoint but also are of preparative value in the case of polycyclic hydrocarbons. In this work a quantitative treatment of this reaction is given on the basis of direct kinetic measurements and simple quantum chemical means, permitting its rate constants and the yield of the products to be related to the elements of electronic structure readily subject to quantum mechanical calculation

  15. Solitary wave solutions of selective nonlinear diffusion-reaction ...

    Indian Academy of Sciences (India)

    An auto-Bäcklund transformation derived in the homogeneous balance method is employed to obtain several new exact solutions of certain kinds of nonlin- ear diffusion-reaction (D-R) equations. These equations arise in a variety of problems in physical, chemical, biological, social and ecological sciences. Keywords.

  16. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles. (United States)

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin


    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  17. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D


    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  18. reaction of selected common bean genotypes to physiological races

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Department of Biological Sciences, Egerton University, P. O. Box 536, Egerton, Kenya. 1Department of Plant ... order to identify potential sources of resistance to angular leaf spot. Selected bean ...... phaseolicola (Burk, 1926) Young, Dye and.

  19. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I


    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  20. Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments (United States)

    Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna


    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.

  1. Site selectivity of specific reaction steps important for catalysis

    DEFF Research Database (Denmark)

    Nielsen, Kenneth

    ) overlayer system. In the STM study of the structure sensitivity of the CO dissociation reaction on the Ru(0 1 54) sample, it was determined that after cooling the sample from 700K to 400K in 10-8Torr of CO or in the CO that was left after a TPD, the sample displayed periodic decorations on every other...... site, is the most stable conguration after dissociation. Preliminary results where the sample was exposed to high doses of CO, at a CO pressure of 10-5 Torr and a temperature of 550K (dissociation conditions) indicated that especially every other step had a very rough appearance after 7 min exposure...

  2. The reaction of selected metal powders with Arklone

    International Nuclear Information System (INIS)

    Benson, C.G.; Hawes, P.M.


    Experimental work has been carried out to investigate possible reactions between Arklone 1,1,2-trichloro-1,2,2-trifluroethane and magnesium, beryllium and aluminium powders. Differential Thermal Analysis was used to study small scale samples in the temperature range from -35 to 200 0 C. Larger scale studies were also carried out using pure Arklone and Arklone with water or acids (HCL or HF) as contaminants. Results are reported for metal powders of various particle sizes. The systems studied were all found to be unreactive in conditions which are expected to be encountered in a Decontamination and Disposal Facility. (author)

  3. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will


    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  4. Synthesisofc-lifepo4 composite by solid state reaction method (United States)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.


    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  5. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.


    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)


    Directory of Open Access Journals (Sweden)

    José A.C. NERY


    Full Text Available It is well known that reactions are commonplace occurrences during the course of leprosy disease. Stigmatization may even be attributable to reactions which are also responsible for the worsening of neural lesions. A cohort of 162 newly-diagnosed baciloscopically positive patients from the Leprosy Care Outpatient Clinic of the Oswaldo Cruz Foundation (FIOCRUZ was selected for this study. While 46% of the multibacillary (MB patients submitted to the 24 fixed-dose multidrug therapy (MDT regimen suffered reactions during treatment, it was found that all MBs were susceptible and that constant attention and care were required at all times. Fourteen per cent were classified as BB, 52% as BL, and 33% as LL. None of the variables under study, such as, sex, age, clinical form, length of illness, length of dermatological lesions, baciloscopic index (BI, or degree of disability proved to be associate with reaction among the patients studied. Reversal Reaction (RR occurred in 45%, and Erythema Nodosum Leprosum (ENL occurred in 55%. Among BB patients who developed reactions (15 patients, 93% presented RR; while among the LL patients who developed reactions (34 patients, 91% presented ENL. Likewise, ENL was very frequent among those with disseminate lesions, while RR was most often observed in patients with segmentary lesions. RR was also most likely to occur during the initial months of treatment. It was demonstrated that the recurrence rate of ENL was significantly higher than that of RR. Neither grade of disability nor BI was shown to be associated with RR and ENL reaction. However, the RR rate was significantly higher among patients showing BI 3.Reações são ocorrências comuns no curso da hanseníase e são responsáveis pelo agravamento das lesões neurais. Uma coorte de 162 pacientes recém-diagnosticados, baciloscopicamente positivos, em acompanhamento no Ambulatório de Hanseníase da Fundação Oswaldo Cruz (FIOCRUZ foi selecionada para estudo

  7. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology. (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi


    solving complex problems and proposing new detailed reaction mechanisms that rationalize the experimental findings. For each of the considered reactions, a consistent mechanism is presented, the experimentally observed selectivities are reproduced, and their sources are identified. Reproducing selectivities requires high accuracy in computing relative transition state energies. As demonstrated by the results summarized in this Account, this accuracy is possible with the use of the presented methodology, benefiting of course from a large extent of cancellation of systematic errors. It is argued that as the employed models become larger, the number of rotamers and isomers that have to be considered for every stationary point increases and a careful assessment of their energies is therefore necessary in order to ensure that the lowest energy conformation is located. This issue constitutes a bottleneck of the investigation in some cases and is particularly important when analyzing selectivities, since small energy differences need to be reproduced.

  8. Bridge between bound state and reaction effective nucleon–nucleon ...

    Indian Academy of Sciences (India)

    Y R WAGHMARE. Department of Physics, University of Pune, Pune 411 007, India ... Effective nucleon–nucleon interactions; heavy-ion reactions; microscopic approach; fu- sion reactions. .... [2] M K Pal, private communication. [3] S Godre and ...

  9. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.


    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  10. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons


    Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  11. Measurement of the rates of reaction of the ground and metastable excited states of 02+, N0+ and 0+ with atmospheric gases at thermal energy

    International Nuclear Information System (INIS)

    Glosik, J.; Rakshit, A.B.; Twiddy, N.D.; Adams, N.G.; Smith, D.


    Thermal-energy reaction rate coefficients and product ion distributions have been measured for reactions of both the ground state and metastable electronic states of 0 2 + , N0 + and 0 + with several neutral species, using a selected-ion flow tube. In general the excited-ion reaction rates are fast, frequently approaching the Langevin limit. Collisional quenching occurs for the reactions of N0 + sup(star) with N 2 ,0 2 and H 2 and the quenching rates have been determined. The ion source also provided a substantial yield of doubly charged 0 2 permitting some measurements of reaction rates of 0 2 2+ . (author)

  12. Crystalline state photoreactions direct observation of reaction processes and metastable intermediates

    CERN Document Server

    Ohashi, Yuji


    Offering some 300 references, this book focuses on chemical reactions in the crystalline state. The reactions span many fields in inorganic and organic chemistry, making this a useful resource for inorganic, organic and physical chemists and graduate students.

  13. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.


    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  14. Carbonyl-Olefin Exchange Reaction: Present State and Outlook (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  15. Exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, C; Gaillard-Cusin, F; James, H [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures


    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H/sub 2/-D/sub 2/ exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole.

  16. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)


    cal reactions to the determination of paleotempera- tures from isotopic ... ordered liquid than H2O due to stronger H-bond in- teractions in the deuterated water ... layer chromatography and monitoring the excitation wavelength dependence of ...

  17. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Bartling, Stephan; Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina


    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  18. The factor that determines photo-induced crystalline-state reaction

    International Nuclear Information System (INIS)

    Takenaka, Y.


    The photo-induced crystalline-state reaction of cobaloxime complexes were investigated by X-ray diffraction method. The reactivity or the reaction rate is dependent only on the volume of the reaction cavity. The hydrogen bond formation of the reactive group and the difference of the base ligand have no effect. (author)

  19. A Rapid Selection Procedure for Simple Commercial Implementation of omega-Transaminase Reactions

    DEFF Research Database (Denmark)

    Gundersen Deslauriers, Maria; Tufvesson, Pär; Rackham, Emma J.


    A stepwise selection procedure is presented to quickly evaluate whether a given omega-transaminase reaction is suitable for a so-called "simple" scale-up for fast industrial implementation. Here "simple" is defined as a system without the need for extensive process development or specialized......, and (3) determination of product inhibition. The method is exemplified with experimental work focused on two products: 1-(4-bromophenyl)ethylamine and (S)-(+)3-amino-1-Boc-piperidine, synthesized from their corresponding pro-chiral ketones each with two alternative amine donors, propan-2-amine, and 1......-phenylethylamine. Each step of the method has a threshold value, which must be surpassed to allow "simple" implementation, helping select suitable combinations of substrates, enzymes, and donors. One reaction pair, 1-Boc-3-piperidone with propan-2-amine, met the criteria of the three-step selection procedure...

  20. Time resolved bovine host reponse to virulence factors mapped in milk by selected reaction monitoring

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    . In this study, we present a sensitive selected reaction monitoring (SRM) proteomics approach, targeting proteins suggested to play key roles in the bovine host response to mastitis. 17 biomarker candidates related to inflammatory response and mastitis were selected. The 17 candidate proteins were quantified......TIME RESOLVED BOVINE HOST RESPONSE TO VIRULENCE FACTORS, MAPPED IN MILK BY SELECTED REACTION MONITORING S.L. Bislev1, U. Kusebauch2, M.C. Codrea1, R. Moritz2, C.M. Røntved1, E. Bendixen1 1 Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark; 2...... Institute for Systems Biology, Seattle, Washington, USA Mastitis is beyond doubt the largest health problem in modern milk production. Many different pathogens can cause infections in the mammary gland, and give rise to severe toll on animal welfare, economic gain as well as on excessive use of antibiotics...

  1. Dynamical structure analysis of crystalline-state reaction and elucidation of chemical reactivity in crystalline environment

    International Nuclear Information System (INIS)

    Ohashi, Yuji


    It was found that a chiral alkyl group bonded to the cobalt atom in a cobalt complex crystal was racemized with retention of the single crystal form on exposure to visible light. Such reactions, which are called crystalline-state reactions, have been found in a variety of cobalt complex crystals. The concept of reaction cavity was introduced to explain the reaction rate quantitatively and the chirality of the photo-product. The new diffractometers and detectors were made for rapid data collection. The reaction mechanism was also elucidated using neutron diffraction analysis. The unstable reaction intermediates were analyzed using cryo-trapping method. The excited-state structures were obtained at the equilibrium state between ground and excited states. (author)

  2. Ion-beam mixing and solid-state reaction in Zr-Fe multilayers

    International Nuclear Information System (INIS)

    Paesano, A. Jr.; Motta, A.T.; Birtcher, R.C.; Ryan, E.A.; Teixeira, S.R.; Bruckmann, M.E.; Amaral, L.


    Vapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57% Fe were either irradiated with 300 keV Kr ions at temperatures from 25 K to 623 K to fluences up to 2 x 10 16 cm -2 , or simply annealed at 773 K in-situ in the Intermediate Voltage Electron microscope At Argonne National Laboratory. Under irradiation, the final reaction product is the amorphous phase in all cases studied, but the dose to amorphization depends on the temperature and on the wavelength. In the purely thermal case (annealing at 773 K), the 50-50 composition produces the amorphous phase but for the Fe-rich multilayers the reaction products depend on the multilayer wavelength. For small wavelength, the amorphous phase is still formed, but at large wavelength the Zr-Fe crystalline intermetallic compounds appear. These results are discussed in terms of existing models of irradiation kinetics and phase selection during solid state reaction

  3. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    African Journals Online (AJOL)

    The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM), Gravimetric ...

  4. Textbook Development and Selection in Japan and the United States. (United States)

    Tani, Masaru; And Others


    Reports on a study trip by 13 U.S. social studies educators and publishers to Japan. Compares development, marketing, and selection of textbooks in the United States and Japan. Concludes that both nations should improve textbooks and textbook selection processes. (CFR)

  5. Mass spectrometric studies of bimolecular reactions in a selected ion flow tube (SIFT)

    International Nuclear Information System (INIS)

    Shul, R.J.; Upschulte, B.L.; Passarella, R.; Keesee, R.G.; Castleman, A.W.


    The rate coefficients for a number of thermal energy charge transfer reactions have been obtained with a selected ion flow tube (SIFT). The reactions studied involve Ar + and Ar 2 + with a variety of neutral molecules including: O 2 , CS 2 , CO 2 , SO 2 , H 2 S, NH 3 , and SF 6 . Such reactions have been of long-standing interest in the field of gas-phase ion-molecule chemistry from both a practical and fundamental point of view. Consideration of charge transfer reactions as possible sources of chemical lasers and their role in ionospheric and interstellar chemistry account for much of the interest. Fundamentally, the mechanism involved in these reactions has yet to be definitively established. The consumption deposition of energy into internal modes and translational degrees of freedom in such reactions has also been a topic of considerable debate. The apparatus consists of five main components: an ion source, SIFT quadrupole, ion injector, flow tube, and a mass spectrometer detection system. Ions formed in a high pressure source leak into a SIFT quadrupole where they are mass selected. The primary ion of interest is then injected into the flow tube where reactions are studied. Once in the flow tube the ions are carried downstream by an inert buffer gas, either argon, nitrogen, or helium in the present study. Neutral reactant gas is added through a reactant gas inlet (RGI) at an appropriate location downstream in the flow tube, and allowed to react with the injected ions. Ions on the flow tube axis are sampled through a 1 mm orifice where they are mass analyzed by a second quadrupole mass spectrometer and detected with a channeltron electron multiplier

  6. Antibiotic usage pattern in selected poultry farms in Ogun state ...

    African Journals Online (AJOL)

    A survey was conducted from March 2011 to July 2011 on antibiotic usage pattern in selected poultry farms in Ogun State. Using a well-structured questionnaire, a total of 58 poultry farms were randomly surveyed from the four geo-political zones of Ogun State. All the 58 (100%) poultry farms used one or more antibiotics.

  7. Factors influencing the, selection of state office furniture (United States)

    R. Bruce Anderson; R. Bruce Anderson


    Evaluation of the factors influencing the selection of office furniture by nine state governments shows that quality and purchase price have the most important influence on the purchase decision. The intended use of the furniture and the purchasing regulations of the states were key f8CbrS in the use of wood furniture.

  8. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.


    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  9. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)


    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  10. Low chromatic aberration hexapole for molecular state selection

    International Nuclear Information System (INIS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun


    In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%. (paper)

  11. Use of nanostructure initiator mass spectrometry (NIMS to deduce selectivity of reaction in glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Kai eDeng


    Full Text Available Chemically synthesized nanostructure-initiator mass spectrometry (NIMS probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.

  12. Reaction mixtures formed by nitrite and selected sulfa-drugs showed mutagenicity in acidic medium

    Directory of Open Access Journals (Sweden)

    Claudia Trossero


    Full Text Available Nitrite, which is present in preserved meat and can be produced in the oral cavity by reduction of nitrate taken from vegetables, could react in stomach with nitrosatable drugs, giving genotoxic-carcinogenic N-nitroso compounds (NOC. The mutagenicity of reaction mixtures formed by sodium nitrite and selected sulfa-drugs (sulfathiazole, HST; phtalylsulfathiazole, PhST; complex Co(II-sulfathiazole, Co(II-ST in acidic medium was evaluated using the Salmonella typhimurium reverse mutation assay (Ames test, with TA98 and TA 100 strains. The reactions were carried out at room temperature, with a mole ratio [nitrite]/[sulfa-drug] > 1. The three reaction mixtures showed mutagenic effects in the considered range.

  13. Applicant reactions to social network web use in personnel selection and assessment

    Directory of Open Access Journals (Sweden)

    David Aguado


    Full Text Available Human Resource (HR professionals are increasingly using Social Networking Websites (SNWs for personnel recruitment and selection processes. However, evidence is required regarding their psychometric properties and their impact on applicant reactions. In this paper we present and discuss the results of exploring applicant reactions to either the use of a professional SNW (such as LinkedIn or a non-professional SNW (such as Facebook. A scale for assessing applicant reactions was applied to 124 professionals. The results showed more positive attitudes to the use of professional SNWs compared with non-professional SNWs. Both gender and age moderated these results, with females and young applicants having a less positive attitude than males and older participants towards the use of non-professional SNWs.

  14. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)


    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  15. Coherent diffractive imaging of solid state reactions in zinc oxide crystals (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.


    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  16. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo


    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins


    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  18. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  19. Selectivity control in pd-catalyzed c-h functionalization reactions


    Flores Gaspar, Areli


    Benzocyclobutenones are an intriguing four-membered ring ketone. In the present thesis, we have developed a new protocol for selectively preparing benzocyclobutenones through intramolecular acylation of aryl bromides via palladium catalyzed C-H bond functionalization reactions based on rac-BINAP ligand. We also found that a subtle modification on the ligand backbone lead to a new catalytic manifold for preparing configurationally-pure styrene derivatives, when using dcpp (bis-dicyclohexylphos...

  20. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction. (United States)

    Parker, Julie; Novakovic, Katarina


    Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react?

    DEFF Research Database (Denmark)

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C


    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time.......Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time....

  2. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  3. Search for possible 6-q states via inclusive reactions

    International Nuclear Information System (INIS)

    Bhatia, T.S.


    A satisfactory understanding of the 6-q system is necessary for a complete understanding of the short-range part of the NN interaction. Bag models and quark potential models predict 6-q states in the 2 to 3 GeV mass range. NNπ and NNππ are examples of 6-q states involving the same quark flavors as the NN system, search for which could be undertaken through inclusive spin-dependent measurements

  4. Action-reaction based parameters identification and states estimation of flexible systems


    Khalil, Islam; Kunt, Emrah Deniz; Şabanoviç, Asif; Sabanovic, Asif


    This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  5. Action-reaction based parameters identification and states estimation of flexible systems


    Khalil, Islam Shoukry Mohammed; Şabanoviç, Asif; Sabanovic, Asif


    This work attempts to identify and estimate flexible system’s parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system’s reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  6. Usefulness of bound-state approximations in reaction theory

    International Nuclear Information System (INIS)

    Adhikari, S.K.


    A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process

  7. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang


    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  8. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal. (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua


    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  9. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation (United States)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide


    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  10. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    polar phase and thus leading to less swelling of reverse .... ues were restricted up to the limit at which no phase separation was ..... The lower panel of figure 1 also indicates that the slopes of ... probe in its ground and excited states.55.

  11. Final state interactions in electron induced trinucleon breakup reactions

    International Nuclear Information System (INIS)

    Meijgaard, E. van.


    This thesis presents an exact analysis of the electromagnetic breakup process of a trinucleon system. The one-photon exchange mechanism is reviewed. The relevant components of the nuclear current are discussed and the off-shell one-body current matrix elements are derived to accommodate the evaluation of the trinucleon nuclear structure functions. The Faddeev equations are introduced. To facilitate the numerical evaluations the unitary pole expansion (UPE) is employed to describe a local S-wave spin-dependent interaction in a series of separable potential terms. The UPE convergence properties for the trinucleon bound state as well as for the N-N and N-d scattering observables are investigated. In view of the electromagnetic two-body and three-body breakup analysis the half off-shell wave functions for 3N→Nd and 3N→3N scattering are calculated. The nuclear structure functions of the electromagnetic two-body breakup structure functions of the electromagnetic two-body breakup processes are derived and exactly calculated. Results are presented and discussed for several kinetamic configurations. The nuclear response functions of the trinucleon breakup processes are calculated for a momentum transfer Q = 400 MeV/c. The results are compared with recent experimental data for the longitudinal and transverse response of both trinucleon systems. The three-body contributions to the response functions result from an essentially fourfold numerical integration of the invariant electromagnetic three-body breakup amplitude. A detailed derivation of this amplitude is presented and the treatment of the subsequent integration is discussed. An extension is formulated to include D-state components in the trinucleon bound state as well as in the disconnected final state components for the two-body breakup process. One kinematic situation is studied with the D-state extension. For the three-body breakup processes only the PWIA response is determined with the D-state component in the

  12. Radioactive nuclide production and isomeric state branching ratios in P + W reactions to 200 mev

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.


    Calculations of nuclide yields from spallation reactions usually assume that the products are formed in their ground states. We are performing calculations of product yields from proton reactions on tungsten isotopes that explicitly account for formation of the residual nuclei in excited states. The Hauser-Feshbach statistical/preequilibrium code GNASH, with full accounting for angular momentum conservation and electromagnetic transitions, is utilized in the calculations. We present preliminary results for isomer branching ratios for proton reactions to 200 MeV for several products including the 31-y, 16+ state in l78 Hf and the 25-d, 25/2- state in 179 Hf. Knowledge of such branching ratios, might be important for concepts such as accelerator production of tritium that utilize intermediate-energy proton reactions on tungsten

  13. Steady state statistical correlations predict bistability in reaction motifs. (United States)

    Chakravarty, Suchana; Barik, Debashis


    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  14. Reaction

    African Journals Online (AJOL)


    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  15. Selection of Suitable Microorganism for Biocatalytic Oxidation Reaction of Racemic Propranolol

    Directory of Open Access Journals (Sweden)

    Rahime SONGÜR


    Full Text Available Propranolol is one of the β-blockers which are pharmaceutically important, especially used for treatment of cardiovasculer disease. In this study, the production of enantiomerically pure propranolol was aimed via biocatalytic deracemization including tandem oxidation-reduction reactions of racemic propranolol. Within this content, firstly suitable microorganism for the oxidation of racemic propranolol was investigated. Alcohol dehydrogenase (ADH enzyme for oxidation of propranolol and NADH oxidase enzyme for cofactor regeneration were necessary for the oxidation reactions. For this reason, ADH and NADH oxidase enzymes activities of different microorganisms were measured to select the microorganism for using as enzyme source. These microorganisms are Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus. The highest ADH and NADH oxidase activities were obtained for L. kefir.

  16. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl


    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  17. Quantum coherence generated by interference-induced state selectiveness


    Garreau, Jean Claude


    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  18. Conditions for extinction events in chemical reaction networks with discrete state spaces. (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert


    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  19. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.


    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  20. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  1. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)


    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  2. Selected ion flow tube studies of S2+ reactions with a series of organic molecules (United States)

    Decker, Brian K.; Adams, Nigel G.


    A selected ion flow tube (SIFT) has been used to study the reactions of S2+ with a series of organic molecules (as well as H2, CO, NH3, NO and NO2). These include the hydrocarbons, C2H4, C2H6, CH2CCH2, CH3CHCH2 and C3H8; alcohols and thiols, CH3OH, C2H5OH, CH3SH and C2H5SH; ethers (CH3)2O and (C2H5)2O; aldehydes and ketones, CH3CHO, C2H5CHO and (CH3)2CO; and carboxylic acids and esters, HCO2H, HCO2CH3, HCO2C2H5, CH3CO2H, CH3CO2CH3, CH3CO2C2H5, C2H5CO2H, C2H5CO2CH3 and C2H5CO2C2H5. The rate coefficients are generally close to the collisional values, with exceptions among the reactions involving the smaller molecules. Most prevalent are abstraction reactions leading to formation of the thiosulfeno radical, HS2, or its protonated form; three-body associations; and channels leading to formation of the acetyl and propionyl cations, CH3CO+ and C2H5CO+, respectively. Only in reactions involving the alkenes is cleavage of the S---S bond of S2+ observed. The isomeric molecules in the data set generally react very differently, as would be expected from reactivity controlled by the position and complexity of the functional groups. The data are discussed in terms of reaction mechanisms, thermodynamics, and implications for interstellar chemistry.

  3. Rotational and neutron-hole states in 43S via the neutron knockout and fragmentation reactions

    International Nuclear Information System (INIS)

    Riley, L. A.; Hosier, K. E.; Adrich, P.; Baugher, T. R.; Bazin, D.; Diget, C. A.; Weisshaar, D.; Brown, B. A.; Cook, J. M.; Gade, A.; Garland, D. A.; Glasmacher, T.; Ratkiewicz, A.; Siwek, K. P.; Cottle, P. D.; Kemper, K. W.; Tostevin, J. A.


    The recent assertion that shape coexistence occurs in the neutron-rich isotope 43 S implies that a state observed at 940 keV in a previous study is a rotational excitation of the deformed ground state. Here we use results from two intermediate-energy reactions to demonstrate that this state--assigned an energy of 971 keV in the present work--is indeed a rotational state. This result strengthens the case for shape coexistence in 43 S.

  4. Do candidate reactions relate to job performance or affect criterion-related validity? A multistudy investigation of relations among reactions, selection test scores, and job performance. (United States)

    McCarthy, Julie M; Van Iddekinge, Chad H; Lievens, Filip; Kung, Mei-Chuan; Sinar, Evan F; Campion, Michael A


    Considerable evidence suggests that how candidates react to selection procedures can affect their test performance and their attitudes toward the hiring organization (e.g., recommending the firm to others). However, very few studies of candidate reactions have examined one of the outcomes organizations care most about: job performance. We attempt to address this gap by developing and testing a conceptual framework that delineates whether and how candidate reactions might influence job performance. We accomplish this objective using data from 4 studies (total N = 6,480), 6 selection procedures (personality tests, job knowledge tests, cognitive ability tests, work samples, situational judgment tests, and a selection inventory), 5 key candidate reactions (anxiety, motivation, belief in tests, self-efficacy, and procedural justice), 2 contexts (industry and education), 3 continents (North America, South America, and Europe), 2 study designs (predictive and concurrent), and 4 occupational areas (medical, sales, customer service, and technological). Consistent with previous research, candidate reactions were related to test scores, and test scores were related to job performance. Further, there was some evidence that reactions affected performance indirectly through their influence on test scores. Finally, in no cases did candidate reactions affect the prediction of job performance by increasing or decreasing the criterion-related validity of test scores. Implications of these findings and avenues for future research are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  5. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; Ball, Madelyn; Huber, George W.; Zanchet, Daniela; Dumesic, James A.


    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Pt surface, mostly in the (II) oxidation state.

  6. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.


    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  7. The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction. (United States)

    Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R


    This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

  8. State departments for the selection and control of school textbooks

    Directory of Open Access Journals (Sweden)

    María López García


    Full Text Available The article studies the State Commissions for the regulation of Schoolbooks, instituted in Argentine at the beginning of the 20th-century. The analysis exhibits a gradual liberalization of the prescriptions and a reassignment of decisions to the publishers, as well as the institution of schoolbooks as ineludible tool of the pedagogical methodology throughout that century. The growing of the publishing industry resulted in a displacement of the functions of control and selection of the produced teaching materials from the State on teachers and publishing companies. The bonds between State proposals and market technologies entailed a state validation of the companies’ conveniences; one of its more harmful consequences was their increasing meddling in the pedagogical methodology to implement in the school.

  9. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.


    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  10. Energy transfer mechanisms in photobiological reactions. Final report, 1 April 1960--31 March 1979. [Photodynamic processes in selected biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Spikes, J.D.


    This project was concerned primarily with studies of the mechanisms of the sensitized photooxidation of selected biomolecules using a variety of phtosensitizers. Such reactions are often termed photodynamic processes. In particular we have carried out steady-state kinetic studies, flash photolysis and spectral studies, and product formation studies of the sensitized photooxidation of the five susceptible amino acids (cycteine, histidine, methonine, tryptophan, and tyrosine) and their derivatives, as well as purines and pyrimidines. A number of studies were also carried out on the mechanisms of the photodynamic inactivation of enzymes (trypsin, ribonuclease, lysozyme). Mechanism of photosensitization were studied using a variety of sensitizers including flavins, porphyrins, and a number of synthetic dyes (substituted fluoresceins, acridines, thyazines).

  11. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface. (United States)

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H


    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  12. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection (United States)

    Downey, Kay


    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  13. Highly selective reactions of C(60)Cl(6) with thiols for the synthesis of functionalized [60]fullerene derivatives


    Khakina, Ekaterina A; Yurkova, Anastasiya A; Peregudov, Alexander S; Troyanov, Sergey I; Trush, Vyacheslav V; Vovk, Andrey I; Mumyatov, Alexander V; Martynenko, Vyacheslav M; Balzarini, Jan; Troshin, Pavel A


    Chlorofullerene C(60)Cl(6) undergoes highly selective reactions with thiols forming compounds C(60)[SR](5)H with high yields. These reactions open up straightforward synthetic routes to many functionalized fullerene derivatives, e.g. water-soluble compounds showing interesting biological activities.

  14. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ


    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  15. Restaurant Food Allergy Practices - Six Selected Sites, United States, 2014. (United States)

    Radke, Taylor J; Brown, Laura G; Faw, Brenda; Hedeen, Nicole; Matis, Bailey; Perez, Priscela; Viveiros, Brendalee; Ripley, Danny


    Food allergies affect an estimated 15 million persons in the United States (1), and are responsible for approximately 30,000 emergency department visits and 150-200 deaths each year (2). Nearly half of reported fatal food allergy reactions over a 13-year period were caused by food from a restaurant or other food service establishment (3). To ascertain the prevalence of food allergy training, training topics, and practices related to food allergies, CDC's Environmental Health Specialists Network (EHS-Net), a collaborative forum of federal agencies and state and local health departments with six sites, interviewed personnel at 278 restaurants. Fewer than half of the 277 restaurant managers (44.4%), 211 food workers (40.8%), and 156 servers (33.3%) interviewed reported receiving food allergy training. Among those who reported receiving training, topics commonly included the major food allergens and what to do if a customer has a food allergy. Although most restaurants had ingredient lists for at least some menu items, few had separate equipment or areas designated for the preparation of allergen-free food. Restaurants can reduce the risk for allergic reactions among patrons by providing food allergy training for personnel and ingredient lists for all menu items and by dedicating equipment and areas specifically for preparing allergen-free food.

  16. Adverse Selection Models with Three States of Nature

    Directory of Open Access Journals (Sweden)

    Daniela MARINESCU


    Full Text Available In the paper we analyze an adverse selection model with three states of nature, where both the Principal and the Agent are risk neutral. When solving the model, we use the informational rents and the efforts as variables. We derive the optimal contract in the situation of asymmetric information. The paper ends with the characteristics of the optimal contract and the main conclusions of the model.

  17. Selective maintenance of multi-state systems with structural dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.


    This paper studies the selective maintenance problem for multi-state systems with structural dependence. Each component can be in one of multiple working levels and several maintenance actions are possible to a component in a maintenance break. The components structurally form multiple hierarchical levels and dependence groups. A directed graph is used to represent the precedence relations of components in the system. A selective maintenance optimization model is developed to maximize the system reliability in the next mission under time and cost constraints. A backward search algorithm is used to determine the assembly sequence for a selective maintenance scenario. The maintenance model helps maintenance managers in determining the best combination of maintenance activities to maximize the probability of successfully completing the next mission. Examples showing the use of the proposed method are presented. - Highlights: • A selective maintenance model for multi-state systems is proposed considering both economic and structural dependence. • Structural dependence is modeled as precedence relationship when disassembling components for maintenance. • Resources for disassembly and maintenance are evaluated using a backward search algorithm. • Maintenance strategies with and without structural dependence are analyzed. • Ignoring structural dependence may lead to over-estimation of system reliability.

  18. The effect of interfaces on solid-state reactions between oxides

    International Nuclear Information System (INIS)

    Johnson, M.T.; Carter, C.B.


    A thin-film geometry has been used to study fundamental solid-state reaction processes occurring at interfaces in two spinel-forming oxide systems. In the first system, NiO/Al 2 O 3 , epitactic NiO films were deposited on various orientations of single-crystal α-Al 2 O 3 . In this case, the reaction kinetics were studied and correlated with the interfacial structure (or substrate orientation). In the second, In 2 O 3 /MgO, solid-state reactions were studied under the influence of an electric field. The electric field provides a driving force for mass transport that affects both the reaction process and the morphological stability of an interface

  19. Chemical degradation of proteins in the solid state with a focus on photochemical reactions. (United States)

    Mozziconacci, Olivier; Schöneich, Christian


    Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Doorway states in nuclear reactions as a manifestation of the 'super-radiant' mechanism

    International Nuclear Information System (INIS)

    Auerbach, N.; Zelevinsky, V.


    A mechanism is considered for generating doorway states and intermediate structure in low-energy nuclear reactions as a result of collectivization of widths of unstable intrinsic states coupled to common decay channels. At the limit of strong continuum coupling, the segregation of broad ('super-radiating') and narrow ('trapped') states occurs revealing the separation of direct and compound processes. We discuss the conditions for the appearance of intermediate structure in this process and doorways related to certain decay channels

  1. α-particle D-state effects in (d,α) reactions

    International Nuclear Information System (INIS)

    Santos, F.D.; Tonsfelt, S.A.; Clegg, T.B.; Ludwig, E.J.; Tagishi, Y.; Wilkerson, J.F.


    It is shown that the tensor analyzing powers for (d,α) reactions are sensitive to the D-state component in the α-particle wave function. The D to S-state asymptotic ratio extracted from T 20 and T 22 data in J = L +- 1 transitions is discussed using an α-particle D state generated with the Jackson and Riska model

  2. Excited states in 22Mg via the 12C(12C,2n)22Mg reaction

    International Nuclear Information System (INIS)

    Jewett, Cybele; Baktash, Cyrus; Bardayan, Daniel W.; Blackmon, Jeff C.; Chipps, K.; Galindo-Uribarri, Alfredo; Greife, U.; Gross, Carl J.; Jones, K. L.; Liang, Junjien; Livesay, Jake; Kozub, R. L.; Nesaraja, Caroline D; Radford, David C.; Sarazin, F.; Smith, Michael Scott; Thomas, J. S.; Yu, Chang-Hong


    The 12C(12C, 2n)22Mg reaction was measured with the CLARION array and the RMS separator at the Holifield Facility of Oak Ridge National Laboratory. This experiment was performed to gather more information on the excited states in 22Mg, which might be of relevance to recent radioactive ion beam measurements of the astrophysically important 21Na(p,γ)22Mg reaction. The results are compared to direct measurements, transfer experiments and a competing experiment performed with Gammasphere

  3. Nucleon transfer reactions to rotational states induced by 206,208PB projectiles

    International Nuclear Information System (INIS)

    Wollersheim, H.J.; DeBoer, F.W.N.; Emling, H.; Grein, H.; Grosse, E.; Spreng, W.; Eckert, G.; Elze, Th.W.; Stelzer, K.; Lauterbach, Ch.


    In a systematic study of nucleon transfer reactions accompanied by Coulomb excitation the authors bombarded 152 Sm, 160 Gd and 232 Th with 206, 208 Pb beams at incident energies close to the Coulomb barrier. Particle-gamma coincidence techniques were used to identify excited states of reaction products populated through inelastic scattering and in nucleon transfer reactions. Large cross sections were observed for one- and two-neutron pick-up from 232 Th at an incident energy of 6.4 MeV/μ. The results are analyzed in the framework of semiclassical models

  4. Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels-Alder Reaction. (United States)

    Hooper, Joel F; James, Natalie C; Bozkurt, Esra; Aviyente, Viktorya; White, Jonathan M; Holland, Mareike C; Gilmour, Ryan; Holmes, Andrew B; Houk, K N


    The intramolecular Diels-Alder reaction has been used as a powerful method to access the tricyclic core of the eunicellin natural products from a number of 9-membered-ring precursors. The endo/exo selectivity of this reaction can be controlled through a remarkable organocatalytic approach, employing MacMillan's imidazolidinone catalysts, although the mechanistic origin of this selectivity remains unclear. We present a combined experimental and density functional theory investigation, providing insight into the effects of medium-ring constraints on the organocatalyzed intramolecular Diels-Alder reaction to form the isobenzofuran core of the eunicellins.

  5. Super and hyper-deformed states, and reactions to populate them

    International Nuclear Information System (INIS)

    Cseh, J.; Darai, J.; Algora, A.; Antonenko, N.; Adamian, G.


    We study the possible binary cluster configurations of the superdeformed and hyper-deformed states of some N=Z nuclei. We have determined the shape isomers from the quasi-dynamical U(3) symmetry obtained from Nilsson calculations. In searching for the possible binary clusterization of the shape isomers we have taken into account both natural laws which govern the building up of a nucleus from smaller constituents. The exclusion principle was taken into account by applying a selection rule (in combination with Harvey's prescription), based on the microscopic configuration associated to the quasi-dynamical U(3) symmetry. In this way the Pauli-principle is incorporated only in an approximate way. The clusters were considered to have a deformation, like the corresponding free nuclei (spherical, prolate, oblate or triaxial), and no constraints were applied for their relative orientation. The methods we applied here seem to be applicable in heavier nuclei, too. Symmetry considerations can be helpful in studying both the shape isomers of nuclei, and their clusterization. These investigations contribute to the structural understanding of the shape isomers, and indicate some reaction channels to populate them

  6. Structure of states in 12Be via the 11Be( d,p) reaction (United States)

    Kanungo, R.; Gallant, A. T.; Uchida, M.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Ball, G. C.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Brown, B. A.; Buchmann, L.; Colosimo, S. J.; Clark, R. M.; Cline, D.; Cross, D. S.; Dare, H.; Davids, B.; Drake, T. E.; Djongolov, M.; Finlay, P.; Galinski, N.; Garrett, P. E.; Garnsworthy, A. B.; Green, K. L.; Grist, S.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Howell, D.; Hurst, A. M.; Jeppesen, H. B.; Leach, K. G.; Macchiavelli, A. O.; Oxley, D.; Pearson, C. J.; Pietras, B.; Phillips, A. A.; Rigby, S. V.; Ruiz, C.; Ruprecht, G.; Sarazin, F.; Schumaker, M. A.; Shotter, A. C.; Sumitharachchi, C. S.; Svensson, C. E.; Tanihata, I.; Triambak, S.; Unsworth, C.; Williams, S. J.; Walden, P.; Wong, J.; Wu, C. Y.


    The s-wave neutron fraction of the 0 levels in 12Be has been investigated for the first time through the 11Be(d,p) transfer reaction using a 5 A MeV11Be beam at TRIUMF, Canada. The reaction populated all the known bound states of 12Be. The ground state s-wave spectroscopic factor was determined to be 0.28-0.07+0.03 while that for the long-lived 02+ excited state was 0.73-0.40+0.27. This observation, together with the smaller effective separation energy indicates enhanced probability for an extended density tail beyond the 10Be core for the 02+ excited state compared to the ground state.

  7. The role of the excited electronic states in the C++H2O reaction

    International Nuclear Information System (INIS)

    Flores, Jesus R.; Gonzalez, Adan B.


    The electronic excited states of the [COH 2 ] + system have been studied in order to establish their role in the dynamics of the C + +H 2 O→[COH] + +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)

  8. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions. (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin


    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Supplier selection problem: A state-of-the-art review

    Directory of Open Access Journals (Sweden)

    Nilesh R. Ware


    Full Text Available In the global competitiveness and growing market environment, “Actual competition is not between firms against firm, than supplier against supplier”. Globally in the fastest market development world gets closer and closer. Consumers prefer fast delivery, economical product, excellent service and high quality product with desired service level. For successful management of this supply chain, supplier considered as the base source for all processes. Therefore, an efficient supplier selection and evaluation process needs to be incorporate. The main purpose of this paper is to provide an extensive state-of-the-art literature review and critique of the studies related to various aspects of supplier selection problem over the past two decades. Research papers appearing in the reputed and leading international journals from 1991 to 2011 are gathered and analyzed. Primary focus is given on more than 200 published and unpublished works. It has been referred extensively to carry out state-of-the-art review for supplier selection problem. Finally, paper provides future perspective based on current research trends available in the published literature.

  10. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.


    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  11. Computerized infrared spectroscopic study of surface reactions on selected lanthanide oxides

    International Nuclear Information System (INIS)

    Dellisante, G.N.


    The natures of adsorption sites on La 2 O 3 , Nd 2 O 3 , and selected praseodymium oxides were investigated by examining surface reactions of probe molecules using computerized transmission ir spectroscopy on unsupported samples. Additionally, the rehydration/dehydration behavior and crystallographic phase transitions of these oxides were examined in pretreatment temperature experiments involving rehydration of the sesquioxides to hydroxides by water exposure. Following rehydration of La 2 O 3 to La(OH) 3 , the effect of increasing vacuum pretreatment temperature (350 to 1000 0 C) is to gradually remove surface hydroxyl and carbonate entities (up to 650 0 C), and increase the degree of A-type crystallinity. Increasing crystallinity causes a concomitant decrease in surface oxide basicity. The removal of hydroxyl and carbonate species, as well as increases in oxide basicity, strongly correlated to increases in certain catalytic activities. The adsorption of NH 3 , CO 2 , mixtures of NH 3 and CO 2 , formic acid, acetic acid, acetaldehyde, and ethanol on the oxides was determined to weakly coordinate in Ln 3 + sites, and the surface reactions are discussed. Heating was found to desorb the adsorbed compounds and/or causes changes of the originally adsorbed form into other compounds. The effects of temperature on both adsorption and desorption are reported

  12. Optimization of ISSR-PCR reaction system and selection of primers in Bryum argenteum

    Directory of Open Access Journals (Sweden)

    Ma Xiaoying


    Full Text Available In order to determine optimum ISSR-PCR reaction system for moss Bryum argenteum,the concentrations of template DNA primers,dNTPs,Mg2+ and Taq DNA polymerase were optimized in four levels by PCR orthogonal experimental method. The appropriate primers were screened from 100 primers by temperature gradient PCR,and the optimal anneal temperature of the screened primers were determined. The results showed that the optimized 20 μL ISSR-PCR reaction system was as follows:template DNA 20 ng/20 μL,primers 0.45 μmol/L,Mg2+2.65 mmol/L,Taq DNA polymerase 0.4 U/20 μL,dNTPs 0.45 mmol/L. Using this system,50 primers with clear bands,repeatability well and polymorphism highly were selected from 100 primers. The establishment of this system,the screened primers and the annealing temperature could provide a theoretical basis for further research on the genetic diversity of bryophytes using ISSR molecular markers.

  13. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism. (United States)

    Moghaddam, Firouz Matloubi; Pourkaveh, Raheleh; Karimi, Ashkan


    This study describes the first para-selective palladium-catalyzed alkenylation of tertiary amines. This regioselective C-H activation was conducted without any chelation moieties. A series of olefins were reacted under mild reaction conditions at 60 °C, and the corresponding products were obtained in good yields with high selectivity.

  14. High resolution 148Nd(3He, ny) two proton stripping reaction and the structure of the O2+ state in 150Sm

    International Nuclear Information System (INIS)

    Sharpey-Schafer, J.F.; Dinoko, T.S.; Herbert, M.S.; Orce, J.N.; Papka, P.; Kheswa, B.V.; Ndayishimye, J.; Bvumbi, S.P.; Jones, P.M.; Bucher, T.D.; Lawrie, E.A.; Lawrie, J.J.; Negi, D.; Shirinda, O.; Wiedeking, M.; Vymers, P.; Easton, J.L.; Noncolela, S.P.; Sithole, P.; Khumalo, N.; Majola, S.N.T.; Stankiewicz, M.A.


    The challenge of achieving high resolution in binary reactions involving an outgoing high energy neutron is solved by detecting the γ-ray decay of populated excited states in an array of escape suppressed HPGe detectors in coincidence with fast neutrons detected in a wall of scintillator detectors 2 m down beam of the target. The selectivity of the arrangement is of the order of 1 in 1000. The time-of-flight difference is sufficient to separate fast neutrons from direct reactions from a large background of statistical neutrons from fusion-evaporation reactions. Our interest is in the wavefunction of the 0 2 + state at 740 keV in the N=88 nucleus 150 Sm which, with the 0 2 + state in 100 Ru, are the only two excited states observed in 2β2ν double β-decay. (authors)

  15. The radon service industry in selected Northeastern states

    International Nuclear Information System (INIS)

    Watson, M.R.; Reese, J.P.; Adams, A.R.


    In 1986 the EPA initiated an expedited program of technical assistance in response to the discovery of extremely elevated levels of indoor radon in Pennsylvania homes. A vital component of this project was a training program which addressed the variety of techniques used to reduce human exposure to radon gas and its decay products. The New York State Energy Office was selected as the most suitable organization to assist in this project because of its relevant experience in training programs, especially the building for energy efficiency workshop series with its indoor radon gas component. This paper reports on the project

  16. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.


    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  17. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail:; Ushakou, Dzmitryi V.


    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  18. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.


    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  19. Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Zia Bashir


    Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.

  20. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation. (United States)

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E


    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Automated selected reaction monitoring software for accurate label-free protein quantification. (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik


    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  2. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)


    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  3. Conflicts during response selection affect response programming: reactions toward the source of stimulation. (United States)

    Buetti, Simona; Kerzel, Dirk


    In the Simon effect, participants make a left or right keypress in response to a nonspatial attribute (e.g., color) that is presented on the left or right. Reaction times (RTs) increase when the response activated by the irrelevant stimulus location and the response retrieved by instruction are in conflict. The authors measured RTs and movement parameters (MPs) of pointing responses in a typical Simon task. Their results show that the trajectories veer toward the imperative stimulus. This bias decreased as RTs increased. The authors suggest that the time course of trajectory deviations reflects the resolution of the response conflict over time. Further, time pressure did not affect the size of the Simon effect in MPs or its time course, but strongly reduced the Simon effect in RTs. In contrast, response selection before the onset of a go signal on the left or right did not affect the Simon effect in RTs, but reduced the Simon effect in MPs and reversed the time course. The authors speculate about independent Simon effects associated with response selection and programming. (c) 2009 APA, all rights reserved.

  4. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)


    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  5. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.


    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  6. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface. (United States)

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald


    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  7. Probing the 8He ground state via the 8He(p,t)6He reaction

    International Nuclear Information System (INIS)

    Keeley, N.; Skaza, F.; Lapoux, V.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Kemper, K.W.; Nalpas, L.; Pakou, A.; Pollacco, E.C.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.


    The weakly-bound 8 He nucleus exhibits a neutron halo or thick neutron skin and is generally considered to have an α+4n structure in its ground state, with the four valence neutrons each occupying 1p 3/2 states outside the α core. The 8 He(p,t) 6 He reaction is a sensitive probe of the ground state structure of 8 He, and we present a consistent analysis of new and existing data for this reaction at incident energies of 15.7 and 61.3A MeV, respectively. Our results are incompatible with the usual assumption of a pure (1p 3/2 ) 4 structure and suggest that other configurations such as (1p 3/2 ) 2 (1p 1/2 ) 2 may be present with significant probability in the ground state wave function of 8 He

  8. Efimov states and bound state properties in selected nuclear and molecular three-body systems

    International Nuclear Information System (INIS)

    Huber, H.S.


    The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system

  9. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.


    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  10. Particle-hole state densities for statistical multi-step compound reactions

    International Nuclear Information System (INIS)

    Oblozinsky, P.


    An analytical relation is derived for the density of particle-hole bound states applying the equidistant-spacing approximation and the Darwin-Fowler statistical method. The Pauli exclusion principle as well as the finite depth of the potential well are taken into account. The set of densities needed for calculations of multi-step compound reactions is completed by deriving the densities of accessible final states for escape and damping. (orig.)

  11. Relative state, social comparison reactions, and the behavioral constellation of deprivation. (United States)

    Novakowski, Dallas; Mishra, Sandeep


    Pepper & Nettle compellingly synthesize evidence indicating that temporal discounting is a functional, adaptive response to deprivation. In this commentary, we underscore the importance of the psychology of relative state, which is an index of relative competitive (dis)advantage. We then highlight two proximate emotional social comparison reactions linked with relative state - personal relative deprivation and envy - that may play an important role in the deprivation-discounting link.

  12. High spin states excited by the (p, t) reaction on lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Hyakutake, M. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Yuasa, K.; Yamagata, T.; Kishimoto, S.; Ikegami, H.; Muraoka, M [eds.


    In order to find high spin states the sup(204, 206, 208)Pb (p, t) reactions have been investigated with RCNP isochronous cyclotron and a high resolution magnetic spectrograph ''RAIDEN''. The experimental angular distributions were analyzed by DWBA calculations, and the lowest 10/sup +/, 12/sup +/ (i sub(13/2))/sup 2/ and 11/sup -/ (i sub(13/2), h sub(9/2)) states in /sup 202/Pb, /sup 204/Pb and /sup 206/Pb were established.

  13. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections (United States)

    Koeppl, G. W.; Karplus, Martin


    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  14. Transmission Coefficients for Chemical Reactions with Multiple States: Role of Quantum Decoherence

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Řezáč, Jan; Lévy, B.; Sanders, B. C.; Salahub, D. R.


    Roč. 133, č. 11 (2011), s. 3883-3894 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z40550506 Keywords : decoherence * transition state theory * nonadiabatic reactions Subject RIV: CC - Organic Chemistry Impact factor: 9.907, year: 2011

  15. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen


    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  16. Densities of accessible final states for multi-step compound reactions

    International Nuclear Information System (INIS)

    Maoming De; Guo Hua


    The densities of accessible final states for calculations of multi-step compound reactions are derived. The Pauli exclusion principle is taken into account in the calculations. The results are compared with a previous author's results and the effect of the Pauli exclusion principle is investigated. (Author)

  17. Not Surprised, But Concerned: The Professoriate's Reaction to PETE Doctoral Education in the United States (United States)

    Parker, Melissa; Sutherland, Sue; Sinclair, Christina; Ward, Phillip


    The purpose of this qualitative study was to initiate a discussion and explore reactions to PETE doctoral education in the United States. A purposeful sample of 27 representatives from doctoral and non doctoral granting programs in the U.S. was interviewed. Analysis resulted in four themes: (a) Is the dog wagging its tail or the tail wagging the…

  18. Interference of the two spin components of the capture state in the (n, [gamma]) reaction

    NARCIS (Netherlands)

    Kamp, A.M.F. op den; Kopecky, J.; Stecher-Rasmussen, F.; Abrahams, K.; Endt, P.M.


    Measurements of the circularγ-ray polarization for primary transitions in the 39K(n, γ)40K and 57Fe(n, γ)58Fe reactions induced by thermal neutrons give strong evidence for the interference of components in the capture state with different J=values.

  19. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML


    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  20. The end-state comfort effect in bimanual grip selection. (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M


    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.

  1. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.


    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  2. Preimplantation genetic diagnosis for gender selection in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Colls, P.; Silver, L.; Olivera, G.; Weier, J.; Escudero, T.; Goodall, N.; Tomkin, G.; Munne, S.


    Preimplantation genetic diagnosis (PGD) of gender selection for non medical reasons has been considered an unethical procedure by several authors and agencies in the Western society on the basis of disrupting the sex ratio, being discriminatory againsts women and disposal of normal embryos of the non desired gender. In this study, the analysis of a large series of PGD procedures for gender selection from a wide geographical area in the United States, shows that in general there is no deviation in preference towards any specific gender except for a preference of males in some ethnic populations of Chinese, Indian and Middle Eastern origin that represent a small percentage of the US population. In cases where only normal embryos of the non-desired gender are available, 45.5% of the couples elect to cancel the transfer, while 54.5% of them are open to have transferred embryos of the non-desired gender, this fact being strongly linked to cultural and ethnical background of the parents. In addition this study adds some evidence to the proposition that in couples with previous children of a given gender there is no biological predisposition towards producing embryos of that same gender. Based on these facts, it seems that objections to gender selection formulated by ethics committees and scientific societies are not well-founded.


    International Nuclear Information System (INIS)

    Paul K.T. Liu


    This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction

  4. Age-related slowing of response selection and production in a visual choice reaction time task

    Directory of Open Access Journals (Sweden)

    David L Woods


    Full Text Available Aging is associated with delayed processing in choice reaction time (CRT tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40% by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each, by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year. Central processing time (CPT, isolated by subtracting simple reaction times (obtained in a companion experiment performed on the same day from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18-82 years. CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and

  5. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail:; Torres, D. A., E-mail: [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)


    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  6. Isobaric analogue states of 73Ge via 72Ge(3He,d)73As reaction

    International Nuclear Information System (INIS)

    Ramaswamy, C.R.; Puttaswamy, N.G.; Sarma, N.


    The 72 Ge( 3 He,d) 73 As reaction has been studied at 20 MeV incident 3 He energy using an MP tandem and a multigap spectrograph. The energy spectrum of deuterons in the region between 9 to 10.5 MeV excitation energy of 73 As shows analogue states corresponding to G.S., 570, 673, 805, 900, 1050, and 1350 KeV states of 73 Ge. Angular distributions for the analogue states and 1-values of the transferred protons are extracted. The results are compared with available data on the levels of 73 Ge. (author)

  7. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho


    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  8. Targeted selected reaction monitoring mass spectrometric immunoassay for insulin-like growth factor 1.

    Directory of Open Access Journals (Sweden)

    Eric E Niederkofler

    Full Text Available Insulin-like growth factor 1 (IGF1 is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM mode. The resulting quantitative mass spectrometric immunoassay (MSIA exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories.

  9. Dark energy equation of state and anthropic selection

    International Nuclear Information System (INIS)

    Garriga, Jaume; Linde, Andrei; Vilenkin, Alexander


    We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions

  10. Selective Sentinel Lymphadenectomy for Breast Cancer in the United States

    Directory of Open Access Journals (Sweden)

    Stanley P.L. Leong


    Full Text Available Lymph node status is the most reliable prognostic indicator for breast cancer patients. Sentinel lymph nodes (SLNs are the first draining lymph nodes for metastatic breast cancer to spread from the primary site. Although the therapeutic role of selective sentinel lymphadenectomy (SSL in breast cancer has not been determined, the practical significance is that it is being used as a staging procedure, so that a negative SLN can spare a patient more extensive axillary lymph node dissection (ALND with its associated morbidity. If the SLN is negative, the negative predictive value of the remaining nodal basin for breast cancer exceeds 95%. SSL selects out one or a few SLNs and permits more extensive study of the nodes by the pathologist. Such extensive examination would not be practical for the many nodes yielded by a standard ALND. SSL is rapidly evolving into a standard approach for staging primary breast cancer in the United States, without the maturation of results from clinical trials.

  11. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    Directory of Open Access Journals (Sweden)

    J. I. Awu


    Full Text Available The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM, Gravimetric method, Titrimetric method, Spectrophotometric method, Atomic Absorption Spectrophotometric method, and Total Viable count for physiochemical and microbiological analysis. The generated data was further subjected to statistical analysis using one way analysis of variance (ANOVA on difference between means of parameters and graphical method to determine the spatial variation of the water quality characteristics. The time variations of the water quality characteristics as compared with the spatial variations showed that for some variables, there was statistical difference between the means of parameters with respect to time and space at various levels of significance. These include Phosphorus (5%, Copper (1%, Iron (5%, Nickel (5%, Cadmium (1%, Salinity (1%, Bacteria (1% for time variation; and Sulphate (1%, Chemical Oxygen (5%,Nickel (1%, Arsenic (1%, Zinc (1%, Cadmium (1%, Bacteria (1% for spatial variations during dry season and Chemical Oxygen (5%, Nickel (1%, for spatial variation during rainy season. Based on the World Health Organization and Standard Organization of Nigeria guidelines for drinking water, the results of microbial analysis also indicated that the selected river waters were polluted with disease causing microorganisms, such as E.Coliform, Salmonella, Bacillus Subtilis. Therefore, the river waters are not good for drinking. The consumers of water obtained from the three rivers are likely to suffer the following: typhoid, fever, intestinal problem, diarrhea, skin rash, cholera. Necessary recommendations such as treating the water with bio-sand filter before use, amongst others, were made.

  12. A computational approach to extinction events in chemical reaction networks with discrete state spaces. (United States)

    Johnston, Matthew D


    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Looking for chemical reaction networks exhibiting a drift along a manifold of marginally stable states. (United States)

    Brogioli, Doriano


    I recently reported some examples of mass-action equations that have a continuous manifold of marginally stable stationary states [Brogioli, D., 2010. Marginally stable chemical systems as precursors of life. Phys. Rev. Lett. 105, 058102; Brogioli, D., 2011. Marginal stability in chemical systems and its relevance in the origin of life. Phys. Rev. E 84, 031931]. The corresponding chemical reaction networks show nonclassical effects, i.e. a violation of the mass-action equations, under the effect of the concentration fluctuations: the chemical system drifts along the marginally stable states. I proposed that this effect is potentially involved in abiogenesis. In the present paper, I analyze the mathematical properties of mass-action equations of marginally stable chemical reaction networks. The marginal stability implies that the mass-action equations obey some conservation law; I show that the mathematical properties of the conserved quantity characterize the motion along the marginally stable stationary state manifold, i.e. they allow to predict if the fluctuations give rise to a random walk or a drift under the effect of concentration fluctuations. Moreover, I show that the presence of the drift along the manifold of marginally stable stationary-states is a critical property, i.e. at least one of the reaction constants must be fine tuned in order to obtain the drift. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Realisation and crossed molecular beams study of H2/O chemical reactions at several excited states

    International Nuclear Information System (INIS)

    Marx, Jacqueline


    This work is devoted to the study of the reactive collision O + H 2 OH + H in a crossed beam experiment. This process including several channels taken a part in the chemistry of the upper atmosphere as well as in the combustion of hydrogen. According to the electronic or vibrational state of the reactants, the OH radical is produced in its ground electronic state OH (X 2 π) or in its first excited state OH (A 2 Σ + ). When the reactants are in their ground state, the reaction is endothermic in the conditions of the experiment (center of mass kinetic energy ≅ 0.12 eV). The following reactions have been obtained: O( 1 D) +H 2 (v=O) → OH (X 2 π) +H( 2 S) and O( 1 D) +H 2 (v≥5) → OH (A 2 Σ + ) +H( 2 S). The atomic oxygen is produced in its excited state O( 1 D) in a radio-frequency discharge which dissociates the molecular oxygen seeded in a carrier gas (He or Ar) and the hydrogen molecules are excited vibrationally by electron bombardment. The first reaction is studied by time-of-flight measurements. In this way, it has been possible to observe the different vibrational levels on which the OH radical is produced. The analysis of this vibrational distribution shows the competition between the abstraction and insertion-dissociation mechanisms. In the second reaction, the analysis of the spontaneous fluorescence of OH (A 2 Σ + ) reveals a very hot and non-Boltzmann rotational excitation. (author) [fr

  15. In-beam study of the rotational states in actinides after alpha-induced nuclear reactions

    International Nuclear Information System (INIS)

    Hardt, K.


    In the experiments described in this thesis the ground state rotational bands of a whole series of actinide isotopes has been studied by means of α-induced nuclear reactions. The rotational bands studied in the even isotopes could be identified up to a spin of about 16 (h/2π). With this data it was now possible to establish a broad systematic of the rotational energies up to relatively high angular momenta. Also in the odd isotopes 233 U and 239 Pu it was possible to follow the ground state rotational bands up to higher spins and to compare them with predictions of the rotational model. By means of the (α,α'2n) reaction the nuclei 230 Th and especially 228 Th could by populated. (orig./HSI) [de

  16. Investigation of α-cluster states in 13C via the (6Li,d) reaction

    CERN Document Server

    Rodrigues, M R D; Horodynski-Matsushigue, L B; Cunsolo, A; Cappuzzello, F; Duarte, J L M; Rodrigues, C L; Ukita, G M; Souza, M A; Miyake, H


    The 9Be(6Li,d)13C reaction was used to investigate possible α-cluster states in 13C. The reaction was measured at 25.5 MeV incident energy, employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Ten out of sixteen known levels of 13C, up to 11 MeV of excitation, were observed and, due to the much improved energy resolution of 50 keV, at least three doublets could be resolved. This work presents a preliminary analysis of five of the most intensely populated states, also in comparison with the results of former transfer studies.

  17. Competitive Association and Charge Transfer in the Reactions of NO + with some Ketones: a Select Ion Flow Drift Tube Study

    Czech Academy of Sciences Publication Activity Database

    Fairley, D. A.; Milligan, D. B.; Freeman, C. G.; McEwan, M. J.; Španěl, Patrik; Smith, D.


    Roč. 193, č. 1 (1999), s. 35-43 ISSN 1387-3806 Grant - others:Marsden Fund(NZ) - Institutional research plan: CEZ:A54/98:Z4-040-9-ii Keywords : ion-molecule reaction kinetics * selected ion flow drift tube * ternary association Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.086, year: 1999

  18. Antecedents of and Reactions to Emotions in the United States and Japan


    Matsumoto, David; Kudoh, Tsutomu; Scherer, Klaus R.; Wallbott, Harald


    In this study, we examined the degree of cultural similarity and specificity in emotional experience by asking subjects in the United States and Japan to report their experiences and reactions concerning seven different emotions. The data used for this study were part of a larger cross-cultural study of emotion antecedents and reaxtions involving more than 2 000 subjects in 27 countries (Wallbott & Scherer, 1986). The American-Japanese comparison is a particularly interesting onem given t...

  19. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu


    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  20. Adverse reactions from community directed treatment with ivermectin (CDTI for onchocerciasis and loiasis in Ondo State, Nigeria

    Directory of Open Access Journals (Sweden)

    O.A Otubanjo


    Full Text Available Onchocerciasis is an endemic disease in Ondo state, Nigeria. Community directed distribution of ivermectin is currently on-going in some local government areas of the state. Randomly selected persons (2 331 males and 2 469 females were interviewed using a modified rapid assessment procedure for Loa loa (RAPLOA to assess community directed treatment with ivermectin. The retrospective study evaluated the coverage, impacts and adverse reactions to the drug treatment. A questionnaire was administered by house-to-house visit in six local government areas, implementing community directed treatment with ivermectin (CDTI in this bioclimatic zone. A total of 2,398 respondents were reported to have participated in the treatment. The overall ivermectin coverage of 49.96% was recorded (range 0 - 52% in different communities. Adverse reactions from ivermectin administration were experienced in 38% of individuals. Diverse adverse reactions experienced included predominantly itching (18.50%; oedema, especially of the face and the limbs (8.2%; rashes (3.4% and body weakness (2.4%. Expulsion of intestinal worms occurred in 0.96% of the respondents. The occurrence of adverse reactions in relation to age categories was statistically significant. Neither fatal nor severe adverse reactions were reported by respondents. Significantly, despite experienced adverse reactions, continued participation, acceptability and compliance to ivermectin treatment was expressed by the various communities. This attitude is in consonance with the African Programme for Onchocerciasis Control (APOC objectives. Rev. Biol. Trop. 56 (4: 1635-1643. Epub 2008 December 12.La oncocercosis es endémica en el estado Ondo, Nigeria. Se seleccionaron 4 800 personas al azar para evaluar con encuesta retrospectiva la cobertura, efectos y reacciones al tratamiento farmacológico con ivermectina administrado por la misma comunidad. La cobertura global de ivermectina fue 50 % con reacciones adversas en

  1. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    Directory of Open Access Journals (Sweden)

    Hyeong Jin Chun


    Full Text Available To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we

  2. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies. (United States)

    Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi


    Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.

  3. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction. (United States)

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C


    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  4. Synthesising and comparing electrical properties of NTC thermistors prepared from nano powder and solid state reaction

    International Nuclear Information System (INIS)

    Azad, N.; Ghanbari Shohany, B.; Hosseini, S. M.; Kompany, A.


    In this research, NTC thermistors with composition of NiMn 2-x Co x O 4 (x = 0.4, 0.8, 1.2, 1.6) prepared by two methods: solid state reaction and sol-gel (gel-combustion). The average particle size was monitored and structure of the calcinated powders have been investigated using x-ray diffraction and tunneling electron microscopy techniques. The average particle size was estimated to be about 65 nm with the cubic and cubic + tetragonal phases for low and high cobalt concentrations, respectively. The grain size of samples verifies with scanning electron microscopy images. Upon increasing the cobalt fraction, the grain size of samples increases from about 2μm to a few μm in size. The electrical properties of these thermistors depend on the grain size. The grain size of samples made from sol-gel is smaller than from solid state reaction under the same condition. For longer sintering time of the samples prepared by gel-combustion method, the grain size was increased then the electrical parameters of nano powder improved and we obtain better results than the samples prepared from solid state reaction.

  5. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer


    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  6. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf)3 catalyst in the reaction selectivity. (United States)

    Herrera Cano, Natividad; Uranga, Jorge G; Nardi, Mónica; Procopio, Antonio; Wunderlin, Daniel A; Santiago, Ana N


    An improved and greener protocol for the synthesis of benzimidazole derivatives, starting from o -phenylenediamine, with different aldehydes is reported. Double-condensation products were selectively obtained when Er(OTf) 3 was used as the catalyst in the presence of electron-rich aldehydes. Conversely, the formation of mono-condensation products was the preferred path in absence of this catalyst. One of the major advantages of these reactions was the formation of a single product, avoiding extensive isolation and purification of products, which is frequently associated with these reactions. Theoretical calculations helped to understand the different reactivity established for these reactions. Thus, we found that the charge density on the oxygen of the carbonyl group has a significant impact on the reaction pathway. For instance, electron-rich aldehydes better coordinate to the catalyst, which favours the addition of the amine group to the carbonyl group, therefore facilitating the formation of double-condensation products. Reactions with aliphatic or aromatic aldehydes were possible, without using organic solvents and in a one-pot procedure with short reaction time (2-5 min), affording single products in excellent yields (75-99%). This convenient and eco-friendly methodology offers numerous benefits with respect to other protocols reported for similar compounds.

  7. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf3 catalyst in the reaction selectivity

    Directory of Open Access Journals (Sweden)

    Natividad Herrera Cano


    Full Text Available An improved and greener protocol for the synthesis of benzimidazole derivatives, starting from o-phenylenediamine, with different aldehydes is reported. Double-condensation products were selectively obtained when Er(OTf3 was used as the catalyst in the presence of electron-rich aldehydes. Conversely, the formation of mono-condensation products was the preferred path in absence of this catalyst. One of the major advantages of these reactions was the formation of a single product, avoiding extensive isolation and purification of products, which is frequently associated with these reactions.Theoretical calculations helped to understand the different reactivity established for these reactions. Thus, we found that the charge density on the oxygen of the carbonyl group has a significant impact on the reaction pathway. For instance, electron-rich aldehydes better coordinate to the catalyst, which favours the addition of the amine group to the carbonyl group, therefore facilitating the formation of double-condensation products.Reactions with aliphatic or aromatic aldehydes were possible, without using organic solvents and in a one-pot procedure with short reaction time (2–5 min, affording single products in excellent yields (75–99%. This convenient and eco-friendly methodology offers numerous benefits with respect to other protocols reported for similar compounds.

  8. Search for antiproton-nucleus states with (anti p,p) reactions

    International Nuclear Information System (INIS)

    Garreta, D.; Birien, P.; Bruge, G.; Chaumeaux, A.; Drake, D.M.; Janouin, S.; Legrand, D.; Lemaire, M.C.; Mayer, B.; Pain, J.; Peng, J.C.; Berrada, M.; Bocquet, J.P.; Monnand, E.; Mougey, J.; Perrin, P.


    We have studied (anti p,p) reactions on 12 C, 63 Cu, and 209 Bi to search for possible nuclear states formed by antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus. (orig.)

  9. On experimental determination of characteristics of nuclear fusion reactions from mu-molecular resonance states

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Pen'kov, F.M.


    Charge-nonsymmetrical deuterium-helium muon complexes (dμHe) are studied. A method is proposed for experimentally determining the rates of nuclear fusion reactions in dμHe molecules in the J=1 and J=0 states (J is the orbital moment of the system) and the partial rates for radiative decay of these complexes in these states. Experiments are supposed to be carried out at meson factories with gaseous and cryogenic targets filled with a mixture of deuterium and helium

  10. 0+ analogue state in 118Sb from 117Sn(p,nγ) reaction

    International Nuclear Information System (INIS)

    Pal, J.; Dey, C.C.; Bose, S.; Sinha, B.K.; Chatterjee, M.B.; Mahapatra, D.P.


    The analogue of the 0 + ground state in 118 Sn has been observed in the compound nucleus 118 Sb through 117 Sn(p,nγ) 117 Sb reaction. The neutron decays of this analogue resonance have been studied from the deexciting γ-rays of the residual nucleus 117 Sb. From off resonance excitation functions, spin assignments have been made to states in 117 Sb, on the basis of Hauser-Feshbach formalism. The resonance parameters of the isobaric analogue resonance have been determined, including the total, proton and neutron decay widths. (orig.)

  11. Rotational state dependence of ion-polar molecule reactions at very low temperature

    International Nuclear Information System (INIS)

    Dubernet, M.L.; McCarroll, R.


    The adiabatic rotational state method is used to investigate the rotational state dependence of the rate coefficients for ion-polar molecule reactions in the very low temperature regime characteristic of interstellar molecular clouds. Results obtained for the systems H 3 + +HCl and H 3 + +HCN indicate that all the methods based on the adiabatic separation of the rotational and radial motion of the collision complex - adiabatic capture centrifugal sudden approximation (ACCSA), statistical adiabatic channel model, classical adiabatic invariance method - agree very satisfactorily in the low temperature limit. Discrepancies observed between some of the published data would appear to arise from numerical inaccuracies rather than from any defect of the theory. (orig.)

  12. Concluding remarks of international symposium on highly excited states in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.


    This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.

  13. Coupled-reaction-channel analysis of the (d,6Li) reaction on 24Mg and 26Mg to low-lying states

    International Nuclear Information System (INIS)

    Oelert, W.


    Experimental spectroscopic factors of the alpha-transfer reaction on nuclei of the sd-shell show rather strong inconsistencies and scatter much more strongly than explainable by the quoted errors. The poorer the quality of agreement between experimental and theoretical angular distribution shapes, the more inconsistent the comparison of spectroscopic factors either between different experiments or between theory and experiment. In view of the strong deformation of nuclei in the lower part of the sd-shell, higher-order reaction mechanisms are expected. A coupled-reaction-channel analysis for the transitions to the 0 + , 2 + , and 4 + states of the ground-state bands in 20 Ne and 22 Ne excited via the (d, 6 Li) reaction yields good agreement between experimental and theoretical angular distribution shapes as well as spectroscopic information. (orig.)

  14. Phenomenological description of selected elementary chemical reaction mechanisms: An information-theoretic study

    International Nuclear Information System (INIS)

    Esquivel, R.O.; Flores-Gallegos, N.; Iuga, C.; Carrera, E.M.; Angulo, J.C.; Antolin, J.


    The information-theoretic description of the course of two elementary chemical reactions allows a phenomenological description of the chemical course of the hydrogenic abstraction and the S N 2 identity reactions by use of Shannon entropic measures in position and momentum spaces. The analyses reveal their synchronous/asynchronous mechanistic behavior.

  15. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.


    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  16. Nucleophilic radioiodination of 6-bromocholesterol via non-isotopic exchange reaction in molten state

    International Nuclear Information System (INIS)

    El-Shaboury, G.; Farah, K.; El-Tawoosy, M.


    A synthetic method for preparing radioiodinated 6-[ 125 I]iodocholesterol [CL-6- 125 I] for adrenal evaluation is described. The radioiodine atom was incorporated onto the cholesterol molecule via non-isotopic exchange between 6-bromocholesterol [CL-6-Br] and radioiodine as iodide ion [ 125 I - ] in a molten state. The different parameters affecting the yield of exchange were investigated using 125 I (T 1/2 ≅ 60 d) to centralize the different physical and chemical reaction conditions and purification of the final product as pure as 6-[ 125 I]iodocholesterol. The method was suitable to either 131 I (T 1/2 ≅ 8 d) nucleophilic radioiodination which facilitates the scanning of the adrenal for a few days after administration or the use of 124 I (T 1/2 ≅ 4.16 d) nucleophilic radioiodination for PET evaluation of the adrenal. TLC as well as HPLC chromatographic analysis is used to determine the efficiency of the exchange reactions under different chemical reaction conditions and to monitor the stability of the final product as pure as CL-6- 125 I with radiochemical purity of ≅99%. This no-carrier-added method improved the speed of the reaction and affords high radiochemical yield of 90% and suitable specific activity due to the use of CL-6-Br rather than CL-6-I as substrate. Kinetic studies revealed second order iodine-bromine exchange reaction. The activation energy for the exchange reaction in ammonium acetate (m.p. 114 deg C) was calculated to be 4.576 kcal/mole. (author)

  17. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.


    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  18. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.


    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  19. Investigation of states in 30P via the 30Si(3He,t)30P reaction at 30 MeV

    International Nuclear Information System (INIS)

    Ramstein, B.; Rosier, L.H.; Paris-11 Univ., 91 - Orsay; Meijer, R.J. de


    The 30 Si( 3 He,t) 30 P reaction has been measured for about 100 levels in 30 P with Esub(x)<8.8 MeV. Little selectivity in the population of states has been observed. For 75 levels angular distributions have been analysed using a 'fingerprint method' by determining the L-value from a comparison in shape with transition to states with known Jsup(π). For possible mixed L-transitions a dominance of the higher L-value is observed for almost all cases. Coulomb displacement energy calculations utilizing shell-model wave functions have been used to identify T=1 states

  20. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center


    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  1. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Samuel M., E-mail:; Shan, Xiao, E-mail:; Clary, David C., E-mail: [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)


    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  2. Final-state interactions and relativistic effects in the quasielastic (e,e') reaction

    International Nuclear Information System (INIS)

    Chinn, C.R.; Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545); Picklesimer, A.; Van Orden, J.W.


    The longitudinal and transverse response functions for the inclusive quasielastic (e,e') reaction are analyzed in detail. A microscopic theoretical framework for the many-body reaction provides a clear conceptual (nonrelativistic) basis for treating final-state interactions and goes far beyond simple plane-wave or Hermitean potential models. The many-body physics of inelastic final-state channels as described by optical and multiple scattering theories is properly included by incorporating a full complex optical potential. Explicit nonrelativistic and relativistic momentum-space calculations quantitatively demonstrate the importance of such a treatment of final-state interactions for both the transverse and longitudinal response. Nonrelativistic calculations are performed using final-state interactions based on phenomenology, local density models, and microscopic multiple scattering theory. Relativistic calculations span a similar range of models and employ Dirac bound-state wave functions. The theoretical extension to relativistic dynamics is of course not clear, but is done in obvious parallel to elastic proton scattering. Extensive calculations are performed for 40 Ca at momentum transfers of 410, 550, and 700 MeV/c. A number of interesting physical effects are observed, including significant relativistic suppressions (especially for R L ), large off-shell and virtual pair effects, enhancement of the tails of the response by the final-state interactions, and large qualitative and even shape distinctions between the predictions of the various models of the final-state interactions. None of the models is found to be able to simultaneously predict the data for both response functions. This strongly suggests that additional physical mechanisms are of qualitative importance in inclusive quasielastic electron scattering

  3. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening (United States)

    Wurtz, Jean David; Lee, Chiu Fan


    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  4. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Directory of Open Access Journals (Sweden)

    Andrea Ciliberto


    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  5. Solvent- and ligand-induced switch of selectivity in gold(I-catalyzed tandem reactions of 3-propargylindoles

    Directory of Open Access Journals (Sweden)

    Roberto Sanz


    Full Text Available The selectivity of our previously described gold-catalyzed tandem reaction, 1,2-indole migration followed by aura-iso-Nazarov cyclization, of 3-propargylindoles bearing (heteroaromatic substituents at both the propargylic and terminal positions, was reversed by the proper choice of the catalyst and the reaction conditions. Thus, 3-(inden-2-ylindoles, derived from an aura-Nazarov cyclization (instead of an aura-iso-Nazarov cyclization, were obtained in moderate to good yields from a variety of 3-propargylindoles.

  6. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding. (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François


    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alkylation of nitriles with gaseous carbenium ions. The ritter reaction in the dilute gas state

    International Nuclear Information System (INIS)

    Cacace, F.; Ciranni, G.; Giacomello, P.


    Radiolytically formed carbenium ions, such as sec-C 3 H 7 + , sec-C 4 H 9 + , and t-C 4 H 9 + , react in the gas phase with model aliphatic and aromatic nitriles yielding the corresponding nitrilium ions. The latter undergo efficient condensation with water that eventually leads to the formation of the corresponding N-alkylamides. The mechanism is analogous to the Ritter reaction in solution. The reactivity and selectivity of the gas-phase electrophilic attack on nitriles has been deduced from competition experiments under conditions that largely exclude the effects of solvation, ion pairing, etc., which complicate the interpretation of solution-chemistry measurements. 1 table

  8. Populations of excited states and reaction mechanisms in the emission of complex fragments

    International Nuclear Information System (INIS)

    Gomez del Campo, J.


    Cross sections for emission of complex fragments (Z>2) in their ground and excited states are presented for several heavy-ion reactions at bombarding energies above 10 MeV/nucleon. Data presented are mostly on the cross sections extracted by γ-ray techniques. It is shown that a simple statistical approach to associate the ratio, of cross sections for excited states and ground states, to the temperature of the emitter fails to give the expected temperatures. However, it is shown that this is mostly due to the fact that the fragments that γ decay are secondary fragments, produced by the particle decay of the primary emitted complex fragments. A Hauser-Feshbach analysis accounts well for the cross sections and extracted temperatures. 22 refs., 6 figs

  9. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet


    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  10. Runaway reactions. Part 2 Causes of Accidents in selected CSB case histories Part 2




    Part 1 briefly discussed the basic thermochemistry of reactive chemicals, the statistics of accidents involving runaway reactions, and general control measures to minimise risk and mitigate the consequences. The present paper highlights the main causes of major accidents from runaway reactions with illustrative case histories to link theory and practice. It also discusses lessons learned from these accidents, which are very similar in the cases studied. The main causes are management deficien...

  11. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM


    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  12. Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction (United States)

    Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.


    As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.

  13. Computer simulation of the steam--graphite reaction under isothermal and steady-state conditions

    International Nuclear Information System (INIS)

    Joy, D.S.; Stem, S.C.


    A mathematical model was formulated to describe the isothermal, steady-state diffusion and reaction of steam in a graphite matrix. A generalized Langmuir-Hinshelwood equation is used to represent the steam-graphite reaction rate. The model also includes diffusion in the gas phase adjacent to the graphite matrix. A computer program, written to numerically integrate the resulting differential equations, is described. The coupled nonlinear differential equations in the graphite phase are solved using the IBM Continuous System Modeling Program. Classical finite difference techniques are used for the gas-phase calculations. An iterative procedure is required to couple the two sets of calculations. Several sample problems are presented to demonstrate the utility of the model. (U.S.)

  14. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers. (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J


    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  15. Alpha cluster states in light nuclei populated through the (6Li,d) reaction

    International Nuclear Information System (INIS)

    Borello-Lewin, Thereza; Rodrigues, M.R.D.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A.; Cunsolo, A.; Cappuzzello, F.; Ukita, Gilberto Mitsuo


    Full text: The alpha cluster correlation is an important concept in the nuclear physics of light nuclei. The main purpose of the research program in progress is the investigation of the alpha clustering phenomenon in (xα) and(xα+ν) nuclei through the ( 6 Li,d) alpha transfer reaction. In fact, there is scarce experimental information on the subject, in particular associated with resonant states predicted near (xα) and (xα+ν) thresholds. Measurements of the 12 , 13 C( 6 Li,d) 16 , 17 O reactions, at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique. The work is under way and an experimental energy resolution of 30 keV was obtained. Near the (4α) breakup threshold in 16 O, three narrow alpha resonances, not previously measured, were detected, revealing important α + 12 C(G.S.) components. One of these resonances corresponds to the known 0 + state at 15.1 MeV[5] of excitation that has probably, according to Funaki et al., the gas like configuration of the 4α condensate state, with a very dilute density and a large component of α + 12 C(Hoyle) configuration. As was already mentioned, our experimental information points to the necessity of including the α + 12 C(G.S.) component in the wave function. (author)

  16. On the theory of direct reactions with many particle final states

    International Nuclear Information System (INIS)

    Trautmann, D.; Baur, G.


    We study the theory of direct reactions with many particle final states. First, we concentrate on the DWBA formulation of the break-up of deuterons on heavy nuclei below the Coulomb barrier. Because there are no free parameters, this permits a clean test of the theory by comparing it to the experimental data. The agreement is very good. The theory is applied to the break-up of antideuteronic atoms. Then the effect of virtual deuteron break-up on Rutherford scattering is studied. It is small, but it seems to be measurable. Also the deuteron break-up above the Coulomb barrier can be well explained theoretically. In this context, small effects are studied briefly. A semiclassical theory of the break-up process is given, which results in an intuitive picture and a fast computational method. Our theory lends itself in a natural way to the study of stripping reactions to unbound states. The relation of stripping into the continuum to elastic scattering of the transferred particle on the same target nucleus is explained. Then the connection of stripping to bound and unbound states is established. Finally various examples of stripping of uncharged and charged particles into the continuum are given to illustrate the theory. Resonance wave functions describing the transferred particle are discussed. In a conclusion an outlook for possible future developments of experiment and theory is given. (author)

  17. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

    Directory of Open Access Journals (Sweden)

    Oscar D. Montoya-Giraldo


    Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

  18. BSL-3 laboratory practices in the United States: comparison of select agent and non-select agent facilities. (United States)

    Richards, Stephanie L; Pompei, Victoria C; Anderson, Alice


    New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non-select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non-select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non-select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non-select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non-select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non-select agent laboratories to improve occupational health and safety.

  19. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions. (United States)

    Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K


    The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.

  20. ASTDD Synopses of State Oral Health Programs - Selected indicators (United States)

    U.S. Department of Health & Human Services — 2011-2017. The ASTDD Synopses of State Oral Health Programs contain information useful in tracking states’ efforts to improve oral health and contributions to...

  1. Excitation of isomeric states 1h11/2 in (γ, n) reactions

    International Nuclear Information System (INIS)

    Tonchev, A.P.; Gangrskij, Yu.P.; Belov, A.G.


    The cross sections of (γ, n) reactions were measured for ground and isomeric states 1h 11/2 in 16 isotopes of Pd, Cd, Sn, Te, Ba, Ce, Nd and Sm. The energy of γ-rays was placed in the region of Giant Dipole Resonance. An activation method of measurements has been used. IR dependence of neutron and proton number in nucleus was detected and of excitation energy of residual nucleus as well. Different factors influencing the values of the isomeric ratios are discussed. 20 refs., 5 figs., 2 tabs

  2. Transition probabilities of 36Cl and 36Ar excited states in heavy ion reactions

    International Nuclear Information System (INIS)

    Costa, G.J.; Alexander, T.K.; Forster, J.S.; McDonald, A.B.; Towner, I.S.

    The reactions 2 H( 35 Cl,pγ) and 2 H( 35 Cl,nγ) have been used to determine by the recoil-distance method, the lifetimes of levels in 36 Cl and 36 Ar respectively. Large discrepancies exist in the literature for some lifetimes of 36 Cl levels. Transition rates found for decay of the negative parity states in 36 Ar (4178 (3 - ), 4974 (2 - ) and 5171 (5 - ) keV), are compared whith the Maripuu-Hokken model and RPA and TDA predictions [fr

  3. Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks (United States)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon


    It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.

  4. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory. (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei


    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  5. Enhancing chemical reactions (United States)

    Morrey, John R.


    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu.,, and .delta. (and, with a parametric oscillator, also at Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  6. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.


    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  7. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)


    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  8. Kinetics and selectivity of the oxidation of methylbenzenes in Co(III)-CH3COOH-CF3COOH solutions. Comparison with nitration and hydroxylation reactions

    International Nuclear Information System (INIS)

    Rudakov, E.S.; Lobachev, V.L.


    Data have been obtained concerning the kinetics, substrate selectivity, and kinetic isotope effect for the first stage in the oxidation of a series of arenes, from benzene to hexamethylbenzene, by Co(III) acetate in CH 3 COOH-CF 3 COOH (1.9 M) solutions at 25 degree C. A similarity was noted between substrate selectivity for reactions of alkylbenzenes with Co(III) and electrophilic nitration reactions, which occur via an electron transfer step. It was also found that substrate selectivity for these reactions differs significantly from that found for electrophilic hydroxylation reactions, which occur via an intermediate slow step involving σ-complex formation

  9. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)


    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  10. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    International Nuclear Information System (INIS)

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife


    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  11. Moving Towards a State of the Art Charge-Exchange Reaction Code (United States)

    Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory


    Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.

  12. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart


    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  13. The Effects of Heat Stress on Selective Attention and Reaction Time among Workers of a Hot Industry: Application of Computerized Version of Stroop Test

    Directory of Open Access Journals (Sweden)

    F. Golbabaei


    .Conclusion: According to the findings in present study, heat stress causes an increase in reaction time and a decrease in selective attention. Thus, heat can be assumed as a stressor in hot work environments and the heat should be taken into account while design of job and tasks which needed selective attention or reaction time.

  14. Final State Interactions and Polarization Observables in the Reaction pp → pKΛ

    Directory of Open Access Journals (Sweden)

    Röder Matthias


    Full Text Available Due to the lack of high quality hyperon beams, final state interactions in hyperon production reactions are a compelling tool to study hyperon-nucleon interactions. The COSY-TOF experiment has recently been upgraded in order to reconstruct the pK+Λ final state with sufficient precision to determine the spin triplet pΛ scattering length with a polarized proton beam. We find an unexpected behavior of the K+ analyzing power which prevents the extraction method to be used with the available statistics. A theoretical explanation is pending. Furthermore, the polarized beam together with the self analyzing decay of the Λ allows us to determine the Λ depolarization. This is especially sensitive to K+ and π exchange in the production mechanism. Our finding verifies, to a large extent, the result from DISTO [2] that has so far been the only measurement close to the production threshold.

  15. On final-state interaction in d - NN reaction in the (1236) - resonance region

    International Nuclear Information System (INIS)

    Aznauryan, I.G.; Nagorskaya, I.A.


    The spectator model is corrected due to scattering of particles in the final state. It is shown that the discrepancies between the data for γd→u 0 π + uu and γd→u 0 pn and the predictions from the spectator model are mainly due to the nucleon-nucleon scattering in the final state. By means of a generally used evaluation procedure for the experimental data it is shown that the reaction cross sections of γu→π 0 u and γu→ - p, which are obtained from the experiments with deuterons, are not very sensitive to these corrections will have no influence on conclusions concerning the exotic properties of the electromagnetic current

  16. Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom

    International Nuclear Information System (INIS)

    Anbar, M.; Farhataziz; Ross, A.B.


    Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution were tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included. (U.S.)

  17. Highly selective synthesis of (E)-alkenyl-(pentafluorosulfanyl)benzenes through Horner-Wadsworth-Emmons reaction

    Czech Academy of Sciences Publication Activity Database

    Iakobson, George; Beier, Petr


    Roč. 8, 25 Jul (2012), s. 1185-1190 ISSN 1860-5397 R&D Projects: GA ČR GAP207/12/0072 Institutional support: RVO:61388963 Keywords : Horner-Wadsworth-Emmons reaction * pentafluorosulfanyl group * phosphonates * sulfurpentafluoride Subject RIV: CC - Organic Chemistry Impact factor: 2.801, year: 2012

  18. Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study (United States)

    Yang, Wang-hong Alex; Kirkpatrick, R. James


    We present here a solid-state NMR study of the structure and chemical composition of the products and mechanisms of the reaction of crystalline low albite and a glass of nearly albite composition with aqueous solutions of pH from 1 to 11 at 250°C. For the crystalline albite, there are no detectable bulk or surface structural changes due to aqueous attack, consistent with the idea that both cation exchange and disruption of the aluminosilicate framework occur only near the mineral/solution interface and that the hydrated surface layer, if it exists, is not more than about 30 Å thick. This reaction occurs by solution/reprecipitation, and its rate decreases with increasing solution pH, supporting the idea that the dissolution of feldspar is initiated by cation-exchange. For the glass, the reaction proceeds by cation exchange of protons for Na +, incorporation of molecular water into the bulk glass, and a small amount of depolymerization of the aluminosilicate framework in the interior of the glass. Cation exchange becomes less important with increasing solution pH. The incorporation of molecular water and cation-exchange cause structural changes in the glass via solidstate adjustment without dissolution/reprecipitation. The large cations in the hydrated glass (Na and K) probably have a shell of water molecules around them, with a maximum average coordination number of six. The secondary phases formed from both albite and the glass are often amorphous and can be well characterized by NMR. The compositional and structural variations of the amorphous phases are important factors in these reactions and cannot be ignored in theoretical models of aluminosilicate dissolution. As expected, the aluminum coordination in the secondary phases changes from six-fold to four-fold as the solution pH increases.

  19. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    International Nuclear Information System (INIS)

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.


    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  20. Study of Ni/Si(1 0 0) solid-state reaction with Al addition

    International Nuclear Information System (INIS)

    Huang Yifei; Jiang Yulong; Ru Guoping; Li Bingzong


    The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no Ni x Al y phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed

  1. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography (United States)

    Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Conrad, C. E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D. R.; White, T. A.; Coe, J. D.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Weierstall, U.; Grant, T. D.; Schwieters, C. D.; Zhang, J.; Ferré-D'Amaré, A. R.; Fromme, P.; Draper, D. E.; Liang, M.; Hunter, M. S.; Boutet, S.; Tan, K.; Zuo, X.; Ji, X.; Barty, A.; Zatsepin, N. A.; Chapman, H. N.; Spence, J. C. H.; Woodson, S. A.; Wang, Y.-X.


    Riboswitches are structural RNA elements that are generally located in the 5‧ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.

  2. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.


    During the past year, we have made measurements of state-to-state energy transfer cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models of both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. 3 refs., 2 figs., 2 tabs

  3. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.


    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  4. South African medical schools: Current state of selection criteria and ...

    African Journals Online (AJOL)

    Selection of medical students at South African (SA) medical schools must promote ... groups, while ensuring optimal student throughput and success, and training future ... In keeping = with international practices, a variety of academic and ...

  5. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan


    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  6. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames. (United States)

    Ruwe, Lena; Moshammer, Kai; Hansen, Nils; Kohse-Höinghaus, Katharina


    In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

  7. Origin of Exo/Endo Selectivity in the Intramolecular Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Yan, Shihai; Ryu, Do Hyun; Lee, Jin Yong


    The stereoselectivity of the intramolecular Diels-Alder reactions of 1 and its derivatives were investigated by ab initio calculations. The stereoselectivity mainly originates from the steric repulsion and the orbital interactions. The additional s-cis and s-trans conformations by introducing the carbonyl group at the neighbor of diene or dienophile may change the stereoselectivity, hence this kind of substitution can be utilized for stereoselective asymmetric synthesis

  8. Photochemical exchange reactions of thymine, uracil and their nucleosides with selected amino acids

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Taylor, J.A.; Hom, K.


    The photoinduced exchange reactions of thymine with lysine at basic pH, using 254 nm light, have been studied. Three products have been isolated, namely, 6-amino-2-(1-thyminyl)hexanoic acid (Ia), 2-amino-6-(1-thyminyl)hexanoic acid (IIa) and 1-amino-5-(1-thyminyl)pentane (IIIa). Compound IIIa was shown to be a secondary product, produced by photochemical decarboxylation of Ia. Photochemical reaction of thymine with glycine and alanine at basic pH led, respectively, to formation of 2-(1-thyminyl)acetic acid (Ic) and 2-(1-thyminyl)propionic acid (Id). Compounds Ic and Id underwent photolysis to produce the decarboxylated secondary products 1-methylthymine and 1-ethylthymine, respectively. Thymidine reacts photochemically with glycine and alanine to produce the same products. Irradiation of DNA in the presence of lysine at basic pH led to the formation of the same products formed in the thymine-lysine system, namely Ia, IIa and IIIa. Uracil was found to undergo analogous photochemical exchange reactions with lysine to form 6-amino-2-(1-uracilyl)hexanoic acid (Ib), and 2-amino-6-(1-uracilyl)hexanoic acid (IIb). Compound Ib was found to undergo photodecarboxylation to form 1-amino-5-(1-uracilyl)pentane (IIIb), analogous to the secondary photoreaction of Ia. Photoreaction of uracil with 1,5-diaminopentane (cadaverine) likewise led to formation of IIIb. (author)

  9. Selected phytotoxins and organic extracts from endophytic fungus Edenia gomezpompae as light reaction of photosynthesis inhibitors. (United States)

    Macías-Rubalcava, Martha Lydia; Ruiz-Velasco Sobrino, María Emma; Meléndez-González, Claudio; King-Díaz, Beatriz; Lotina-Hennsen, Blas


    In a search for natural herbicides, we investigated the action mechanism of the naphthoquinone spiroketals, isolated from the endophytic fungus Edenia gomezpompae: preussomerins EG1 (1) and EG4 (2), and palmarumycins CP17 (3), and CP2 (4) on the photosynthesis light reactions. The naphthoquinone spiroketals 1-4 inhibited the ATP synthesis in freshly lysed spinach thylakoids from water to MV, and they also inhibited the non-cyclic electron transport in the basal, phosphorylating and uncoupled conditions from water to MV. Therefore, they act as Hill reaction inhibitors. The results suggested that naphthoquinone spiroketals 1-4 have two interactions and inhibition site on the PSII electron transport chain. The first one involves the water splitting enzyme inhibition; and, the second on the acceptor site of PSII in a similar way that herbicide Diuron, studied by polaroghaphy and corroborated by fluorescence of the chlorophyll a of PSII. The culture medium and mycelium organic extracts from four morphological variants of E. gomezpompae were phytotoxic, and the culture medium extracts were more potent than mycelium extracts. They also act as Hill reaction inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Applicant Reactions to Selection Events : Four studies into the role of attributional style and fairness perceptions

    NARCIS (Netherlands)

    Schinkel, S.; van Vianen, A.E.M.; Ryan, A.M.


    In four studies, applicants’ (N = 478) organizational attractiveness perceptions and recommendation intentions following selection outcomes were measured. In three field studies, actual applicants’ perceptions were measured in authentic, high-stakes application contexts, both preprocedure and

  11. Selected charmonium and charmonium-like states at BESIII

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yu-Ping [Institut fuer Kernphysik Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Collaboration: BESIII-Collaboration


    Using large data samples collected at ψ(3686) peak and around the peaks of the vector charmonium resonances above 4.0 GeV, study of the charmonium (charmonium-like) states are performed at BESIII experiment. Comparing to the charmonium states above the charm threshold, the states below the charm threshold are well understood, except the three spin-singlet states, η{sub c}, h{sub c} and η{sub c}(2S). With the data accumulated at the ψ(3686) peak, the properties of these states are measured with high precision or at the first time. Based on the data samples taken above 4.0 GeV, the process of π{sup +}π{sup -}h{sub c} has been studied, the cross section line-shape will help us to understand the Y-states above the charm threshold. In addition, in the Dalitz study of the π{sup +}π{sup -}h{sub c} system, a charged charmonium-like state Z{sub c}(4020) has been observed, whose property is similar to the previous observed Z{sub c}(3900) in π{sup +}π{sup -}J/ψ system.

  12. Alpha cluster states in light nuclei populated through the (6Li,d) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borello-Lewin, Thereza; Rodrigues, M.R.D.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Cunsolo, A.; Cappuzzello, F. [Universita di Catania (Italy). Istituto Nazionale di Fisica Nucleare. Lab. Nazionali del Sud; Ukita, Gilberto Mitsuo [Universidade de Santo Amaro (UNISA), Sao Paulo, SP (Brazil). Fac. de Psicologia


    Full text: The alpha cluster correlation is an important concept in the nuclear physics of light nuclei. The main purpose of the research program in progress is the investigation of the alpha clustering phenomenon in (x{alpha}) and(x{alpha}+{nu}) nuclei through the ({sup 6}Li,d) alpha transfer reaction. In fact, there is scarce experimental information on the subject, in particular associated with resonant states predicted near (x{alpha}) and (x{alpha}+{nu}) thresholds. Measurements of the {sup 12},{sup 13}C({sup 6}Li,d) {sup 16},{sup 17}O reactions, at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique. The work is under way and an experimental energy resolution of 30 keV was obtained. Near the (4{alpha}) breakup threshold in {sup 16}O, three narrow alpha resonances, not previously measured, were detected, revealing important {alpha} + {sup 12}C(G.S.) components. One of these resonances corresponds to the known 0{sup +} state at 15.1 MeV[5] of excitation that has probably, according to Funaki et al., the gas like configuration of the 4{alpha} condensate state, with a very dilute density and a large component of {alpha} + {sup 12}C(Hoyle) configuration. As was already mentioned, our experimental information points to the necessity of including the {alpha} + {sup 12}C(G.S.) component in the wave function. (author)

  13. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut


    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  14. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions. (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee


    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  15. The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory

    Directory of Open Access Journals (Sweden)

    Takayoshi Kobayashi


    Full Text Available Chemical bond breaking and formation during chemical reactions can be observed using “transition state spectroscopy”. Comparing the measurement result of the transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. Observed the reaction of the neat sample liquid, we have estimated the time constants of transformation from straight-chain structure to aromatic-like six-membered ring structure forming the C1-C6 bond. The result clarifies that the reaction proceeds via three steps taking longer time than expected from the gas phase calculation. This finding provides new hypothesis and discussions, helping the development of the field of reaction mechanism analysis.

  16. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react? (United States)

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C


    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time. Documentary study. We searched the web-sites of the European Medicines Agency and the drug agencies in USA, UK, and Denmark for documents mentioning benzodiazepines or SSRIs. We supplemented with other relevant literature that could contribute to our study. The searches were performed in 2009 in PubMed, Google, BMJ and JAMA. It took many years before the drug regulators acknowledged benzodiazepine dependence and SSRI withdrawal reactions and before the prescribers and the public were informed. Drug regulators relied mainly on the definitions of dependence and withdrawal reactions from the diagnostic psychiatric manuals, which contributed to the idea that SSRIs do not cause dependence, although it is difficult for many patients to stop treatment. In the perspective of a precautionary principle, drug agencies have failed to acknowledge that SSRIs can cause dependence and have minimised the problem with regard to its frequency and severity. In the perspective of a risk management principle, the drug agencies have reacted in concordance with the slowly growing knowledge of adverse drug reactions and have sharpened the information to the prescribers and the public over time. However, solely relying on spontaneous reporting of adverse effects leads to underestimation and delayed information about the problems. Given the experience with the benzodiazepines, we believe the regulatory bodies should have required studies from the manufacturers that could have elucidated the dependence potential of the SSRIs before marketing authorization was granted.

  17. State and Local Preparedness for Terrorism: Selected Policy Issues

    National Research Council Canada - National Science Library

    Canada, Ben


    While the federal government has resources at hand for responding to terrorist attacks, the proximity of state and local first responders insures they will almost always be the first to arrive at the site of an attack...

  18. ASTDD Synopses of State Oral Health Programs - Selected indicators (United States)

    U.S. Department of Health & Human Services — 2011-2017. The ASTDD Synopses of State Oral Health Programs contain information useful in tracking states’ efforts to improve oral health and contributions to...

  19. Antibiotic usage pattern in selected poultry farms in Ogun state

    African Journals Online (AJOL)



    Dec 27, 2013 ... streptomycin and tylosin among poultry farms in. Ekiti State, Nigeria. ... in poultry production due to its possibility of forming residue in ... withdrawal periods are not observed before selling ... Manipulating pig production IX.

  20. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.


    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  1. Classical generalized transition-state theory. Application to a collinear reaction with two saddle points

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.; Grev, R.S.


    Accurate classical dynamical fixed-energy reaction probabilities and fixed-temperature rate constants are calculated for the collinear reaction H + FH on a low-barrier model potential energy surface. The calculations cover energies from 0.1 to 100 kcal/mol above threshold and temperatures of 100 to 10,000 K. The accurate results are used to test five approximate theories: conventional transition-state theory (TST), canonical variational theory (CVT), improved canonical variational theory (ICVT), microcanonical variational theory (μVT), and the unified statistical model (US). The first four of these theories involve a single dividing surface in phase space, and the US theory involves three dividing surfaces. The tests are particularly interesting because the potential energy surface has two identical saddle points. At temperatures from 100 to 2000 K, the μVt is the most accurate theory, with errors in the range 11 to 14%; for temperatures from 2000 to 10,000 K, the US theory is the most successful, with errors in the range 3 to 14%. Over the whole range, a factor of 100 in temperature, both theories have errors of 35% or less. Even TST has errors of 47% or less over the whole factor-of-100 temperature range. Although the US model should become exact at threshold for this system, it already underestimates the reaction probability by a factor of 0.64 at 0.1 kcal/mol above threshold. TST and μVT agree with each other within 12% up to an energy 13 kcal/mol above the saddle point energy. 3 figures, 2 tables

  2. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.


    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  3. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions. (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S


    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  4. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.


    We have made measurements of state-to-state deactivation cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models and both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. This type of experiment can now be compared with recent calculations of state-to-state collisional relaxation in rare-gases by Hickman, Huestis, and Saxon. We have also made significant progress in the study of the electronic spectra of small molecules of the rare gases. Spectra have been obtained for Xe 2 , Xe 3 , Xe 4 , and larger clusters. As guidance for the larger clusters of the rare gases we have obtained the first multiphoton spectra for excitons in condensed xenon. In collaboration with research on the multiphoton spectra of the rare gases, we have continued experiments using synchrotron radiation in collaboration with the University of Hamburg. In experiments there we have observed excitation and fluorescence spectra for single xenon atoms at the surface, within the second layer, and within the bulk of large argon clusters

  5. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Harinath [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Kaleemulla, S., E-mail: [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Rao, N. Madhusudhana [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Rao, G. Venugopal [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamilnadu (India); Krishnamoorthi, C. [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India)


    Indium-tin-oxide (ITO) (In{sub 0.95}Sn{sub 0.05}){sub 2}O{sub 3} and Cr doped indium-tin-oxide (In{sub 0.90}Sn{sub 0.05}Cr{sub 0.05}){sub 2}O{sub 3} nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and −2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  6. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.


    Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  7. Chemistry and kinetics of size-selected cobalt cluster cations at thermal energies. I. Reactions with CO (United States)

    Guo, B. C.; Kerns, K. P.; Castleman, A. W., Jr.


    The chemistry and kinetics of size-selected Co+n cluster-ion (n=2-8) reactions with CO are studied using a selected ion drift tube affixed with a laser vaporization source operated under well-defined thermal conditions. All reactions studied in the present work are found to be association reactions. Their absolute rate constants, which are determined quantitatively, are found to have a strong dependence on cluster size. Similar to the cases of reactions with many other reactants such as H2 and CH4, Co+4 and Co+5 display a higher reactivity toward the CO molecule than do clusters of neighboring size. The multiple-collision conditions employed in the present work have enabled a determination of the maximum coordination number of CO molecules bound onto each Co+n cluster. It is found that the tetramer tends to bond 12 CO molecules, the pentamer 14 CO, hexamer 16 CO, and so on. The results are interpreted in terms of Lauher's calculation and the polyhedral skeletal electron pair theory. All the measured maximum coordination numbers correlate extremely well with the predictions of these theories, except for the trimer where the measured number is one CO less than the predicted value. The good agreement between experiment and theory enables one to gain some insight into the geometric structure of the clusters. Based on the present findings, the cobalt tetramer cation is interpreted to have a tetrahedral structure, the pentamer a trigonal bipyramid, and the hexamer an octahedral structure. Other cluster structures are also discussed.

  8. Synthesis of Ca_3CO_4O_9 via solid state reaction

    International Nuclear Information System (INIS)

    Melo, K.P.; Dutra, R.P.S.; Marques, K.A.; Junior, S.M.S.; Brasileiro, C.T.; Coutinho, S.V.C.R.; Souza, T.; Chagas, T.F.; Silva, R.M.; Macedo, D.A.


    Solid oxide fuel cells (SOFCs) stand out as the most promising today's energy conversion technologies. In the development of cathode materials for SOFC, calcium cobaltate (Ca3Co4O9, C349) appears as a potential alternative to traditional lanthanum manganites. In this work, C349 was prepared via solid state reaction of stoichiometric mixtures containing CaCO3 from mollusk shells, in natura (M1) and heat treated at 550 ° C (M2), and Co3O4 obtained by citrate method. The M1 and M2 mixtures were calcined at 800 (powder) and 900 ° C (tablets) for 12 h. The crystal structure and phase composition of the powder and the reaction products were studied by X-ray diffraction Rietveld refinement of the diffraction data. The results showed the formation of free C349 secondary stages, showing a good alternative to use waste from seafood shells as raw material for obtaining high-value ceramics.(author)

  9. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions (United States)

    Chubb, Scott


    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  10. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction. (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio


    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  11. CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Lu, Li-Hsin; Chang, Yu-Lun; Ray, Dahtong; Yen, Fu-Su


    Highlights: → CuInSe 2 phase increased gradually accompanied with a decrease in γ-In 2 Se 3 and no intermediate phase during calcination. → CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a one-dimensional diffusion-controlled reaction with apparent activation energy of about 122.5 kJ/mol. → The solid reaction kinetics may be dominated by the diffusion of In 3+ ions. - Abstract: The reaction mechanism and CuInSe 2 formation kinetics using a solid state reaction from Cu 2 Se and In 2 Se 3 powders synthesized using a heating up process were investigated using X-ray diffractomy (XRD) and transmission electron microscopy (TEM). It was observed that the CuInSe 2 phase increased gradually, accompanied with a decrease in γ-In 2 Se 3 with no intermediate phase as the calcination temperature and soaking time were increased. The reaction kinetics was analyzed using the Avrami and polynomial kinetic model, suggesting that CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a diffusion-controlled reaction with an apparent activation energy of about 122.5-182.3 kJ/mol. Cu 2 Se and In 2 Se 3 phases react and directly transform into CIS without the occurrence of any intermediate phase and the size of the newly formed CuInSe 2 crystallites was close to that of the Cu 2 Se reactant particle based on the TEM results, which indicated that the solid reaction kinetics may be dominated by the diffusion of In 3+ ions.

  12. State selective dynamics of molecules, clusters, and nanostructures

    International Nuclear Information System (INIS)

    John W. Keto


    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transfer between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demonstrated that CdSe nanoparticles produced by LAM were efficient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtained efficient fluorescence from Er doped phosphate glass nanoparticles which have application to gain waveguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO2

  13. State selective dynamics of molecules, clusters, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Keto, John W. [Univ. of Texas, Austin, TX (United States)


    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  14. Formation of barium strontium titanate powder by solid state reaction using different calcination temperatures

    International Nuclear Information System (INIS)

    Teoh Wah Tzu; Ahmad Fauzi Mohd Noor; Zainal Arifin Ahmad


    The unique electrical properties of large permittivity in Barium Strontium Titanate have been widely used to make capacitors; it can be produced by solid state reaction. In this study, the mixture of Barium Carbonate, Strontium Carbonate and Titanium Dioxide was calcined at 500 degree C, 1000 degree C, 1100 degree C , 1150 degree C, 1200 degree C, 1250 degree C and 1300 degree C. The results of the phases change in each stage were investigated via X ay Diffraction. The results show that the formation of Barium Strontium Titanate started at 1100 degree C with the presence of other phases. The mixture is fully reacted to form Barium Strontium Titanate at 1150 degree C. Only Barium Strontium Titanate was formed as the calcination temperature was set higher. (Author)

  15. Excited states of 117Sb populated in the reaction (α, 2nγ)

    International Nuclear Information System (INIS)

    Lobach, Y.N.; Trishin, V.V.


    The structure of 117 Sb levels populated in the reaction 115 In(α, 2nγ) at E α = 27.2 MeV is investigated. Data on γγ coincidences and the angular distributions of γ rays are used to construct the energy-level diagram and to determine the multipole orders of various transitions and the quantum numbers of levels. The positive-parity band based on the 9/2 + level is observed up to I = 23/2. A new band is revealed that is probably based on one of the isomer states. The levels of 117 Sb are interpreted in terms of the coupling of a proton to vibrations of the core or to three-quasiparticle excitations. Identical bands in the neighboring isotopes of Sb are discussed. 26 refs., 7 figs., 3 tabs

  16. A treatment of the final-state interaction for photonuclear reactions

    International Nuclear Information System (INIS)

    Eden, J.A.; Thompson, M.N.


    The final state interaction is considered for the Gottfried factorized cross section. Numerical examples are presented for the 40 Ca(γ,pn) and 40 Ca(γ,n) reactions. The surface refraction process, allowing photonucleons to refract as they emerge from the nuclear potential well, cannot change the magnitude of the total cross section, but may redistribute the strength in the angular dependence of the differential cross section. The absorption process accounts for the loss of photonucleons as a result of inelastic collisions while escaping the nucleus. The surface refraction correction is calculated in a plane-wave Born approximation and the absorption correction is presented as a simple development of earlier phenomenological treatments. 12 refs., 7 figs

  17. Size-selective electrocatalytic activity of (Pt)n/MoS2for oxygen reduction reaction

    DEFF Research Database (Denmark)

    Bothra, Pallavi; Pandey, Mohnish; Pati, Swapan K.


    In the present work, we have investigated the electrocatalytic activity of the oxygen reduction reaction (ORR), O2 + 4H+ + 4e− → 2H2O, for (Pt)n clusters (n = 1, 2, 3, 5, 7, 10 and 12) adsorbed on semiconducting (2H) and metallic (1T) MoS2 monolayers using first principles density functional theory....... We have considered four elementary reactions involved in ORR within a unified electrochemical thermodynamic framework and the corresponding Gibbs adsorption free energies of the key intermediates (*OOH, *O, *OH) associated with each step have been calculated. The results indicate that the reduction...... of adsorbed hydroxyl (*OH) to water (*OH + H+ + e− → H2O) is the bottleneck step in the ORR process. The adsorption free energy of *OH (ΔG*OH) is found to be the thermodynamic descriptor for the present systems. Eventually, the ORR activity has been described as a function of ΔG*OH and a volcano plot...

  18. On the effect of tether composition on cis/trans selectivity in intramolecular Diels-Alder reactions. (United States)

    Paddon-Row, Michael N; Longshaw, Alistair I; Willis, Anthony C; Sherburn, Michael S


    Intramolecular Diels-Alder (IMDA) transition structures (TSs) and energies have been computed at the B3LYP/6-31+G(d) and CBS-QB3 levels of theory for a series of 1,3,8-nonatrienes, H(2)C=CH-CH=CH-CH(2)-X-Z-CH=CH(2) [-X-Z- = -CH(2)-CH(2)- (1); -O-C(=O)- (2); -CH(2)-C(=O)- (3); -O-CH(2)- (4); -NH-C(=O)- (5); -S-C(=O)- (6); -O-C(=S)- (7); -NH-C(=S)- (8); -S-C(=S)- (9)]. For each system studied (1-9), cis- and trans-TS isomers, corresponding, respectively, to endo- and exo-positioning of the -C-X-Z- tether with respect to the diene, have been located and their relative energies (E(rel) (TS)) employed to predict the cis/trans IMDA product ratio. Although the E(rel) (TS) values are modest (typically NH or S), the IMDA cis stereoselectivity diminishes. The predicted stereochemical reaction preferences are explained in terms of two opposing effects operating in the cis-TS, namely (1) unfavorable torsional (eclipsing) strain about the C4-C5 bond, that is caused by the -C-X-C(=Y)- group's strong tendency to maintain local planarity; and (2) attractive electrostatic and secondary orbital interactions between the endo-(thio)carbonyl group, C=Y, and the diene. The former interaction predominates when X is weakly electronegative (X=N, S), while the latter is dominant when X is more strongly electronegative (X=O), or a methylene group (X=CH(2)) which increases tether flexibility. These predictions hold up to experimental scrutiny, with synthetic IMDA reactions of 1, 2, 3, and 4 (published work) and 5, 6, and 8 (this work) delivering ratios close to those calculated. The reactions of thiolacrylate 5 and thioamide 8 represent the first examples of IMDA reactions with tethers of these types. Our results point to strategies for designing tethers, which lead to improved cis/trans-selectivities in IMDAs that are normally only weakly selective. Experimental verification of the validity of this claim comes in the form of fumaramide 14, which undergoes a more trans-selective IMDA reaction

  19. Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Mårten Sundberg

    Full Text Available Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS is an attractive alternative due to high specificity and versatility, allowing for species-independent analysis. Targeted MS-based quantification methods are valuable complements to large scale shotgun analysis. A method referred to as parallel reaction monitoring (PRM, implemented on Orbitrap MS, has lately been presented as an excellent alternative to more traditional selected reaction monitoring/multiple reaction monitoring (SRM/MRM methods. The insulin-like growth factor (IGF-system is not well described in the cat but there are indications of important differences between cats and humans. In feline medicine IGF-I is mainly analyzed for diagnosis of growth hormone disorders but also for research, while the other proteins in the IGF-system are not routinely analyzed within clinical practice. Here, a PRM method for quantification of IGF-I, IGF-II, IGF binding protein (BP -3 and IGFBP-5 in feline serum is presented. Selective quantification was supported by the use of a newly launched internal standard named QPrEST™. Homology searches demonstrated the possibility to use this standard of human origin for quantification of the targeted feline proteins. Excellent quantitative sensitivity at the attomol/μL (pM level and selectivity were obtained. As the presented approach is very generic we show that high resolution mass spectrometry in combination with PRM and QPrEST™ internal standards is a versatile tool for protein quantitation across multispecies.

  20. Site-selective three-component reaction for dual-functionalization of peptides

    DEFF Research Database (Denmark)

    Munch, Henrik Kofoed; Rasmussen, Jakob Ewald; Popa, Gina


    A site-selective dual-functionalization of peptides is presented, involving readily available maleimides as well as N-hydroxylamines. The modification proceeds through a three component 1,3-dipolar cycloaddition, forming a stable product. This was exemplified by the one-pot attachment of two...

  1. Lighting Rural India : Load Segregation Eexperience in Selected States


    Khanna, Ashish; Mukherjee, Mohua; Banerjee, Sudeshna Ghosh; Saraswat, Kavita; Khurana, Mani


    Socioeconomic development of the rural populace is critical to India achieving its stated objective of inclusive growth. It is widely accepted that access to a reliable and sufficient power supply is a key enabler of rural economic growth. Traditionally, India's rural power supply has been restricted by having feeders to villages serve both agriculture and household loads. Because agric...

  2. Dairy production in some selected integrated farms in Sokoto State ...

    African Journals Online (AJOL)

    A survey of eight integrated farms in four local government areas of Sokoto state in north-western Nigeria revealed the following about dairy production on such farms:breed of cattle kept, Sokoto Gudali, Friesian, and Sahiwal; average dairy herd size,69.4 head; husbandry system was largely semi-intensive; milking was ...

  3. Antimalarial prescribing patterns in state hospitals and selected ...

    African Journals Online (AJOL)

    slowdown of progression to resistance could be achieved by improving prescribing practice, drug quality, and patient compliance. Objective: To determine the antimalarial prescribing pattern and to assess rational prescribing of chloroquine by prescribers in government hospitals and parastatals in Lagos State. Methods: ...

  4. Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...

    African Journals Online (AJOL)



    Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.

  5. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation. (United States)

    Cheng, Yu-Huei


    Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.

  6. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts (United States)

    Krim, Lahouari; Nourry, Sendres


    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step

  7. Quasi-bound alpha resonant states populated by the 12C(6Li, d) reaction

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A.; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; Ukita, G.M.


    Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (xα) and (xα+n) nuclei through the ( 6 Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4α) threshold in the nucleus 16 O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in 12 C [6]. The existence of a rotational band with the α + 12 C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the 12 C( 6 Li, d) 16 O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 μm thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J. Mod. Mod. Phys E 20, 1018-1021 (2011). [4] T. Borello

  8. Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces. (United States)

    Eltouny, N; Ariya, Parisa A


    Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants.

  9. Treatment of personal status in jurisdictions of selected Arab states


    Kopecký, Robert


    In my dissertation thesis I tried to explicate the fundamental institutes of Islamic family law, according to modern and contemporary legislation in a number of Arab states. The family law is fairly exhaustively treated in the sacred book of Muslims, in Koran, albeit in a number of scattered passages, mostly in suras from Medinese period. These passages are defined with more precision by the prestigeous method of the interpretation of Koran, with so called taj

  10. Selected equation of state in the acentric factor system

    International Nuclear Information System (INIS)

    Schreiber, D.R.; Pitzer, K.S.


    A new equation of state in the acentric factor system is developed on the basis of high-precision data. The region in critical temperature T/sub r/, critical density P/sub r/ space is identified where there is good agreement as well as the regions of significant departures. The equation fits very well in the critical region. 10 refs., 6 figs., 3 tabs

  11. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders. (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel


    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  12. Factors of site selection for nuclear power plants in selected industrial states

    International Nuclear Information System (INIS)

    Hoffmann, L.; Obermair, G.; Ringler, W.; Romahn, B.; Sanders, H.


    The range of the tasks within the project consists of working out an optimal catalogue of criteria for the site selection for nuclear power plants; establishing a structured documentation system for the criteria and licensing procedures used by selected industrial countries when selecting sites for nuclear power plants; analyzing and evaluating the documented material with the aim of supplying the basis for decisions concerning land use. The tasks are being realized within a technological ring of data (for the period until 1990, reactor types, cooling, power-heat coupling, special sites, block sizes, local concentration) and a set politico-economical ring of data for the following countries: F.R. Germany, Belgium, Switzerland, Great Britain, Sweden, Denmark, Austria, France, Netherlands, USA, Japan, Yougoslavia. (HP) [de

  13. States of 15C via the (18O,16O) reaction

    CERN Document Server

    Cappuzzello, F; Cunsolo, A; Foti, A; Orrigo, S E A; Rodrigues, M R D; Borello-Lewin, T; Carbone, D; Schillaci, C


    A study of the 15C states was pursued in 2008 at the Catania INFN-LNS laboratory by the 13C(18O,16O)15C reaction at 84 MeV incident energy. The 16O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer. Thanks to an innovative technique the ejectiles were identified without the need of time of flight measurements. Exploiting the large momentum acceptance (25%) and solid angle (50 msr) of the spectrometer, the 15C energy spectra were obtained with a quite relevant yield up to about 20 MeV excitation energy. The application of the powerful technique of the trajectory reconstruction did allow to get an energy resolution of about 250 keV FWHM, limited mainly by straggling effects. The spectra show several known low lying states up to about 7 MeV excitation energy as well as two unknown resonant structures at about 11.4 and 13.5 MeV. The strong excitation of these latter together with the measured width of about 2 MeV FWHM could indicate the presence of collective modes of excitation connec...

  14. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope. (United States)

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru


    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

  15. Reaction networks as systems for resource allocation: a variational principle for their non-equilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Andrea De Martino

    Full Text Available Within a fully microscopic setting, we derive a variational principle for the non-equilibrium steady states of chemical reaction networks, valid for time-scales over which chemical potentials can be taken to be slowly varying: at stationarity the system minimizes a global function of the reaction fluxes with the form of a Hopfield Hamiltonian with hebbian couplings, that is explicitly seen to correspond to the rate of decay of entropy production over time. Guided by this analogy, we show that reaction networks can be formally re-cast as systems of interacting reactions that optimize the use of the available compounds by competing for substrates, akin to agents competing for a limited resource in an optimal allocation problem. As an illustration, we analyze the scenario that emerges in two simple cases: that of toy (random reaction networks and that of a metabolic network model of the human red blood cell.

  16. The Central Bank and the State Budget: Selected Legal Aspects


    Andrzej Borodo


    The Polish Central Bank (National Bank of Poland – NBP) performs mainly macro-economic tasks, for maintaining price levels. This Bank is not focused on tasks aimed at the interests of the State Budget. The Central Bank has a lot of power in the creation of money. It seems, there is possible to create the budgetary revenues, which are connected with the emission of money. In particular, the income from emission of coins may be determined as the budget revenue. The connection the Treasury with ...

  17. {gamma} decay of spin-isospin states in {sup 13}N via ({sup 3}He, t{gamma}) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, F; Akimune, H; Daito, I; Fujimura, H; Fujiwara, M; Inomata, T; Ishibashi, K; Yoshida, H [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Fujita, Y


    Spin-isospin states in {sup 13}N have been studied by means of the {sup 13}C ({sup 3}He,t) reaction at and near zero degree, at E({sup 3}He)=450 MeV. Decayed {gamma}-rays from each state were measured at backward angle in coincidence with the ejectile tritons. The branching ratio of {gamma} decay for some of spin-isospin states were determined and were compared to those from previous data. (author)

  18. Exotic baryon pπ+π+ states observation in the π+p → pπ+π+π- reaction

    International Nuclear Information System (INIS)

    Mikhajlichenko, V.I.; Drutskoj, A.G.; Morgunov, V.L.; Nikitin, S.Ya.; Kiselevich, I.L.; Shidlovskij, A.V.


    Production of exotic baryon states in the π + p→pπ + π + π s - - reaction, the π + meson momentum being 4.23 GeV/c, was observed (where π s - -π - -meson with p * <0). Masses and widths of resonances observed in baryon exchange reactions are 1387±15(8±10), 1581±15(73±15), 1759±13(76±12) and 2074±19(147±41), respectively

  19. Re-examining the 26Mg(α ,α')26Mg reaction: Probing astrophysically important states in 26Mg (United States)

    Adsley, P.; Brümmer, J. W.; Li, K. C. W.; Marín-Lámbarri, D. J.; Kheswa, N. Y.; Donaldson, L. M.; Neveling, R.; Papka, P.; Pellegri, L.; Pesudo, V.; Pool, L. C.; Smit, F. D.; van Zyl, J. J.


    Background: The 22Ne(α ,n )25Mg reaction is one of the neutron sources for the s process in massive stars. The properties of levels in 26Mg above the α -particle threshold control the strengths of the 22Ne(α ,n )25Mg and 22Ne(α ,γ )26Mg reactions. The strengths of these reactions as functions of temperature are one of the major uncertainties in the s process. Purpose: Information on the existence, spin, and parity of levels in 26Mg can assist in constraining the strengths of the 22Ne(α ,γ )26Mg and 22Ne(α ,n )25Mg reactions, and therefore in constraining s -process abundances. Methods: Inelastically scattered α particles from a 26Mg target were momentum-analyzed in the K600 magnetic spectrometer at iThemba LABS, South Africa. The differential cross sections of states were deduced from the focal-plane trajectory of the scattered α particles. Based on the differential cross sections, spin and parity assignments to states are made. Results: A newly assigned 0+ state was observed in addition to a number of other states, some of which can be associated with states observed in other experiments. Some of the deduced Jπ values of the states observed in the present study show discrepancies with those assigned in a similar experiment performed at RCNP Osaka. The reassignments and additions of the various states can strongly affect the reaction rate at low temperatures. Conclusion: The number, location, and assignment of levels in 26Mg that may contribute to the 22Ne+α reactions are not clear. Future experimental investigations of 26Mg must have an extremely good energy resolution to separate the contributions from different levels. Coincidence experiments of 26Mg provide a possible route for future investigations.

  20. Activity and selectivity regulation of synthesis gas reaction over supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K; Nobusawa, T; Fukushima, T; Tominaga, H


    The catalytic activities of supported ruthenium for synthesis-gas conversion to hydrocarbons was found to be in the following order: TiOS > Nb2O3 > ZrO2 > SiO2 > Ta2O5 > Al2O3 > V2O5 > MoO3 > WO3 > MnO2 > ZnO. Turnover frequencies of the supported ruthenium increased with decrease in dispersion of the metal particles for every carrier material. Even the activities per unit weight of metals were higher for low-dispersion ruthenium of Al2O3, TiO2, and ZrO2. The chain-growth probability of a hydrocarbon product, which is characterized by the Schulz-Flory distribution, increased markedly with decrease in the metal dispersion irrespective of the carrier material. The catalytic activity of ruthenium particles with a dispersed ruthenium increased almost linearly with an increase in reaction pressure (up to at least 2.0 MPa). 23 references, 10 figures, 3 tables.

  1. Interesterification reaction activity, fatty acid composition and selectivity ratio of soybean oil

    Directory of Open Access Journals (Sweden)

    El-Shattory, Y.


    Full Text Available The interesterification reaction was carried out by adding oleic acid to soybean oil by ratio 1:2 w/w under different conditions of temperature, stirring and catalyst percentages. Assessment of the interesterification of oils was reported by determination of saponification value, iodine value and fatty acids composition. This study showed that linolenic acid which is responsible for flavour instability of soybean oil and consider as primary factor contributing to deterioration of this oil could be reduced to less than or equals 3%.

    Se han llevado a cabo reacciones de interesterificación mediante la adición de ácido oleico a aceite de soja en la relación 1:2 w/w bajo diferentes condiciones de temperatura, agitación y porcentaje de catalizador. La evaluación de la interesterificación de los aceites se realizó por determinación del índice de saponificación, el índice de iodo y la composición en ácidos grasos. Este estudio mostró que el ácido linolénico, que es responsable de la inestabilidad del flavor del aceite de soja y considerado como factor primario que contribuye a la deterioración de este aceite, podría ser reducido a cantidades menores o iguales al 3%.

  2. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants. (United States)

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L


    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  3. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan


    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  4. Negative ion formation in the scattering of state-selected NO+ on GaAs(110)

    International Nuclear Information System (INIS)

    Martin, J.S.; Greeley, J.N.; Morris, J.R.; Ferenchok, B.T.; Jacobs, D.C.


    A hyperthermal beam of state-selected NO + X 1 Σ + (v,j) impinges on a clean, well characterized GaAs(110) surface. The resulting two-electron transfer products NO-and O- are independently interrogated with a novel ion imaging technique as a function of NO + translational and vibrational energies. The products are shown to have different appearance thresholds, product translational energy distributions, and NO + vibrational energy dependencies. Most notably, vibrational energy is an order of magnitude more effective that translational energy in activating O- formation at a collision energy of 45 eV. The O- angular distribution exhibits a correlation with translational energy which is asymmetric about the surface normal. These results suggest that the probability of O- formation is dependent on the molecules point of impact with the GaAs (110) surface. The dynamical features of the NO + /GaAs(110) reaction will be discussed in terms of the three independent coordinates addressed in this experiment: the diatom internuclear separation, the molecule-surface distance, and the surface impact parameter

  5. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    International Nuclear Information System (INIS)

    Ivanov, Konstantin L.; Lukzen, Nikita N.; Sadovsky, Vladimir M.


    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  6. Profile of rheumatology patients willing to report adverse drug reactions: bias from selective reporting

    Directory of Open Access Journals (Sweden)

    Protić D


    Full Text Available Dragana Protić,1 Nada Vujasinović-Stupar,2 Zoran Bukumirić,3 Slavica Pavlov-Dolijanović,4 Snežana Baltić,5 Slavica Mutavdžin,6 Ljiljana Markovic-Denić,7 Marija Zdravković,8 Zoran Todorović1 1Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 2Department 2, Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 3Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 4Department 5, Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 5Department 5, Institute of Rheumatology, Belgrade, Serbia; 6Institute of Physiology “Rihard Burjan”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 7Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 8Department of Cardiology, Medical Center “Bežanijska kosa”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia Background: Adverse drug reactions (ADRs have a significant impact on human health and health care costs. The aims of our study were to determine the profile of rheumatology patients willing to report ADRs and to identify bias in such a reporting system. Methods: Semi-intensive ADRs reporting system was used in our study. Patients willing to participate (N=261 completed the questionnaire designed for the purpose of the study at the hospital admission. They were subsequently classified into two groups according to their ability to identify whether they had experienced ADRs during the previous month. Group 1 included 214 out of 261 patients who were able to identify ADRs, and group 2 consisted of 43 out of 261 patients who were not able to identify ADRs in their recent medical history. Results: Group 1 patients were more significantly aware of their diagnosis than the patients from group 2. Marginal significance was found

  7. Collimator Selection in Nuclear Medicine Imaging Using I-123 Generated by Te-124 Reaction

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Son, Hye Kyung; Nam, Ki Pyo; Lee, Hee Kyung; Bong, Joung Kyun


    In the case of I-123 from the Te-124(p,2n)reaction, the radionuclidic impurity is the high-energy gamma-emitting I-124, which interferes greatly with nuclear medicine images. The choice of a collimator can affect the quality of clinical SPECT images of [I-123]MIBG, [I-123]μ-CIT, or [I-123]IPT. The tradeoffs that two different collimators make among spatial resolution, sensitivity, and scatter were studied by imaging a line source at 5 cm, 10 cm, 15 cm distance using a number of plexiglass sheets between source and collimator, petridish, two-dimensional Hoffman brain phantom, Jaszczak phantom, and three-dimensional Hoffman brain phantom after filling with I-123. (FWHM, FWTM, Sensitivity) for low-energy ultrahigh-resolution parallel-hole(LEUHRP) collimator and medium-energy general-purpose(MEGP) collimator were measured as (9.27 mm, 61.27 mm, 129 CPM/μCi) and (10.53 mm, 23.17 mm, 105CPM/μ/Ci), respectively. The image quality of two-dimensional Hoffman brain phantom with LEUHRP looked better than the one with MEGP. However, the image quality of Jaszczak phantom and three-dimensional Hoffman brain phantom with LEUHRP looked much worse than the one with MEGP because of scatter contributions in three-dimensional imaging situation. The results suggest that the MEGP is preferable to LEUHRP for three-dimensional imaging studies of [I-123]MIBG, [I-123] β-CIT, or [I-123] IPT.

  8. Laser isotope separation by selective excited state photochemistry. Annual progress report, March 31, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    Zare, R.N.


    Experimental results are presented providing insight into the mechanisms of photochemical separation of Cd isotopes by selective excitation of ICl in the presence of halogenated olefins. The types of scrambling reactions that can be expected in isotope separation by scavenging are discussed along with strategies for minimizing such reactions. The experimental results are summarized and the reaction mechanisms are represented by graphic equations

  9. Amorphous saturated Cerium-Tungsten-Titanium oxide nanofibers catalysts for NOx selective catalytic reaction

    DEFF Research Database (Denmark)

    Dankeaw, Apiwat; Gualandris, Fabrizio; Silva, Rafael Hubert


    experiments at the best working conditions (dry and in absence of SO2) are performed to characterize the intrinsic catalytic behavior of the new catalysts. At temeprature lower than 300 °C, superior NOx conversion properties of the amorphous TiOx nanofibers over the crystallized TiO2 (anatase) nanofibers......Herein for the first time, Ce0.184W0.07Ti0.748O2-δ nanofibers are prepared by electrospinning to serve as catalyst in the selective catalytic reduction (SCR) process. The addition of cerium is proven to inhibit crystallization of TiO2, yielding an amorphous TiOx-based solid solution stable up...... temperatures (catalysts in a wide range...

  10. A survey of selected Internet pharmacies in the United States. (United States)

    Peterson, A M


    To determine whether differences in the provision of pharmacy services exist among different types of Internet pharmacies. Survey of selected pharmacies with a presence on the Internet. Data were abstracted onto a data collection form for further analysis. Data collection was limited to 3 weeks. U.S.-based Internet pharmacies that allow patients to purchase prescription medications online. Pharmacies were identified using a metasearch engine with the search terms "Internet pharmacy" and "Internet pharmacist." Survey. Comparisons of availability of 10 commonly used products representing a variety of product categories, prescription verification methods, and privacy issues; and determinations of site navigability, drug information and provider access, and payment methods. Sites were categorized as "chain pharmacy extensions," "mail order pharmacies," "independent pharmacy extensions," and "online pharmacies." Thirty-three sites were reviewed. There was significant variation among the four types of pharmacies selling prescriptions over the Internet. Most pharmacies provided all of the drugs in the survey. Patients were required to provide their own prescription at 88% of the sites, and 75% of sites used mail or fax to verify prescription integrity. More than 50% of sites had privacy policies posted, and 64% used cookies. Chain pharmacy extensions required completion of an average of 10.2 pages to order drugs versus 2.4 to 4 pages for all other site types. Drug information was written at an eighth-grade reading level at 36% of the sites. More than two-thirds of the sites provided a toll-free telephone for a health care professional. Nearly 80% of the sites accepted health insurance, and 95% accepted credit cards; however, only 40% used a secure transmission mechanism for patient or payment information. Internet pharmacies provide varying levels of service. Policies regarding the use of the Internet for obtaining medications should focus on improving the privacy of

  11. The Central Bank and the State Budget: Selected Legal Aspects

    Directory of Open Access Journals (Sweden)

    Andrzej Borodo


    Full Text Available The Polish Central Bank (National Bank of Poland – NBP performs mainly macro-economic tasks, for maintaining price levels. This Bank is not focused on tasks aimed at the interests of the State Budget. The Central Bank has a lot of power in the creation of money. It seems, there is possible to create the budgetary revenues, which are connected with the emission of money. In particular, the income from emission of coins may be determined as the budget revenue. The connection the Treasury with the Central Bank results from the historical evolution of the origin and role of the Central Bank. It is reasonable to increase the role of the treasury securities in the Central Bank activity. The Treasury Bills should be used in the open market policy leading by the Central Bank. There is the issue of changing of the Constitution of the Republic Poland in the field of limit of the public debt (60% of GDP. It seems, the Polish Constitution should not be the only constitution in the world that introduced such a limit. This limit, and the limit on annual budgetary deficit, introduces EU law. That is a sufficient legal limit.

  12. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    International Nuclear Information System (INIS)

    Warshaw, S I


    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF

  13. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.


    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  14. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel


    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  15. Stretched configuration of states as inferred from γ-ray angular distributions in {sup 40}Ar + {sup 208}Pb neutron transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colovic, P.; Szilner, S.; Mijatovic, T.; Jelavic Malenica, D.; Soic, N. [Ruder Boskovic Institute, Zagreb (Croatia); Corradi, L.; Fioretto, E.; Stefanini, A.M.; Valiente-Dobon, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro (Italy); Pollarolo, G. [Dipartimento di Fisica Teorica, Universita di Torino (Italy); Istituto Nazionale di Fisica Nucleare, Torino (Italy); Goasduff, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro (Italy); Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Montanari, D. [Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Universite de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS-IN2P3, Strasbourg (France); Chapman, R.; Smith, J.F. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); Gadea, A. [Instituto de Fisica Corpuscular, CSIC-Universitat de Valencia, Valencia (Spain); Haas, F. [Universite de Strasbourg, Institut Pluridisciplinaire Hubert Curien, CNRS-IN2P3, Strasbourg (France); Marginean, N.; Ur, C.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering and ELI-NP, Bucharest (Romania); Mengoni, D.; Montagnoli, G.; Scarlassara, F. [Dipartimento di Fisica, Universita di Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Milin, M. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia)


    Angular distributions of γ-rays for selected transitions in {sup 40,41,42}Ar isotopes have been studied with the PRISMA magnetic spectrometer coupled to the CLARA γ array. These transitions were populated in Ar isotopes reached via neutron transfer in the {sup 40}Ar + {sup 208}Pb reaction. By comparison with the shape of the experimental angular distribution of the known E2 transitions we established more firmly the spin and parity of excited states. In particular, in {sup 41}Ar for the (11/2{sup -}) state through the (11/2{sup -}) → 7/2{sup -} transition whose structure was discussed in terms of a phonon-fermion coupled state. The comparison with the expected fully aligned spin indicated that a high level of spin alignment has been reached. (orig.)

  16. Patients in a persistent vegetative state attitudes and reactions of family members. (United States)

    Tresch, D D; Sims, F H; Duthie, E H; Goldstein, M D


    Patients in a persistent vegetative state (PVS) constituted approximately 3% of the population in four Milwaukee nursing homes. In order to understand family members' attitudes and reactions toward such patients, 33 (92%) of 36 family members of patients in PVS contacted were studied. The age of the patients ranged from 19 to 95 with a mean age of 73.4 +/- 17.2 years, and family members' ages ranged from 41 to 89 with a mean age of 61.8 +/- 3.3 years. The etiology of the PVS varied from dementia to cerebral trauma. The mean duration of the PVS was 54 +/- 8.4 months (range 12 to 204). Family members reported that they visited patients 260 times during the first year following the onset of the PVS and were still visiting at a rate of 209 visits yearly at the time of the interview. There was no significant correlation between the frequency of the family members visits and the duration of the PVS, the patient's or family member's age, or the family member's relationship to the patient. Ninety percent of patients were considered by family members to have some awareness of pain, light or darkness, environment, taste, verbal conversation, or the family member's presence. Most family members thought they understood the patient's medical condition, and the majority did not expect the patient to improve. Nevertheless, the majority of family members wanted the patient to undergo therapeutic interventions, including transfer to the acute hospital and surgery.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Population of yrast states in 191Os using deep-inelastic reactions (United States)

    Jones, G. A.; Podolyák, Zs; Walker, P. M.; Regan, P. H.; de Angelis, G.; Axiotis, M.; Bazzacco, D.; Bizzeti, P. G.; Brandolini, F.; Broda, R.; Bucurescu, D.; Farnea, E.; Gelletly, W.; Gadea, A.; Ionescu-Bujor, M.; Iordachescu, A.; Kröll, Th; Langdown, S. D.; Lunardi, S.; Marginean, N.; Martinez, T.; Medina, N. H.; Quintana, B.; Rubio, B.; Ur, C. A.; Valiente-Dobón, J. J.; Williams, S. J.; Zhang, Y. H.


    Several nuclei in the A ~ 190 region have been studied following deep-inelastic reactions using a 460 MeV 82Se projectile impinging upon a thick 192Os target. The GASP array (at the Legnaro National Laboratory in Italy) was used to measure the resulting γ-decays. The previously reported near-yrast structure of 191Os is extended to a t\\frac{1{2}} = 61 ns isomer, at an energy of 2640 keV. Branching ratios for ΔI = 1 and ΔI = 2 transitions in the Kπ =\\frac{11}{2}+ band have been measured, giving |(gK - gR)/Q0| = 0.022(3) and 0.024(7) for transitions from the \\frac{17}{2}+ and \\big(\\frac{19}{2}^+\\big) states respectively. These are consistent with the theoretical calculation for the proposed ν11/2+[615] configuration of the band. Nilsson plus BCS calculations reveal that the isomer is likely to have a {ν11/2+[615] π11/2-[505] π9/2-[514]} configuration with Jπ =Kπ =\\frac{31}{2}+ . This yields an implied reduced hindrance of fν= 1.9, in accordance with empirical systematics of K isomers in the A ~ 180-190 region.

  18. Teleportation of N-qubit W State without Bell-State Measurement via Selective Resonant Interaction in Cavity QED

    International Nuclear Information System (INIS)

    Zhong Wenxue; Geng Jun; Cheng Guangling; Chen Aixi


    We present a scheme in which the N-atom W state is teleported by employing the selective interaction of a cavity field with a driven three-level atom in the A configuration and detecting a single atom in one of the ground states. The long-lived W state is teleported from atom A to atom B when the atoms B and A are sent through a cavity successively and atom A is then detected. The advantage is that the present one does not involve the Bell-state measurement and is robust against the atomic spontaneous emission. (general)

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh


    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  20. A survey of the state and status of physical education in selected ...

    African Journals Online (AJOL)

    A survey of the state and status of physical education in selected primary schools in ... Physical Development and movement in the Foundation Phase (FP) and the ... Keywords: Education, Physical Education, Life Orientation, Curriculum 2005, ...

  1. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes. (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason


    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  2. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu


    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  3. Objective Versus Subjective Military Pilot Selection Methods in the United States of America (United States)


    a computerized test designed to assess pilot skills by measuring spatial orientation and psychomotor skills and multitasking . The second is the...AFRL-SA-WP-SR-2015-0028 Objective Versus Subjective Military Pilot Selection Methods in the United States of America Joe...September 2014 4. TITLE AND SUBTITLE Objective Versus Subjective Military Pilot Selection Methods in the United States of America 5a. CONTRACT

  4. Assessment of Users Information Needs and Satisfaction in Selected Seminary Libraries in Oyo State, Nigeria (United States)

    Adekunjo, Olalekan Abraham; Adepoju, Samuel Olusegun; Adeola, Anuoluwapo Odebunmi


    The study assessed users' information needs and satisfaction in selected seminary libraries in Oyo State, Nigeria. This paper employed the descriptive survey research design, whereby the expost-facto was employed with a sample size of three hundred (300) participants, selected from six seminaries located in Ibadan, Oyo and Ogbomoso, all in Oyo…

  5. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor

    NARCIS (Netherlands)

    Sensoy, Ozge; de Sousa Moreira, Irina; Morra, Giulia


    Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective

  6. Evaluation of reaction selectivity at various Pt/C electrocatalysts using a porous microelectrode in the presence of methanol and oxygen

    International Nuclear Information System (INIS)

    Shironita, Sayoko; Zhang, Weiqi; Sakai, Tsukasa; Umeda, Minoru


    Pt is most useful metal for various electrochemical reactions as an electrocatalyst. In a direct methanol fuel cell, Pt performs a catalytic activity for both the methanol oxidation reaction and oxygen reduction reaction; therefore, a Pt-based catalyst is used as an anode and a cathode. For the coexistence of methanol and oxygen due to methanol crossover through an electrolyte membrane during the cell operation, the direct methanol fuel cell performance decreases. However, if a higher selective reaction electrocatalyst can be developed, the cell performance will not be suppressed. In this study, the reaction selectivities of seven types of Pt supported on carbon (Pt/C) electrocatalysts were evaluated using a porous microelectrode in the presence of methanol and oxygen. As a result, some Pt/C catalysts showed a methanol oxidation selectivity, while the other catalysts showed an oxygen reduction selectivity. It was found that the percentage of edge-atom in the Pt particle is related to the methanol oxidation selectivity or the oxygen reduction selectivity. Moreover, each current density decreases with the increasing chemical shift in the Pt binding energy

  7. “Covalent Hydration” Reactions in Model Monomeric Ru 2,2'-Bipyridine Complexes: Thermodynamic Favorability as a Function of Metal Oxidation and Overall Spin States

    Energy Technology Data Exchange (ETDEWEB)

    Ozkanlar, Abdullah; Cape, Jonathan L.; Hurst, James K.; Clark, Aurora E.


    Density functional theory (DFT) has been used to investigate the plausibility of water addition to the simple mononuclear ruthenium complexes, [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 2+}/{sup 3+} and [(NH{sub 3}){sub 3}(bpy)RuOH]{sup 3+}, in which the OH fragment adds to the 2,2{prime}-bipyridine (bpy) ligand. Activation of bpy toward water addition has frequently been postulated within the literature, although there exists little definitive experimental evidence for this type of 'covalent hydration'. In this study, we examine the energetic dependence of the reaction upon metal oxidation state, overall spin state of the complex, as well as selectivity for various positions on the bipyridine ring. The thermodynamic favorability is found to be highly dependent upon all three parameters, with free energies of reaction that span favorable and unfavorable regimes. Aqueous addition to [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 3+} was found to be highly favorable for the S = 1/2 state, while reduction of the formal oxidation state on the metal center makes the reaction highly unfavorable. Examination of both facial and meridional isomers reveals that when bipyridine occupies the position trans to the ruthenyl oxo atom, reactivity toward OH addition decreases and the site preferences are altered. The electronic structure and spectroscopic signatures (EPR parameters and simulated spectra) have been determined to aid in recognition of 'covalent hydration' in experimental systems. EPR parameters are found to uniquely characterize the position of the OH addition to the bpy as well as the overall spin state of the system.

  8. Preparation of Ultra-Fine Nickel Manganite Powders and Ceramics by a Solid-State Coordination Reaction

    NARCIS (Netherlands)

    Fang, Dao-lai; Wang, Zhongbing; Wang, Zhichun; Yang, Pinghua; Liu, W.; Liu, Wei; Winnubst, Aloysius J.A.; Chen, Chusheng


    A solid-state coordination reaction was adopted to prepare negative temperature coefficient ceramics. A mixed oxalate NiMn2(C2O4)3·6H2O, a coordination compound, was synthesized by milling a mixture of nickel acetate, manganese acetate, and oxalic acid for 5 h at room temperature. An ultrafine

  9. Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts. (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M


    Carbon-nitrogen (C-N) bonds are ubiquitous in pharmaceuticals, agrochemicals, diverse bioactive natural products, and ligands for transition metal catalysts. An effective strategy for introducing a new C-N bond into a molecule is through transition metal-catalyzed nitrene transfer chemistry. In these reactions, a metal-supported nitrene can either add across a C═C bond to form an aziridine or insert into a C-H bond to furnish the corresponding amine. Typical catalysts for nitrene transfer include Rh 2 L n and Ru 2 L n complexes supported by bridging carboxylate and related ligands, as well as complexes based on Cu, Co, Ir, Fe, and Mn supported by porphyrins and related ligands. A limitation of metal-catalyzed nitrene transfer is the ability to predictably select which specific site will undergo amination in the presence of multiple reactive groups; thus, many reactions rely primarily on substrate control. Achieving true catalyst-control over nitrene transfer would open up exciting possibilities for flexible installation of new C-N bonds into hydrocarbons, natural product-inspired scaffolds, existing pharmaceuticals or biorenewable building blocks. Silver-catalyzed nitrene transfer enables flexible control over the position at which a new C-N bond is introduced. Ag(I) supported by simple N-donor ligands accommodates a diverse range of coordination geometries, from linear to tetrahedral to seesaw, enabling the electronic and steric parameters of the catalyst to be tuned independently. In addition, the ligand, Ag salt counteranion, Ag/ligand ratio and the solvent all influence the fluxional and dynamic behavior of Ag(I) complexes in solution. Understanding the interplay of these parameters to manipulate the behavior of Ag-nitrenes in a predictable manner is a key design feature of our work. In this Account, we describe successful applications of a variety of design principles to tunable, Ag-catalyzed aminations, including (1) changing Ag/ligand ratios to influence

  10. Solid-state reaction synthesis and aqueous durability of Ce-doped zirconolite-rich ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guanjun [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Kuibao, E-mail: [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Yin, Dan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Haibin, E-mail: [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)


    In this study, Ce-doped zirconolite-rich ceramics were prepared by solid-state reaction process using cerium as the surrogate of tetravalence actinide nuclide. The occupancy of Ce in the waste forms was investigated. The aqueous durability of Ce-doped zirconolite-rich ceramic was examined as well. The results show that zirconolite and pseudobrookite coexisted after being sintered at 1200 °C for 6 h. Meanwhile, perovskite is inevitable generated during the process. CeO{sub 2} can be successfully incorporated into the lattice structure of the zirconolite-rich ceramics. The maximum containing capacity of CeO{sub 2} is up to 14.95 wt% or y = 0.4. The normalized elemental leaching rates of Ce and Ca are fairly constant in low values of 1.2 × 10{sup −6} and 2.3 × 10{sup −2} g m{sup −2} d{sup −1} after 28 days. The normalized leaching rate of Fe is also in a low value of 2.9 × 10{sup −4} g m{sup −2} d{sup −1} after 7 days. - Highlights: • Ce-doped zirconolite-rich ceramic was produced at 1200 °C. • Pseudobrookite-type Fe{sub 2}TiO{sub 5} was employed to incorporate Fe element. • Ce{sup 3+} and Ce{sup 4+} coexisted in the Ce-doped zirconolite-rich waste form after being sintered at 1200 °C for 6 h. • The leaching rate of Ca was relatively higher than that of borosilicate glasses.

  11. Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction

    International Nuclear Information System (INIS)

    Can, Musa Mutlu; Hassnain Jaffari, G.; Aksoy, Seda; Shah, S. Ismat; Fırat, Tezer


    Highlights: ► Synthesis of ZnGa 2 O 4 particles produced from metallic Zn and Ga particles. ► The structural comparison of spinel and partially inverse spinel structure in ZnGa 2 O 4 . ► The Ga atoms occupied 13% of tetrahedral site in ZnGa 2 O 4 . ► The band gap, calculated from climate point of UV–visible, was found as 4.6 ± 0.1 eV. ► The optical analyses were shown defective ZnO structure in ZnGa 2 O 4 . - Abstract: We employed solid state reaction technique to synthesize ZnGa 2 O 4 particles, produced in steps of mixing/milling the ingredients in H 2 O following thermal treating under 1200 °C. We compare spinel and partially inverse spinel structure in ZnGa 2 O 4 particles using Rietveld refinement. Crystal structure of ZnGa 2 O 4 particles was identified with two structural phases; normal spinel structure and partially inverse spinel structure using Rietveld refinement. It is found that the partially inverse spinel structures occupy nearly 13% and the rest is normal spinel structure. The obtained X-ray diffraction data show that lattice constant and the position of Oxygen atoms remain almost constant in both structures. The characterization of the particles was also improved using X-ray photoelectron spectroscopy and Fourier transforms infrared spectroscopy measurements. The optical analyses were done with UV–visible spectroscopy. The band gap, calculated from climate point of UV–visible data, was found as 4.6 ± 0.1 eV. Despite no unexpected compound (such as ZnO and Ga 2 O 3 ) in the structure, the optical analyses were shown defective ZnO structure in ZnGa 2 O 4 .

  12. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    International Nuclear Information System (INIS)

    Jarrold, M.F.; Bower, J.E.


    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  13. Chemical kinetics and reaction mechanism

    International Nuclear Information System (INIS)

    Jung, Ou Sik; Park, Youn Yeol


    This book is about chemical kinetics and reaction mechanism. It consists of eleven chapters, which deal with reaction and reaction speed on reaction mechanism, simple reaction by rate expression, reversible reaction and simultaneous reaction, successive reaction, complicated reaction mechanism, assumption for reaction mechanism, transition state theory, successive reaction and oscillating reaction, reaction by solution, research method high except kinetics on reaction mechanism, high reaction of kinetics like pulsed radiolysis.

  14. Kinetic studies following state-selective laser excitation: Progress report, March 15, 1988--March 14, 1989

    International Nuclear Information System (INIS)

    Keto, J.W.


    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have chosen to study reactions of Xe 5p 5 np because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or by laser induced fluorescence using a second color laser. Reaction rates are measured by observing the time dependent decay of signals from reactant and product channels. In addition we measure interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra are obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. 11 refs. 4 figs., 3 tabs

  15. Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane. (United States)

    Miyaji, Akimitsu; Iwase, Yasuyoshi; Nishitoba, Toshiki; Long, Nguyen Quang; Motokura, Ken; Baba, Toshihide


    The conversion of n-pentane was carried out to examine the effects of reaction conditions on changes in product selectivities at 823 K, using zeolites with 10- and 12-membered rings. We also investigated the influence of the pore structure of these zeolites on their catalytic activities for both protolysis and hydride transfer reactions. In the first half of this work, we examined the influence of acidic proton concentration and n-pentane pressure on the reaction rates for protolysis and hydride transfer reactions using ZSM-5 zeolites. The rates of hydride transfer reactions were more influenced by pentane pressure compared to protolysis reactions, and were proportional to the square of n-pentane pressure and the concentration of acidic protons. In the second half of this work, the influence of the zeolite pore structure on changes in product selectivities with n-pentane conversion and that on the rates of protolysis and the hydride transfer reactions were revealed using various zeolites with 10- and 12-membered rings. The catalytic activities of zeolites for the protolysis and hydride transfer reactions were influenced more by the spatial volume of the zeolite cavity than the acid strength of protons on the zeolite.

  16. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis


    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  17. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions (United States)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.


    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  18. Characteristic 7- and 5- states observed in the (p,t) reactions on even-even rare earth nuclei

    International Nuclear Information System (INIS)

    Ishizaki, Y.; Kubono, S.; Iwasaki, Y.


    The (p,t) reactions have been studied for the even-even rare earth nuclei with 40 MeV proton beam from the INS SF cyclotron. A pair of 7 - and 5 - states was observed with large cross sections in each of the nuclei with the neutron number (N) ranging from 86 to 100. For sup(140,142)Nd of N = 80 and 82 the data were obtained at KVI in Groningen, and the data for 152 Sm of N = 90 at MSU. Q value systematics of (p,t) reactions to these states seem to suggest that these are excited by the two neutron pick-up from the neutron core of N = 82. The (p,t) cross sections leading to these states of N from 82 to 96 are nearly constant. (author)

  19. Thermal rate coefficients in collinear versus bent transition state reactions: the N+N{sub 2} case study

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Antonio; Faginas Lago, Noelia; Rampino, Sergio [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Huarte-Larranaga, FermIn [Computer Simulation and Modeling Lab (CoSMoLab), Parc CientIfic de Barcelona, 08028 Barcelona (Spain); GarcIa, Ernesto [Departamento de Quimica Fisica, Universidad del PaIs Vasco, 01006 Vitoria (Spain)], E-mail:, E-mail:, E-mail:


    Zero total angular momentum exact quantum calculations of the probabilities of the N+N{sub 2} reaction have been performed on the L3 potential energy surface having a bent transition state. This has allowed us to work out J-shifting estimates of the thermal rate coefficient based on the calculation of either detailed (state-to-state) or cumulative (multiconfiguration) probabilities. The results obtained are used to compare the numerical outcomes and the concurrent computational machineries of both quantum and semiclassical approaches as well as to exploit the potentialities of the J-shifting model. The implications of moving the barrier to reaction from the previously proposed collinear geometry of the LEPS to the bent one of L3 are also investigated by comparing the related detailed reactive probabilities.

  20. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.


    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  1. Low-lying states and structure of the exotic 8He via direct reactions on the proton

    International Nuclear Information System (INIS)

    Skaza, F.; Lapoux, V.; Keeley, N.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Khan, E.; Nalpas, L.; Pakou, A.; Pollacco, E.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.


    The structure of the light exotic nucleus 8 He was investigated using direct reactions of the 8 He SPIRAL beam on a proton-rich target. The (p,p') scattering to the 2 1 + state, the (p,d) 7 He and (p,t) 6 He transfer reactions, were measured at the energy E lab =15.7 A.MeV. The light charged particles (p,d,t) were detected in the MUST Si-strip telescope array. The excitation spectrum of 8 He was extracted from the (p,p') reaction. Above the known 2 1 + excited state at 3.6 MeV, a second resonance was found around 5.4 MeV. The cross sections were analyzed within the coupled-reaction channels framework, using microscopic potentials. It is inferred that the 8 He ground state has a more complex neutron-skin structure than suggested by previous α+4n models assuming a pure (1p 3/2 ) 4 configuration

  2. Ground states of molecules. XLIX. MINDO/3 study of the retro-diels-alder reaction of cyclohexene

    International Nuclear Information System (INIS)

    Dewar, M.J.S.; Olivella, S.; Rzepa, H.S.


    The retro-Diels-Alder reaction of cyclohexene to form ethylene and butadiene has been studied, using MINDO/3. The transition state is predicted to be very unsymmetric, corresponding to weakening of one of the two breaking CC bonds. The calculated entropy of activation agrees well with experiment and the calculated secondary isotope effects for 4,4-dideuteriocyclohexene and 4,4,5,5-tetradeuteriocyclohexene are similar to those measured for an analogous reaction by Taagepera and Thornton. Discrepancies between the conclusions reached here and those from recent ab-initio calculations are discussed. 4 tables, 3 figures, 53 references

  3. Activation energies as the validity criterion of a model for complex reactions that can be in oscillatory states

    Directory of Open Access Journals (Sweden)

    Anić S.


    Full Text Available Modeling of any complex reaction system is a difficult task. If the system under examination can be in various oscillatory dynamic states, the apparent activation energies corresponding to different pathways may be of crucial importance for this purpose. In that case the activation energies can be determined by means of the main characteristics of an oscillatory process such as pre-oscillatory period, duration of the oscillatory period, the period from the beginning of the process to the end of the last oscillation, number of oscillations and others. All is illustrated on the Bray-Liebhafsky oscillatory reaction.

  4. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.


    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  5. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.


    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  6. Selection of GP. Mur antigen-negative RBC for blood recipients with anti-'Mia ' records decreases transfusion reaction rates in Taiwan. (United States)

    Yang, C-A; Lin, J-A; Chang, C-W; Wu, K-H; Yeh, S-P; Ho, C-M; Chang, J-G


    To evaluate the clinical significance of GP. Mur antigen-negative blood selection for transfusion in patients with anti-'Mi a ' records. The GP. Mur RBC phenotype is prevalent (7·3%) in Taiwan. Antibodies against GP. Mur (anti-'Mi a ') are identified in 1·24% of our population, and anti-'Mi a ' screening using GP. Mur RBC has been routine for Taiwan's blood banks. However, due to the lack of commercial antibodies, only cross-matching was used to prevent transfusion of GP. Mur-positive blood to patients with anti-'Mi a ' in most hospitals. There is still a risk of GP. Mur-positive RBC exposure and subsequent anti-'Mi a '-related transfusion reactions. Since February 2014, GP. Mur antigen-negative RBCs identified by reaction with anti-'Mi a '-positive serum were selected for blood recipients with anti-'Mi a ' records. The transfusion reactions between January 2013 and January 2014 were compared with those that occurred between February 2014 and July 2015. The transfusion reaction rate was significantly higher in anti-'Mi a '-positive blood recipients compared to total subjects receiving an RBC transfusion before GP. Mur-negative donor RBC selection. After antigen-negative RBC selection, the transfusion reaction frequency in subjects with anti-'Mi a ' became similar to total blood recipients. IgG form anti-'Mi a ' antibodies were present in all cases of probable anti-'Mi a '-related transfusion reactions. The time required for anti-'Mi a ' boosting after transfusion was around 4-21 days. Selection of GP. Mur-negative RBC for transfusion to patients with anti-'Mi a ' records could decrease the rate of transfusion reaction and antibody boosting. This procedure should be incorporated into blood bank routines in areas where anti-'Mi a ' is prevalent. © 2016 British Blood Transfusion Society.

  7. Luminescence properties of dysprosium doped calcium magnesium silicate phosphor by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Ishwar Prasad, E-mail: [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandrakar, Priya; Baghel, R.N.; Bisen, D.P.; Brahme, Nameeta [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Tamrakar, Raunak Kumar [Department of Applied Physics, Bhilai Institute of Technology, Durg, C.G. 491001 (India)


    Dysprosium doped calcium magnesium silicate (CaMgSi{sub 2}O{sub 6}:Dy{sup 3+}) white light emitting phosphor was synthesized by solid state reaction process. The crystal structure of sintered phosphor was monoclinic structure with space group C2/c. Chemical composition of the sintered CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was confirmed by EDX. The prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was excited from 352 nm and their corresponding emission spectra were recorded at blue (470 nm), yellow (570 nm) and red (675 nm) line due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 11/2} transitions of Dy{sup 3+} ions. The combination of these three emissions constituted as white light confirmed by the Commission Internationale de L'Eclairage (CIE) chromatic coordinate diagram. The possible mechanism of the white light emitting long lasting CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was also investigated. Investigation on afterglow property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. Thus the present investigation indicates that the local piezoelectricity-induced electron bombardment model is responsible to produce ML in prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor. - Highlights: • The crystal structure of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is consistent with standard monoclinic structure. • CIE coordinates of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is suitable as white light emitting phosphor. • The local piezoelectricity-induced electron bombardment model is responsible to produce ML in CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor.

  8. Oriented nano-wire formation and selective adhesion on substrates by single ion track reaction in polysilanes

    International Nuclear Information System (INIS)

    Shu Seki; Satoshi Tsukuda, Yoichi Yoshida; Seiichi Tagawa; Masaki Sugimoto; Shigeru Tanaka


    1-D nano-sized materials such as carbon nanotubes have attracted much attention as ideal quantum wires for future manufacturing techniques of nano-scaled opto-electronic devices. However it is still difficult to control the sizes, spatial distributions, or positions of nanotubes by conventional synthetic techniques to date. The MeV order heavy ion beams causes ultra-high density energy deposition which can not be realized by any other techniques (lasers, H, etc), and penetrate the polymer target straighforward as long as 1∼100 m depth. the energy deposited area produces non-homogeneous field can be controlled by changing the energy deposition rate of incident ions (LET: linear energy transfer, eV/nm). We found that cross-linking reaction of polysilane derivatives was predominantly caused and gave nano-gel in the chemical core, unlike main chain scission occurring at the outside of the area. high density energy deposition by ion beams causes non-homogeneous crosslinking reaction of polysilane derivatives within a nano-sized cylindrical area along an ion trajectory, and gives -SiC based nano-wires of which sizes (length, thickness) and number densities are completely under control by changing the parameters of incident ion beams and molecular sizes of target polymers. based on the concept pf the single track gelation, the present study demonstrates the formation of cross-linked polysilane nano-wires with the fairly controlled sizes. Recently the techniques of position-selective single ion hitting have been developed for MeV order ion beams, however it is not sufficient to control precisely the positions of the nano-wires on the substrates within sub- m area. in the present study, we report the selective adhesion of anno-wires on Si substrates by the surface treatments before coating, which enables the patterning of planted nano-wires on substrates and/or electrodes as candidates for nano-sized field emissive cathodes or electro-luminescent devices. Some examples of

  9. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate (United States)

    Hashimoto, Shuichi; Thomas, J. Kerry


    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 ± 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  10. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions. (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C


    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  11. An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection

    International Nuclear Information System (INIS)

    Wang Zhan-Feng; Liu Yu-Ru; Wang Peng-Ye; Xie Ping


    Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre- and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre- and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson–Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA–RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTP. (paper)

  12. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin


    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic


    New reaction conditions and stereochemical control elements for heterodimerization between ethylene (or propylene) and functionalized vinyl arenes are highlighted (see equation). For example, an enantioselective version of the hydrovinylation reaction uses [{(allyl)NiBr}...

  14. State Politics and Education: An Examination of Selected Multiple-State Case Studies. (United States)

    Burlingame, Martin; Geske, Terry G.


    Reviews the multiple-state case study literature, highlights some findings, discusses several methodological issues, and concludes with suggestions for possible research agendas. Urges students and researchers to be more actively critical of the assumptions and findings of these studies. (Author/IRT)

  15. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity

    International Nuclear Information System (INIS)

    Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki


    The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs

  16. Structure of the excited states of 11Be reached through the reaction d(10Be,p)11Be

    International Nuclear Information System (INIS)

    Delaunay, F.


    The one-neutron transfer reaction d( 10 Be,p) 11 Be has been studied at 32 A.MeV at GANIL with a 10 Be secondary beam. Protons were detected by the silicon strip array MUST. The ground state and excited states of 11 Be at 0.32, 1.78 and 3.41 MeV were populated, demonstrating the feasibility of transfer reactions induced by radioactive beams leading to bound and unbound states. A DWBA (distorted wave born approximation) analysis indicates for the 3.41 MeV state spin and parity 3/2 + or 5/2 + and a spectroscopic factor of 0.18 or 0.11, respectively. A broad structure centered at 10 MeV is also observed and corresponds to transfer to the 1d sub-shells. If one assumes that only the 1d3/2 orbital contributes to this structure, the splitting of the 1d neutron states in 11 Be is estimated to be 6.3 MeV. Using a 2-particle-RPA (random phase approximation) model, we have shown that neutron-neutron correlations play an important role in the inversion between the 2s1/2 and 1p1/2 neutron states in 11 Be. (author)

  17. Multipulse spectroscopy on the wild-type and YM210W Bacterial Reaction Centre uncovers a new intermediate state in the special pair excited state (United States)

    Cohen Stuart, T. A.; van Grondelle, R.


    The Bacterial Reaction Centre (BRC) has a complex electronic excited state, P ∗, that evolves into subsequent charge separated product states P +H - and P +B -. Pump-dump-probe spectroscopy on the wild-type BRC and on YM210W, a mutant with a stabilized, long-lived P ∗ excited state, has uncovered a new charge-separated state in both BRC's. When P ∗ is dumped, a fraction of its population is transferred to this state that has a strong Stark shift in the accessory bacteriochlorophyll (B M) region which serves as a signature for P + and a lifetime highly comparable to the slow phase of P ∗ decay. This lead us propose this intermediate to be P +/P -.

  18. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces (United States)

    Hodgson, Murray; Wareing, Andrew


    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  19. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.


    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  20. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions. (United States)

    Grima, R


    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  1. Vibrational state-resolved differential cross sections for the D + H2 → DH + H reaction

    International Nuclear Information System (INIS)

    Continetti, R.E.


    In this thesis, crossed-molecular-beams studies of the reaction D + H 2 → DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H 2 reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H 3 potential energy surface, particularly the bending potential, is in order

  2. Study on Sensory Quality, Antioxidant Properties, and Maillard Reaction Products Formation in Rye-Buckwheat Cakes Enhanced with Selected Spices

    Directory of Open Access Journals (Sweden)

    Małgorzata Przygodzka


    Full Text Available The effect of selected spices included in the recipe of rye-buckwheat cakes on sensory quality, nutritional value, and Maillard reaction (MR products formation was addressed in this study. The cakes with cloves, nutmeg, allspice, cinnamon, vanilla, and spice mix addition revealed the highest overall quality values. Cakes enriched with cloves, allspice, and spice mix showed the highest rutin content and almost threefold higher available lysine contents whereas cakes enhanced with mix, cloves, and cinnamon were the richest source of phenolic compounds. The highest antioxidant capacity showed cakes with cloves and spice mix. The furosine, a marker of early stage of MR, was decreased in cakes with cloves, allspice, spice mix, and vanilla whereas fluorescent intermediatory compounds were reduced in cakes enhanced with cloves, allspice, and cinnamon. In contrast, browning index was increased as compared to cakes without spices. The FAST index was significantly lowered in all cakes enriched with spices, especially with cloves, allspice, and mix addition. The presence of cloves, allspice, and vanilla in cake formula was the most efficient in acrylamide strategy. It can be suggested that cloves, allspice, and vanilla might be used for production of safety and good quality cakes.

  3. Structural Evolution under Reaction Conditions of Supported (NH43HPMo11VO40 Catalysts for the Selective Oxidation of Isobutane

    Directory of Open Access Journals (Sweden)

    Fangli Jing


    Full Text Available When using heteropolycompounds in the selective oxidation of isobutane to methacrolein and methacrylic acid, both the keeping of the primary structure (Keggin units and the presence of acidic sites are necessary to obtain the desired products. The structural evolution of supported (NH43HPMo11VO40 (APMV catalysts under preliminary thermal oxidizing and reducing treatments was investigated. Various techniques, such as TGA/DTG (Thermo-Gravimetric Analysis/Derivative Thermo-Gravimetry, H2-TPR (Temperature Programed Reduction, in situ XRD (X-Ray Diffraction and XPS (X-ray Photoelectron Spectroscopy, were applied. It was clearly evidenced that the thermal stability and the reducibility of the Keggin units are improved by supporting 40% APMV active phase on Cs3PMo12O40 (CPM. The partial degradation of APMV takes place depending on temperature and reaction conditions. The decomposition of ammonium cations (releasing NH3 leads to the formation of vacancies favoring cationic exchanges between vanadium coming from the active phase and cesium coming from the support. In addition, the vanadium expelled from the Keggin structure is further reduced to V4+, species, which contributes (with Mo5+ to activate isobutane. The increase in reducibility of the supported catalyst is assumed to improve the catalytic performance in comparison with those of unsupported APMV.

  4. Spermatozoa of the shrew, Suncus murinus, undergo the acrosome reaction and then selectively kill cells in penetrating the cumulus oophorus. (United States)

    Kaneko, T; Iida, H; Bedford, J M; Mōri, T


    In the musk shrew, Suncus murinus (and other shrews), the cumulus oophorus is ovulated as a discrete, compact, matrix-free ball of cells linked by specialized junctions. In examining how they penetrate the cumulus, Suncus spermatozoa were observed to first bind consistently by the ventral face over the acrosomal region to the exposed smooth surface of a peripheral cumulus cell. This was apparently followed by point fusions between the plasma and outer acrosomal membranes. Thereafter, spermatozoa without acrosomes were observed within cumulus cells that displayed signs of necrosis, as did some radially neighboring cumulus cells linked by zona adherens and gap junctions. Eventually, penetration of spermatozoa as far as the perizonal space around the zona pellucida left linear tracks of locally necrotic cells flanked by normal cumulus cells. Based on these and previous observations, we conclude that the acrosome reaction in Suncus is always induced by cumulus cells, and that reacted spermatozoa penetrate the cumulus by selective invasion and killing of cumulus cells along a linear track. Loss of the acrosome also exposes an apical body/perforatorium that is covered with barbs that appear to assist reacted fertilizing spermatozoa in binding to the zona pellucida. Because fertilized eggs displayed no other spermatozoa within or bound to the zona, an efficient block to polyspermy must prevent such binding of additional spermatozoa.

  5. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring* (United States)

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie


    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  6. Quadrupole-octupole coupled states in 112Cd populated in the 111Cd(d ⃗,p ) reaction (United States)

    Jamieson, D. S.; Garrett, P. E.; Bildstein, V.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.


    States in 112Cd have been studied with the 111Cd(d ⃗,p ) 12Cd reaction using 22 MeV polarized deuterons. The protons from the reaction were momentum analyzed with a Q3D magnetic spectrograph, and spectra have been recorded with a position-sensitive detector located on the focal plane. Angular distributions of cross sections and analyzing powers have been constructed for the low-lying negative-parity states observed, including the 3-,4-, and 5- members of the previously assigned quadrupole-octupole quintuplet. The 5- member at 2373-keV possess the second largest spectroscopic strength observed, and is reassigned as having the s1/2⊗h11/2 two-quasineutron configuration as the dominate component of its wave function.

  7. Influence of charge state on the reaction of FeO3+/- with carbon monoxide (United States)

    Reilly, Nelly M.; Ulises Reveles, J.; Johnson, Grant E.; Khanna and, Shiv N., Jr.; Castleman, A. W.


    A combined experimental and theoretical study shows that highly oxidized iron clusters are able to readily effect the oxidation of CO to CO 2 at ambient temperature. Calculated energy profiles of the reaction demonstrate that the oxidation efficiency is governed by the strength of oxygen binding to the iron atom. Results for FeO3+/- are presented and reveal that cation clusters are more efficient than the corresponding anion clusters at effecting the oxidation reaction due to different oxygen bond energies resulting from charge distribution.

  8. Thermodynamic and molecular origin of interfacial rate enhancements and endo-selectivities of a Diels-Alder reaction. (United States)

    Beniwal, Vijay; Kumar, Anil


    Organic reactions in general display large rate accelerations when performed under interfacial conditions, such as on water or at ionic liquid interfaces. However, a clear picture of the physicochemical factors responsible for this large rate enhancements is not available. To gain an understanding of the thermodynamic and molecular origin of these large rate enhancements, we performed a Diels-Alder reaction between cyclopentadiene and methyl acrylate at ionic liquid/n-hexane interfaces. This study describes, for the first time, a methodology for the calculation of the activation parameters of an interfacial reaction. It has been seen that the energy of activation for an interfacial reaction is much smaller than that of the corresponding homogeneous reaction, resulting into the large rate acceleration for the interfacial reaction. Furthermore, the study describes the effects of the alkyl chain length of ionic liquid cations, the extent of heterogeneity, and the polarity of ionic liquids on the rate constants and stereoselectivity of the reaction.

  9. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther


    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  10. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction (United States)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  11. Study of astrophysically important resonant states in 30 S using the 32S(p,t30 S reaction

    Directory of Open Access Journals (Sweden)

    Wrede C.


    Full Text Available A small fraction (< 1% of presolar SiC grains is suggested to have been formed in the ejecta of classical novae. The 29P(p,γ30S reaction plays an important role in understanding the Si isotopic abundances in such grains, which in turn provide us with information on the nature of the probable white dwarf progenitor’s core, as well as the peak temperatures achieved during nova outbursts, and thus the nova nucleosynthetic path. The 29P(p,γ30S reaction rate at nova temperatures is determined by two low-lying 3+ and 2+ resonances above the proton threshold at 4399 keV in 30S. Despite several experimental studies in the past, however, only one of these two states has only been observed very recently. We have studied the 30S nuclear structure via the 32S(p,t 30S reaction at 5 laboratory angles between 9° to 62°. We have observed 14 states, eleven of which are above the proton threshold, including two levels at 4692.7 ± 4.5 keV and 4813.8 ± 3.4 keV that are candidates for the 3+ and the previously “issing” 2+ state, respectively.

  12. Selective maintenance for multi-state series–parallel systems under economic dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.; Pandey, Mayank


    This paper presents a study on selective maintenance for multi-state series–parallel systems with economically dependent components. In the selective maintenance problem, the maintenance manager has to decide which components should receive maintenance activities within a finite break between missions. All the system reliabilities in the next operating mission, the available budget and the maintenance time for each component from its current state to a higher state are taken into account in the optimization models. In addition, the components in series–parallel systems are considered to be economically dependent. Time and cost savings will be achieved when several components are simultaneously repaired in a selective maintenance strategy. As the number of repaired components increases, the saved time and cost will also increase due to the share of setting up between components and another additional reduction amount resulting from the repair of multiple identical components. Different optimization models are derived to find the best maintenance strategy for multi-state series–parallel systems. A genetic algorithm is used to solve the optimization models. The decision makers may select different components to be repaired to different working states based on the maintenance objective, resource availabilities and how dependent the repair time and cost of each component are

  13. Biological diversity of photosynthetic reaction centers and the solid-state photo-CIDNP effect

    NARCIS (Netherlands)

    Roy, Esha


    Photosynthetic reaction centers (RCs) from plants, heliobacteria and green sulphur bacteria has been investigated with photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR. In photosystem (PS) I of spinach, all signals appear negative which is proposed by a predominance of the

  14. Nuclear reactions with large momentum transfers as a source of information about multiquark states in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.


    We give a criterion which picks out a region of nuclear reactions where the quark-gluon degrees of freedom are predominant. The aim of the present talk is to show that the study of this region gives evidence of the quark-parton structure functions of nuclei as independent (irreducible to one-nucleon) objects of hadron physics. (orig./HSI)

  15. Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics : Effect of Franck-Condon States

    NARCIS (Netherlands)

    Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K.


    Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches

  16. State-specific reactions and autoionization dynamics of Ar2+ produced by synchrotron radiation

    Czech Academy of Sciences Publication Activity Database

    Franceschi, P.; Thissen, R.; Dutuit, O.; Alcaraz, Ch.; Soldi-Lose, H.; Bassi, D.; Ascenzi, D.; Tosi, P.; Žabka, Ján; Herman, Zdeněk; Coreno, M.; De Simone, M.


    Roč. 280, 1-3 (2009), s. 119-127 ISSN 1387-3806 R&D Projects: GA AV ČR IAA400400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : argon * dications * photoionization * ion molecule reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009

  17. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss


    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  18. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions

    Energy Technology Data Exchange (ETDEWEB)

    Ross, F; Ross, A B


    Rates of reactions of OH and HO/sub 2/ with organic and inorganic molecules, ions and transients in aqueous solution have been tabulated, as well as the rates for the corresponding radical ions in aqueous solution (O/sup -/ and O/sub 2//sup -/). Most of the rates have been obtained by radiation chemistry methods, both pulsed and steady-state; data from photochemistry and thermal methods are also included. Rates for over one thousand reactions are listed.

  19. The Enhancement of the Selectivity of Complex Reactions by a Catalytic Membrane Reactor -Ethylene Oxidation Over a Ag Catalyst Supported in a Ceramic Membrane-


    馮, 臨; 小林, 正義; Lin, FENG; Masayoshi, KOBAYASHI


    This research demonstrated that, using a membrane reactor consisting of a tubular, microporous, glass-ceramic membrane, it is possible to achieve selective oxidation of ethylene to ethylene oxide with an Ag catalyst. In experiments which a reaction temperature range of 115 to 300℃ and a contact time of 1.5 to 5 seconds, resulting data illustrated the following characteristics of this membrane reactor : 1) compared with a classic tubular reactor, the selectivity of ethylene oxide is increased ...

  20. The ANC of 16O subthreshold states from 12C(6Li, d) reaction at energies near the barrier

    International Nuclear Information System (INIS)

    Adhikari, Sucheta; Basu, Chinmay


    The ANC of the 2 + (6.92 MeV) and 1 - (7.12 MeV) subthreshold states of 16 O have been extracted from the normalization of 12 C( 6 Li, d) angular distribution to a Finite Range Distorted Wave Born Approximation (FRDWBA) calculation. The theoretical analysis indicates a peripheral reaction and the extracted ANCs are not sensitive to the number of nodes in the bound state potential. The uncertainty from the entrance channel potential is minimized to 8% for the 6.92 and 11% for the 7.12 MeV state if the normalization is performed at the grazing angle. The uncertainty from the exit channel potential at the grazing angle is found to be 10% and 12% respectively for the 7.12 and 6.92 MeV states.

  1. Some new effects of the deuteron D state observed in (p,d) and (d,p) reactions

    International Nuclear Information System (INIS)

    Ohnuma, Hajime


    Two previously unexplored experiments have revealed the importance of the deuteron D-state effects on (p,d) and (d,p) reactions at moderate energies. Firstly, a clear indication of the deuteron D-state effects on the polarization of the residual nuclear state has been observed in the 58 Ni(p,dγ) angular correlation measurement at E sub(p) = 30 MeV. Secondly, a comparison of the vector analyzing power and vector polarization measured at E sub(d) = 22 MeV for an l = 0 (d,p) transition has shown that the D state has significant effects even on the first-rank polarization quantities. The experimental data and the results of exact-finite-range DWBA calculations with Reid soft-core potential are presented. (author)

  2. The reaction π-p → π-π-π+p: Development of the analysis methods and selected results (United States)

    Ryabchikov, D.


    We present the description of the analysis methods and results of applying them to the exclusive diffractive reaction π-p → π-π-π+p of 50 . 106 events measured with COMPASS detector. The large statistics of π-π-π+ events enables the two-dimensional partial-wave analysis independently in 100 bins of m(3π) with 0.5 < m(3π) < 2.5 GeV/c2 and in 11 intervals of squared momentum transfer with 0.1 < t' < 1 GeV2/c2. The partial-wave analysis sub-density matrix is the subject to further mass-dependent fits describing the data in terms of resonances in 3π system and coherent background contributions. The novel approach of extracting JPC = 0++(π+π-)S isobar amplitudes as model-free functions, different for several JPC 3π states, is used. It demonstrates the presence of processes π(1800) → f0(980)π and π(1800) → f0(1500)π as well as π2(1880) → f0(980)π and new narrow signal a1(1420) → f0(980)π, without any established shapes used for (π+π-)S isobars. The presented analysis is subject to further development and refinements which currently take place.

  3. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev


    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  4. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    Guedes, S.M.L.


    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author) [pt

  5. Exploring Tyrosine-Triazolinedione (TAD) Reactions for the Selective Conjugation and Cross-Linking of N-Carboxyanhydride (NCA) Derived Synthetic Copolypeptides. (United States)

    Hanay, Saltuk B; Ritzen, Bas; Brougham, Dermot; Dias, Aylvin A; Heise, Andreas


    Highly efficient functionalization and cross-linking of polypeptides is achieved via tyrosine-triazolinedione (TAD) conjugation chemistry. The feasibility of the reaction is demonstrated by the reaction of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with tyrosine containing block copolymer poly(ethylene glycol)-Tyr 4 as well as a statistical copolymer of tyrosine and lysine (poly(Lys 40 -st-Tyr 10 )) prepared form N-carboxyanhydride polymerization. Selective reaction of PTAD with the tyrosine units is obtained and verified by size exclusion chromatography and NMR spectroscopy. Moreover, two monofunctional and two difunctional TAD molecules are synthesized. It is found that their stability in the aqueous reaction media significantly varied. Under optimized reaction conditions selective functionalization and cross-linking, yielding polypeptide hydrogels, can be achieved. TAD-mediated conjugation can offer an interesting addition in the toolbox of selective (click-like) polypeptide conjugation methodologies as it does not require functional non-natural amino acids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of Precursors of the Agalacto (Exo) Fragment of the Quartromicins via an Auxiliary-Controlled Exo-Selective Diels-Alder Reaction (United States)

    Qi, Jun; Roush, William R.


    A direct synthesis of the α-hydroxyaldehyde exo-5, a precursor of the exo-spirotetronate subunit o f the quartromicins, was achieved through an exo-selective Lewis acid-catalyzed Diels-Alder reaction of dienophile 12a and diene 1. PMID:16774259

  7. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling. (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin


    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  8. Influence of Charge State on the Reaction of FeO3^+/- with Carbon Monoxide (United States)

    Reveles, J. U.; Khanna, S. N.; Reilly, N. M.; Johnson, G. E.; Castleman, A. W., Jr.


    A synergistic study combining experiments in molecular beams and first principles electronic structure calculations within a gradient corrected density functional approach is used to investigate the reactivity of charged FeO3 clusters with CO. It is shown that highly oxidized iron clusters are able to readily effect the oxidation of CO to CO2 at ambient temperature. Calculated energy profiles of the reaction demonstrate that the oxidation efficiency is governed by the strength of oxygen binding to the iron atom. Results for FeO3^+/- are presented and reveal that cation clusters are more efficient than the corresponding anion clusters at effecting the oxidation reaction due to different bond energies resulting from charge distribution.

  9. Experimental search for B=2, T=0 states in the d+d->d+X reaction

    International Nuclear Information System (INIS)

    Combes, M.P.; Berthet, P.; Frascaria, R.; Perdrisat, C.F.; Tatischeff, B.; Willis, N.; Aslanides, E.; Hibou, F.; Bing, O.; Beurtey, R.; Boivin, M.; Hutcheon, D.; Le Bornec, Y.; Fabbri, F.; Picozza, P.; Satta, L.; Yonnet, J.


    A search for isoscalar dibaryonic resonances by means of missing-mass spectra in the d + d -> d + X reaction has been attempted using deuteron beams of T = 2.29, 2.00 and 1.65 GeV. The results do not show any evidence for a narrow peak with a limit of 30 nb/GeV 2 for a 15 MeV width or a broad enhancement which could be unambiguously attributed to a dibaryonic resonance. (orig.)

  10. Solid state diffusion and reaction in ZnO/SiO{sub 2} in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A; Stucki, S; Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Detoxification of fly ash from waste incineration by evaporating harmful heavy metals is limited by the formation of stable heavy metal-matrix compounds. To study the rate of these heavy metal-matrix reactions, experiments were performed with the diffusion couple ZnO (heavy metal)-SiO{sub 2} (matrix). The atomic concentration profiles after different annealing treatments were analysed by X-ray photoelectron spectroscopy (XPS). (author) 3 figs., 4 refs.

  11. Competitive Foods and Beverages Available for Purchase in Secondary Schools--Selected Sites, United States, 2004 (United States)

    Kann, L.; Grunbaum, J.; McKenna, M. L.; Wechsler, H.; Galuska, D. A.


    School Health Profiles is conducted biennially to assess characteristics of school health programs. State and local departments of education and health select either all public secondary schools within their jurisdictions or a systematic, equal-probability sample of public secondary schools to participate in School Health Profiles. At each school,…

  12. The Current State of Empirical Support for the Pharmacological Treatment of Selective Mutism (United States)

    Carlson, John S.; Mitchell, Angela D.; Segool, Natasha


    This article reviews the current state of evidence for the psychopharmacological treatment of children diagnosed with selective mutism within the context of its link to social anxiety disorder. An increased focus on potential medication treatment for this disorder has resulted from significant monetary and resource limitations in typical practice,…

  13. On-site energy consumption and selected emissions at softwood sawmills in the southwestern United States (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson


    Presently there is a lack of information describing US southwestern energy consumption and emissions generated from the sawmilling industry. This article uses a mail survey of softwood sawmills in the states of Arizona, Colorado, and New Mexico to develop a profile of on-site energy consumption and selected emissions for the industry. Energy consumption is...

  14. Compilation of 137Cs concentrations at selected sites in the continental United States

    International Nuclear Information System (INIS)

    Mohr, R.A.; Franks, L.A.


    This report summarizes results of cesium-137 analyses of soil samples obtained at 21 locations throughout the continental United States. The sites were all in the vicinity of operating nuclear power reactors, or those scheduled for operation. Selected fallout and meteorological data are also included

  15. Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States

    Energy Technology Data Exchange (ETDEWEB)

    None, None


    Pacific Northwest National Laboratory conducted this study for the Federal Energy Management Program to identify trends in annual water and wastewater price escalation rates across the United States. This study can be used to inform the selection of an appropriate escalation rates for inclusion in LCCA.

  16. Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001)

    DEFF Research Database (Denmark)

    Beye, M.; Anniyev, T.; Coffee, R.


    to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical...... (2013)SCIEAS0036-8075] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due...

  17. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry

    Directory of Open Access Journals (Sweden)

    Ramos Hector


    Full Text Available Abstract Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM, which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM. ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted

  18. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons. (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C


    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  19. An Evaluation of Industrial Facilities Defects in Selected Industrial Estates in Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Oseghale, G.E.


    Full Text Available The study appraised the state of industrial facilities in selected industrial estates established between 1957 and 1981 in Lagos State by examining the nature and causes of facilities’ defects in the selected industrial estates. The buildings sampled were load bearing sandcrete block wall (1%, concrete framed structure (83% and steel framed structure (16%. Data were sourced using structured questionnaire administered on the staff of maintenance department of 35 building materials and plastic manufacturing industries purposively selected and located in 18 industrial estates. Data obtained were analyzed using descriptive statistic. The study found the structural elements of the buildings, i.e. foundations, beams, walls, and floors satisfactory. Using the mean response analysis, the result showed that the most severe factors responsible for industrial facilities’ defects were combined effects of geo-climatic factors (2.35, combined effects of biological agencies (2.15, corrosion (1.98, and physical aggression on the facilities (1.71.

  20. Multi-criteria selection of offshore wind farms: Case study for the Baltic States

    International Nuclear Information System (INIS)

    Chaouachi, Aymen; Covrig, Catalin Felix; Ardelean, Mircea


    This paper presents a multi-criteria selection approach for offshore wind sites assessment. The proposed site selection framework takes into consideration the electricity network’s operating security aspects, economic investment, operation costs and capacity performances relative to each potential site. The selection decision is made through Analytic Hierarchy Process (AHP), with an inherited flexibility that aims to allow end users to adjust the expected benefits accordingly to their respective and global priorities. The proposed site selection framework is implemented as an interactive case study for three Baltic States in the 2020 time horizon, based on real data and exhaustive power network models, taking into consideration the foreseen upgrades and network reinforcements. For each country the optimal offshore wind sites are assessed under multiple weight contribution scenarios, reflecting the characteristics of market design, regulatory aspects or renewable integration targets. - Highlights: • We use a multi-criteria selection approach for offshore wind sites assessment. • Security aspects, economic investment, operation costs and capacity performances are included. • The selection decision is made through an Analytic Hierarchy Process (AHP). • We implement the methodology as a case study for three Baltic States in the 2020 time horizon.

  1. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions. (United States)

    Kügler, Philipp; Yang, Wei


    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  2. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti


    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  3. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong


    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  4. 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite

    International Nuclear Information System (INIS)

    Pomakhina, Elena; Deneele, Dimitri; Gaillot, Anne-Claire; Paris, Michael; Ouvrard, Guy


    Lime is widely used as additive to improve the mechanical properties of natural soil used in earthworks. However, the physico-chemical mechanisms involved are yet not well understood. In order to develop and optimize this treatment method, a better understanding of the interaction between lime and the minerals of the soils, in particular clay minerals, is required. In this study, Ca-bentonite was treated with 2, 5 and 10 wt.% of lime during 1 to 98 days. Modifications in the Si local environment were then monitored by solid state nuclear magnetic resonance to investigate the pozzolanic reaction. All the soil mineral phases contribute to the release of Si and to the pozzolanic reaction, with a rapid and total consumption of Si-polymorph and an exacerbated dissolution of montmorillonite. Mechanism of C–S–H formation, function of the Ca content in the system, was found to match the sorosilicate-tobermorite model described in cement systems.


    Directory of Open Access Journals (Sweden)

    Jasmes M.W. Brownjohn


    Full Text Available Because of inherent variability in all human cyclical movements, such as walking, running and jumping, data collected across a single cycle might be atypical and potentially unable to represent an individual's generalized performance. The study described here was designed to determine the number of successive cycles due to continuous, repetitive countermovement jumping which a test subject should perform in a single experimental session to achieve stability of the mean of the corresponding continuously measured ground reaction force (GRF variables. Seven vertical GRF variables (period of jumping cycle, duration of contact phase, peak force amplitude and its timing, average rate of force development, average rate of force relaxation and impulse were extracted on the cycle-by-cycle basis from vertical jumping force time histories generated by twelve participants who were jumping in response to regular electronic metronome beats in the range 2-2.8 Hz. Stability of the selected GRF variables across successive jumping cycles was examined for three jumping rates (2, 2.4 and 2.8 Hz using two statistical methods: intra-class correlation (ICC analysis and segmental averaging technique (SAT. Results of the ICC analysis indicated that an average of four successive cycles (mean 4.5 ± 2.7 for 2 Hz; 3.9 ± 2.6 for 2.4 Hz; 3.3 ± 2.7 for 2.8 Hz were necessary to achieve maximum ICC values. Except for jumping period, maximum ICC values took values from 0.592 to 0.991 and all were significantly (p < 0.05 different from zero. Results of the SAT revealed that an average of ten successive cycles (mean 10.5 ± 3.5 for 2 Hz; 9.2 ± 3.8 for 2.4 Hz; 9.0 ± 3.9 for 2.8 Hz were necessary to achieve stability of the selected parameters using criteria previously reported in the literature. Using 10 reference trials, the SAT required standard deviation criterion values of 0.49, 0.41 and 0.55 for 2 Hz, 2.4 Hz and 2.8 Hz jumping rates, respectively, in order to approximate

  6. Competitive and successive reactions in the position cluster and energy state of positronium in the liquids

    International Nuclear Information System (INIS)

    Didierjean, F.


    By combining two independent positron annihilation techniques, it is shown that, in polar solvents, the halogenated compounds inhibit positronium formation by quasi-free electron scavenging followed by positron capture. This sequence occurs before halide detachment intervenes. Studying mixtures of solutes allows both to confirm the existence of these successive reactions and to stress the influence, towards positronium formation, of the trap depth for the electron captured by nitrates, whether ion associated or not, in methanol. Finally, experiments in the presence of a magnetic field allow to conclude that the formed positronium is very rapidly thermalized, then localised in a potential well in the liquids, the so-called bubble [fr

  7. Ground-state correlations in 12C and the mechanism of the (e,e'p) reaction

    International Nuclear Information System (INIS)

    Steenhoven, G. van der.


    In this thesis the results of an investigation into two aspects of the mechanism of the quasi-elastic (e,e'p) reaction: the interaction between the incident electron and the bound proton and the residual nucleus (final-state interaction (FSI)), are presented and used in the extraction of nuclear-structure information from (e,e'p) measurements on 12 C. The experiments were carried out at NIKHEF-K with a high-resolution spectrometer. Two kinds of experiments have been performed on 12 C. The first was aimed at obtaining accurate momentum distributions for various final states in 11 B. Some special measurements were carried out in order to vary the parameters influencing the FSI. The role of coupled-channels effects in the 12 C(e,e'p) 11 Be reaction is discussed. It is discussed whether some of the weak transitions observed in this reaction, can be associated with knockout from normally unoccupied shell-model orbitals. The second experiment on 12 C was devoted to the e-p coupling. These measurements were supplemented with data taken on 6 Li. The latter measurement allowed for measuring simultaneously knockout from the relatively dense 4 He core and the relatively dilute deuteron. In this way the density dependence of the e-p coupling in the nucleus could be studied. The results of these experiments have been compared to various models that take into account the effect of the nuclear medium upon the e-p coupling. The possible role of charge-exchange and meson-exchange currents in the interpretation of these experiments is also considered. A brief survey of the formalism of the quasi-elastic (e,e'p) reaction is also presented. (author). 196 refs.; 53 figs.; 21 tabs

  8. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue


    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Toward Rotational State-Selective Photoionization of ThF+ Ions (United States)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun


    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  10. Reaction of the (111) faces of single-crystal indium phosphide with alkylating agents: evidence for selective reaction of the p-rich face

    Energy Technology Data Exchange (ETDEWEB)

    Spool, A.M.; Daube, K.A.; Mallouk, T.E.; Belmont, J.A.; Wrighton, M.S.


    We wish to report that the P-rich, (111)B, face of single-crystal InP, but not the In-rich, (111)A, face of the same crystal, reacts with molecular reagents to yield surface-bound material derived from the apparent alkylation of a surface P atom. Exploitation of surface functional groups has been demonstrated to be very important in the attachment of molecular reagents and polymers to electrode surfaces. Electrodes derivatized with molecules have potential uses in analysis, fuel cells, electrosynthetic cells, and photoelectrochemical cells. We now wish to present evidence showing that an important photoelectrode material, InP, can be functionalized with molecules by reaction of the P-rich, (111)B, face with alkylating reagents.

  11. Threshold-selecting strategy for best possible ground state detection with genetic algorithms (United States)

    Lässig, Jörg; Hoffmann, Karl Heinz


    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  12. A computational study on Lewis acid-catalyzed diastereoselective acyclic radical allylation reactions with unusual selectivity dependence on temperature and epimer precursor. (United States)

    Georgieva, Miglena K; Santos, A Gil


    In stereoselective radical reactions, it is accepted that the configuration of the radical precursor has no impact on the levels of stereoinduction, as a prochiral radical intermediate is planar, with two identical faces, independently of its origin. However, Sibi and Rheault (J. Am. Chem. Soc. 2000, 122, 8873-8879) remarkably obtained different selectivities in the trapping of radicals originated from two epimeric bromides, catalyzed by chelating Lewis acids. The selectivity rationalization was made on the basis of different conformational properties of each epimer. However, in this paper we show that the two epimers have similar conformational properties, which implies that the literature proposal is unable to explain the experimental results. We propose an alternative mechanism, in which the final selectivity is dependent on different reaction rates for radical formation from each epimer. By introducing a different perspective of the reaction mechanism, our model also allows the rationalization of different chemical yields obtained from each epimer, a result not rationalized by the previous model. Adaptation to other radical systems, under different reaction conditions, is also possible.

  13. Σ hypernuclear bound state observed in stopped K- reaction on 4He

    International Nuclear Information System (INIS)

    Hayano, R.S.; Ishikawa, T.; Iwasaki, M.; Outa, H.; Takada, E.; Tamura, H.; Sakaguchi, A.; Aoki, M.; Yamazaki, T.


    Results are presented of inclusive measurements of π ± momentum spectra from K - absorption at rest in liquid helium. We found a peak in the π - spectrum. The (K - , π + ) spectrum does not exhibit a clear peak in the Σ - bound region. Comparison of these two spectra suggests that the peak in the π - spectrum is due to the formation of the S = 0, I = 1/2 ground state of Σ-nucleus bound state. (J.P.N.)

  14. [Recipients adverse reactions in the Ibn Sina Hospital of Rabat: State 1999-2013]. (United States)

    Ouadghiri, S; Brick, C; Benseffaj, N; Atouf, O; Essakalli, M


    The declaration of the recipients adverse reactions (RAR) is one of the field haemovigilance activities. It provides an evaluation of transfusion side effects and thus prevents their appearance. The aim of this study is to analyze, over 14 years, the RAR supports reported in Rabat Ibn Sina hospital. All of the RAR supports sending to the blood transfusion service were analyzed. The data collected from these supports are: clinical characteristics of the patient, type of incident observed and type of labile blood products (LBP) transfused. A total of 353 RAR were declared with a mean cumulative incidence of 1.7/1000 LBP delivered. Febrile non-hemolytic transfusion reactions represent 72.8% of the RAR declared. The RAR were classified as grade 1 in 87.1% of cases and were secondary to a transfusion of the red cell concentrates in 81.9%. ABO incompatibility was found in four cases (0.02/1000 LBP delivered). The number of RAR reported by Rabat Ibn Sina hospital remains underestimated. Management and traceability RAR and rigorous investigation, under the responsibility of the corresponding haemovigilance contribute to the improvement of transfusion safety. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions

    Directory of Open Access Journals (Sweden)

    Giaz Agnese


    Full Text Available In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann–Nordheim–Vlasov (BNV approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment.

  16. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels (United States)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing


    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  17. High-pressure synthesis of rhombohedral α-AgGaO{sub 2} via direct solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Meysam [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States); Menon, Madhu [Center for Computational Sciences, University of Kentucky, 325 McVey Hall, Lexington, KY 40506 (United States); Sunkara, Mahendra [Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States); Sumanasekera, Gamini [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States); Durygin, Andriy [Center for the Study of Matter at Extreme Conditions, Florida International University, VH 140, University Park, Miami, FL 33199 (United States); Jasinski, Jacek B., E-mail: [Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)


    Highlights: • Direct synthesis of α-AgGaO{sub 2} via a solid state reaction of Ag{sub 2}O and Ga{sub 2}O{sub 3} powders. • Utilizing high pressure diamond anvil cell to facilitate solid state reaction. • Experimental and theoretical study of vibrational modes for α-AgGaO{sub 2}. • Extensive characterization of synthesized α-AgGaO{sub 2} samples. • GGA + U formalism-based DFT calculations of electronic structure and band gap in α-AgGaO{sub 2}. - Abstract: In this work, we demonstrate the application of high pressure conditions to enable the direct synthesis of α-AgGaO{sub 2} via a solid state reaction of Ag{sub 2}O and Ga{sub 2}O{sub 3}. Synthesis experiments were carried out at pressures and temperatures up to ∼10 GPa and ∼600 °C, respectively, using a resistively-heated diamond anvil cell. Thus synthesized α-AgGaO{sub 2} samples were characterized and their chemical composition and crystal structure were confirmed. In particular, electron diffraction confirmed the rhombohedral delafossite crystal structure of the synthesized AgGaO{sub 2} and its corresponding lattice parameters of a = 2.99 Å and c = 18.43 Å. The vibrational modes analysis was also conducted using a combination of ab initio density functional theory (DFT) and Raman spectroscopy. This analysis yielded good agreement between the calculated Raman-active modes and experimental Raman data. Finally, the application of the GGA + U formalism-based on DFT to calculate the electronic band structure of α-AgGaO{sub 2} provided a more realistic theoretical band gap value than those reported previously.

  18. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini


    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  19. Steady-state isotopic transient kinetic analysis investigation of CO-O2 and CO-NO reactions over a commercial automotive catalyst

    International Nuclear Information System (INIS)

    Oukaci, R.; Blackmond, D.G.; Goodwin, J.G. Jr.; Gallaher, G.R.


    In this paper, steady-state isotopic transient kinetic analysis (SSITKA) is used to study two model reactions, CO oxidation and CO-NO reactions, on a typical formulation of a three-way auto-catalyst. Under steady-state conditions, abrupt switches in the isotopic composition of CO ( 12 C 16 O/ 13 C 18 O) were carried out to produce isotopic transients in both labeled reactants and products. Along with the determination of the average surface lifetimes and concentrations of reaction intermediates, an analysis of the transient responses along the carbon reaction pathway indicated that the distribution of active sites for the formation of CO 2 was bimodal for both reactions. Furthermore, relatively few surface sites contributed to the overall reaction rate

  20. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction. (United States)

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang


    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  1. Search for the radiative capture reaction d + d -> sup 4 He + gamma from the dd mu muonic molecule state

    CERN Document Server

    Bogdanova, L N; Eijk, C W E


    A search for the muon catalyzed fusion (MCF) reaction d + d -> sup 4 He + gamma in the dd mu muonic molecule was performed using the experimental MCF installation TRITON and NaI(Tl) detectors for gamma quanta. The high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR phasotron to detect gamma quanta with energy 23.8 MeV. The first experimental estimation for the yield of the radiative deuteron capture from the dd mu state J = 1 was obtained at the level eta subgamma <= 2 x 10 sup - sup 5 per one fusion

  2. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)


    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  3. Synthesis of CaTiO3:Pr persistent phosphors by a modified solid-state reaction

    International Nuclear Information System (INIS)

    Yin Shengyu; Chen Donghua; Tang Wanjun; Peng Yuhua


    Using tetra-n-butyl titanate and calcium nitrate as raw materials, the praseodymium-doped calcium titanates have been synthesized via a modified solid-state reaction. The decomposition process of the precursor, crystallization, and particle sizes of CaTiO 3 :Pr have been investigated by using thermal analysis, powder X-ray diffraction and transmission electron microscopy (TEM). TG-DTG curves and X-ray diffraction analysis indicate that crystalline calcium titanate has been synthesized at calcining temperature of 600 deg. C for 2 h. Photoluminescence and decay curves show that the sample obtained at the sintering temperature of 900 deg. C exhibited the optimal luminous property

  4. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu


    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  5. Collisional quenching at ultralow energies: controlling efficiency with internal state selection. (United States)

    Bovino, S; Bodo, E; Gianturco, F A


    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  6. Trends and characteristics of home vaginal birth after cesarean delivery in the United States and selected States. (United States)

    Macdorman, Marian F; Declercq, Eugene; Mathews, T J; Stotland, Naomi


    To examine trends and characteristics of home vaginal birth after cesarean delivery (VBAC) in the United States and selected states from 1990-2008. Birth certificate data were used to track trends in home and hospital VBACs from 1990-2008. Data on planned home VBAC were analyzed by sociodemographic and medical characteristics for the 25 states reporting this information in 2008 and compared with hospital VBAC data. In 2008, there were approximately 42,000 hospital VBACs and approximately 1,000 home VBACs in the United States, up from 664 in 2003 and 656 in 1990. The percentage of home births that were VBACs increased from less than 1% in 1996 to 4% in 2008, whereas the percentage of hospital births that were VBACs decreased from 3% in 1996 to 1% in 2008. Planned home VBACs had a lower risk profile than hospital VBACs with fewer births to teenagers, unmarried women, or smokers; fewer preterm or low-birth-weight deliveries; and higher maternal education levels. Recent increases in the proportion of U.S. women with a prior cesarean delivery mean that an increasing number of women are faced with the choice and associated risks of either VBAC or repeat cesarean delivery. Recent restrictions in hospital VBAC availability have coincided with increases in home VBACs; however, home VBAC remains rare, with approximately 1,000 occurrences in 2008. II.

  7. Chromium 51 em K2CrO4: reactions of dopant atoms in solid state

    International Nuclear Information System (INIS)

    Valim, J.B.; Nascimento, R.L.G. do; Collins, C.H.; Collins, K.E.


    The study of the chemistry of 'dopant' 51 Cr(III) atoms in crystalline Cr(VI) compounds began as a sub-field of Hot Atom Chemistry. We shall review the attempts to use 'dopant' chromium-51 atoms as surrogate chromium recoil atoms with the special property of having a low-energy, recoil-dam-age-free history. These dopant atoms have shown behaviors very similar to those of high energy recoil 51 Gr atoms, thus offering little hope of learning about special damage site structures and reactions by behavioral differences. Recent work has shown that at least some of the 'dopant' 51 Cr(III) is present as a second, non-chromate solid phase in 'doped crystal' experiments. Monodisperse 51 Cr(OH) 3 particles mixed with pure K 2 CrO 4 are very reactive. (Author) [pt

  8. Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation (United States)

    Chern, Jann-Long; Morita, Yoshihisa; Shieh, Tien-Tsan


    We deal with a stationary problem of a reaction-diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler-Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0 , 1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation ε : =√{ d } =√{ log ⁡ κ } /κ2. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.

  9. Final state interaction in the pd → pnp reaction at 1 GeV

    International Nuclear Information System (INIS)

    Deloff, A.


    The pd → pnp reaction at 1 GeV in both the direct and charge exchange channel has been investigated. The experimental data come from a line reversed beam-target experiment with 3.3 GeV/c deuterons incident on a proton target. In the direct channel data exhibit narrow structures in the np effective mass spectra: at threshold, at 2.02 GeV and at 2.12 GeV which have been seen before and we report on a new narrow enhancement at 1.95 GeV. In charge exchange channel the data show somewhat broader peak at 2.18 GeV. The data are explained by using a conventional approach, i.e. without sub-nucleonic degrees of freedom, but including the ΔN channel in NN scattering. 29 figs., 1 tab., 36 refs. (author)

  10. Kinetics and Mechanism of the Gas-Phase Reaction of Selected Carbonyls with Cl Atoms between 250 and 340 K (United States)

    Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.


    Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.

  11. Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks


    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido


    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confi...

  12. Selected topics in nuclear structure

    International Nuclear Information System (INIS)


    The collection of abstracts on selected topics in nuclear structure are given. Special attention pays to collective excitations and high-spin states of nuclei, giant resonance structure, nuclear reaction mechanisms and so on

  13. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)


    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  14. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states

    International Nuclear Information System (INIS)

    Martini, F. de; Giuseppe, G. di


    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)

  15. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L


    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  16. Selective two-photon excitation of a vibronic state by correlated photons. (United States)

    Oka, Hisaki


    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  17. Fluctuation effects on average cross sections in compound, direct and doorway state resonance reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.


    The main features of the effects of S-matrix flucturations on average cross sections are reviewed with emphasis on recent developments on the enhancement of small cross sections and cross sections between directly coupled channels. Examples are given in which the effect can distort the shape of a doorway state resonance so as to reduce its observed width. 4 figures

  18. Determination of the percentage of quitine desacetilation reaction by solid state carbon-13 NMR

    International Nuclear Information System (INIS)

    Ferracin, Ricardo J.; Cass, Quezia B.; Bassi, Ana L.


    Quitine is a bi-polymer largely found in invertebrates. As most compounds of this class are insoluble in common organic solvents, the des-acetylation percentile was obtained by carbon-13 solid state nuclear magnetic resonance. The methodology is presented. Results are presented

  19. Antecedents of and Reactions to Emotions in the United States and Japan. (United States)

    Matsumoto, David; And Others


    Examines the degree of cultural similarity and specificity in the emotional experiences of subjects from the United States and Japan. Found a high degree of cultural agreement in the antecedent/evaluation process, but some differences in relative/expressive aspects of emotion. (Author/BJV)

  20. The total quasi-steady-state approximation for complex enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.


    ) approximation (or standard quasi-steady-state approximation (sQSSA)), which is valid when the enzyme concentration is sufficiently small. This condition is usually fulfilled for in vitro experiments, but often breaks down in vivo. The total QSSA (tQSSA), which is valid for a broader range of parameters covering...

  1. Pre-steady state transients in the Drosophila alcohol dehydrogenase catalyzed reaction: isotope effects and stereospecificity

    International Nuclear Information System (INIS)

    Place, A.R.; Eccleston, J.F.


    The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s -1 ) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD + is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d 6 -deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur

  2. Food production in Poland, compared to selected European Union Member States


    Wrzesińska-Kowal, Joanna; Drabarczyk, Katarzyna


    The purpose of this paper is to characterize the food sector in Poland during 2008-2012, compared to selected European Union Member States, and to define the factors affecting growth of the sector under consideration. The structure of sold production of the Polish food industry and the levels of food production in Europe are presented in the paper. Discussion covers quantitative fluctuations in the number of businesses and production value of food products, as well as employment and salaries ...

  3. Selective detection and quantification of modified DNA with solid-state nanopores. (United States)

    Carlsen, Autumn T; Zahid, Osama K; Ruzicka, Jan A; Taylor, Ethan W; Hall, Adam R


    We demonstrate a solid-state nanopore assay for the unambiguous discrimination and quantification of modified DNA. Individual streptavidin proteins are employed as high-affinity tags for DNA containing a single biotin moiety. We establish that the rate of translocation events corresponds directly to relative concentration of protein-DNA complexes and use the selectivity of our approach to quantify modified oligonucleotides from among a background of unmodified DNA in solution.

  4. Advance Pricing Agreements and the Selectivity Criterion in EU State Aid Rules


    Härö, O


    The Commission of the EU has recently decided that Advance Pricing Agreement rulings (the APA rulings) that Ireland, Luxembourg and the Netherlands have granted for Apple, Fiat and Starbucks (respectively) constitute illegal State aid according to Article 107 of the Treaty on the Functioning of the European Union (TFEU). The Commission claims that the APA rulings deviate from the arm´s length principle and that they grant economic benefit for the beneficiary undertakings in a selective manner...

  5. Stoichiometric control in Bi4Ti3O12 synthesis by novel hybrid solid state reaction

    DEFF Research Database (Denmark)

    Gadea, C.; Phatharapeetranun, N.; Ksapabutr, B.


    The synthesis of bismuth titanate Bi4Ti3O12 (BiT) is performed via a novel solid state reaction. The reaction is designed to control the stoichiometric content of the highly volatile element, i.e. Bi. The chemical route consists in trapping bismuth oxide colloids in a stabilized titanium based sol...

  6. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)


    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  7. Going Tobacco-Free: Predictors of Clinician Reactions and Outcomes of the NY State OASAS Tobacco-Free Regulation (United States)

    de Tormes Eby, Lillian Turner; George, Kerrin; Brown, B. Lindsay


    In an effort to reduce patient tobacco dependence and create healthier work environments, New York State (NYS) mandated 100% tobacco-free addiction treatment programs for state funded or certified facilities in 2008. We present the results of a longitudinal study examining how local implementation features shape clinician reactions to the regulation and influence post-regulation clinician behavior and strain. A cohort of 147 clinicians associated with 13 treatment organizations throughout NYS completed a survey prior to the passage of the regulation and again approximately 1 year post-regulation. Findings reveal that local implementation features of clinician participation in the planning for change, the provision of change-related information, and perceived organizational support predicted perceptions of change management fairness, which in turn predicted clinical practice behaviors to support smoking cessation, as well as psychological and behavioral strain. In contrast, self-efficacy for change was neither related to local implementation or clinician outcomes. Practical implications are discussed. PMID:22959978

  8. Effect of repetitive yogic squats with specific hand position (Thoppukaranam) on selective attention and psychological states. (United States)

    Chandrasekeran, Angelica; Rajesh, Sasidharan K; Srinivasan, Tm


    Research on the effect of Thoppukaranam is limited despite it being practiced as a form of worship to the elephant-headed deity Lord Ganapati and punishment in schools. The purpose of this study was to examine the effect of Thoppukaranam on selective attention and psychological states in a sample of young adults. A randomized self-as-control within subjects design was employed. Thirty undergraduate students (4 females and 26 males) from a residential Yoga University in Southern India were recruited for this study (group mean age ± standard deviation, 20.17 ± 2.92). The d2 test, State Anxiety Inventory-Short Form and State Mindful Attention Awareness Scale (SMAAS) were used to measure cognitive performance and psychological states. Assessments were made in three sessions: Baseline, control (squats), and experimental (Thoppukaranam) on 3 separate days. Data were analyzed using one-way repeated measures analyses of variance between three sessions, that is, baseline, squat, and Thoppukaranam. There was a significant improvement in all measures of the d2 test of attention (TN, E, TN-E, E%, and concentration performance) and state mindfulness after Thoppukaranam. Further state anxiety reduced significantly after the experimental session. These findings indicate Thoppukaranam results in enhancement of cognitive functioning and psychological states.

  9. The major/minor concept: dependence of the selectivity of homogeneously catalyzed reactions on reactivity ratio and concentration ratio of the intermediates. (United States)

    Schmidt, Thomas; Dai, Zhenya; Drexler, Hans-Joachim; Hapke, Marko; Preetz, Angelika; Heller, Detlef


    The homogeneously catalyzed asymmetric hydrogenation of prochiral olefins with cationic Rh(I) complexes is one of the best-understood selection processes. For some of the catalyst/substrate complexes, experimental proof points out the validation of the major/minor principle; the concentration-deficient minor substrate complex, which has very high reactivity, yields the excess enantiomer. As exemplified by the reaction system of [Rh(dipamp)(MeOH)2]+/methyl (Z)-alpha-acetamidocinnamate (dipamp=1,2-bis((o-methoxyphenyl)phenylphosphino)ethane), all six of the characteristic reaction rate constants have been previously identified. Recently, it was found that the major substrate complex can also yield the major enantiomer (lock-and-key principle). The differential equation system that results from the reaction sequence can be solved numerically for different hydrogen partial pressures by including the known equilibrium constants. The result displays the concentration-time dependence of all species that exist in the catalytic cycle. On the basis of the known constants as well as further experimental evidence, this work focuses on the examination of all principal possibilities resulting from the reaction sequence and leading to different results for the stereochemical outcome. From the simulation, the following conclusions can be drawn: 1) When an intermediate has extreme reactivity, its stationary concentration can become so small that it can no longer be the source of product selectivity; 2) in principle, the major/minor and lock-and-key principles can coexist depending on the applied pressure; 3) thermodynamically determined intermediate ratios can be completely converted under reaction conditions for a selection process; and 4) the increase in enantioselectivity with increasing hydrogen partial pressure, a phenomenon that is experimentally proven but theoretically far from being well-understood, can be explained by applying both the lock-and-key as well as the major

  10. Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method

    International Nuclear Information System (INIS)

    Ren, Zhongshan; Hu, Xiaojun; Xue, Xiangxin; Chou, Kuochih


    Highlights: •The solid state reactions of Fe2O3-TiO2 system was studied by the diffusion couple method. •Different products were formed by diffusion, and the FeTiO3 was more stable phase. •The inter-diffusion coefficients and diffusion activation energy were estimated. -- Abstract: The solid state reactions in Fe 3 O 4 –TiO 2 system has been studied by diffusion couple experiments at 1323–1473 K, in which the oxygen partial pressure was controlled by the CO–CO 2 gas mixture. The XRD analysis was used to confirm the phases of the inter-compound, and the concentration profiles were determined by electron probe microanalysis (EPMA). Based on the concentration profile of Ti, the inter-diffusion coefficients in Fe 3 O 4 phase, which were both temperature and concentration of Ti ions dependent, were calculated by the modified Boltzmann–Matano method. According to the relation between the thickness of diffusion layer and temperature, the diffusion coefficient of the Fe 3 O 4 –TiO 2 system was obtained. According to the Arrhenius equation, the estimated diffusion activation energy was about 282.1 ± 18.8 kJ mol −1

  11. Charge exchange (p,n) reactions to the isobaric analog states of high Z nuclei: 73< or =Z< or =92

    International Nuclear Information System (INIS)

    Hansen, L.F.; Grimes, S.M.; Poppe, C.H.; Wong, C.


    Differential cross sections have been measured for the (p,n) reaction to the isobaric analog states of 181 Ta, 197 Au, 209 Bi, 232 Th, and 238 U at an incident energy of 27 MeV. Because of the importance of collective effects in this mass region, coupled-channel calculations have been carried out in the analysis of the data. Optical potentials obtained from the Lane model for the charge exchange reaction have been used in the simultaneous analysis of coupled proton and neutron channels. The sensitivity of the calculations to the different couplings between the levels and to the magnitude of the isovector potentials, V 1 and W 1 , is discussed. The good agreement obtained between the measured and calculated (p,n) angular distributions to the analog state confirms the validity of the Lane formalism for high-Z nuclei (Z> or =50). Elastic neutron differential cross sections inferred from the coupled-channel analysis are compared with measurements available in the literature in the energy range 7--8 MeV. The results of these calculations agree with the measured values as well as the results of calculations made using global neutron optical potential parameters optimized to fit neutron data

  12. Solid-state reaction in Ti/Ni multilayered films studied by using magneto-optical spectroscopy

    CERN Document Server

    Lee, Y P; Kim, K W; Kim, C G; Kudryavtsev, Y V; Nemoshkalenko, V V; Szymanski, B


    A comparative study of the solid-state reaction (SSR) in a series of Ti/Ni multilayered films (MLDs) with bilayer periods of 0.65-22.2 nm and a constant Ti to Ni sublayer thickness ratio was performed by using experimental and computer-simulated magneto-optical (MO) spectroscopy based on different models of MLFs, as well as x-ray diffraction (XRD). The spectral and sublayer thickness dependences of the MO properties of the Ti/Ni MLFs were explained on the basis of the electromagnetic theory. The existence of a threshold nominal Ni-sublayer thickness of about 3 nm for the as-deposited Ti/Ni MLF to observe of the equatorial Kerr effect was explained by a solid-state reaction which formed nonmagnetic alloyed regions between pure components during the MLF deposition. The SSR in the Ti/Ni MLFs, which was caused by the low temperature annealing, led to the formation of an amorphous Ti-Ni alloy and took place mainly in the Ti/Ni MLFs with ''thick'' sublayers. For the caes of Ti/Ni MLFs, the MO approach turned out to...

  13. Probing the nuclear equation of state by heavy-ion reactions and neutron star properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, P K; Cassing, W; Thoma, M H [Inst. fuer Theoretische Physik, Univ. Giessen (Germany)


    We discuss the nuclear equation of state (EOS) using a non-linear relativistic transport model. From the baryon flow for Ni + Ni as well as Au + Au systems we find that the strength of the vector potential has to be reduced at high density or at high relative momenta to describe the experimental flow data at 1-2 A GeV. We use the same dynamical model to calculate the nuclear EOS and then employ this EOS to neutron star structure calculations. We consider the core of the neutron star to be composed of neutrons with an admixture of protons, electrons, muons, sigmas and lambdas at zero temperature. We find that the nuclear equation of state is softer at high densities and hence the maximum mass and the radius of the neutron star are in the observable range of M {proportional_to} 1.7 M{sub s}un and R = 8 km, respectively. (orig.)

  14. g-factor of the 9/2+ isomeric state in 65Ni from transfer reaction

    International Nuclear Information System (INIS)

    Georgiev, G.; Matea, I.; Balabanski, D.L.; Daugas, J.M.; Meot, V.; Morel, P.; Oliveira Santos, F. de; Lewitowicz, M.; Franchoo, S.; Ibrahim, F.; Le Blanc, F.; Sorlin, O.; Stanoiu, M.; Verney, D.; Lo Bianco, G.; Saltarelli, A.; Lukyanov, S.; Penionzhkevich, Yu.E.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Tarisien, M.


    We report a measurement of the g-factor of the I π =9/2 + , t 1/2 =22 ns isomer in 65 Ni. The state of interest was populated and spin-oriented using a single-neutron transfer on an enriched 64 Ni target. The value, which was obtained, g(9/2 + , 65m Ni)=-0.296(3) is well in agreement with the g-factors of the other 9/2 + states in the region and with large-basis shell model calculations. The known g-factor of the 9/2 + isomer in 63 Ni was used in order to verify the strength of the hyperfine field of Ni(Ni) at room temperature. (orig.)

  15. Hot 56Mn reactions in permanganate solutions: a quasi solution state study [Paper No. NC-6

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Mitra, S.


    Neutron activation of aqueous solutions of transition metal and ammonium permanganates over the concentration range 1-10 -3 M has been performed. Retentions for concentrated solutions were much higher than the solid state values, and upon dilution, a limiting value of approx. 4 per cent was attained. Activation of 1-10 -1 M permanganate quasi solutions containing either alumina or a polystyrene cation exchanger allowed continuous extraction of the recoil species before their recombination. (author)

  16. Synthesis of GaN Nanorods by a Solid-State Reaction

    Directory of Open Access Journals (Sweden)

    Keyan Bao


    Full Text Available An atom-economical and eco-friendly chemical synthetic route was developed to synthesize wurtzite GaN nanorods by the reaction of NaNH2 and the as-synthesized orthorhombic GaOOH nanorods in a stainless steel autoclave at 600∘C. The lengths of the GaN nanorods are in the range of 400–600 nm and the diameters are about 80–150 nm. The process of orthorhombic GaOOH nanorods transformation into wurtzite GaN nanorods was investigated by powder X-ray diffraction (XRD and field emission scanning electron microscope (FESEM, indicating that the GaN product retained essentially the same basic topological morphology in contrast to that of the GaOOH precursor. It was found that rhombohedral Ga2O3 was the intermediate between the starting orthorhombic GaOOH precursor and the final wurtzite GaN product. The photoluminescence measurements reveal that the as-prepared wurtzite GaN nanorods showed strong blue emission.

  17. State of reaction on news media for JCO criticality accident on abroad

    International Nuclear Information System (INIS)

    Itoh, Takeshi


    The criticality accident, which occurred in JCO Tokai on September 30th 1999, was the first accident accompanied with serious radiation exposure to persons at Japanese nuclear facilities. As an evacuation order for local residents was issued, it caused uneasiness to the public. It also gave great impact to the foreign countries. In this report we have investigated the reactions in such countries, as U.S., France, Germany and U.K. by means of news media like TV, newspapers and magazines. Finding are as follows: They were all surprised to know the cause of the accident, which was by improper procedure of JCO workers. Because they couldn't imagine that such an accident might happen in such a high-tech country as Japan. The Japanese regulator was criticized for their insufficient criticality facility surveillance. There arose some questions for Japanese nuclear reliabilities. Because of the delayed announcement of the accident by Japanese public sector, anti-nuclear groups, like Greenpeace, NCI, etc., have a chance to carry on their campaign. The information from Japanese public sector was not enough to satisfy the foreign news media. We concluded that it is also necessary to develop effective information dissemination to overseas in case of a nuclear accident. (author)

  18. [Action-oriented versus state-oriented reactions to experimenter-induced failures]. (United States)

    Brunstein, J C


    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  19. Temperature Dependences for the Reactions of O2- and O- with N and O Atoms in a Selected-Ion Flow Tube Instrument (United States)


    quadrupole mass filter, mass selected, and injected into the flow reactor via a Venturi - type inlet. Ions undergo ∼105 collisions with helium buffer... gas at pressures of 0.4 to 0.8 Torr resulting in complete or near-complete thermalization.10 The higher pressure was used when studying the high...butterfly gate valve resulting in lower pumping speeds and thus longer reaction times. Neutrals were injected 49 cm before the end of the flow tube and

  20. Irreversible endo-Selective Diels–Alder Reactions of Substituted Alkoxyfurans: A General Synthesis of endo-Cantharimides (United States)

    Foster, Robert W; Benhamou, Laure; Porter, Michael J; Bučar, Dejan-Krešimir; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D


    The [4+2] cycloaddition of 3-alkoxyfurans with N-substituted maleimides provides the first general route for preparing endo-cantharimides. Unlike the corresponding reaction with 3H furans, the reaction can tolerate a broad range of 2-substitued furans including alkyl, aromatic, and heteroaromatic groups. The cycloaddition products were converted into a range of cantharimide products with promising lead-like properties for medicinal chemistry programs. Furthermore, the electron-rich furans are shown to react with a variety of alternative dienophiles to generate 7-oxabicyclo[2.2.1]heptane derivatives under mild conditions. DFT calculations have been performed to rationalize the activation effect of the 3-alkoxy group on a furan Diels–Alder reaction. PMID:25756502

  1. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme. (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M


    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  2. Theory of Nonlinear Dispersive Waves and Selection of the Ground State

    International Nuclear Information System (INIS)

    Soffer, A.; Weinstein, M.I.


    A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides

  3. A survey of selected neutron-activation reactions with short-lived products of importance to fusion reactor technology

    International Nuclear Information System (INIS)

    Ward, R.C.; Gomes, I.C.; Smith, D.L.


    The status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with D-T fusion reactors is investigated. The main concerns relative to these very radioactive isotopes are with radiation damage to sensitive components such as superconducting magnets, the decay-heat problem and the safety of personnel during operation of the facility. The present report surveys the status of nuclear data required to assess these problems. The study is limited to a few high-priority nuclear reactions which appear to be of critical concern in this context. Other reactions of lesser concern are listed but are not treated in the present work. Among the factors that were considered in defining the relevant reactions and setting priorities are: quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive byproducts, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half lives in the range from about 1 second to 15 minutes. Available cross-section and reaction-product decay information from the literature has been compiled and included in the report. Uncertainties have been estimated by examining several sets of experimental as well as evaluated data. Comments on the general status of data for various high-priority reactions are offered. On the basis of this investigation, it has been found that the nuclear data are in reasonably good shape for some of the most important reactions but are unacceptable for others. Based on this investigation, the reactions which should be given the greatest attention are: 16 O(n,p) 16 N, 55 Mn(n,p) 55 Cr, 57 Fe(n,p) 57 Mn, 186 W(n,2n) 185m W, and 207 Pb(n,n') 207m Pb. However, the development of fusion power would benefit from an across-the-board refinement in these nuclear data so that a more accurate quantitative

  4. Solid Waste Management Practices of Select State Universities in CALABARZON, Philippines

    Directory of Open Access Journals (Sweden)

    Amado C. Gequinto


    Full Text Available The enactment of the Ecological Solid Waste Management Act prompted higher education institutions including state universities and colleges (SUCs to incorporate ecological waste management in the school system. Thus, this paper aimed to assess the extent of implementation of solid waste management practices in select SUCs in CALABARZON in terms of waste reuse, waste reduction, waste collection, waste recycling, waste treatment, and final waste disposal. Respondents of the study included university administrators, faculty members, non-teaching staff, students and concessionaries for a total of 341. A survey questionnaire was used to gather data from Batangas State University (BatState-U, Cavite State University (CavSU, Laguna State Polytechnic University (LSPU and Southern Luzon State University (SLSU. Result revealed that solid waste management practices are implemented to a great extent. Among the practices, waste collection got the highest composite mean particularly on the promotion of 3Rs (reduce, reuse, recycle in the collection of waste. On the other hand, waste recycling and waste treatment obtained the lowest composite mean. In terms of waste recycling, establishing partnership with local or private business for recyclable recovery program was to moderate extent. Waste treatment particularly neutralization of acid bases was also of moderate extent. The study recommended strengthening of publicprivate partnership (PPP on the recycling and treatment of wastes.

  5. A critical assessment of theoretical methods for finding reaction pathways and transition states of surface processes

    International Nuclear Information System (INIS)

    Klimes, JirI; Michaelides, Angelos; Bowler, David R


    The performance of a variety of techniques for locating transition states on potential energy surfaces is evaluated within the density functional theory framework. Diffusion of a water molecule across NaCl(001) and HCl bond breaking on the same surface are treated as general test cases; the former is an example of a low barrier diffusion process and the latter an example of a relatively high barrier covalent bond rupture event. The methods considered include the nudged elastic band (NEB), Dewar, Healy and Stewart (DHS), dimer, constrained optimization (CO), activation-relaxation technique (ART) and one-side growing string (OGS) as well as novel combinations of the DHS with growing string (DHS + GS) and DHS plus climbing image (CI-DHS). A key conclusion to come from this study is that the NEB method is relatively fast, especially when just a single (climbing) image is used. Indeed, using more images represents an unnecessary computational burden for our set of processes. The dimer method exhibits variable performance; being poor for the water diffusion processes, which have small activation energies, but much more efficient for the HCl bond breaking process which has a higher barrier. When only a poor initial guess of the transition state geometry is available, the CI-DHS scheme is one of the most efficient techniques considered. And as a means to quickly establish an approximate minimum energy pathway the DHS + GS scheme offers some potential.

  6. Investigation of the 34S(p,γ)35Cl reaction and resonant absorption applied to the excitation of bound states

    International Nuclear Information System (INIS)

    Sparks, R.J.


    The yield curve of the reaction 34 S(p,γ) 35 Cl has been measured over the energy range Esub(p) = 1.95 - 2.91 MeV. Proton energies and strengths of 84 resonances are given. The decay schemes of 38 selected resonances have been studied, and for these branching ratios and spin limits are presented. Angular distributions have been measured at four 34 S(p,γ) 35 Cl resonances, at Esub(x) = 8.63, 8.64, 8.95 and 9.08 MeV, giving spin-parity assignments Jsup(π) = 7/2 - , (3/2,5/2), 3/2 + and 5/2, respectively. Spins and parities have been determined for bound states at Esub(x) = 3.92, 4.11, 4.85 and 5.16 MeV, as Jsup(π) = 3/2 + , 7/2 + , (1/2,3/2), 7/2 - , respectively. Branching and mixing ratios have been obtained for the decay of the states at Esub(x) = 3.92, 4.11, 4.35 and 5.16 MeV. Transition strengths are presented for the first three of these. A resonant absorption experiment at the Esub(p) = 2.79 MeV resonance gives for the resonance width GAMMA = 65 +- 20 eV, and also determines the partial widths GAMMAsub(γ), GAMMAsub(p) and GAMMAsub(p1). The level at 7064.3 +- 0.5 keV in 208 Pb has been excited in a resonant absorption experiment by Doppler shifted γ-radiation from the 34 S(p,γ) 35 Cl reaction at Esub(p) = 1974 keV. (Auth.)

  7. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates. (United States)

    Subramaniam, S; Marti, T; Rösselet, S J; Rothschild, K J; Khorana, H G


    The reaction of the retinylidene Schiff base in bacteriorhodopsin (bR) to the water-soluble reagent hydroxylamine is enhanced by greater than 2 orders of magnitude under illumination. We have used this reaction as a probe for changes in Schiff base reactivity during the photocycle of wild-type bR and mutants defective in proton transport. We report here that under illumination at pH 6, the D85N mutant has a 20-fold lower rate and the D212N mutant has a greater than 4-fold higher rate for the light-dependent reaction with hydroxylamine compared with wild-type bR. In contrast, the reactivities of wild-type bR and the D96N and T46V mutants are similar. It has been previously shown that the D96N and T46V replacements have no significant effect on the kinetics of "M" formation but have dramatic effects on rate of the decay of M. We therefore conclude that the hydroxylamine reaction occurs before formation of the M intermediate. Most likely it occurs at the "L" stage of the cycle and reflects increased water accessibility to the Schiff base due to a light-driven change in protein conformation. PMID:2006195

  8. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.


    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  9. Microstructure and growth kinetics of nickel silicide ultra-thin films synthesized by solid-state reactions (United States)

    Coia, Cedrik

    The objective of the thesis is to develop a detailed fundamental understanding of the thermally induced solid-state reactions that lead to the formation of the NiSi. We use in situ synchrotron x-ray diffraction as well as wafer curvature measurements to monitor reactions as they occur during the annealing treatment. These analyses are complemented by ex situ transmission electron microscopy, Rutherford backscattering spectroscopy, and secondary ions mass spectroscopy. The solid-state reactions between 4 to 500 nm-thick Ni films and Si (001) are considerably more complex than previously believed. In addition to the commonly observed phases listed above, we observe the formation of three additional compounds---θ-Ni2Si, Ni31Si12 and Ni3Si2---before the complete transformation of the reacted film into NiSi. These compounds are found to co-exist laterally (within the same layer) with delta-Ni2Si and/or NiSi. The metastable compound θ-Ni2Si, which formation results from texture inheritance and rapid growth through vacancy diffusion, is present in all samples and forms at the same temperature (300+/-10°C) regardless of the initial Ni thickness. Indeed, this compound forms rapidly during ramps anneals, apparently consuming all the delta-Ni2Si for initial Ni films thickness of up to 10 nm. Its disappearance is also rapid and is correlated to both the growth of NiSi and to a surprising return of the orthorhombic delta-Ni 2Si. The formation sequence is therefore not monotonic in composition in contrast to what is usually expected in solid-state reactions. An investigation of the effect of alloying elements (Pt and Co) and impurities (B, P, As, F, N) on the Ni-Si reactions enables us to determine that nucleation plays a limiting role in the growth of metastable θ-Ni2Si and that the template provided by delta-Ni2Si is crucial in promoting this nucleation. Furthermore, reactions with amorphized and amorphous substrates indicate that the possibility of epitaxy with the Si

  10. Quantum wave packet study of D+OF reaction

    International Nuclear Information System (INIS)

    Kurban, M.; Karabulut, E.; Tutuk, R.; Goektas, F.


    The quantum dynamics of the D+OF reaction on the adiabatic potential energy surface of the ground 1 3 A ' state has been studied by using a time-dependent quantum real wave packet method. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been calculated by J-shifting the J = 0 results by means of capture model. Then, the integral cross sections and initial state selected rate constants have been calculated. The initial state-selected reaction probabilities and reaction cross section show threshold but not manifest any resonances and the initial state selected rate constants are sensitive to the temperature.

  11. Determination of nn scattering length from data on nn final state interaction in nd-breakup reaction

    International Nuclear Information System (INIS)

    Konobeevski, E.S.; Mordovskoy, M.V.; Sergeev, V.A.; Potashev, S.I.; Zuev, S.V.


    Full text: An experiment is proposed for the high-precision determination of the neutron-neutron scattering length investigating the nn final state interaction in the nd breakup reaction. The singlet pp and nn scattering lengths are very sensitive probes of the NN-interaction, and their difference is a direct measure of charge-symmetry breaking (CSB) of the nuclear force. However CSB is a small effect, and accurate values of the scattering lengths are needed for a theoretical analysis. The proton-proton scattering length is well known from pp-scattering data (a pp = -17.3± 0.4 fm), and its uncertainty is mainly due to a model-dependent procedure of removing Coulomb effects. The neutron-neutron scattering length is determined from the following processes n+d→p+n+n, π - + d → γ +n+n, d+d→ 2 He+n+n by investigating the kinematic region of the nn final-state interaction (FSI) where two neutrons fly with low relative energy. The results obtained by now are characterized by a significant uncertainty in values of a nn ; they are grouped near -16 and -19 fm [1,2], so even the sign of the difference a nn - a pp is uncertain. In this experiment neutron-neutron scattering length is determined by measuring the yield of the nd breakup reaction as a function of the relative energy ε nn =(E 1 +E 2 -2(E 1 E 2 ) 1/2 cosθ)/2 of two neutrons in the FSI region (two neutrons fly in a narrow angular cone) where nn-interaction is strongly revealed. The theory of reactions in 3N system predicts the ε nn dependence of the FSI cross section being sensitive to the value of a nn . The measurements will be made using the neutron channel RADEX at Moscow meson factory of the Institute for Nuclear Research. The momenta and angles of the two emitted neutrons and the energy of the proton will be measured for each breakup event. The measured dependence of the reaction yield on the relative energy of the two neutrons will be compared to results of the Monte Carlo simulation that includes

  12. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)


    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  13. Variational transition-state theory study of the rate constant of the DMS·OH scavenging reaction by O2. (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Àngels; Lluch, José M


    The chemical tropospheric dimethyl sulfide (DMS, CH3SCH3) degradation involves several steps highly dependent on the environmental conditions. So, intensive efforts have been devoted during the last years to enhance the understanding of the DMS oxidation mechanism under different conditions. The reaction of DMS with OH is considered to be the most relevant process that initiates the whole oxidation process. The experimental observations have been explained by a two-channel mechanism consisting of a H-abstraction process leading to CH3S(O)CH3 and HO2 and an addition reaction leading to the DMS·OH adduct. In the presence of O2, the DMS·OH adduct is competitively scavenged increasing the contribution of the addition channel to the overall DMS oxidation. Recent experimental measurements have determined from a global fit that the rate constant of this scavenging process is independent of pressure and temperature but this rate constant cannot be directly measured. In this article, a variational transition-state theory calculation of the low- and high-pressure rate constants for the reaction between DMS·OH and O2 has been carried out as a function of temperature. Our proposal is that the slight temperature dependence of the scavenging rate constant can only be explained if the H-abstraction bottleneck is preceded by a dynamical bottleneck corresponding to the association process between the DMS·OH adduct and the O2 molecule. The agreement between the low-pressure and high-pressure rate constants confirms the experimental observations. Copyright © 2011 Wiley Periodicals, Inc.

  14. Smokers' reactions to FDA regulation of tobacco products: Findings from the 2009 ITC United States survey

    Directory of Open Access Journals (Sweden)

    Fix Brian V


    Full Text Available Abstract Background On June 22, 2009, the US FDA was granted the authority to regulate tobacco products through the Family Smoking Prevention and Tobacco Control Act (FSPTCA. The intent is to improve public health through regulations on tobacco product marketing and tobacco products themselves. This manuscript reports baseline data on smokers' attitudes and beliefs on specific issues relevant to the FSPTCA. Method Between November 2009 and January 2010, a telephone survey among a nationally representative sample of n = 678 smokers in the US was performed as part of the International Tobacco Control (ITC United States Survey. Participants answered a battery of questions on their attitudes and beliefs about aspects of the FSPTCA. Results Most smokers were unaware of the new FDA tobacco regulations. Smokers indicated support for banning cigarette promotion and nearly a quarter supported requiring tobacco companies to sell cigarettes in plain packaging. Seventy two percent of smokers supported reducing nicotine levels to make cigarettes less addictive if nicotine was made easily available in non-cigarette form. Conclusion Most smokers were limited in their understanding of efforts to regulate tobacco products in general. Smokers were supportive of efforts to better inform the public about health risks, restrict advertising, and make tobacco products less addictive.

  15. Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics. (United States)

    Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S


    The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.

  16. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming


    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  17. Switching and sensing spin states of co-porphyrin in bimolecular reactions on Au111 using scanning tunneling microscopy. (United States)

    Kim, Howon; Chang, Yun Hee; Lee, Soon-Hyeong; Kim, Yong-Hyun; Kahng, Se-Jong


    Controlling and sensing spin states of magnetic molecules at the single-molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of Co-porphyrin on Au(111) can be reversibly switched over by binding and unbinding of the NO molecule and can be sensed using scanning tunneling microscopy and spectroscopy (STM and STS). Before NO exposure, Co-porphryin showed a clear zero-bias peak, a signature of Kondo effect in STS, whereas after NO exposures, it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature, implying that the Kondo effect was switched off by binding of NO. The Kondo effect could be switched back on by unbinding of NO through single-molecule manipulation or thermal desorption. Our density functional theory calculation results explain the observations with pairing of unpaired spins in dz(2) and ppπ* orbitals of Co-porphyrin and NO, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of enormous variety of bimolecular binding and unbinding reactions on metallic surfaces.

  18. The monitoring of pesticides and alkylphenols in selected rivers in the State of Selangor, Malaysia. (United States)

    Tan, B L L; Mustafa, A M


    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.

  19. [Active surveillance of adverse drug reaction in the era of big data: challenge and opportunity for control selection]. (United States)

    Wang, S F; Zhan, S Y


    Electronic healthcare databases have become an important source for active surveillance of drug safety in the era of big data. The traditional epidemiology research designs are needed to confirm the association between drug use and adverse events based on these datasets, and the selection of the comparative control is essential to each design. This article aims to explain the principle and application of each type of control selection, introduce the methods and parameters for method comparison, and describe the latest achievements in the batch processing of control selection, which would provide important methodological reference for the use of electronic healthcare databases to conduct post-marketing drug safety surveillance in China.

  20. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction. (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M


    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.