WorldWideScience

Sample records for state orser system

  1. OCCULT-ORSER complete conversational user-language translator

    Science.gov (United States)

    Ramapriyan, H. K.; Young, K.

    1981-01-01

    Translator program (OCCULT) assists non-computer-oriented users in setting up and submitting jobs for complex ORSER system. ORSER is collection of image processing programs for analyzing remotely sensed data. OCCULT is designed for those who would like to use ORSER but cannot justify acquiring and maintaining necessary proficiency in Remote Job Entry Language, Job Control Language, and control-card formats. OCCULT is written in FORTRAN IV and OS Assembler for interactive execution.

  2. Highlight: IDRC hosts WEConnect CEO for panel on empowering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-15

    Apr 15, 2016 ... Vazquez is a world leader in global supplier diversity and co-founder of ... to succeed in global markets by connecting them to corporate supply chains. ... Barbara Orser, Professor in management of growth enterprises at the ...

  3. STATE_SYSTEM

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a single centerline highway network representation of the 10,000 miles Kansas State Highway System (Interstate, U.S., and Kansas routes). The state...

  4. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  5. State-Dependent Resource Harvesting with Lagged Information about System States.

    Directory of Open Access Journals (Sweden)

    Fred A Johnson

    Full Text Available Markov decision processes (MDPs, which involve a temporal sequence of actions conditioned on the state of the managed system, are increasingly being applied in natural resource management. This study focuses on the modification of a traditional MDP to account for those cases in which an action must be chosen after a significant time lag in observing system state, but just prior to a new observation. In order to calculate an optimal decision policy under these conditions, possible actions must be conditioned on the previous observed system state and action taken. We show how to solve these problems when the state transition structure is known and when it is uncertain. Our focus is on the latter case, and we show how actions must be conditioned not only on the previous system state and action, but on the probabilities associated with alternative models of system dynamics. To demonstrate this framework, we calculated and simulated optimal, adaptive policies for MDPs with lagged states for the problem of deciding annual harvest regulations for mallards (Anas platyrhynchos in the United States. In this particular example, changes in harvest policy induced by the use of lagged information about system state were sufficient to maintain expected management performance (e.g. population size, harvest even in the face of an uncertain system state at the time of a decision.

  6. State-dependent resource harvesting with lagged information about system states

    Science.gov (United States)

    Johnson, Fred A.; Fackler, Paul L.; Boomer, G Scott; Zimmerman, Guthrie S.; Williams, Byron K.; Nichols, James D.; Dorazio, Robert

    2016-01-01

    Markov decision processes (MDPs), which involve a temporal sequence of actions conditioned on the state of the managed system, are increasingly being applied in natural resource management. This study focuses on the modification of a traditional MDP to account for those cases in which an action must be chosen after a significant time lag in observing system state, but just prior to a new observation. In order to calculate an optimal decision policy under these conditions, possible actions must be conditioned on the previous observed system state and action taken. We show how to solve these problems when the state transition structure is known and when it is uncertain. Our focus is on the latter case, and we show how actions must be conditioned not only on the previous system state and action, but on the probabilities associated with alternative models of system dynamics. To demonstrate this framework, we calculated and simulated optimal, adaptive policies for MDPs with lagged states for the problem of deciding annual harvest regulations for mallards (Anas platyrhynchos) in the United States. In this particular example, changes in harvest policy induced by the use of lagged information about system state were sufficient to maintain expected management performance (e.g. population size, harvest) even in the face of an uncertain system state at the time of a decision.

  7. Component state-based integrated importance measure for multi-state systems

    International Nuclear Information System (INIS)

    Si, Shubin; Levitin, Gregory; Dui, Hongyan; Sun, Shudong

    2013-01-01

    Importance measures in reliability engineering are used to identify weak components and/or states in contributing to the reliable functioning of a system. Traditionally, importance measures do not consider the possible effect of groups of transition rates among different component states, which, however, has great effect on the component probability distribution and should therefore be taken into consideration. This paper extends the integrated importance measure (IIM) to estimate the effect of a component residing at certain states on the performance of the entire multi-state systems. This generalization of IIM describes in which state it is most worthy to keep the component to provide the desired level of system performance, and which component is the most important to keep in some state and above for improving the performance of the system. An application to an oil transportation system is presented to illustrate the use of the suggested importance measure

  8. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  9. State distribution and reliability of some multi- state systems with ...

    African Journals Online (AJOL)

    mn : G series systems and second, the multi-state consecutive kn-out-of-mn : G parallel systems (see denitions 1 and 2).We begin by giving a non recursive formula which calculates the state distribution and the reliability of multi-state ...

  10. CDC STATE System Tobacco Legislation - Licensure

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Licensure. The STATE System...

  11. CDC STATE System Tobacco Legislation - Tax

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation-Tax. The STATE System...

  12. CDC STATE System Tobacco Legislation - Tax

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation-Tax. The STATE System...

  13. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  14. The State Public Health Laboratory System.

    Science.gov (United States)

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  15. Collaborative Systems – Finite State Machines

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2011-01-01

    Full Text Available In this paper the finite state machines are defined and formalized. There are presented the collaborative banking systems and their correspondence is done with finite state machines. It highlights the role of finite state machines in the complexity analysis and performs operations on very large virtual databases as finite state machines. It builds the state diagram and presents the commands and documents transition between the collaborative systems states. The paper analyzes the data sets from Collaborative Multicash Servicedesk application and performs a combined analysis in order to determine certain statistics. Indicators are obtained, such as the number of requests by category and the load degree of an agent in the collaborative system.

  16. State estimation in networked systems

    NARCIS (Netherlands)

    Sijs, J.

    2012-01-01

    This thesis considers state estimation strategies for networked systems. State estimation refers to a method for computing the unknown state of a dynamic process by combining sensor measurements with predictions from a process model. The most well known method for state estimation is the Kalman

  17. 34 CFR 200.12 - Single State accountability system.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Single State accountability system. 200.12 Section 200... Improving Basic Programs Operated by Local Educational Agencies State Accountability System § 200.12 Single State accountability system. (a)(1) Each State must demonstrate in its State plan that the State has...

  18. CDC STATE System Tobacco Legislation - Preemption

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Preemption. The STATE...

  19. Entanglement revival can occur only when the system-environment state is not a Markov state

    Science.gov (United States)

    Sargolzahi, Iman

    2018-06-01

    Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.

  20. Supercoherent states and physical systems

    International Nuclear Information System (INIS)

    Fatyga, B.W.; Kostelecky, V.A.; Truax, D.R.

    1991-01-01

    A method is developed for obtaining coherent states of a system admitting a supersymmetry. These states are called supercoherent states. The approach presented in this talk is based on an extension to supergroups of the usual group-theoretic approach. The example of the supersymmetric harmonic oscillator is discussed, thereby illustrating some of the attractive features of the method. Supercoherent states of an electron moving in a constant magnetic field are also described. 35 refs

  1. THE UNITED STATES EDUCATIONAL SYSTEM

    OpenAIRE

    David Suriñach Fernández

    2017-01-01

    The United States educational system is very complex. Due to the fact a big number of agents take play of its regulation, the differences between the education from one State compared to the education from another, or even between school districts, might be considerable. The last two largest federal education initiatives, No Child Left Behind and Race to the Top, have had a huge impact on the American education system. The escalation of the standardized test throughout the whole country as a ...

  2. Quantum state engineering in hybrid open quantum systems

    OpenAIRE

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2015-01-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...

  3. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  4. Past Quantum States of a Monitored System

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus

    2013-01-01

    A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t...(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...

  5. Discontinuities in ODEs - Systems with change of state

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    2006-01-01

    The occurrence of discontinuous right hand sides in ODE-systems often appears in technical applications. Such applications may be characterised by the cases where the system changes between several states. Each state is defined by a system of ODEs and the transition between states is defined...

  6. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  7. State energy-price system: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Imhoff, K.L.; Hood, L.J.

    1983-08-01

    This report updates the State Energy Price Data System (STEPS) to include state-level energy prices by fuel and by end-use sectors for 1981. Both physical unit prices and Btu prices are presented. Basic documentation of the data base remains generally the same as in the original report: State Energy Price System; Volume 1: Overview and Technical Documentation (DOE/NBB-0029 Volume 1 of 2, November 1982). The present report documents only the changes in procedures necessitated by the update to 1981 and the corrections to the basic documentation.

  8. Recent Advances in System Reliability Signatures, Multi-state Systems and Statistical Inference

    CERN Document Server

    Frenkel, Ilia

    2012-01-01

    Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications.  The topics include: concepts and different definitions of signatures (D-spectra),  their  properties and applications  to  reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. Recent Advances in System Reliability presents many examples to illustrate the theoretical results. Real world multi-state systems...

  9. CDC STATE System Tobacco Legislation - Preemption Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Preemption. The STATE...

  10. CDC STATE System Tobacco Legislation - Youth Access

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Youth Access. The STATE...

  11. CDC STATE System E-Cigarette Legislation - Tax

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Tax. The STATE...

  12. Coherent states for certain time-dependent systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1989-01-01

    Hartley and Ray have constructed and studied coherent states for the time-dependent oscillator. Here we show how to construct states for more general time-dependent systems. We also show that these states are equivalent to the well-known squeezed states. (author) [pt

  13. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  14. CDC STATE System Tobacco Legislation - Preemption Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Preemption. The STATE...

  15. Ground states of quantum spin systems

    International Nuclear Information System (INIS)

    Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.

    1978-07-01

    The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume

  16. Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis.

    Science.gov (United States)

    Zaher, Ashraf A

    2008-03-01

    A technique is introduced for identifying uncertain and/or unknown parameters of chaotic dynamical systems via using simple state feedback. The proposed technique is based on bringing the system into a stable steady state and then solving for the unknown parameters using a simple algebraic method that requires access to the complete or partial states of the system depending on the dynamical model of the chaotic system. The choice of the state feedback is optimized in terms of practicality and causality via employing a single feedback signal and tuning the feedback gain to ensure both stability and identifiability. The case when only a single scalar time series of one of the states is available is also considered and it is demonstrated that a synchronization-based state observer can be augmented to the state feedback to address this problem. A detailed case study using the Lorenz system is used to exemplify the suggested technique. In addition, both the Rössler and Chua systems are examined as possible candidates for utilizing the proposed methodology when partial identification of the unknown parameters is considered. Finally, the dependence of the proposed technique on the structure of the chaotic dynamical model and the operating conditions is discussed and its advantages and limitations are highlighted via comparing it with other methods reported in the literature.

  17. CDC STATE System Tobacco Legislation - Youth Access

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation—Youth Access. The STATE...

  18. Algorithm of the managing systems state estimation

    Directory of Open Access Journals (Sweden)

    Skubilin M. D.

    2010-02-01

    Full Text Available The possibility of an electronic estimation of automatic and automated managing systems state is analyzed. An estimation of a current state (functional readiness of technical equipment and person-operator as integrated system allows to take operatively adequate measures on an exception and-or minimisation of consequences of system’s transition in a supernumerary state. The offered method is universal enough and can be recommended for normalisation of situations on transport, mainly in aircraft.

  19. State of the art in video system performance

    Science.gov (United States)

    Lewis, Michael J.

    1990-01-01

    The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.

  20. Loss energy states of nonstationary quantum systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1978-01-01

    The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed

  1. Universality of emergent states in diverse physical systems

    Science.gov (United States)

    Guidry, Mike

    2017-12-01

    Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.

  2. Efimov states and bound state properties in selected nuclear and molecular three-body systems

    International Nuclear Information System (INIS)

    Huber, H.S.

    1978-01-01

    The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system

  3. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  4. Information in the system of state administration

    OpenAIRE

    Kalytych, G.; Litosh, G.

    2009-01-01

    The article analyses the approaches to the notions of "information", "state administration system", "administrative information". The article considers the importance of of information for the whole state administration system and reveals the criteria which provide the information with administrative status. Special attention is paid to making of administrative decisions on the level of the sate which are based on effective information management.

  5. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  6. Chaotic Secure Communication Systems with an Adaptive State Observer

    Directory of Open Access Journals (Sweden)

    Wei-Der Chang

    2015-01-01

    Full Text Available This paper develops a new digital communication scheme based on using a unified chaotic system and an adaptive state observer. The proposed communication system basically consists of five important elements: signal modulation, chaotic encryption, adaptive state observer, chaotic decryption, and signal demodulation. A sequence of digital signals will be delivered from the transmitter to the receiver through a public channel. It is rather reasonable that if the number of signals delivered on the public channel is fewer, then the security of such communication system is more guaranteed. Therefore, in order to achieve this purpose, a state observer will be designed and its function is to estimate full system states only by using the system output signals. In this way, the signals delivered on the public channel can be reduced mostly. According to these estimated state signals, the original digital sequences are then retrieved completely. Finally, experiment results are provided to verify the applicability of the proposed communication system.

  7. Kansas Non-State Road System

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a single centerline road network representation of 120,000 miles of the Kansas non-state highway system with limited attribution. It includes rural...

  8. CDC STATE System E-Cigarette Legislation - Licensure

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Licensure. The...

  9. CDC STATE System E-Cigarette Legislation - Preemption

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Preemption. The...

  10. Alternative fidelity measure between two states of an N-state quantum system

    International Nuclear Information System (INIS)

    Chen Jingling; Fu Libin; Zhao Xiangeng; Ungar, Abraham A.

    2002-01-01

    An alternative fidelity measure between two states of a qunit, an N-state quantum system, is proposed. It has a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special case when N=2

  11. Policy Perspectives on State Elementary and Secondary Public Education Finance Systems in the United States

    Science.gov (United States)

    Verstegen, Deborah A.

    2016-01-01

    The purpose of this article is to describe and compare individual state funding systems for public elementary and secondary education in the United States. States' major education funding systems are described as well as funding mechanisms for students with disabilities; English language learners (ELL); gifted and talented students; and low income…

  12. Reliability assessment of embedded digital system using multi-state function

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    2006-01-01

    This work describes a combinatorial model for estimating the reliability of the embedded digital system by means of multi-state function. This model includes a coverage model for fault-handling techniques implemented in digital systems. The fault-handling techniques make it difficult for many types of components in digital system to be treated as binary state, good or bad. The multi-state function provides a complete analysis of multi-state systems as which the digital systems can be regarded. Through adaptation of software operational profile flow to multi-state function, the HW/SW interaction is also considered for estimation of the reliability of digital system. Using this model, we evaluate the reliability of one board controller in a digital system, Interposing Logic System (ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is a generalized combinatorial model, the simplification of this model becomes the conventional model that treats the system as binary state. This modeling method is particularly attractive for embedded systems in which small sized application software is implemented since it will require very laborious work for this method to be applied to systems with large software

  13. CDC STATE System Tobacco Legislation - Smokefree Campus

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Campuses. The...

  14. CDC STATE System E-Cigarette Legislation - Preemption

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Preemption....

  15. CDC STATE System E-Cigarette Legislation - Licensure

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Licensure....

  16. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  17. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  18. 42 CFR 403.314 - Evaluation of State systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Evaluation of State systems. 403.314 Section 403.314 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State Reimbursement Control Systems § 403...

  19. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  20. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  1. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  2. 42 CFR 403.318 - Approval of State systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Approval of State systems. 403.318 Section 403.318 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State Reimbursement Control Systems § 403.318...

  3. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  4. On some steady-state characteristics of systems with gradual repair

    International Nuclear Information System (INIS)

    Finkelstein, Maxim; Ludick, Zani

    2014-01-01

    We consider a repairable system with continuous output that alternates between states of operation and repair. The output of the system in the operating state is represented by a continuous, decreasing function of time. We assume that during the repair state, the system can produce output that is modelled by an increasing stochastic process. The repair action gradually restores the output of the system to its initial level and it returns to the operating state. We obtain and analyse expressions for the generalized availability and related characteristics of systems with gradual repair and consider several meaningful examples

  5. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    Science.gov (United States)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  6. Sequentially generated states for the study of two dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari-Carmen; Cirac, J. Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Perez-Garcia, David [Depto. Analisis Matematico, Universidad Complutense de Madrid (Spain); Wolf, Michael M. [Niels Bohr Institut, Copenhagen (Denmark); Verstraete, Frank [Fakultaet fuer Physik, Universitaet Wien (Austria)

    2009-07-01

    The family of Matrix Product States represents a powerful tool for the study of physical one-dimensional quantum many-body systems, such as spin chains. Besides, Matrix Product States can be defined as the family of quantum states that can be sequentially generated in a one-dimensional system. We have introduced a new family of states which extends this sequential definition to two dimensions. Like in Matrix Product States, expectation values of few body observables can be efficiently evaluated and, for the case of translationally invariant systems, the correlation functions decay exponentially with the distance. We show that such states are a subclass of Projected Entangled Pair States and investigate their suitability for approximating the ground states of local Hamiltonians.

  7. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  8. Evaluation of HIV Surveillance System in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    Background: Rivers State has been reported to have the highest HIV prevalence of all the thirty-six states in Nigeria. HIV surveillance system generates information for timely and appropriate public health action. Evaluation of the surveillance system is vital in ensuring that the purpose of the surveillance system is being met.

  9. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  10. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  11. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  12. Quantum Optics with Nanomechanical and Solid State Systems

    International Nuclear Information System (INIS)

    Jaehne, K.

    2009-01-01

    This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is

  13. New developments in state estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    2000-01-01

    Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....

  14. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  15. Extended block diagram method for a multi-state system reliability assessment

    International Nuclear Information System (INIS)

    Lisnianski, Anatoly

    2007-01-01

    The presented method extends the classical reliability block diagram method to a repairable multi-state system. It is very suitable for engineering applications since the procedure is well formalized and based on the natural decomposition of the entire multi-state system (the system is represented as a collection of its elements). Until now, the classical block diagram method did not provide the reliability assessment for the repairable multi-state system. The straightforward stochastic process methods are very difficult for engineering application in such cases due to the 'dimension damnation'-huge number of system states. The suggested method is based on the combined random processes and the universal generating function technique and drastically reduces the number of states in the multi-state model

  16. State dynamics of a double sandbar system

    NARCIS (Netherlands)

    Price, T.D.; Ruessink, B.G.

    2011-01-01

    A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of

  17. System state estimation and optimal energy control framework for multicell lithium-ion battery system

    International Nuclear Information System (INIS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu

    2017-01-01

    Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.

  18. Definition of multi-state weighted k-out-of-n: F systems

    DEFF Research Database (Denmark)

    Ding, Yi; Wu, Qiuwei; Zio, Enrico

    2012-01-01

    of the Multi-state Weighted k-out-of-n: G System- the Multi-state Weighted k-out-of-n: F System has not been clearly defined and discussed. In this short communication, the basic definition of the Multi-state Weighted k-out-of-n: F System model is proposed. The relationship between the Multi-state Weighted k...

  19. CDC STATE System E-Cigarette Legislation - Youth Access

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Youth Access....

  20. Energy dependence of critical state of single-component systems

    International Nuclear Information System (INIS)

    Volchenkova, R.A.

    1985-01-01

    Equations of critical states of the single-component systems: Psub(cr)(/Psub(o)=(Tsub(cr)/Tsub(o))x0.73, Tsub(cr)=K(Tsub(boil))sup(1.116) and Hsub(cr)(/Hsub(B)=Tsub(sr)/Tsub(B))sup(1.48) where Tsub(B)=1K, Hsub(B)-2 kcal/g-at, K-dimension factor are presented. It is shown that the revealed dependence Hsub(cr)=H(Tsub(cr)) is an energy boundary of a liquid-vapour phase state of the single-component systems beyond limits of which difference between liquid and vapour phases vanishes in increasing the system energy content. The given equations of state are true for all the single-component systems and permit to consider physicomechanical properties of substances in dynamic state depending on external conditions. Critical temperatures and dependences for elements from the most fusible He to infusible W and Re have been calculated

  1. Engineering quantum hyperentangled states in atomic systems

    Science.gov (United States)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  2. System resiliency quantification using non-state-space and state-space analytic models

    International Nuclear Information System (INIS)

    Ghosh, Rahul; Kim, DongSeong; Trivedi, Kishor S.

    2013-01-01

    Resiliency is becoming an important service attribute for large scale distributed systems and networks. Key problems in resiliency quantification are lack of consensus on the definition of resiliency and systematic approach to quantify system resiliency. In general, resiliency is defined as the ability of (system/person/organization) to recover/defy/resist from any shock, insult, or disturbance [1]. Many researchers interpret resiliency as a synonym for fault-tolerance and reliability/availability. However, effect of failure/repair on systems is already covered by reliability/availability measures and that of on individual jobs is well covered under the umbrella of performability [2] and task completion time analysis [3]. We use Laprie [4] and Simoncini [5]'s definition in which resiliency is the persistence of service delivery that can justifiably be trusted, when facing changes. The changes we are referring to here are beyond the envelope of system configurations already considered during system design, that is, beyond fault tolerance. In this paper, we outline a general approach for system resiliency quantification. Using examples of non-state-space and state-space stochastic models, we analytically–numerically quantify the resiliency of system performance, reliability, availability and performability measures w.r.t. structural and parametric changes

  3. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air. The...

  4. Estimating the state of large spatio-temporally chaotic systems

    International Nuclear Information System (INIS)

    Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.

    2004-01-01

    We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points

  5. Optimal preventive maintenance and repair policies for multi-state systems

    International Nuclear Information System (INIS)

    Sheu, Shey-Huei; Chang, Chin-Chih; Chen, Yen-Luan; George Zhang, Zhe

    2015-01-01

    This paper studies the optimal preventive maintenance (PM) policies for multi-state systems. The scheduled PMs can be either imperfect or perfect type. The improved effective age is utilized to model the effect of an imperfect PM. The system is considered as in a failure state (unacceptable state) once its performance level falls below a given customer demand level. If the system fails before a scheduled PM, it is repaired and becomes operational again. We consider three types of major, minimal, and imperfect repair actions, respectively. The deterioration of the system is assumed to follow a non-homogeneous continuous time Markov process (NHCTMP) with finite state space. A recursive approach is proposed to efficiently compute the time-dependent distribution of the multi-state system. For each repair type, we find the optimal PM schedule that minimizes the average cost rate. The main implication of our results is that in determining the optimal scheduled PM, choosing the right repair type will significantly improve the efficiency of the system maintenance. Thus PM and repair decisions must be made jointly to achieve the best performance

  6. 20 CFR 658.410 - Establishment of State agency JS complaint system.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Establishment of State agency JS complaint... Agency Js Complaint System § 658.410 Establishment of State agency JS complaint system. (a) Each State... State Administrator shall have overall responsibility for the operation of the State agency JS complaint...

  7. State Estimation for Sensor Monitoring System with Uncertainty and Disturbance

    Directory of Open Access Journals (Sweden)

    Jianhong Sun

    2014-10-01

    Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.

  8. Fuzzy filter for state estimation of a glucoregulatory system.

    Science.gov (United States)

    Trajanoski, Z; Wach, P

    1996-08-01

    A filter based on fuzzy logic for state estimation of a glucoregulatory system is presented. A published non-linear model for the dynamics of glucose and its hormonal control including a single glucose compartment, five insulin compartments and a glucagon compartment was used for simulation. The simulated data were corrupted by an additive white noise with zero mean and a coefficient of variation (CV) of between 2 and 20% and then submitted to the state estimation procedure using a fuzzy filter (FF). The performance of the FF was compared with an extended Kalman filter (EKF) for state estimation. Both the FF and the EKF were evaluated in the following cases: (a) five state variables are measurable; three plasma variables are measurable; only plasma glucose is measurable; (b) for different measurement noise levels (CV of 2-20%); and (c) a mismatch between the glucoregulatory system and the given mathematical model (uncertain or approximate model). In contrast to the FF, in the case of approximate model of the glucose system, the EKF failed to achieve useful state estimation. Moreover, the performance of the FF was independent of the noise level. In conclusion, the FF approach is a viable alternative for state estimation in a noisy environment and with an uncertain mathematical model of the glucoregulatory system.

  9. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  10. State-feedback control of fuzzy discrete-event systems.

    Science.gov (United States)

    Lin, Feng; Ying, Hao

    2010-06-01

    In a 2002 paper, we combined fuzzy logic with discrete-event systems (DESs) and established an automaton model of fuzzy DESs (FDESs). The model can effectively represent deterministic uncertainties and vagueness, as well as human subjective observation and judgment inherent to many real-world problems, particularly those in biomedicine. We also investigated optimal control of FDESs and applied the results to optimize HIV/AIDS treatments for individual patients. Since then, other researchers have investigated supervisory control problems in FDESs, and several results have been obtained. These results are mostly derived by extending the traditional supervisory control of (crisp) DESs, which are string based. In this paper, we develop state-feedback control of FDESs that is different from the supervisory control extensions. We use state space to describe the system behaviors and use state feedback in control. Both disablement and enforcement are allowed. Furthermore, we study controllability based on the state space and prove that a controller exists if and only if the controlled system behavior is (state-based) controllable. We discuss various properties of the state-based controllability. Aside from novelty, the proposed new framework has the advantages of being able to address a wide range of practical problems that cannot be effectively dealt with by existing approaches. We use the diabetes treatment as an example to illustrate some key aspects of our theoretical results.

  11. CDC STATE System E-Cigarette Legislation - Youth Access

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Youth Access....

  12. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  13. KMS states on Nica-Toeplitz algebras of product systems

    DEFF Research Database (Denmark)

    Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech

    2012-01-01

    We investigate KMS states of Fowler's Nica-Toeplitz algebra NT(X) associated to a compactly aligned product system X over a semigroup P of Hilbert bimodules. This analysis relies on restrictions of these states to the core algebra which satisfy appropriate scaling conditions. The concept of product...... system of finite type is introduced. If (G, P) is a lattice ordered group and X is a product system of finite type over P satisfying certain coherence properties, we construct KMS_beta states of NT(X) associated to a scalar dynamics from traces on the coefficient algebra of the product system. Our...... results were motivated by, and generalize some of the results of Laca and Raeburn obtained for the Toeplitz algebra of the affine semigroup over the natural numbers....

  14. Permissible state permit/fee systems for radioactive materials transportation

    International Nuclear Information System (INIS)

    Friel, L.

    1987-01-01

    Many state permit/fee systems for radioactive materials transportation have been ruled inconsistent with federal law invalidated by the courts. As the date for repository operation, and its associated transportation, draws near, more states can be expected to adopt permit/fee systems. Examination of the U.S. Department of Transportation's advisory rulings and federal court cases on previous permit/fee systems gives general guidance on the type of permit/fee systems most likely to withstand challenges. Such a system would: have a simplified permit application with minimal information requirements; address a federally-defined class of hazardous or radioactive materials; allow access to all shipments conducted in compliance with federal law; charge a fee reasonably related to the costs imposed on the state by the transportation; and minimize the potential for re-directing shipments to other jurisdictions

  15. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  16. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  17. Detailed description of a state system for accounting for and control of nuclear material at the state level

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-02-01

    The purpose of this document is to provide a detailed description of the technical elements of a system for the accounting for and control of nuclear material at the State Authority level which can be used by a state in the establishment of a national system for nuclear material accounting and control. It is expected that a state system designed along the lines described also will assist the IAEA in carrying out its safeguards responsibilities. The scope of this document is limited to descriptions of the technical elements of a state level system concerned with Laws and Regulations, the Information System, and the Establishment of Requirements for Nuclear Material Accounting and Control. The discussion shows the relationship of these technical elements at the state level to the principal elements of an SSAC at the facility levels

  18. A quantum retrograde canon: complete population inversion in n 2-state systems

    Science.gov (United States)

    Padan, Alon; Suchowski, Haim

    2018-04-01

    We present a novel approach for analytically reducing a family of time-dependent multi-state quantum control problems to two-state systems. The presented method translates between {SU}(2)× {SU}(2) related n 2-state systems and two-state systems, such that the former undergo complete population inversion (CPI) if and only if the latter reach specific states. For even n, the method translates any two-state CPI scheme to a family of CPI schemes in n 2-state systems. In particular, facilitating CPI in a four-state system via real time-dependent nearest-neighbors couplings is reduced to facilitating CPI in a two-level system. Furthermore, we show that the method can be used for operator control, and provide conditions for producing several universal gates for quantum computation as an example. In addition, we indicate a basis for utilizing the method in optimal control problems.

  19. On importance assessment of aging multi-state system

    Science.gov (United States)

    Frenkel, Ilia; Khvatskin, Lev; Lisnianski, Anatoly

    2017-01-01

    Modern high-tech equipment requires precise temperature control and effective cooling below the ambient temperature. Greater cooling efficiencies will allow equipment to be operated for longer periods without overheating, providing a greater return on investment and increased in availability of the equipment. This paper presents application of the Lz-transform method to importance assessment of aging multi-state water-cooling system used in one of Israeli hospitals. The water cooling system consists of 3 principal sub-systems: chillers, heat exchanger and pumps. The performance of the system and the sub-systems is measured by their produced cooling capacity. Heat exchanger is an aging component. Straightforward Markov method applied to solve this problem will require building of a system model with numerous numbers of states and solving a corresponding system of multiple differential equations. Lz-transform method, which is used for calculation of the system elements importance, drastically simplified the solution. Numerical example is presented to illustrate the described approach.

  20. State Authorization Tracking System (StATS) - Data, Charts and Graphs

    Data.gov (United States)

    U.S. Environmental Protection Agency — The State Authorization Tracking System (StATS) is an information management system designed to document the progress of each state and territory in establishing and...

  1. The stable nonequilibrium state of bicarbonate aqueous systems

    Science.gov (United States)

    Voeikov, V. L.; Vilenskaya, N. D.; Ha, Do Minh; Malyshenko, S. I.; Buravleva, E. V.; Yablonskaya, O. I.; Timofeev, K. N.

    2012-09-01

    Data obtained by electron paramagnetic resonance (EPR) and chemiluminescence analysis indicate that in aqueous solutions of bicarbonates, superoxide radical and other reactive oxygen species (ROS) are constantly produced. The stationary level of the superoxide radical is found to increase when a solution is illuminated. Reactions involving ROS are shown to be accompanied by the generation of electron excitation energy, keeping bicarbonate solutions in a stable nonequilibrium state. The system can emit part of this energy. Variations in emitting activity are found to correlate with variations in the cosmophysical factors. The emitting activity of solutions is found to vary in the presence of low and ultralow concentrations of hydrated fullerenes. It is noted that the phenomenon of spontaneous charge separation in aqueous systems (G. H. Pollack) could play a role in maintaining a stable nonequilibrium state in bicarbonate systems where the reactions with ROS participation are catalyzed by forms of carbonate. It is concluded that the abovementioned properties of bicarbonate aqueous systems most likely keep living matter whose structural basis is formed by these systems in a stable excited state, thereby making it highly sensitive to the action of external factors with low and ultralow intensities.

  2. Methods and systems for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  3. State Analysis: A Control Architecture View of Systems Engineering

    Science.gov (United States)

    Rasmussen, Robert D.

    2005-01-01

    A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.

  4. 42 CFR 403.320 - CMS review and monitoring of State systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false CMS review and monitoring of State systems. 403.320 Section 403.320 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Systems § 403.320 CMS review and monitoring of State systems. (a) General rule. The State must submit an...

  5. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  6. States of Cybersecurity: Electricity Distribution System Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ingram, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Maurice [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-16

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.

  7. Engineering Complex Embedded Systems with State Analysis and the Mission Data System

    Science.gov (United States)

    Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.

  8. Strong Foundations: The State of State Postsecondary Data Systems--2012 Update on Data Sharing with K-12 and Labor

    Science.gov (United States)

    Garcia, Tanya I.; L'Orange, Hans Peter

    2012-01-01

    In 2010, the State Higher Education Executive Officers Association released the results of a national study of state level postsecondary student unit record (SUR) data systems in 44 states and the District of Columbia (D.C.). One section of the report, "Strong Foundations: The State of State Postsecondary Data Systems" (Garcia and L'Orange 2010),…

  9. Dynamic state estimation assisted power system monitoring and protection

    Science.gov (United States)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the

  10. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  11. Steady state security assessment in deregulated power systems

    Science.gov (United States)

    Manjure, Durgesh Padmakar

    Power system operations are undergoing changes, brought about primarily due to deregulation and subsequent restructuring of the power industry. The primary intention of the introduction of deregulation in power systems was to bring about competition and improved customer focus. The underlying motive was increased economic benefit. Present day power system analysis is much different than what it was earlier, essentially due to the transformation of the power industry from being cost-based to one that is price-based and due to open access of transmission networks to the various market participants. Power is now treated as a commodity and is traded in an open market. The resultant interdependence of the technical criteria and the economic considerations has only accentuated the need for accurate analysis in power systems. The main impetus in security analysis studies is on efficient assessment of the post-contingency status of the system, accuracy being of secondary consideration. In most cases, given the time frame involved, it is not feasible to run a complete AC load flow for determining the post-contingency state of the system. Quite often, it is not warranted as well, as an indication of the state of the system is desired rather than the exact quantification of the various state variables. With the inception of deregulation, transmission networks are subjected to a host of multilateral transactions, which would influence physical system quantities like real power flows, security margins and voltage levels. For efficient asset utilization and maximization of the revenue, more often than not, transmission networks are operated under stressed conditions, close to security limits. Therefore, a quantitative assessment of the extent to which each transaction adversely affects the transmission network is required. This needs to be done accurately as the feasibility of the power transactions and subsequent decisions (execution, curtailment, pricing) would depend upon the

  12. Efficiency audit for IT-systems of state management strategic objects

    Directory of Open Access Journals (Sweden)

    Abasov V.A.

    2017-06-01

    Full Text Available Hackers’ attacks at the end of 2016 and at the beginning of 2017 р. on governmental information and telecommunication systems, including Ministry of Finance in Ukraine, and State Treasury Department, caused vast delays in budgetary payments. They showed «sensitiveness» and insecurity of governmental institutions for cyber-attacks because of control absence of three main security measures, such as technical limitations for downloading programs, limited use of rights for local administrators, systematical software renewals. International experience shows these security measures of governmental IT-systems have to be the audit subject of state financial control authorities. The base of information technology audit was initiated in the studies of І.К. Drozd, S.V. Іvachnenkova, М.М. Benko, Ju.А. Кuxminskiy, А.V. Мamyshev. Simultaneously, the issue of IT-system state audit was examined in theoretical researches partially because there is no practice of such audit in Ukraine. That is why it is necessary to learn international practice of efficiency audit for IT-systems and world standards for establishments of state management sector. The research allowed to propose the methodology of efficiency audit for IT-systems for state institutions; the methodology provides planning and conducting the main procedures on the base of risk estimation of security threats for information systems. The author determines the peculiarities in security risk management for IT-systems by means of risk estimation of security components of IT-systems while conducting efficiency audit. The author sets the method of descending step-by-step detailing for audit estimation of IT-system risk management efficiency at strategic enterprises belonging to state management sector by means of adaptation of ISSAI standard norms. The paper proposes three possible options of management solution concerning IT-system risk management efficiency on the base of information about the

  13. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    Science.gov (United States)

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  14. Minmax defense strategy for complex multi-state systems

    International Nuclear Information System (INIS)

    Hausken, Kjell; Levitin, Gregory

    2009-01-01

    This paper presents a general optimization methodology that merges game theory and multi-state system survivability theory. The defender has multiple alternatives of defense strategy that presumes separation and protection of system elements. The attacker also has multiple alternatives of its attack strategy based on a combination of different possible attack actions against different groups of system elements. The defender minimizes, and the attacker maximizes, the expected damage caused by the attack (taking into account the unreliability of system elements and the multi-state nature of complex series-parallel systems). The problem is defined as a two-period minmax non-cooperative game between the defender who moves first and the attacker who moves second. An exhaustive minmax optimization algorithm is presented based on a double-loop genetic algorithm for determining the solution. A universal generating function technique is applied for evaluating the losses caused by system performance reduction. Illustrative examples with solutions are presented

  15. Bunched soliton states in weakly coupled sine-Gordon systems

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....

  16. CDC STATE System E-Cigarette Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Smokefree...

  17. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  18. United States of America: health system review.

    Science.gov (United States)

    Rice, Thomas; Rosenau, Pauline; Unruh, Lynn Y; Barnes, Andrew J; Saltman, Richard B; van Ginneken, Ewout

    2013-01-01

    This analysis of the United States health system reviews the developments in organization and governance, health financing, health-care provision, health reforms and health system performance. The US health system has both considerable strengths and notable weaknesses. It has a large and well-trained health workforce, a wide range of high-quality medical specialists as well as secondary and tertiary institutions, a robust health sector research program and, for selected services, among the best medical outcomes in the world. But it also suffers from incomplete coverage of its citizenry, health expenditure levels per person far exceeding all other countries, poor measures on many objective and subjective measures of quality and outcomes, an unequal distribution of resources and outcomes across the country and among different population groups, and lagging efforts to introduce health information technology. It is difficult to determine the extent to which deficiencies are health-system related, though it seems that at least some of the problems are a result of poor access to care. Because of the adoption of the Affordable Care Act in 2010, the United States is facing a period of enormous potential change. Improving coverage is a central aim, envisaged through subsidies for the uninsured to purchase private insurance, expanded eligibility for Medicaid (in some states) and greater protection for insured persons. Furthermore, primary care and public health receive increased funding, and quality and expenditures are addressed through a range of measures. Whether the ACA will indeed be effective in addressing the challenges identified above can only be determined over time. World Health Organization 2013 (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies).

  19. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  20. Stochastic simulations of conditional states of partially observed systems, quantum and classical

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H M

    2005-01-01

    In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed, even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρ r (t), and if classical, the conditional state will be given by a probability distribution P r (x,t), where r is the result of the measurement. Thus to determine the evolution of this conditional state, under continuous-in-time monitoring, requires a numerically expensive calculation. In this paper we demonstrate a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of N, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems such as arise in modelling realistic (finite bandwidth, noisy) measurement

  1. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2018. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air. The...

  2. Natural Resources Information System for the State of Oklahoma

    International Nuclear Information System (INIS)

    Mankin, C.J.

    1992-01-01

    The objective of this research program was to continue developing, editing, maintaining, utilizing and making publicly available the Natural Resources Information System (NRIS) for the State of Oklahoma. The Oklahoma Geological Survey, working with Geological Information Systems at the University of Oklahoma's Sarkeys Energy Center, undertook to construct this information system in response to the need for a computerized, centrally located library containing accurate, detailed information on the state's natural resources. Particular emphasis during this phase of development was placed on computerizing information related to the energy needs of the nation, specifically oil and gas

  3. SMART SYSTEM for BatStateU ARASOF- NASUGBU ROTC

    Directory of Open Access Journals (Sweden)

    FROILAN GUBI DESTREZA

    2014-02-01

    Full Text Available Reserve Officer Training Corp (R.O.T.C is an organization that works under the Armed Forces of the Philippines (AFP. The officers of the ROTC processes such as recording of all the information needed in order to perform the different functions of the system. Officers of the ROTC encounter difficulty in the recording of information and checking of attendance, computing of grades, retrieving and securing of all informationit is done through manual process. That is why the proponents proposed the topic entitled “SMART SYSTEM for BatStateU ARASOF - NASUGBU ROTC”. The researchers used the prototyping technique to develop the step by step process of the system.The researchers also used the Visual Studio 2008 as the developing tool and MySQL server as the database.This system include database of all information that is required in order to perform the function of the system. The user can print reports of grades and official list of the enrolled students and officers. Complete with full backup and restore feature, the system was also proven to be a helpful source of information. This can help future researchers especially the third year students who may opt to upgrade this proposed system. The documentation produced and the software developed by the researchers and can be used as guidelines or references for future researchers. After thorough analysis, evaluation and testing, this study was found to be a big help to the BatStateU ARASOF – Nasugbu ROTC in terms of convenience, accuracy, security and speed in retrieving of information of any student and officers that is registered in the system.The “Smart System for BatStateU ARASOF - Nasugbu ROTC” for the ROTC students and officers of the BatStateU ARASOF –Nasugbu can be considered for actual implementation for the benefit of the entire University

  4. Quantized levitation states of superconducting multiple-ring systems

    International Nuclear Information System (INIS)

    Haley, S.B.; Fink, H.J.

    1996-01-01

    The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length ξ(T), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. copyright 1996 The American Physical Society

  5. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2017. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  6. CDC STATE System E-Cigarette Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Smokefree...

  7. Introduction to State Estimation of High-Rate System Dynamics.

    Science.gov (United States)

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  8. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  9. Benchmarking the State of Yap's Education Management Information System. REL 2016-117

    Science.gov (United States)

    Cicchinelli, Louis F.; Kendall, John S.; Dandapani, Nitara

    2016-01-01

    A quality data management system, such as an education management information system (EMIS), a state longitudinal data system, or a data warehouse, is key to ensuring that education policy, planning, and strategy decisions are grounded in accurate information. The chief state school officers of the Federated States of Micronesia have recognized…

  10. 42 CFR 403.321 - State systems for hospital outpatient services.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false State systems for hospital outpatient services. 403.321 Section 403.321 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... application for approval of an outpatient system if the following conditions are met: (a) The State's...

  11. 42 CFR 403.308 - State systems under demonstration projects-mandatory approval.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false State systems under demonstration projects..., DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State... approval of a State system are met under § 403.304 (b)(1)-(10) and § 403.304(c), and, if appropriate § 403...

  12. Analysing Infinite-State Systems by Combining Equivalence Reduction and the Sweep-Line Method

    DEFF Research Database (Denmark)

    Mailund, Thomas

    2002-01-01

    The sweep-line method is a state space exploration method for on-the-fly verification aimed at systems exhibiting progress. Presence of progress in the system makes it possible to delete certain states during state space generation, which reduces the memory used for storing the states. Unfortunat......The sweep-line method is a state space exploration method for on-the-fly verification aimed at systems exhibiting progress. Presence of progress in the system makes it possible to delete certain states during state space generation, which reduces the memory used for storing the states....... Unfortunately, the same progress that is used to improve memory performance in state space exploration often leads to an infinite state space: The progress in the system is carried over to the states resulting in infinitely many states only distinguished through the progress. A finite state space can...... property essential for the sweep-line method. We evaluate the new method on two case studies, showing significant improvements in performance, and we briefly discuss the new method in the context of Timed Coloured Petri Nets, where the “increasing global time” semantics can be exploited for more efficient...

  13. Securing quantum key distribution systems using fewer states

    Science.gov (United States)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2018-04-01

    Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.

  14. 2009 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2009 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  15. 2014 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  16. 2012 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2012 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  17. 2010 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2010 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  18. 2011 United States Automatic Identification System Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2011 United States Automatic Identification System Database contains vessel traffic data for planning purposes within the U.S. coastal waters. The database is...

  19. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  20. Operational Efficiency of Public Transport System in Kwara State ...

    African Journals Online (AJOL)

    Operational Efficiency of Public Transport System in Kwara State, Nigeria. ... The paper examines the operations of Public Transport in Nigeria using the Kwara State Transport Service as a case study. ... EMAIL FULL TEXT EMAIL FULL TEXT

  1. Control of Thermodynamical System with Input-Dependent State Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Krstic, Miroslav

    2013-01-01

    We consider control of a cooling system with several consumers that require cooling from a common source. The flow feeding coolant to the consumers can be controlled, but due to significant physical distances between the common source and the consumers, the coolant flow takes a non......-negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...

  2. Healthcare systems, the State, and innovation in the pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Ignacio José Godinho Delgado

    Full Text Available Abstract: This article discusses the relations between healthcare systems and the pharmaceutical industry, focusing on state support for pharmaceutical innovation. The study highlights the experiences of the United States, United Kingdom, and Germany, developed countries and paradigms of modern health systems (liberal, universal, and corporatist, in addition to Japan, a case of successful catching up. The study also emphasizes the experiences of China, India, and Brazil, large developing countries that have tried different catching up strategies, with diverse histories and profiles in their healthcare systems and pharmaceutical industries. Finally, with a focus on state forms of support for health research, the article addresses the mechanisms for linkage between health systems and the pharmaceutical industry, evaluating the possibilities of Brazil strengthening a virtuous interaction, favoring the expansion and consolidation of the Brazilian health system - universal but segmented ‒ and the affirmation of the innovative national pharmaceutical industry.

  3. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  4. The dynamic state monitoring of bearings system

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2015-03-01

    Full Text Available The article discusses the methods of dynamic state monitoring of bearings system. A vibration signal contains important technical information about the machine condition and is currently the most frequently used in diagnostic bearings systems. One of the main ad-vantages of machine condition monitoring is identifying the cause of failure of the bearings and taking preventative measures, otherwise the operation of such a machine will lead to frequent replacement of the bearings. Monitoring changes in the course of the operation of machin-ery repair strategies allows keeping the conditioned state of dynamic failure conditioned preventive repairs and repairs after-failure time. In addition, the paper also presents the fundamental causes of bearing failure and identifies mechanisms related to the creation of any type of damage.

  5. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    Science.gov (United States)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs

  6. State diagram of Pr-Bi system

    International Nuclear Information System (INIS)

    Abulkhaev, V.L.; Ganiev, I.N.

    1994-01-01

    By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.

  7. The Development of Innovation Systems as an Object with the State Regulation

    Directory of Open Access Journals (Sweden)

    Melnyk Alexander G.

    2017-09-01

    Full Text Available The article examines the processes of structuring the environment for the development of innovation systems in terms of the formation of a State regulated object. A methodological approach to definition of the State regulation at the primary, secondary and tertiary levels of structuring the environment of innovation systems has been suggested, based on the premise of the objective nature of the integration of social environment and market mechanisms into the structure of an object with the State regulation for the development of innovation systems. The definition of innovative systems as an object with the State regulation in terms of structural-organizational and functional areas of their expansion has been presented. A model for the progressive extension of the State regulated object by means of the development of innovation systems at the primary, secondary and tertiary levels of the structuring of environment in the process of formation of the institutional and technological structures of innovation systems has been proposed.

  8. RESEARCH ABSORBING STATES OF THE SYSTEM USING MARKOV CHAINS AND FUNDAMENTAL MATRIX

    Directory of Open Access Journals (Sweden)

    Тетяна Мефодіївна ОЛЕХ

    2016-02-01

    Full Text Available The article discusses the use Markov chains to research models that reflect the essential properties of systems, including methods of measuring the parameters of projects and assess their effectiveness. In the study carried out by its decomposition system for certain discrete state and create a diagram of transitions between these states. Specificity displays various objects Markov homogeneous chains with discrete states and discrete time determined by the method of calculation of transition probabilities. A model of success criteria for absorbing state system that is universal for all projects. A breakdown of passages to the matrix submatrices. The variation elements under matrix Q n with growth linked to the definition of important quantitative characteristics of absorbing circuits: 1 the probability of achieving the status of absorbing any given; 2 the mean number of steps needed to achieve the absorbing state; 3 the mean time that the system spends in each state to hit irreversible system in absorbing state. Built fundamental matrix that allowed calculating the different characteristics of the system. Considered fundamental matrix for supposedly modeled absorbing Markov chain, which gives the forecast for the behavior of the system in the future regardless of the absolute value of the time elapsed from the starting point. This property illustrates the fundamental matrix Markov process that characterizes it as a process without aftereffect.

  9. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  10. Power system dynamic state estimation using prediction based evolutionary technique

    International Nuclear Information System (INIS)

    Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan

    2016-01-01

    In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.

  11. Verus: A Tool for Quantitative Analysis of Finite-State Real-Time Systems.

    Science.gov (United States)

    1996-08-12

    Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle real - time systems . Models with...up to 10(exp 30) states can often be verified in minutes. In this paper, we present a new tool to analyze real - time systems , based on this technique...We have designed a language, called Verus, for the description of real - time systems . Such a description is compiled into a state-transition graph and

  12. Simulating quantum systems on classical computers with matrix product states

    International Nuclear Information System (INIS)

    Kleine, Adrian

    2010-01-01

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  13. Simulating quantum systems on classical computers with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Kleine, Adrian

    2010-11-08

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  14. Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems.

    Science.gov (United States)

    Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K Y Michael; Zhou, Changsong

    2016-01-08

    Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.

  15. State analysis requirements database for engineering complex embedded systems

    Science.gov (United States)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  16. Radiation-acoustic system for solid state research

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Kalinichenko, A.I.; Kresnin, Yu.; Popov, G.F.

    1998-01-01

    The radiation-acoustic system (RAS) is designed for comprehensive investigation of thermoelastic (TE), thermophysical (TP) and thermodynamic (TD) characteristics of structural materials. It operation is based on radiation-acoustic method, which includes probing of investigated materials by pulsed electron beam and registration the exited thermo acoustic stress. The hardware includes a CAMAC crate, an IBM PC computer, a set of sensors, a strobe analog-digital converter, a commutators of analog signals, and drivers of physical parameters. The system allows to process thermo acoustic signals generated in beam-target interaction and to extract information about phase state, TE-, TP-, and TD characteristics of the target materials. The system was used for simultaneous measuring of phase state, TE-, TP-, and TD characteristics and for investigation of kinetics of structural phase transitions in multifunctional materials such as materials with the shape memory effect (CuAlNi, TiNi, TiNiFe, TiNiCu), rare-earth metals (Dy, Gd), high-temperature superconductors YBaCuO, piezoelectric crystals (TiBa, ZrTiPb-ceramics), polymers (PMMA, PTFE, PE) etc

  17. Cardiovascular system state of the first year students

    Directory of Open Access Journals (Sweden)

    Kosynskyi E. О.

    2010-05-01

    Full Text Available Approaches to definition of a level of state of health of students are shown. 94 students (48 girls and 46 youths of basic medical group took part in an experiment. The state of the cardiovascular system was probed on indexes by frequencies of heart-throbs, arteriotony, index of Robinson, adaptation potential of circulation of blood. It is marked that at the beginning of school year students have a low level of functioning of the cardiovascular system. At 73,5 % girls and 62,2 % youth is expose tachycardia. At 8,2 % girls and 26,7 % youth is expose the enhanceable norm of systole arteriotony.

  18. Commercial Sexual Exploitation of Children and State Child Welfare Systems.

    Science.gov (United States)

    Bounds, Dawn; Julion, Wrenetha A; Delaney, Kathleen R

    2015-01-01

    In several states, commercial sexual exploitation of children (CSEC) is now a reportable child abuse offense. Illinois has taken the lead in tackling the issue and the Illinois experience illuminates valuable lessons. This article delineates the protection, practice, and policy implications that evolve when CSEC falls under a state child welfare system. The specific aims are to (a) discuss CSEC, its victims, risks, harms, and challenges inherent in providing effective care; (b) use Illinois as an exemplar to explicate the consequences and implementation challenges of establishing a state reporting system that frames CSEC as a child welfare issue; (c) recommend strategies for developing effective state reporting models, and (d) demonstrate how nurses are well poised to advocate for victims of human trafficking on both state and national levels. Recommendations for improving the identification of CSEC victims and overcoming challenges to state implementation are offered. © The Author(s) 2015.

  19. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  20. Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools

    Directory of Open Access Journals (Sweden)

    M. Anushka S. Perera

    2015-07-01

    Full Text Available This paper discusses the topics related to automating parameter, disturbance and state estimation analysis of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex systems, before implementing any state estimator, the system should be analyzed for structural observability and the structural observability analysis can be automated using Modelica and Python. As a result of structural observability analysis, the system may be decomposed into subsystems where some of them may be observable --- with respect to parameter, disturbances, and states --- while some may not. The state estimation process is carried out for those observable subsystems and the optimum number of additional measurements are prescribed for unobservable subsystems to make them observable. In this paper, an industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand, Norway. The copper production process is a large-scale complex system. It is shown how to implement various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based on available measurements.

  1. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  2. A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2018-02-01

    Full Text Available To address the issue that the phasor measurement units (PMUs of wide area measurement system (WAMS are not sufficient for static state estimation in most existing power systems, this paper proposes a mixed power system weighted least squares (WLS state estimation method integrating a wide-area measurement system and supervisory control and data acquisition (SCADA technology. The hybrid calculation model is established by incorporating phasor measurements (including the node voltage phasors and branch current phasors and the results of the traditional state estimator in a post-processing estimator. The performance assessment is discussed through setting up mathematical models of the distribution network. Based on PMU placement optimization and bias analysis, the effectiveness of the proposed method was proved to be accurate and reliable by simulations of different cases. Furthermore, emulating calculation shows this method greatly improves the accuracy and stability of the state estimation solution, compared with the traditional WLS state estimation.

  3. Approximating the ground state of gapped quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  4. On a State-Sponsored Sport System in China.

    Science.gov (United States)

    Cao, Jie; Zhiwei, Pan

    The gold medal success of China in recent Olympic Games can be traced to the advancement of the state-sponsored sport system (SSSS). While the program was developed initially through socialist ideals, it is more than a centralized government system to monopolize resources for glorified sport performance. Participation in competition is an inherent part of the human condition. Success in athletics is associated with national identity and has economic, social, and cultural implications. Because of this, it is essential that the SSSS adjust and improve to keep pace with other facets of China's quickly changing national reform. In association with emerging economic reform, some sports now receive equal or more funds from private investments compared to government allocation. The state-sponsored sport system must continue to adapt to maintain the Chinese tradition of excellence in competition.

  5. 78 FR 43258 - Privacy Act; System of Records: Human Resources Records, State-31

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF STATE [Public Notice 8384] Privacy Act; System of Records: Human Resources Records... system of records, Human Resources Records, State- 31, pursuant to the provisions of the Privacy Act of... State proposes that the current system will retain the name ``Human Resources Records'' (previously...

  6. Power system static state estimation using Kalman filter algorithm

    Directory of Open Access Journals (Sweden)

    Saikia Anupam

    2016-01-01

    Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.

  7. Dynamic state estimation techniques for large-scale electric power systems

    International Nuclear Information System (INIS)

    Rousseaux, P.; Pavella, M.

    1991-01-01

    This paper presents the use of dynamic type state estimators for energy management in electric power systems. Various dynamic type estimators have been developed, but have never been implemented. This is primarily because of dimensionality problems posed by the conjunction of an extended Kalman filter with a large scale power system. This paper precisely focuses on how to circumvent the high dimensionality, especially prohibitive in the filtering step, by using a decomposition-aggregation hierarchical scheme; to appropriately model the power system dynamics, the authors introduce new state variables in the prediction step and rely on a load forecasting method. The combination of these two techniques succeeds in solving the overall dynamic state estimation problem not only in a tractable and realistic way, but also in compliance with real-time computational requirements. Further improvements are also suggested, bound to the specifics of the high voltage electric transmission systems

  8. Quantum logical states and operators for Josephson-like systems

    International Nuclear Information System (INIS)

    Faoro, Lara; Raffa, Francesco A; Rasetti, Mario

    2006-01-01

    We give a formal algebraic description of Josephson-type quantum dynamical systems, i.e., Hamiltonian systems with a cos θ-like potential term. The two-boson Heisenberg algebra plays for such systems the role that the h(1) algebra does for the harmonic oscillator. A single Josephson junction is selected as a representative of Josephson systems. We construct both logical states (codewords) and logical (gate) operators in the superconductive regime. The codewords are the even and odd coherent states of the two-boson algebra: they are shift-resistant and robust, due to squeezing. The logical operators acting on the qubit codewords are expressed in terms of operators in the enveloping of the two-boson algebra. Such a scheme appears to be relevant for quantum information applications. (letter to the editor)

  9. A Class of Stochastic Hybrid Systems with State-Dependent Switching Noise

    DEFF Research Database (Denmark)

    Leth, John-Josef; Rasmussen, Jakob Gulddahl; Schiøler, Henrik

    2012-01-01

    In this paper, we develop theoretical results based on a proposed method for modeling switching noise for a class of hybrid systems with piecewise linear partitioned state space, and state-depending switching. We devise a stochastic model of such systems, whose global dynamics is governed...

  10. A switched state feedback law for the stabilization of LTI systems.

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, Keith R.

    2009-09-01

    Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.

  11. Effects of globalization on state budgeting system in Ukraine

    Directory of Open Access Journals (Sweden)

    Bobukh S.О.

    2017-06-01

    Full Text Available When writing the scientific article the scientific approaches of scientists concerning the essence of budgeting have been described. The paper deals with the principles of budgeting on the basis of which three main methodological components are singled out. It also analyzes the budgeting goals. The author investigates the impact of globalization on the system of state budgeting in Ukraine, its positive and negative effects. Despite significant achievements it is necessary to explore the effects of globalization on the system of state budgeting in Ukraine. Budgeting is the management technology that provides the formation of budgets for the selected objects and their use to ensure optimal structure and correlation of profits and expenses, income and expenditure, assets and liabilities of the organization or its components to achieve the set goals taking into account the influence of the environment. It should be emphasized that budgeting in no way replaces the control system, but only creates a new approach to management from the standpoint of the balance of incomes and expenditures, profits and expenses, assets and liabilities of the organization as a whole or its components. The state budgeting of the country as the part of the financial system is the channel through which economic globalization, namely financial globalization, affects economic development of the state. Favorable global effect occurs, in particular, in terms of the impact on financial development. Therefore, it is necessary to + the nature of the relationship between these two processes.

  12. Tissue P Systems With Channel States Working in the Flat Maximally Parallel Way.

    Science.gov (United States)

    Song, Bosheng; Perez-Jimenez, Mario J; Paun, Gheorghe; Pan, Linqiang

    2016-10-01

    Tissue P systems with channel states are a class of bio-inspired parallel computational models, where rules are used in a sequential manner (on each channel, at most one rule can be used at each step). In this work, tissue P systems with channel states working in a flat maximally parallel way are considered, where at each step, on each channel, a maximal set of applicable rules that pass from a given state to a unique next state, is chosen and each rule in the set is applied once. The computational power of such P systems is investigated. Specifically, it is proved that tissue P systems with channel states and antiport rules of length two are able to compute Parikh sets of finite languages, and such P systems with one cell and noncooperative symport rules can compute at least all Parikh sets of matrix languages. Some Turing universality results are also provided. Moreover, the NP-complete problem SAT is solved by tissue P systems with channel states, cell division and noncooperative symport rules working in the flat maximally parallel way; nevertheless, if channel states are not used, then such P systems working in the flat maximally parallel way can solve only tractable problems. These results show that channel states provide a frontier of tractability between efficiency and non-efficiency in the framework of tissue P systems with cell division (assuming P ≠ NP ).

  13. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  14. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  15. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  16. 42 CFR 403.304 - Minimum requirements for State systems-discretionary approval.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Minimum requirements for State systems..., DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State... the system meets the requirements in paragraphs (b) and (c) of this section and, if applicable...

  17. State of the art Advanced Driver Assistance Systems (ADAS).

    NARCIS (Netherlands)

    OEI, H.-L.

    2017-01-01

    An overview of state-of-the-art ADA Advanced Driver Assistance systems is given. First a main structuring system for the ADA systems is presented, needed for purposes of relevancy, and consistency : the three phases in the accident process, i.e. pre-crash, crash and post-crash; the driving task at

  18. The Management and Demonstration System at Murray State University.

    Science.gov (United States)

    Schroeder, Gary G.

    The management system in use at the Murray State University Teacher Corps Project is described. The system uses management by objectives and the demonstration approach, and encourages managers to focus on the development and demonstration of ideas, processes, and structures. The system's operating concepts of time management and human resources…

  19. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  20. Short-Term State Forecasting-Based Optimal Voltage Regulation in Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui; Jiang, Huaiguang; Zhang, Yingchen

    2017-05-17

    A novel short-term state forecasting-based optimal power flow (OPF) approach for distribution system voltage regulation is proposed in this paper. An extreme learning machine (ELM) based state forecaster is developed to accurately predict system states (voltage magnitudes and angles) in the near future. Based on the forecast system states, a dynamically weighted three-phase AC OPF problem is formulated to minimize the voltage violations with higher penalization on buses which are forecast to have higher voltage violations in the near future. By solving the proposed OPF problem, the controllable resources in the system are optimally coordinated to alleviate the potential severe voltage violations and improve the overall voltage profile. The proposed approach has been tested in a 12-bus distribution system and simulation results are presented to demonstrate the performance of the proposed approach.

  1. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  2. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  3. A framework for modeling information propagation of biological systems at critical states.

    Science.gov (United States)

    Hu, Feng; Yang, Fang

    2016-03-01

    We explore the dynamics of information propagation at the critical state of a biologically inspired system by an individual-based computer model. "Quorum response", a type of social interaction which has been recognized taxonomically in animal groups, is applied as the sole interaction rule among individuals. In the model, we assume a truncated Gaussian distribution to depict the distribution of the individuals' vigilance level. Each individual can assume either a naïve state or an alarmed one and only switches from the former state to the latter one. If an individual has turned into an alarmed state, it stays in the state during the process of information propagation. Initially, each individual is set to be at the naïve state and information is tapped into the system by perturbing an individual at the boundaries (alerting it to the alarmed state). The system evolves as individuals turn into the alarmed state, according to the quorum response rules, consecutively. We find that by fine-tuning the parameters of the mean and the standard deviation of the Gaussian distribution, the system is poised at a critical state. We present the phase diagrams to exhibit that the parameter space is divided into a super-critical and a sub-critical zone, in which the dynamics of information propagation varies largely. We then investigate the effects of the individuals' mobility on the critical state, and allow a proportion of randomly chosen individuals to exchange their positions at each time step. We find that mobility breaks down criticality of the system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A Quantised State Systems Approach for Jacobian Free Extended Kalman Filtering

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2007-01-01

    Model based methods for control of intelligent autonomous systems rely on a state estimate being available. One of the most common methods to obtain a state estimate for non-linear systems is the Extended Kalman Filter (EKF) algorithm. In order to apply the EKF an expression must be available...

  5. A Novel Multisensor Traffic State Assessment System Based on Incomplete Data

    Directory of Open Access Journals (Sweden)

    Yiliang Zeng

    2014-01-01

    Full Text Available A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.

  6. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  7. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac

    2009-12-01

    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  8. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  9. Ready to Assemble: Grading State Higher Education Accountability Systems

    Science.gov (United States)

    Aldeman, Chad; Carey, Kevin

    2009-01-01

    States need strong higher education systems, now more than ever. In the tumultuous, highly competitive 21st century economy, citizens and workers need knowledge, skills, and credentials in order to prosper. Yet many colleges and universities are falling short. To give all students the best possible postsecondary education, states must create…

  10. Sudden switching in two-state systems

    International Nuclear Information System (INIS)

    Shakov, Kh Kh; McGuire, J H; Kaplan, L; Uskov, D; Chalastaras, A

    2006-01-01

    Analytic solutions are developed for two-state systems (e.g. qubits) strongly perturbed by a series of rapidly changing pulses, called 'kicks'. The evolution matrix may be expressed as a time-ordered product of evolution matrices for single kicks. Single, double and triple kicks are explicitly considered, and the onset of observability of time ordering is examined. The effects of different order of kicks on the dynamics of the system are studied and compared with effects of time ordering in general. To determine the range of validity of this approach, the effect of using pulses of finite widths for 2s-2p transitions in atomic hydrogen is examined numerically

  11. Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System

    Science.gov (United States)

    Porto, J. V.

    2017-04-01

    The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.

  12. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  13. Qualitative Description of Electric Power System Future States

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Trevor D.; Corbin, Charles D.

    2018-03-06

    The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play an important role in the evolution of the power system.

  14. State-space approach for evaluating the soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Cassaro, F.A.M.; Tominaga, T.T.; Bacchi, O.O.S.; Oliveira, J.C.M.; Dourado-Neto, D.

    2004-01-01

    Using as examples one sugarcane and one forage oat experiment, both carried out in the State of Sao Paulo, Brazil, this chapter presents recent state-space approaches used to evaluate the relation between soil and plant properties. A contrast is made between classical statistics methodologies that do not take into account the sampling position coordinates, and the more recently used methodologies which include the position coordinates, and allow a better interpretation of the field-sampled data. Classical concepts are first introduced, followed by spatially referenced methodologies like the autocorrelation function, the cross correlation function, and the state-space approach. Two variations of the state-space approach are given: one emphasizes the evolution of the state system while the other based on the bayesian formulation emphasizes the evolution of the estimated observations. It is concluded that these state-space analyses using dynamic regression models improve data analyses and are therefore recommended for analyzing time and space data series related to the performance of a given soil-plant-atmosphere system. (author)

  15. Decaying states as physically nonisolable partial systems

    International Nuclear Information System (INIS)

    Szasz, G.I.

    1976-01-01

    Presently the investigations of decaying quantum mechanical systems lack a well-founded concept, which is reflected by several formal difficulties of the corresponding mathematical treatment. In order to clarify in some respect the situation, it is investigated, within the framework of nonrelativistic quantum mechanics, the resonant scattering of an initially well localized partial wave packet. If the potential decreases sufficiently fast for r→infinite, the wave packet can be expressed at sufficiently long time after the scattering has taken place, as the sum of a term describing the direct scattering and a function of the resonant solution with complex 'momentum'. From such a heuristic relation one can deduce not only the probability for the creation of unstable particles but also obtain some hints to a connection between decaying states and physically nonisolable partial systems. On the other hand, this connection can perhaps display the inadequacy of attempts which suggest to solve the problem of decaying states within the usual Hilbert space methods. (author)

  16. Advanced topics in control and estimation of state-multiplicative noisy systems

    CERN Document Server

    Gershon, Eli

    2013-01-01

    Advanced Topics in Control and Estimation of State-Multiplicative Noisy Systems begins with an introduction and extensive literature survey. The text proceeds to cover solutions of measurement-feedback control and state problems and the formulation of the Bounded Real Lemma for both continuous- and discrete-time systems. The continuous-time reduced-order and stochastic-tracking control problems for delayed systems are then treated. Ideas of nonlinear stability are introduced for infinite-horizon systems, again, in both the continuous- and discrete-time cases. The reader is introduced to six practical examples of noisy state-multiplicative control and filtering associated with various fields of control engineering. The book is rounded out by a three-part appendix containing stochastic tools necessary for a proper appreciation of the text: a basic introduction to nonlinear stochastic differential equations and aspects of switched systems and peak to peak  optimal control and filtering. Advanced Topics in Contr...

  17. Improving Control System Cyber-State Awareness using Known Secure Sensor Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Miles McQueen

    2012-09-01

    Abstract—This paper presents design and simulation of a low cost and low false alarm rate method for improved cyber-state awareness of critical control systems - the Known Secure Sensor Measurements (KSSM) method. The KSSM concept relies on physical measurements to detect malicious falsification of the control systems state. The KSSM method can be incrementally integrated with already installed control systems for enhanced resilience. This paper reviews the previously developed theoretical KSSM concept and then describes a simulation of the KSSM system. A simulated control system network is integrated with the KSSM components. The effectiveness of detection of various intrusion scenarios is demonstrated on several control system network topologies.

  18. A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2015-04-01

    Full Text Available With the development of modern society, the scale of the power system is rapidly increased accordingly, and the framework and mode of running of power systems are trending towards more complexity. It is nowadays much more important for the dispatchers to know exactly the state parameters of the power network through state estimation. This paper proposes a robust power system WLS state estimation method integrating a wide-area measurement system (WAMS and SCADA technology, incorporating phasor measurements and the results of the traditional state estimator in a post-processing estimator, which greatly reduces the scale of the non-linear estimation problem as well as the number of iterations and the processing time per iteration. This paper firstly analyzes the wide-area state estimation model in detail, then according to the issue that least squares does not account for bad data and outliers, the paper proposes a robust weighted least squares (WLS method that combines a robust estimation principle with least squares by equivalent weight. The performance assessment is discussed through setting up mathematical models of the distribution network. The effectiveness of the proposed method was proved to be accurate and reliable by simulations and experiments.

  19. 77 FR 65049 - Privacy Act; System of Records: Translator and Interpreter Records, State-37

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF STATE [Public Notice 8066] Privacy Act; System of Records: Translator and... an existing system of records, Translator and Interpreter Records, State-37, pursuant to the... INFORMATION: The Department of State proposes that the current system will retain the name ``Translator and...

  20. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  1. Selective maintenance for multi-state series–parallel systems under economic dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.; Pandey, Mayank

    2014-01-01

    This paper presents a study on selective maintenance for multi-state series–parallel systems with economically dependent components. In the selective maintenance problem, the maintenance manager has to decide which components should receive maintenance activities within a finite break between missions. All the system reliabilities in the next operating mission, the available budget and the maintenance time for each component from its current state to a higher state are taken into account in the optimization models. In addition, the components in series–parallel systems are considered to be economically dependent. Time and cost savings will be achieved when several components are simultaneously repaired in a selective maintenance strategy. As the number of repaired components increases, the saved time and cost will also increase due to the share of setting up between components and another additional reduction amount resulting from the repair of multiple identical components. Different optimization models are derived to find the best maintenance strategy for multi-state series–parallel systems. A genetic algorithm is used to solve the optimization models. The decision makers may select different components to be repaired to different working states based on the maintenance objective, resource availabilities and how dependent the repair time and cost of each component are

  2. To the question about the states of workability for automatic control systems with complicated structure

    Science.gov (United States)

    Kuznetsov, P. A.; Kovalev, I. V.; Losev, V. V.; Kalinin, A. O.; Murygin, A. V.

    2016-04-01

    The article discusses the reliability of automated control systems. Analyzes the approach to the classification systems for health States. This approach can be as traditional binary approach, operating with the concept of "serviceability", and other variants of estimation of the system state. This article provides one such option, providing selective evaluation of components for the reliability of the entire system. Introduced description of various automatic control systems and their elements from the point of view of health and risk, mathematical method of determining the transition object from state to state, they differ from each other in the implementation of the objective function. Explores the interplay of elements in different States, the aggregate state of the elements connected in series or in parallel. Are the tables of various logic States and the principles of their calculation in series and parallel connection. Through simulation the proposed approach is illustrated by finding the probability of getting into the system state data in parallel and serially connected elements, with their different probabilities of moving from state to state. In general, the materials of article will be useful for analyzing of the reliability the automated control systems and engineering of the highly-reliable systems. Thus, this mechanism to determine the State of the system provides more detailed information about it and allows a selective approach to the reliability of the system as a whole. Detailed results when assessing the reliability of the automated control systems allows the engineer to make an informed decision when designing means of improving reliability.

  3. Local decoherence-resistant quantum states of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in

    2015-02-06

    We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.

  4. A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system

    International Nuclear Information System (INIS)

    Azadeh, A.; Maleki Shoja, B.; Ghanei, S.; Sheikhalishahi, M.

    2015-01-01

    This research investigates a redundancy-scheduling optimization problem for a multi-state series parallel system. The system is a flow shop manufacturing system with multi-state machines. Each manufacturing machine may have different performance rates including perfect performance, decreased performance and complete failure. Moreover, warm standby redundancy is considered for the redundancy allocation problem. Three objectives are considered for the problem: (1) minimizing system purchasing cost, (2) minimizing makespan, and (3) maximizing system reliability. Universal generating function is employed to evaluate system performance and overall reliability of the system. Since the problem is in the NP-hard class of combinatorial problems, genetic algorithm (GA) is used to find optimal/near optimal solutions. Different test problems are generated to evaluate the effectiveness and efficiency of proposed approach and compared to simulated annealing optimization method. The results show the proposed approach is capable of finding optimal/near optimal solution within a very reasonable time. - Highlights: • A redundancy-scheduling optimization problem for a multi-state series parallel system. • A flow shop with multi-state machines and warm standby redundancy. • Objectives are to optimize system purchasing cost, makespan and reliability. • Different test problems are generated and evaluated by a unique genetic algorithm. • It locates optimal/near optimal solution within a very reasonable time

  5. State level operations and interaction with facility level systems

    International Nuclear Information System (INIS)

    Bellinger, J.

    1989-01-01

    The role of the State System of Accounting for and Control of Nuclear Materials at the State level, particularly the role of the National Authority, in ensuring that both national and international safeguards objectives are met is discussed. The legislative basis for the National Authority is examined. The activities of Australia's National Authority - the Australian Safeguards Office - are described

  6. State estimation for networked control systems using fixed data rates

    Science.gov (United States)

    Liu, Qing-Quan; Jin, Fang

    2017-07-01

    This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.

  7. The development of an automatic classification system of nuclear power plant states

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsuoka, Takeshi

    2000-01-01

    For the future autonomous plant, automatic control and diagnostics are being incorporated and operators are mainly engaged in the high levels of diagnosis and decision-making in emergencies. Therefore these matters will be performed through the Man-Machine Interface(MMI). Ship Research Institute has been carrying out the research on the MMI system for autonomous power plants. The automatic classification system of plant states is one of the functions of this MMI and the system utilizes COBWEB, which is known as a way of clustering data to acquire concepts. In this paper, many plant states produced by a plant simulator we examined in order to confirm the effectiveness of this system. The system has well classified plant states produced by a plant simulator. (author)

  8. Finite-time stabilisation of a class of switched nonlinear systems with state constraints

    Science.gov (United States)

    Huang, Shipei; Xiang, Zhengrong

    2018-06-01

    This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.

  9. Typical equilibrium state of an embedded quantum system.

    Science.gov (United States)

    Ithier, Grégoire; Ascroft, Saeed; Benaych-Georges, Florent

    2017-12-01

    We consider an arbitrary quantum system coupled nonperturbatively to a large arbitrary and fully quantum environment. In the work by Ithier and Benaych-Georges [Phys. Rev. A 96, 012108 (2017)2469-992610.1103/PhysRevA.96.012108] the typicality of the dynamics of such an embedded quantum system was established for several classes of random interactions. In other words, the time evolution of its quantum state does not depend on the microscopic details of the interaction. Focusing on the long-time regime, we use this property to calculate analytically a partition function characterizing the stationary state and involving the overlaps between eigenvectors of a bare and a dressed Hamiltonian. This partition function provides a thermodynamical ensemble which includes the microcanonical and canonical ensembles as particular cases. We check our predictions with numerical simulations.

  10. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  11. Information Systems for Nontraditional Study; The State-Of-The-Art.

    Science.gov (United States)

    Richards, Berry; Oakey, Joseph H.

    The information systems of nontraditional education are examined. Case studies illustrate the variation in nontraditional programs: Open University of Pennsylvania, British Open University, Prince George's County Library (Maryland), University Without Walls--Skidmore, Empire State College--Saratoga, Minnesota Metropolitan State College, and…

  12. Numerical studies of entangled positive-partial-transpose states in composite quantum systems

    International Nuclear Information System (INIS)

    Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan

    2010-01-01

    We report here on the results of numerical searches for PPT states in a series of bipartite quantum systems of low dimensions. PPT states are represented by density matrices that remain positive semidefinite under partial transposition with respect to one of the subsystems, and our searches are for such states with specified ranks for the density matrix and its partial transpose. For a series of different ranks extremal PPT states and nonextremal entangled PPT states have been found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveals several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.

  13. Development of Unavailability Estimation Method Considering Various Operating States of Dynamic Systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Kang, Hyun Gook; Seong, Poong Hyun

    2011-01-01

    A dynamic system can be defined as a system which has a state at any given time which can be represented by a point in an appropriate state space. In order to analyze the dynamic systems, various failure mechanisms with time requirements such as the failure orders of sub-components and the changes of system states with time need to be modeled and quantitatively estimated. Since the conventional static fault tree analysis has imitations when applied to the dynamic systems, two types of dynamic fault tree methods have been developed. Dugan et al. proposed four dynamic gates to handle failure mechanisms composed of sequence-dependent events and Cepin and Mavko proposed the use of house events to handle failure mechanisms of dynamic systems which have various operating states with time. However, modeling a fault tree from a complex system is a cumbersome task even for the experts who is familiar to it, and demands a great amount of attention and caution to avoid errors. In order to model complex systems more conveniently from system block diagrams compared to the fault tree, a reliability graph with general gates (RGGG) was developed by introduction of general gates to a conventional reliability graph. The RGGG is an easy-to-modeling method as powerful as fault tree. It was also improved to analyze the dynamic failure mechanisms composed of sequence-dependent events with the addition of dynamic nodes. In this paper, unavailability assessment method for dynamic systems which have various operating states is proposed using the RGGG method. To achieve this, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used for the quantification

  14. State determination for composite systems of two spatial qubits

    International Nuclear Information System (INIS)

    Lima, G; Torres-Ruiz, F A; Neves, L; Delgado, A; Saavedra, C; Padua, S

    2007-01-01

    In a recent letter [Phys. Rev. Lett. 94, 100501 (2005)], we presented a scheme for generating pure entangled states of spatial qudits using transverse correlations of parametric down-converted photons. Here we show how the modication of this scheme can be used to generate mixed states and we investigate the state determination for composite systems of two spatial qubits, motivated by the fact that quantum information protocols may be easier to be implemented for this case. By means of local operations on the twin photons we were able to perform the quantum tomography process to reconstruct the density matrix of a mixed state of two spatial qubits

  15. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  16. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  17. Emergency distress call system for automobiles in Lagos state, Nigeria

    African Journals Online (AJOL)

    Emergency distress call system for automobiles in Lagos state, Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... and communications technology capabilities to transportation and the medical care system in order to save lives, ...

  18. An introduction to system reliability for solid-state lighting

    NARCIS (Netherlands)

    Driel, W.D. van; Evertz, F.E.; Zaal, J.J.M.; Morales Nápoles, O.; Yuan, C.A.

    2013-01-01

    Solid-State Lighting (SSL) applications are slowly but gradually pervading into our daily life. An SSL system is composed of an light-emitting diode (LED) engine with a microelectronic driver(s) in a housing that also supplies the optic design. Knowledge of system-level reliability is crucial for

  19. Information Management System for the California State Water Resources Control Board (SWRCB)

    Science.gov (United States)

    Heald, T. C.; Redmann, G. H.

    1973-01-01

    A study was made to establish the requirements for an integrated state-wide information management system for water quality control and water quality rights for the State of California. The data sources and end requirements were analyzed for the data collected and used by the numerous agencies, both State and Federal, as well as the nine Regional Boards under the jurisdiction of the State Board. The report details the data interfaces and outlines the system design. A program plan and statement of work for implementation of the project is included.

  20. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    Science.gov (United States)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  1. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  2. Euclidean null controllability of linear systems with delays in state ...

    African Journals Online (AJOL)

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  3. Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance

    International Nuclear Information System (INIS)

    Soro, Isaac W.; Nourelfath, Mustapha; Ait-Kadi, Daoud

    2010-01-01

    In this paper, we develop a model for evaluating the availability, the production rate and the reliability function of multi-state degraded systems subjected to minimal repairs and imperfect preventive maintenance. The status of the system is considered to degrade with use. These degradations may lead to decrease in the system efficiency. It is assumed that the system can consecutively degrade into several discrete states, which are characterized by different performance rates, ranging from perfect functioning to complete failure. The latter is observed when the degradation level reaches a certain critical threshold such as the system efficiency may decrease to an unacceptable limit. In addition, the system can fail randomly from any operational or acceptable state and can be repaired. This repair action brings the system to its previous operational state without affecting its failure rate (i.e., minimal repair). The used preventive maintenance policy suggests that if the system reaches the last acceptable degraded state, it is brought back to one of the states with higher efficiency. Considering customer demand as constant, the system is modeled as a continuous-time Markov process to assess its instantaneous and stationary performance measures. A numerical example is given to illustrate the proposed model.

  4. Topology of sustainable management in dynamical Earth system models with desirable states

    Science.gov (United States)

    Heitzig, J.; Kittel, T.

    2015-03-01

    To keep the Earth system in a desirable region of its state space, such as the recently suggested "tolerable environment and development window", "planetary boundaries", or "safe (and just) operating space", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this article, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization, the sustainable management of the Earth system may require decisions of a more discrete type that come in the form of several dilemmata, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and increasing flexibility. We illustrate the concepts and dilemmata with conceptual models from classical mechanics, climate science, ecology, economics, and coevolutionary Earth system modelling and discuss their potential relevance for the climate and sustainability debate.

  5. Quadratic Plus Linear Operators which Preserve Pure States of Quantum Systems: Small Dimensions

    International Nuclear Information System (INIS)

    Saburov, Mansoor

    2014-01-01

    A mathematical formalism of quantum mechanics says that a pure state of a quantum system corresponds to a vector of norm 1 and an observable is a self-adjoint operator on the space of states. It is of interest to describe all linear or nonlinear operators which preserve the pure states of the system. In the linear case, it is nothing more than isometries of Hilbert spaces. In the nonlinear case, this problem was open. In this paper, in the small dimensional spaces, we shall describe all quadratic plus linear operators which preserve pure states of the quantum system

  6. Prospects for regional safeguards systems - State-level Approach

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.

    2013-01-01

    The increased co-operation with Regional Safeguard's System (RSAC) is a relevant tool for strengthening effectiveness and improving the efficiency of the international safeguard. The new safeguards system that emerges from the application of the Additional Protocol (INFCIRC/540) and the full use of State-level Concept is a challenge and an opportunity for effectively incorporate RSAC into the international safeguards scheme. The challenge is to determine how the co-operation and coordination will be implemented on this new safeguards scheme. This paper presents some discussions and prospects on the issues to be faced by RSAC and IAEA during the implementation of State-level Approach (SLA) using all information available. It is also discussed how different levels of co-operation could be achieved when SLA is applied by IAEA safeguards. The paper is followed by the slides of the presentation. (authors)

  7. United States Army Weapon Systems 2010

    Science.gov (United States)

    2009-09-18

    equipment, tractor, van, wrecker, 8.8-ton Load Handling System (LHS), 8.8-ton LHS trailer, and 10-ton dump truck models). Three truck variants and...NJ) hydraulic pump and motor: Vickers (Jackson, MS) 131 UnIteD StAteS Army ACqUISItIon phASe InveStment Component High Mobility Engineer Excavator...MEDEVAC and hoist configuration, the UH-72A is also being fielded in a VIP, National Guard Homeland Security (HLS) and a Combined Training Center

  8. Tracking an open quantum system using a finite state machine: Stability analysis

    International Nuclear Information System (INIS)

    Karasik, R. I.; Wiseman, H. M.

    2011-01-01

    A finite-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if we can monitor the bath to which it is coupled with sufficient precision. In general these jumps, plus the between-jump evolution, create a trajectory which passes through infinitely many different pure states, even for ergodic systems. However, as shown recently by us [Phys. Rev. Lett. 106, 020406 (2011)], it is possible to construct adaptive monitorings which restrict the system to jumping between a finite number of states. That is, it is possible to track the system using a finite state machine as the apparatus. In this paper we consider the question of the stability of these monitoring schemes. Restricting to cyclic jumps for a qubit, we give a strong analytical argument that these schemes are always stable and supporting analytical and numerical evidence for the example of resonance fluorescence. This example also enables us to explore a range of behaviors in the evolution of individual trajectories, for several different monitoring schemes.

  9. Exchange interactions in two-state systems: rare earth pyrochlores

    Science.gov (United States)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  10. Modular Measuring System for Assesment of the Thyroid Gland Functional State

    Directory of Open Access Journals (Sweden)

    Vladimir Rosik

    2005-01-01

    Full Text Available Distributed modular system BioLab for biophysical examinations enabling assessment of the thyroid gland functional state is presented in the paper. The BioLab system is based on a standard notebook or desktop PC connected to an Ethernet-based network of two smart sensors. These sensors are programmed and controlled from PC and enable measurement of selected biosignals of the human cardiovascular and neuromuscular system that are influenced by the production of thyroid gland hormones. Recorded biosignals are processed in a PC and peripheral indicators characterizing thyroid gland functional state are evaluated.

  11. Phase I Development of Neutral Beam Injector Solid-State Power System

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth

    2017-10-01

    Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.

  12. Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control

    International Nuclear Information System (INIS)

    Tan Yi-Peng; Li Jun; Zhou Xian-Yi; Peng Xin-Hua; Du Jiang-Feng; Nie Xin-Fang; Chen Hong-Wei

    2012-01-01

    Pseudo-pure state (PPS) preparation is crucial in nuclear magnetic resonance quantum computation. There have been some methods in spin-1/2 systems and a few attempts in quadrupolar spin systems. As optimal control via gradient ascent pulses engineering (GRAPE) has been widely used in quantum information science, we apply this technique to PPS preparation in quadrupolar spin systems. This approach shows an effective and fast quantum control method for both the state preparation and the realization of quantum gates in quadrupolar systems

  13. Multi-state reliability for pump group in system based on UGF and semi-Markov process

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2012-01-01

    In this paper, multi-state reliability value of pump group in nuclear power system is obtained by the combination method of the universal generating function (UGF) and Semi-Markov process. UGF arithmetic model of multi-state system reliability is studied, and the performance state probability expression of multi-state component is derived using semi-Markov theory. A quantificational model is defined to express the performance rate of the system and component. Different availability results by multi-state and binary state analysis method are compared under the condition whether the performance rate can satisfy the demanded value, and the mean value of system instantaneous output performance is also obtained. It shows that this combination method is an effective and feasible one which can quantify the effect of the partial failure on the system reliability, and the result of multi-state system reliability by this method deduces the modesty of the reliability value obtained by binary reliability analysis method. (authors)

  14. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states

    Science.gov (United States)

    Nori, Franco; Ashhab, Sahel

    2011-03-01

    We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.

  15. Valency state changes in lanthanide-contained systems under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, A

    1980-08-01

    Changes in valency state induced by pressure in samarium sulphide SmS remind one of alchemy, as the mat black initial substance shines golden after the electron transition. The alchemist's dream is of course not realized, however the compound does exhibit an unusually interesting behaviour in the new state. The valency state of samarium as newly appeared fluctuated very rapidly between two electron configurations. Manipulation of the valency state by pressure or chemical substitution can basically change the physical properties of systems containing lanthanides. The phenomena are described and discussed in the following survey.

  16. Selective maintenance of multi-state systems with structural dependence

    International Nuclear Information System (INIS)

    Dao, Cuong D.; Zuo, Ming J.

    2017-01-01

    This paper studies the selective maintenance problem for multi-state systems with structural dependence. Each component can be in one of multiple working levels and several maintenance actions are possible to a component in a maintenance break. The components structurally form multiple hierarchical levels and dependence groups. A directed graph is used to represent the precedence relations of components in the system. A selective maintenance optimization model is developed to maximize the system reliability in the next mission under time and cost constraints. A backward search algorithm is used to determine the assembly sequence for a selective maintenance scenario. The maintenance model helps maintenance managers in determining the best combination of maintenance activities to maximize the probability of successfully completing the next mission. Examples showing the use of the proposed method are presented. - Highlights: • A selective maintenance model for multi-state systems is proposed considering both economic and structural dependence. • Structural dependence is modeled as precedence relationship when disassembling components for maintenance. • Resources for disassembly and maintenance are evaluated using a backward search algorithm. • Maintenance strategies with and without structural dependence are analyzed. • Ignoring structural dependence may lead to over-estimation of system reliability.

  17. Stabilization of (state, input)-disturbed CSTRs through the port-Hamiltonian systems approach

    OpenAIRE

    Lu, Yafei; Fang, Zhou; Gao, Chuanhou

    2017-01-01

    It is a universal phenomenon that the state and input of the continuous stirred tank reactor (CSTR) systems are both disturbed. This paper proposes a (state, input)-disturbed port-Hamiltonian framework that can be used to model and further designs a stochastic passivity based controller to asymptotically stabilize in probability the (state, input)-disturbed CSTR (sidCSTR) systems. The opposite entropy function and the availability function are selected as the Hamiltonian for the model and con...

  18. Features of monitoring system of physical state of urban bridges.

    Directory of Open Access Journals (Sweden)

    A.V. Bilchenko

    2011-12-01

    Full Text Available Abstract, the main features of urban bridge, structure are presented. The proposals concerning specialized management creation for exploitation, maintenance and reconstruction of bridges are developed. The essence of the new approach designed for the change of urban bridge structures physical state assessment system is stated.

  19. Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations

    Directory of Open Access Journals (Sweden)

    Sung Wook Yun

    2014-01-01

    Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.

  20. "ZEMSTVO STATE AFFAIR": UNIT OF ZEMSTVO IN STATE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Гульназ Булатовна Азаматова

    2014-12-01

    Full Text Available Local self-government in the Russian Empire (1864-1918 arose as a result of the bourgeois reforms and had a diversified character. This article reviews the role of zemstvo in the implementation of individual bourgeois reforms, local self-government relations with the justice of the peace, peasant authorities, the system of taxation and management of national education. The author concludes that district and executive councils complemented the administrative-bureaucratic system of local government through the district and provincial levels and human resources structure. At the same time, local authorities increased the scope of decentralization and democratization of local administration through election of magistrates, civil servants of peasant bodies as well as via representation in collegial bodies. The independent status of zemstvo promoted to emergence of a new level in the administrative and political management culture. The government used zemstvo to create a modernized system of taxation. Through district councils the Russian Empire established the valuation area of taxation and professional human resources. Thus, district councils helped to improve state administration and became the tool of implementation of the government reform programs in the late 19 th and early 20 th centuries.

  1. Two-dimensional systems from introduction to state of the art

    CERN Document Server

    Benzaouia, Abdellah; Tadeo, Fernando

    2016-01-01

    A solution permitting the stabilization of 2-dimensional (2-D) continuous-time saturated system under state feedback control is presented in this book. The problems of delay and saturation are treated at the same time. The authors obtain novel results on continuous 2-D systems using the unidirectional Lyapunov function. The control synthesis and the saturation and delay conditions are presented as linear matrix inequalities. Illustrative examples are worked through to show the effectiveness of the approach and many comparisons are made with existing results. The second half of the book moves on to consider robust stabilization and filtering of 2-D systems with particular consideration being given to 2-D fuzzy systems. Solutions for the filter-design problems are demonstrated by computer simulation. The text builds up to the development of state feedback control for 2-D Takagi–Sugeno systems with stochastic perturbation. Conservatism is reduced by using slack matrices and the coupling between the Lyapunov ma...

  2. Multiple-state quantum Otto engine, 1D box system

    Energy Technology Data Exchange (ETDEWEB)

    Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  3. Norms and Politics of State Formation in the International System ...

    African Journals Online (AJOL)

    The emergence of state system in the history of mankind brought alongside issues that border on the modalities for its existence. There has actually not been any known rigid formula for its emergence. This has been eliciting excitement and, on many occasions, conflicts among proponents and opponents of rigid state ...

  4. Flexible AC transmission systems: the state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Edris, Abdel-Aty [Electric Power Research Inst., Palo Alto, CA (United States). Electric Systems Division

    1994-12-31

    Flexible AC transmission systems (FACTS) is a concept promoting the use of power electronic controllers to enhance the controllability and usable capacity of AC transmission. This paper presents the state of the art of FACTS and the status of the current projects for the application of the FACTS controllers in transmission systems. (author) 8 refs., 8 figs.

  5. Establishing a national safeguards system at the State level

    International Nuclear Information System (INIS)

    Lopez Lizana, Fernando

    2001-01-01

    This paper is the guide to a workshop designed to enable the participants to gain a better understanding of National Safeguards Systems and their functions. The workshop provides an opportunity to address the requirements for the organization that has to carry out the system functions at the State level in a country having a research reactor and ancillary laboratories

  6. Steady-State-Preserving Simulation of Genetic Regulatory Systems

    Directory of Open Access Journals (Sweden)

    Ruqiang Zhang

    2017-01-01

    Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.

  7. Incident and Trafficking Database: New Systems for Reporting and Accessing State Information

    International Nuclear Information System (INIS)

    Dimitrovski, D.; Kittley, S.

    2015-01-01

    The IAEA's Incident and Trafficking Database (ITDB) is the Agency's authoritative source for information on incidents in which nuclear and other radioactive material is out of national regulatory control. It was established in 1995 and, as of June 2014, 126 States participate in the ITDB programme. Currently, the database contains over 2500 confirmed incidents, out of which 21% involve nuclear material, 62% radioactive source and 17% radioactively contaminated material. In recent years, the system for States to report incidents to the ITDB has been evolving — moving from fax-based to secure email and most recently to secure on-line reporting. A Beta version of the on-line system was rolled out this June, offering a simple, yet secure, communication channel for member states to provide information. In addition the system serves as a central hub for information related to official communication of the IAEA with Member States so some communication that is traditionally shared by e-mail does not get lost when ITDB counterparts change. In addition the new reporting system incorporates optional features that allow multiple Member State users to collaboratively contribute toward an INF. States are also being given secure on-line access to a streamlined version of the ITDB. This improves States' capabilities to retrieve and analyze information for their own purposes. In addition, on-line access to ITDB statistical information on incidents is available to States through an ITDB Dashboard. The dashboard contains aggregate information on number and types of incidents, material involved, as well some other statistics related to the ITDB that is typically provided in the ITDB Quarterly reports. (author)

  8. Persistent disturbance rejection via state feedback for networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Yue Dong [Institute of Information and Control Engineering Technology, Nanjing Normal University, 78 Bancang Street, Nanjing, Jiangsu 210042 (China)], E-mail: medongy@njnu.edu.cn; Lam, James [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Wang Zidong [Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk

    2009-04-15

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  9. Persistent disturbance rejection via state feedback for networked control systems

    International Nuclear Information System (INIS)

    Yue Dong; Lam, James; Wang Zidong

    2009-01-01

    The problem of persistent disturbance rejection via state feedback for networked control systems is concerned based on the Lyapunov function method. The effect of the network conditions, such as network-induced delay and data dropout, is considered in the modeling of the system. It is assumed that the state and the control signals are individually quantized by quantizers on the sensor side and the controller side. The feedback gain and the quantizer parameters that guarantee the internal stability and the disturbance rejection performance of the closed-loop system are obtained by solving some linear matrix inequalities. To illustrate the effectiveness of the proposed method, a numerical example is provided for the design of the feedback gain and the quantizer parameters.

  10. Grading the Metrics: Performance-Based Funding in the Florida State University System

    Science.gov (United States)

    Cornelius, Luke M.; Cavanaugh, Terence W.

    2016-01-01

    A policy analysis of Florida's 10-factor Performance-Based Funding system for state universities. The focus of the article is on the system of performance metrics developed by the state Board of Governors and their impact on institutions and their missions. The paper also discusses problems and issues with the metrics, their ongoing evolution, and…

  11. Bunched soliton states in weakly coupled sine-Gordon systems

    International Nuclear Information System (INIS)

    Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results

  12. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  13. Measuring neuronal avalanches in disordered systems with absorbing states

    Science.gov (United States)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  14. A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation

    International Nuclear Information System (INIS)

    George-Williams, Hindolo; Patelli, Edoardo

    2016-01-01

    Structural complexity of systems, coupled with their multi-state characteristics, renders their reliability and availability evaluation difficult. Notwithstanding the emergence of various techniques dedicated to complex multi-state system analysis, simulation remains the only approach applicable to realistic systems. However, most simulation algorithms are either system specific or limited to simple systems since they require enumerating all possible system states, defining the cut-sets associated with each state and monitoring their occurrence. In addition to being extremely tedious for large complex systems, state enumeration and cut-set definition require a detailed understanding of the system's failure mechanism. In this paper, a simple and generally applicable simulation approach, enhanced for multi-state systems of any topology is presented. Here, each component is defined as a Semi-Markov stochastic process and via discrete-event simulation, the operation of the system is mimicked. The principles of flow conservation are invoked to determine flow across the system for every performance level change of its components using the interior-point algorithm. This eliminates the need for cut-set definition and overcomes the limitations of existing techniques. The methodology can also be exploited to account for effects of transmission efficiency and loading restrictions of components on system reliability and performance. The principles and algorithms developed are applied to two numerical examples to demonstrate their applicability. - Highlights: • A discrete event simulation model based on load flow principles. • Model does not require system path or cut sets. • Applicable to binary and multi-state systems of any topology. • Supports multiple output systems with competing demand. • Model is intuitive and generally applicable.

  15. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  16. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    Science.gov (United States)

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  17. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...

  18. New York State energy-analytic information system: first-stage implementation

    Energy Technology Data Exchange (ETDEWEB)

    Allentuck, J.; Carroll, O.; Fiore, L.

    1979-09-01

    So that energy policy by state government may be formulated within the constraints imposed by policy determined at the national level - yet reflect the diverse interests of its citizens - large quantities of data and sophisticated analytic capabilities are required. This report presents the design of an energy-information/analytic system for New York State, the data for a base year, 1976, and projections of these data. At the county level, 1976 energy-supply demand data and electric generating plant data are provided as well. Data-base management is based on System 2000. Three computerized models provide the system's basic analytic capacity. The Brookhaven Energy System Network Simulator provides an integrating framework while a price-response model and a weather sensitive energy demand model furnished a short-term energy response estimation capability. The operation of these computerized models is described. 62 references, 25 figures, 39 tables.

  19. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  20. State-of-the-art Versus Time-triggered Object Tracking in Advanced Driver Assistance Systems

    Directory of Open Access Journals (Sweden)

    Moritz Koplin

    2013-04-01

    Full Text Available Most state-of-the-art driver assistance systems cannot guarantee that real-time images of object states are updated within a given time interval, because the object state observations are typically sampled by uncontrolled sensors and transmitted via an indeterministic bus system such as CAN. To overcome this shortcoming, a paradigm shift toward time-triggered advanced driver assistance systems based on a deterministic bus system, such as FlexRay, is under discussion. In order to prove the feasibility of this paradigm shift, this paper develops different models of a state-of-the-art and a time-triggered advanced driver assistance system based on multi-sensor object tracking and compares them with regard to their mean performance. The results show that while the state-of-the-art model is advantageous in scenarios with low process noise, it is outmatched by the time-triggered model in the case of high process noise, i.e., in complex situations with high dynamic.

  1. Regression analysis of the structure function for reliability evaluation of continuous-state system

    International Nuclear Information System (INIS)

    Gamiz, M.L.; Martinez Miranda, M.D.

    2010-01-01

    Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.

  2. Regression analysis of the structure function for reliability evaluation of continuous-state system

    Energy Technology Data Exchange (ETDEWEB)

    Gamiz, M.L., E-mail: mgamiz@ugr.e [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain); Martinez Miranda, M.D. [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)

    2010-02-15

    Technical systems are designed to perform an intended task with an admissible range of efficiency. According to this idea, it is permissible that the system runs among different levels of performance, in addition to complete failure and the perfect functioning one. As a consequence, reliability theory has evolved from binary-state systems to the most general case of continuous-state system, in which the state of the system changes over time through some interval on the real number line. In this context, obtaining an expression for the structure function becomes difficult, compared to the discrete case, with difficulty increasing as the number of components of the system increases. In this work, we propose a method to build a structure function for a continuum system by using multivariate nonparametric regression techniques, in which certain analytical restrictions on the variable of interest must be taken into account. Once the structure function is obtained, some reliability indices of the system are estimated. We illustrate our method via several numerical examples.

  3. An improved fuzzy Kalman filter for state estimation of nonlinear systems

    International Nuclear Information System (INIS)

    Zhou, Z-J; Hu, C-H; Chen, L; Zhang, B-C

    2008-01-01

    The extended fuzzy Kalman filter (EFKF) is developed recently and used for state estimation of the nonlinear systems with uncertainty. Based on extension of the orthogonality principle and the extended fuzzy Kalman filter, an improved fuzzy Kalman filters (IFKF) is proposed in this paper, which is more applicable and can deal with the state estimation of the nonlinear systems better than the EFKF. A simulation study is provided to verify the efficiency of the proposed method

  4. Optimal replacement policy for safety-related multi-component multi-state systems

    International Nuclear Information System (INIS)

    Xu Ming; Chen Tao; Yang Xianhui

    2012-01-01

    This paper investigates replacement scheduling for non-repairable safety-related systems (SRS) with multiple components and states. The aim is to determine the cost-minimizing time for replacing SRS while meeting the required safety. Traditionally, such scheduling decisions are made without considering the interaction between the SRS and the production system under protection, the interaction being essential to formulate the expected cost to be minimized. In this paper, the SRS is represented by a non-homogeneous continuous time Markov model, and its state distribution is evaluated with the aid of the universal generating function. Moreover, a structure function of SRS with recursive property is developed to evaluate the state distribution efficiently. These methods form the basis to derive an explicit expression of the expected system cost per unit time, and to determine the optimal time to replace the SRS. The proposed methodology is demonstrated through an illustrative example.

  5. Evaluating the Recession's Impact on State School Finance Systems

    Science.gov (United States)

    Baker, Bruce D.

    2014-01-01

    The Great Recession's effect on state school finance systems was unlike previous downturns in the early 1990s and early 2000s in that it: a) involved a greater loss of taxable income in many states, thus greater loss to state general fund revenues, b) also involved a substantial collapse of housing markets and related reduction or at least…

  6. Economics of conservation systems research in the Southeastern United States

    Science.gov (United States)

    The use of conservation systems in crop production is not a new concept in the southeastern United States. In 1978, researchers from across the Southeast met in Griffin, Georgia for the first annual Southern Conservation Agricultural Systems Conference. Four of the ten presentations specifically men...

  7. Shortcuts to adiabatic passage for the generation of a maximal Bell state and W state in an atom–cavity system

    Science.gov (United States)

    Lu, Mei; Chen, Qing-Qin

    2018-05-01

    We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.

  8. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam; Kunt, Emrah Deniz; Şabanoviç, Asif; Sabanovic, Asif

    2012-01-01

    This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  9. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    Science.gov (United States)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  10. The Golden Horde State in the System of International Relations »

    Directory of Open Access Journals (Sweden)

    I.М. Mirgaleev

    2015-01-01

    Full Text Available The present article examines the place of the Golden Horde in the system of international relations of the 13th–14th centuries as well as directions of its foreign policy. To determine the place of the ulus of Jochi in the international system the author suggests to disclose the subject through illumination of such important issues as: – the Mongol conquests and creation of the Chingisid state entities, the establishment of a new international order. – formation of the ulus of Jochi as an independent State and its role in the Chingisid States’ relations, the kurultai of 1269. – international activities of the Golden Horde State during the period of its might. – interstate coalitions in the global geopolitics and national interests of the ulus of Jochi in international systems. – The role and place of the Golden Horde in the international life of the second half of the 14th – early 15th centuries. The program activity of the Jochids in a new geopolitical situation of the late 14th – early 15th centuries. The author believes that the establishment of the Golden Horde State occurred in three phases (1207–1241, 1242–1259, 1260–1269. The Jochids’ policy towards their neighbors and other Chingisid states formed during this time. Both the Distemper of the 1360–70’s in the ulus of Jochi and destruction of all other Chingisid States resulted in the Golden Horde’s loss of its place in the system of international relations. Therefore, the program activity of the Jochids in a new geopolitical situation of the late 14th – early 15th centuries, was aimed at restoring the international authority of the State. The author considers the directions of the Golden Horde foreign policy, which were laid down during the reign of Berke khan and remained a priority until the end of the 14th century.

  11. Systemic inflammation and resting state connectivity of the default mode network.

    Science.gov (United States)

    Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J

    2017-05-01

    The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dark and bright-state polaritons in triple- Λ EIT system

    Science.gov (United States)

    Selvan, Karthick

    2018-04-01

    Properties of polaritons in triple-Λ EIT system are investigated using Sawada-Brout-Chong method. The role of dark and bright-state polaritons in the dynamics of the system is studied in detail by including the decay of excited atomic levels. Time evolution of entanglement of single and three-photon EIT modes within the system is investigated to explain this study.

  13. A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems

    International Nuclear Information System (INIS)

    Ramirez-Marquez, Jose E.; Coit, David W.

    2004-01-01

    The redundancy allocation problem is formulated with the objective of minimizing design cost, when the system exhibits a multi-state reliability behavior, given system-level performance constraints. When the multi-state nature of the system is considered, traditional solution methodologies are no longer valid. This study considers a multi-state series-parallel system (MSPS) with capacitated binary components that can provide different multi-state system performance levels. The different demand levels, which must be supplied during the system-operating period, result in the multi-state nature of the system. The new solution methodology offers several distinct benefits compared to traditional formulations of the MSPS redundancy allocation problem. For some systems, recognizing that different component versions yield different system performance is critical so that the overall system reliability estimation and associated design models the true system reliability behavior more realistically. The MSPS design problem, solved in this study, has been previously analyzed using genetic algorithms (GAs) and the universal generating function. The specific problem being addressed is one where there are multiple component choices, but once a component selection is made, only the same component type can be used to provide redundancy. This is the first time that the MSPS design problem has been addressed without using GAs. The heuristic offers more efficient and straightforward analyses. Solutions to three different problem types are obtained illustrating the simplicity and ease of application of the heuristic without compromising the intended optimization needs

  14. Conflicting demands of No Child Left Behind and state systems: Mixed messages about school performance.

    Directory of Open Access Journals (Sweden)

    Robert L. Linn

    2005-06-01

    Full Text Available An ever-increasing reliance on student performance on tests holds schools and educators accountable both to state accountability systems and also to the accountability requirements of the No Child Left Behind (NCLB Act of 2001. While each state has constructed its own definition of Adequate Yearly Progress (AYP requirements within the confines of NCLB, substantial differences between the accountability requirements of many state systems and NCLB still have resulted in mixed messages regarding the performance of schools. Several features of NCLB accountability and state accountability systems contribute to the identification of a school as meeting goals according to NCLB but failing to do so according to the state accountability system, or vise versa. These include the multiple hurdles of NCLB, the comparison of performance against a fixed target rather than changes in achievement, and the definition of performance goals. The result of these features is a set of AYP measures that is inconsistent both with existing state accountability systems and also with state NAEP performance. Using existing achievement to set the cut-score measured by AYP and using the highest-performing schools to set the year-to-year improvement standards would improve the NCLB accountability system.

  15. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.

    1995-01-01

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament

  16. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.

  17. State estimation and synchronization of pendula systems over digital communication channels

    Science.gov (United States)

    Fradkov, A. L.; Andrievsky, B.; Ananyevskiy, M.

    2014-04-01

    The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.

  18. Study of the Convergence in State Estimators for LTI Systems with Event Detection

    Directory of Open Access Journals (Sweden)

    Juan C. Posada

    2016-01-01

    Full Text Available The methods frequently used to estimate the state of an LTI system require that the precise value of the output variable is known at all times, or at equidistant sampling times. In LTI systems, in which the output signal is measured through binary sensors (detectors, the traditional way of state observers design is not applicable even though the system has a complete observability matrix. This type of state observers design is known as passive. It is necessary, then, to introduce a new state estimation technique, which allows reckoning the state from the information of the variable’s crossing through a detector’s action threshold (switch. This paper seeks, therefore, to study the convergence in this type of estimators in finite time, allowing establishing, theoretically, whether some family of the proposed models can be estimated in a convergent way through the use of the estimation technique based on events.

  19. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  20. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  1. Evolved finite state controller for hybrid system in reduced search space

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...

  2. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  3. Verification of Large State/Event Systems using Compositionality and Dependency Analysis

    DEFF Research Database (Denmark)

    Lind-Nielsen, Jørn; Andersen, Henrik Reif; Hulgaard, Henrik

    2001-01-01

    A state/event model is a concurrent version of Mealy machines used for describing embedded reactive systems. This paper introduces a technique that uses compositionality and dependency analysis to significantly improve the efficiency of symbolic model checking of state/event models. It makes...

  4. Verification of Large State/Event Systems using Compositionality and Dependency Analysis

    DEFF Research Database (Denmark)

    Lind-Nielsen, Jørn; Andersen, Henrik Reif; Behrmann, Gerd

    1999-01-01

    A state/event model is a concurrent version of Mealy machines used for describing embedded reactive systems. This paper introduces a technique that uses \\emph{compositionality} and \\emph{dependency analysis} to significantly improve the efficiency of symbolic model checking of state/event models...

  5. Healthy Families America state systems development: an emerging practice to ensure program growth and sustainability.

    Science.gov (United States)

    Friedman, Lori; Schreiber, Lisa

    2007-01-01

    In an era of fiscal constraints and increased accountability for social service programs, having a centralized and efficient infrastructure is critical. A well-functioning infrastructure helps a state reduce duplication of services, creates economies of scale, coordinates resources, supports high-quality site development and promotes the self-sufficiency and growth of community-based programs. Throughout the Healthy Families America home visitation network, both program growth and contraction have been managed by in-state collaborations, referred to as "state systems." This article explores the research base that supports the rationale for implementing state systems, describes the evolution of state systems for Healthy Families America, and discusses the benefits, challenges and lessons learned of utilizing a systems approach.

  6. A narrow quasi-bound state of the DNN system

    International Nuclear Information System (INIS)

    Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.

    2013-01-01

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson

  7. Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems

    Directory of Open Access Journals (Sweden)

    Fabio Franchini

    2014-11-01

    Full Text Available In some many-body systems, certain ground-state entanglement (Rényi entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (deconstruction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A|B and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.

  8. IBA's state of art Proton Therapy System

    International Nuclear Information System (INIS)

    Ternier, Sonja

    2001-01-01

    Full text: In recent years, IBA has developed a state-of-the-art Proton Therapy System that is currently being implemented at the Northeast Proton Therapy Center in Boston. First patient treatment is predicted for the fourth quarter of 2001. The IBA Proton Therapy System consists of a 230 MeV accelerator (a fixed energy isochronous cyclotron), an Energy Selection System that can decrease the energy down to 70 MeV and up to five treatment rooms. There are two types of treatment rooms. A gantry treatment room in which a patient can be treated from virtually any angle or a fixed horizontal beam line aimed at treatments of the of the head and neck. The system is equipped with a Therapy Control System and a Global Safety Management System. The Integrated Therapy Control System is an integrated system ensuring the control of the treatment sessions through independent but networked therapy control units and, therefore, the control of each equipment subsystem. The integrated safety management system, independent of the Therapy Control System, includes a set of hard-wired safety devices, ensuring the safety of the patient and personnel. The system will be capable of delivering proton treatments in four-treatment modes: Double Scattering, Single Scattering, Wobbling and Pencil Beam Scanning. The presentation will show the most important subsystems and treatment modes capabilities as well as the most recent advances in the technology. (author)

  9. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  10. 42 CFR 403.306 - Additional requirements for State systems-mandatory approval.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Additional requirements for State systems-mandatory approval. 403.306 Section 403.306 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State...

  11. Cloning of symmetric d-level photonic states in physical systems

    International Nuclear Information System (INIS)

    Fan Heng; Matsumoto, Keiji; Imai, Hiroshi; Weihs, Gregor

    2002-01-01

    Optimal procedures play an important role in quantum information. It turns out that some naturally occurring processes as emission of light from an atom can realize optimal transformations. Here we study how arbitrary symmetric states of a number of d-level systems can be cloned using a multilevel atomic system. It is shown that optimality is always ensured even though the output number of systems is probabilistic

  12. On the control of queueing systems with aging state information

    NARCIS (Netherlands)

    Onderwater, M.; Bhulai, S.; van der Mei, R.D.

    2015-01-01

    We investigate control of a queueing system in which a component of the state space is subject to aging. The controller can choose to forward incoming queries to the system (where it needs time for processing), or respond with a previously generated response (incurring a penalty for not providing a

  13. A Glimpse into a State Technical College System's POS Pathways

    Science.gov (United States)

    Frazier, Stephanie D.; Swygert, N. Maria

    2012-01-01

    The South Carolina Technical College System (SCTCS) has embraced POS, providing students across the state with pathways into careers ranging from nuclear systems technology to health care to industrial technology. The SCTCS has strived, over the last 50 years, to foster a bridge between business and education. The colleges coordinate and…

  14. An analysis of hypercritical states in elastic and inelastic systems

    Science.gov (United States)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  15. Implementation of a Simplified State Estimator for Wind Turbine Monitoring on an Embedded System

    DEFF Research Database (Denmark)

    Rasmussen, Theis Bo; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    system, including individual DER, is time consuming and numerically challenging. This paper presents the approach and results of implementing a simplified state estimator onto an embedded system for improving DER monitoring. The implemented state estimator is based on numerically robust orthogonal......The transition towards a cyber-physical energy system (CPES) entails an increased dependency on valid data. Simultaneously, an increasing implementation of renewable generation leads to possible control actions at individual distributed energy resources (DERs). A state estimation covering the whole...

  16. Solid state low power pulsed NMR spectrometer system

    International Nuclear Information System (INIS)

    Nadkarni, S.S.; Parthasarathy, T.G.; Menon, M.P.S.; Hannurkar, P.R.

    1981-01-01

    A pulsed nuclear magnetic resonance spectrometer system is described for relaxation time studies on solid and liquid samples. The spectrometer design is fully solid state and a special microcomputer interface is incorporated for automatic evaluation of the relaxation times. The prototype system has been designed to operate at 9 MHz, but the modular concept used in the construction permits operation at any frequency in the range 5-10 MHz. The system has a recovery time of 15 micro seconds at 9 MHz. The range of measurement for the spin-lattice relaxation time is 0.1 millisecond to 1000 seconds; for spin-spin relaxation time, the range is 14μ seconds to 100 milliseconds. (author)

  17. 40 CFR 35.915 - State priority system and project priorty list.

    Science.gov (United States)

    2010-07-01

    ... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean... State priority system shall be based on the following criteria: (A) The severity of the pollution problem; (B) The existing population affected; (C) The need for preservation of high quality waters; and...

  18. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Everton, C.; Leslie, R.; Bayer, S.; East, M. [Craig Everton, Russell Leslie, Stephan Bayer, Michael East, Australia (Australia)

    2011-12-15

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  19. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    International Nuclear Information System (INIS)

    Everton, C.; Leslie, R.; Bayer, S.; East, M.

    2011-01-01

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  20. Critical opalescence and the true dielectric state in a Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2015-04-01

    To study the critical opalescence effect in a two-component Coulomb system consisting of single-type electrons and nuclei, we consider the limit relations for static structure factors and analyze the singularities of the dielectric permittivity. We show that the critical opalescence effect can be observed not only at the critical point corresponding to the gas-liquid phase transition but also near the true dielectric state with zero static conductivity. With the available experimental data taken into account, we assume that the true dielectric state is the limit state of the liquid-liquid phase transition accompanied by sharp variations in the electrical conduction of the substances. We find that if the thermodynamic parameters correspond to the true dielectric state, then the critical opalescence effect can arise in the case where the squared fluctuation in the total number of electrons and nuclei in a two-component Coulomb system becomes infinite, as this occurs at the critical point corresponding to the gas-liquid phase transition.

  1. Implicit Particle Filter for Power System State Estimation with Large Scale Renewable Power Integration.

    Science.gov (United States)

    Uzunoglu, B.; Hussaini, Y.

    2017-12-01

    Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.

  2. The peculiarities of spectral manifestations of high-voltage electric discharge in different phase states of ion systems.

    Science.gov (United States)

    Gafurov, M M; Aliev, A R; Ataev, M B; Rabadanov, K Sh

    2013-10-01

    The effects of high-voltage pulsed discharge (HVPD activation) on vibrational spectra of ion salt systems have been studied. The peculiarities of spectral display of HVPD in ion melts and aqueous solutions of electrolytes, in ion-conducting phases of crystalline and glassy salt systems have been investigated. After HVPD a salt system is in non-equilibrium activated state. In the activated state of a salt system, the relaxation time of the vibrational excited states of molecular ions is shorter than in the equilibrium state if the vibrational relaxation rate increases with temperature in the system. For those systems for which the relaxation rate decreases at elevated temperatures, the relaxation time of the vibrational excited states of molecular ions is longer than in the equilibrium state. HVPD activation of a salt system can change the configuration of the electron shell of molecular ions. Therefore, the lifetime values of activated state of salt systems are abnormally large. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Lindner, Netanel; Berg, Erez

    2013-01-01

    revealed phenomena that cannot be characterized by analogy to the topological classification framework for static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate...... the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra...... that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed....

  4. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  5. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    International Nuclear Information System (INIS)

    Barthel, Thomas

    2009-01-01

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  6. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Thomas

    2009-12-10

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  7. Maximum principle for a stochastic delayed system involving terminal state constraints.

    Science.gov (United States)

    Wen, Jiaqiang; Shi, Yufeng

    2017-01-01

    We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.

  8. How Do States Integrate Performance Assessment in Their Systems of Assessment?

    Science.gov (United States)

    Stosich, Elizabeth Leisy; Snyder, Jon; Wilczak, Katie

    2018-01-01

    This paper reviews state strategies for incorporating performance assessment in policy and practice. Specifically, the paper reviews the use of performance assessment in 12 states in the Innovation Lab Network, a group committed to developing systems of assessment that provide meaningful measures of college and career readiness. This review…

  9. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam Shoukry Mohammed; Şabanoviç, Asif; Sabanovic, Asif

    2010-01-01

    This work attempts to identify and estimate flexible system’s parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system’s reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  10. A Unification between Dynamical System Theory and Thermodynamics Involving an Energy, Mass, and Entropy State Space Formalism

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2013-05-01

    Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model involving heat flow, work energy, and chemical reactions, we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we show that our thermodynamically consistent dynamical system model is globally semistable with system states converging to a state of temperature equipartition. Furthermore, in the presence of chemical reactions, we use the law of mass-action and the notion of chemical potential to show that the dynamic system states converge to a state of temperature equipartition and zero affinity corresponding to a state of chemical equilibrium.

  11. Some problems on the thermodynamic state of the metallogenetic systems

    International Nuclear Information System (INIS)

    Mingarro, E.

    1965-01-01

    In order to get a classification of the uranium deposits, the geological processes have been ordered in thermodynamic systems according to the independent parameters that define their equilibrium state. Also, to apply the phase rule, we suppose that the ore forming elements are always ideally mobile components; that is, in the geological systems, these components are defined by their chemical potentials. In this paper, we show that in random conditions, i. e.; for any possible value of the factors of equilibrium or state the stable mineralizations are formed only in metasomatic regimes; so that the mineralogical sequence is a function both of the Helmholtz's free energy and the crystallisation pressure of the minerals. (Author) 7 refs

  12. Optimal loading and protection of multi-state systems considering performance sharing mechanism

    International Nuclear Information System (INIS)

    Xiao, Hui; Shi, Daimin; Ding, Yi; Peng, Rui

    2016-01-01

    Engineering systems are designed to carry the load. The performance of the system largely depends on how much load it carries. On the other hand, the failure rate of the system is strongly affected by its load. Besides internal failures, such as fatigue and aging process, systems may also fail due to external impacts such as nature disasters and terrorism. In this paper, we integrate the effect of loading and protection of external impacts on multi-state systems with performance sharing mechanism. The objective of this research is to determine how to balance the load and protection on system elements. An availability evaluation algorithm of the proposed system is suggested and the corresponding optimization problem is solved utilizing genetic algorithms. - Highlights: • Performance sharing of multi-state systems is considered. • The effect of load on system elements is analyzed. • Joint optimization model of element loading and protection is formulated. • Genetic Algorithms are adapted to solve the reliability optimization problem.

  13. Characterization of short necklace states in the logarithmic transmission spectra of localized systems.

    Science.gov (United States)

    Chen, Liang; Jiang, Xunya

    2013-05-01

    High transmission plateaus exist widely in the logarithmic transmission spectra of localized systems. Their physical origins are short chains of coupled localized states embedded inside the localized system, which are dubbed as 'short necklace states'. In this work, we define the essential quantities and then, based on these quantities, we investigate the properties of the short necklace states statistically and quantitatively. Two different approaches are utilized and their results agree very well. In the first approach, the typical plateau-width and the typical order of short necklace states are obtained from the correlation function of the logarithmic transmission. In the second approach, we investigate the statistical distribution of the peak/plateau-width measured in the logarithmic transmission spectra. A novel distribution is found, which can be exactly fitted by the summation of two Gaussian distributions. These two distributions are the results of sharp peaks of localized states and the high plateaus of short necklace states. The center of the second distribution also tells us the typical plateau-width of short necklace states. With increasing system length, the scaling property of the typical plateau-width is very special since it hardly decreases. The methods and quantities defined in this work can be widely used in Anderson localization studies.

  14. ShakeAlert—An earthquake early warning system for the United States west coast

    Science.gov (United States)

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  15. Majorana bound states in a coupled quantum-dot hybrid-nanowire system

    DEFF Research Database (Denmark)

    Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.

    2016-01-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....

  16. State-changes in the swimmeret system: a neural circuit that drives locomotion.

    Science.gov (United States)

    Tschuluun, N; Hall, W M; Mulloney, B

    2009-11-01

    The crayfish swimmeret system undergoes transitions between a silent state and an active state. In the silent state, no patterned firing occurs in swimmeret motor neurons. In the active state, bursts of spikes in power stroke motor neurons alternate periodically with bursts of spikes in return stroke motor neurons. In preparations of the isolated crayfish central nervous system (CNS), the temporal structures of motor patterns expressed in the active state are similar to those expressed by the intact animal. These transitions can occur spontaneously, in response to stimulation of command neurons, or in response to application of neuromodulators and transmitter analogues. We used single-electrode voltage clamp of power-stroke exciter and return-stroke exciter motor neurons to study changes in membrane currents during spontaneous transitions and during transitions caused by bath-application of carbachol or octopamine (OA). Spontaneous transitions from silence to activity were marked by the appearance of a standing inward current and periodic outward currents in both types of motor neurons. Bath-application of carbachol also led to the development of these currents and activation of the system. Using low Ca(2+)-high Mg(2+) saline to block synaptic transmission, we found that the carbachol-induced inward current included a direct response by the motor neuron and an indirect component. Spontaneous transitions from activity to silence were marked by disappearance of the standing inward current and the periodic outward currents. Bath-application of OA led promptly to the disappearance of both currents, and silenced the system. OA also acted directly on both types of motor neurons to cause a hyperpolarizing outward current that would contribute to silencing the system.

  17. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  18. Vehicle-Level Reasoning Systems: Integrating System-Wide Data to Estimate the Instantaneous Health State

    Science.gov (United States)

    Srivastava, Ashok N.; Mylaraswmay, Dinkar; Mah, Robert W.; Cooper, Eric G.

    2011-01-01

    At the aircraft level, a Vehicle-Level Reasoning System (VLRS) can be developed to provide aircraft with at least two significant capabilities: improvement of aircraft safety due to enhanced monitoring and reasoning about the aircrafts health state, and also potential cost savings by enabling Condition Based Maintenance (CBM). Along with the benefits of CBM, an important challenge facing aviation safety today is safeguarding against system and component failures and malfunctions. Faults can arise in one or more aircraft subsystem their effects in one system may propagate to other subsystems, and faults may interact.

  19. 76 FR 76215 - Privacy Act; System of Records: State-78, Risk Analysis and Management Records

    Science.gov (United States)

    2011-12-06

    ... a system of records, Risk Analysis and Management Records, State-78, pursuant to the provisions of... INFORMATION: The Department of State proposes that the new system will be ``Risk Analysis and Management.... These standard routine uses apply to State-78, Risk Analysis and Management Records. POLICIES AND...

  20. State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.

  1. Distribution of return point memory states for systems with stochastic inputs

    International Nuclear Information System (INIS)

    Amann, A; Brokate, M; Rachinskii, D; Temnov, G

    2011-01-01

    We consider the long term effect of stochastic inputs on the state of an open loop system which exhibits the so-called return point memory. An example of such a system is the Preisach model; more generally, systems with the Preisach type input-state relationship, such as in spin-interaction models, are considered. We focus on the characterisation of the expected memory configuration after the system has been effected by the input for sufficiently long period of time. In the case where the input is given by a discrete time random walk process, or the Wiener process, simple closed form expressions for the probability density of the vector of the main input extrema recorded by the memory state, and scaling laws for the dimension of this vector, are derived. If the input is given by a general continuous Markov process, we show that the distribution of previous memory elements can be obtained from a Markov chain scheme which is derived from the solution of an associated one-dimensional escape type problem. Formulas for transition probabilities defining this Markov chain scheme are presented. Moreover, explicit formulas for the conditional probability densities of previous main extrema are obtained for the Ornstein-Uhlenbeck input process. The analytical results are confirmed by numerical experiments.

  2. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  3. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

    Directory of Open Access Journals (Sweden)

    Ghader Najarbashi

    2011-01-01

    Full Text Available In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b^† together with bz form a closed deformed algebra, i.e., SU_q(2 with q=e^{2πi/3}, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.

  4. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  5. Optimal control for wind turbine system via state-space method

    Science.gov (United States)

    Shanoob, Mudhafar L.

    Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on

  6. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    Science.gov (United States)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  7. Initial time singularities and admissible initial states for a system of coupled scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); GAS, Tbilisi (Georgia). Andronikashvili Inst. of Physics

    2009-10-15

    We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)

  8. Initial time singularities and admissible initial states for a system of coupled scalar fields

    International Nuclear Information System (INIS)

    Baacke, Juergen; Kevlishvili, Nina; GAS, Tbilisi

    2009-10-01

    We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)

  9. The Development of Innovation Systems as an Object with the State Regulation

    OpenAIRE

    Melnyk Alexander G.

    2017-01-01

    The article examines the processes of structuring the environment for the development of innovation systems in terms of the formation of a State regulated object. A methodological approach to definition of the State regulation at the primary, secondary and tertiary levels of structuring the environment of innovation systems has been suggested, based on the premise of the objective nature of the integration of social environment and market mechanisms into the structure of an object with the St...

  10. Motivational systems or motivational states : Behavioural and physiological evidence

    NARCIS (Netherlands)

    Koolhaas, J.M.; de Boer, S.F.; Bohus, B.G J

    This paper will critically discuss the available behavioural and neurobiological evidence for the existence of motivational systems and motivational states on the basis of our studies on aggressive behaviour in male rats and mice. Three types of evidence will be discussed. First, some behavioural

  11. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-01-01

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  12. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin; Yang, Liuqing; Florita, Anthony; Alam, S.M. Shafiul; Elgindy, Tarek; Hodge, Bri-Mathias

    2016-08-01

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the help of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.

  13. Efficiency of health care system at the sub-state level in Madhya Pradesh, India.

    Science.gov (United States)

    Purohit, Brijesh C

    2010-01-01

    This paper attempts a sub-state-level analysis of health system for a low-income Indian state, namely, Madhya Pradesh. The objective of our study is to establish efficiency parameters that may help health policy makers to improve district-level and thus state-level health system performance. It provides an idealized yardstick to evaluate the performance of the health sector by using stochastic frontier technique. The study was carried out in two stages of estimation, and our results suggest that life expectancy in the Indian state could be enhanced considerably by correcting the factors that are adversely influencing sub-state-level health system efficiency. Our results indicate that main factors within the health system for discrepancy in interdistrict performance are inequitable distribution of supplies, availability of skilled attention at birth, and inadequate staffing relative to patient load of rural population at primary health centers. Overcoming these factors through additional resources in the deficient districts, mobilized partly from grants in aid and partly from patient welfare societies, may help the state to improve life expectancy speedily and more equitably. Besides the direct inputs from the health sector, a more conducive environment for gender development, reducing inequality in opportunities for women in health, education and other rights may provide the necessary impetus towards reducing maternal morbidity and mortality and add to overall life expectancy in the state.

  14. On the definition of equilibrium and non-equilibrium states in dynamical systems

    OpenAIRE

    Akimoto, Takuma

    2008-01-01

    We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.

  15. Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems

    Science.gov (United States)

    Abdul-Rahman, Houssam

    2018-03-01

    For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.

  16. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  17. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    Science.gov (United States)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  18. Pure states of general quantum-mechanical systems as Kaehler bundles

    International Nuclear Information System (INIS)

    Abbati, M.C.; Cirelli, R.; Lanzavecchia, P.; Mania, A.

    1984-01-01

    Pure states of general quantum systems in the Csup(*)-algebraic approach are endowed with a structure both of Kaehler manifold and of projective bundle with uniformity on the total space. The former structure gives a geometric interpretation of transition probabilities and Wigner theorem. The latter is a finer structure which determines Csup(*)-algebras up to sup(*)-isomorphisms. Pure states of Csup(*)-algebras with continuous trace among projective bundles with uniformity are characterized

  19. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University

    2017-12-01

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.

  20. State Standards and State Assessment Systems: A Guide to Alignment. Series on Standards and Assessments.

    Science.gov (United States)

    La Marca, Paul M.; Redfield, Doris; Winter, Phoebe C.

    Alignment of content standards, performance standards, and assessments is crucial. This guide contains information to assist states and districts in aligning their assessment systems to their content and performance standards. It includes a review of current literature, both published and fugitive. The research is woven together with a few basic…

  1. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Zhang, Yingchen

    2016-11-14

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vector regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.

  2. Stochastic State Space Modelling of Nonlinear systems - With application to Marine Ecosystems

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg

    of unobserved states. Based on estimation of random walk hidden states and examination of simulated distributions and stationarity characteristics, a methodological framework for structural identification based on information embedded in the observations of the system has been developed. The applicability...

  3. Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration

    International Nuclear Information System (INIS)

    Li, Y.F.; Peng, R.

    2014-01-01

    Most studies on multi-state series–parallel systems focus on the static type of system architecture. However, it is insufficient to model many complex industrial systems having several operation phases and each requires a subset of the subsystems combined together to perform certain tasks. To bridge this gap, this study takes into account this type of dynamic behavior in the multi-state series–parallel system and proposes an analytical approach to calculate the system availability and the operation cost. In this approach, Markov process is used to model the dynamics of system phase changing and component state changing, Markov reward model is used to calculate the operation cost associated with the dynamics, and universal generating function (UGF) is used to build system availability function from the system phase model and the component models. Based upon these models, an optimization problem is formulated to minimize the total system cost with the constraint that system availability is greater than a desired level. The genetic algorithm is then applied to solve the optimization problem. The proposed modeling and solution procedures are illustrated on a system design problem modified from a real-world maritime oil transportation system

  4. Harmonic Instability Assessment Using State-Space Modeling and Participation Analysis in Inverter-Fed Power Systems

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    parameters on the harmonic instability of the power system. Moreover, the harmonic-frequency oscillation modes are identified, where participation analysis is presented to evaluate the contributions of different states to these modes and to further reveal how the system gives rise to harmonic instability......This paper presents a harmonic instability analysis method using state-space modeling and participation analysis in the inverter-fed ac power systems. A full-order state-space model for the droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of the digital...... control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the DG inverter model, an overall state-space model of a two-inverter-fed system is established. The eigenvalue-based stability analysis is then presented to assess the influence of controller...

  5. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  6. Can one ``Hear'' the aggregation state of a granular system?

    Science.gov (United States)

    Kruelle, Christof A.; Sánchez, Almudena García

    2013-06-01

    If an ensemble of macroscopic particles is mechanically agitated the constant energy input is dissipated into the system by multiple inelastic collisions. As a result, the granular material can exhibit, depending on the magnitude of agitation, several physical states - like a gaseous phase for high energy input or a condensed state for low agitation. Here we introduce a new method for quantifying the acoustical response of the granular system. Our experimental system consists of a monodisperse packing of glass beads with a free upper surface, which is confined inside a cylindrical container. An electro-mechanical shaker exerts a sinusoidal vertical vibration at normalized accelerations well above the fluidization threshold for a monolayer of particles. By increasing the number of beads the granular gas suddenly collapses if a critical threshold is exceeded. The transition can be detected easily with a microphone connected to the soundcard of a PC. From the recorded audio track a FFT is calculated in real-time. Depending on either the number of particles at a fixed acceleration or the amount of energy input for a given number of particles, the resulting rattling noise exhibits a power spectrum with either the dominating (shaker) frequency plus higher harmonics for a granular crystal or a high-frequency broad-band noise for a granular gas, respectively. Our new method demonstrates that it is possible to quantify analytically the subjective audio impressions of a careful listener and thus to distinguish easily between different aggregation states of an excited granular system.

  7. State-PID Feedback for Pole Placement of LTI Systems

    Directory of Open Access Journals (Sweden)

    Sarawut Sujitjorn

    2011-01-01

    Full Text Available Pole placement problems are especially important for disturbance rejection and stabilization of dynamical systems and regarded as algebraic inverse eigenvalue problems. In this paper, we propose gain formulae of state feedback through PID-elements to achieve desired pole placement for a delay-free LTI system with single input. Real and complex stable poles can be assigned with the proposed compact gain formulae. Numerical examples show that our proposed gain formulae can be used effectively resulting in very satisfactory responses.

  8. Reliability analysis of repairable multi-state system with common bus performance sharing

    International Nuclear Information System (INIS)

    Yu, Huan; Yang, Jun; Mo, Huadong

    2014-01-01

    In this paper, an instantaneous availability model for repairable multi-state system (MSS) with common bus performance sharing is proposed. The repairable MSS consists of some multi-state units and a common bus performance redistribution system. Each unit in the system has several performance levels and must satisfy its individual random demand. A unit can transmit the surplus performance to other units in real time through the common bus performance redistribution system, if it has a performance that exceeds its demand. The entire system fails if the demand of any unit is not satisfied. A new method based on the combination of the stochastic process method and the universal generating function technique is suggested to evaluate the instantaneous availability and the mean instantaneous performance deficiency of the proposed repairable MSS. Two examples are given for applications in the end

  9. Generalization of the variational principle and the Hohenberg and Kohn theorems for excited states of Fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonis, A., E-mail: gonis@comcast.net

    2017-01-05

    Through the entanglement of a collection of K non-interacting replicas of a system of N interacting Fermions, and making use of the properties of reduced density matrices the variational principle and the theorems of Hohenberg and Kohn are generalized to excited states. The generalization of the variational principle makes use of the natural orbitals of an N-particle density matrix describing the state of lowest energy of the entangled state. The extension of the theorems of Hohenberg and Kohn is based on the ground-state formulation of density functional theory but with a new interpretation of the concept of a ground state: It is the state of lowest energy of a system of KN Fermions that is described in terms of the excited states of the N-particle interacting system. This straightforward implementation of the line of reasoning of ground-state density functional theory to a new domain leads to a unique and logically valid extension of the theory to excited states that allows the systematic treatment of all states in the spectrum of the Hamiltonian of an interacting system. - Highlights: • Use of entanglement in connection with the properties of density matrices. • An anti-symmetric entangled state of order KN expressed in terms of excited states of an interacting N-particle system.

  10. Characteristics of Low-Priced Solar Photovoltaic Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F. [Univ. of Wisconsin, Madison, WI (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gillingham, Ken [Yale Univ., New Haven, CT (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-01-01

    Despite impressive recent cost reductions, there is wide dispersion in the prices of installed solar photovoltaic (PV) systems. We identify the most important factors that make a system likely to be low priced (LP). Our sample consists of detailed characteristics for 42,611 small-scale (< 15 kW) PV systems installed in 15 U.S. states during 2013. Using four definitions of LP systems, we compare LP and non-LP systems and find statistically significant differences in nearly all factors explored, including competition, installer scale, markets, demographics, ownership, policy, and system components. Logit and probit model results robustly indicate that LP systems are associated with markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some than in others. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California, which is worthy of further investigation with new data.

  11. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  12. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  13. Improvement program of state supervision system for radioactive and nuclear installations

    International Nuclear Information System (INIS)

    Cardenas, J.

    1993-01-01

    The current program begins as part of a policy to take care of the development of the cuban nuclear program and with the objective of improving the state supervision system of nuclear and radioactive facilities on the basis of the national experience, good skills internationally accepted and taking into account IAEA recommendations. The program develops the following topics: reorientation and restructure of state supervision, review of the current nuclear legislature, update of regulations of facility safety and qualification and training of state supervision personnel

  14. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    Science.gov (United States)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  15. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  16. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  17. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  18. Operator symbols in the description of observable-state systems

    International Nuclear Information System (INIS)

    Lassner, G.A.

    1978-01-01

    For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions

  19. 76 FR 52378 - Privacy Act; System of Records: State-76, Personal Services Contractor Records

    Science.gov (United States)

    2011-08-22

    ... Services Contractor Records SUMMARY: Notice is hereby given that the Department of State proposes to create a new system of records, Personal Services Contractor Records, State-76, pursuant to the provisions... July 20, 2011. It is proposed that the new system be named ``Personal Services Contractor Records.'' It...

  20. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Chuan; Long, Gui Lu

    2010-01-01

    Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.

  1. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  2. State estimation of chemical engineering systems tending to multiple solutions

    Directory of Open Access Journals (Sweden)

    N. P. G. Salau

    2014-09-01

    Full Text Available A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF formulations and one constrained EKF formulation (CEKF. As benchmark case studies we have chosen: a a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.

  3. Assessment of the Technological Changes Impact on the Sustainability of State Security System of Ukraine

    Directory of Open Access Journals (Sweden)

    Olexandr Yemelyanov

    2018-04-01

    Full Text Available Currently, the governments of many countries are facing with a lack of funds for financing programs for social protection of population. Among the causes of this problem, we can indicate the high unemployment rate, which, among other things, is due to implementation of labor-saving technologies. The purpose of this work is to study the impact of technological changes on the sustainability of the state social security system in Ukraine. The general approaches to the assessment of the stability of the state social security system are described. The simulation of the effect of economically efficient technological changes on the company’s income and expenses was carried out. Some patterns of such changes are established. The group of productive technological changes types is presented. The model is developed, and an indicator of the impact estimation of efficiently effective technological changes on the stability of the state social security system is proposed. The analysis of the main indicators of the state social security system functioning of Ukraine is carried out. The dynamics of indicators characterizing the labor market of Ukraine is analyzed. The influence of changes in labor productivity on costs and profits by industries of Ukraine is estimated. The evaluation of the impact of economically efficient technological changes in the industries of Ukraine on the stability of its state social security system is carried out. The different state authorities can use the obtained results for developing measures to manage the sustainability of the state social security system.

  4. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  5. Surface states of a system of Dirac fermions: A minimal model

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  6. On the Control of a Queueing System with Aging State Information

    NARCIS (Netherlands)

    M. Onderwater (Martijn); S. Bhulai (Sandjai); R.D. van der Mei (Rob)

    2015-01-01

    htmlabstractWe investigate control of a queueing system in which a component of the state space is subject to aging. The controller can choose to forward incoming queries to the system (where it needs time for processing), or respond with a previously generated response (incurring a penalty for not

  7. Steady-state analysis of large scale systems : the successive lumping method

    NARCIS (Netherlands)

    Smit, L.C.

    2016-01-01

    The general area of research of this dissertation concerns large systems with random aspects to their behavior that can be modeled and studied in terms of the stationary distribution of Markov chains. As the state spaces of such systems become large, their behavior gets hard to analyze, either via

  8. Multiple Case Studies of Public Library Systems in New York State: Service Decision-Making Processes

    Science.gov (United States)

    Ren, Xiaoai

    2012-01-01

    This research examined the functions and roles of public library systems in New York State and the services they provide for individual libraries and the public. The dissertation further studied the service decision-making processes at three selected New York State cooperative public library systems. Public library systems have played an important…

  9. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...

  10. A proposed United States resource classification system

    International Nuclear Information System (INIS)

    Masters, C.D.

    1980-01-01

    Energy is a world-wide problem calling for world-wide communication to resolve the many supply and distribution problems. Essential to a communication problem are a definition and comparability of elements being communicated. The US Geological Survey, with the co-operation of the US Bureau of Mines and the US Department of Energy, has devised a classification system for all mineral resources, the principles of which, it is felt, offer the possibility of world communication. At present several other systems, extant or under development (Potential Gas Committee of the USA, United Nations Resource Committee, and the American Society of Testing and Materials) are internally consistent and provide easy communication linkage. The system in use by the uranium community in the United States of America, however, ties resource quantities to forward-cost dollar values rendering them inconsistent with other classifications and therefore not comparable. This paper develops the rationale for the new USGS resource classification and notes its benefits relative to a forward-cost classification and its relationship specifically to other current classifications. (author)

  11. Real-time dynamics of typical and untypical states in nonintegrable systems

    Science.gov (United States)

    Richter, Jonas; Jin, Fengping; De Raedt, Hans; Michielsen, Kristel; Gemmer, Jochen; Steinigeweg, Robin

    2018-05-01

    Understanding (i) the emergence of diffusion from truly microscopic principles continues to be a major challenge in experimental and theoretical physics. At the same time, isolated quantum many-body systems have experienced an upsurge of interest in recent years. Since in such systems the realization of a proper initial state is the only possibility to induce a nonequilibrium process, understanding (ii) the largely unexplored role of the specific realization is vitally important. Our work reports a substantial step forward and tackles the two issues (i) and (ii) in the context of typicality, entanglement as well as integrability and nonintegrability. Specifically, we consider the spin-1/2 XXZ chain, where integrability can be broken due to an additional next-nearest neighbor interaction, and study the real-time and real-space dynamics of nonequilibrium magnetization profiles for a class of pure states. Summarizing our main results, we show that signatures of diffusion for strong interactions are equally pronounced for the integrable and nonintegrable case. In both cases, we further find a clear difference between the dynamics of states with and without internal randomness. We provide an explanation of this difference by a detailed analysis of the local density of states.

  12. Identifying and comparing states of time-delayed systems: phase diagrams and applications to human motor control systems

    International Nuclear Information System (INIS)

    Frank, T.D.; Friedrich, R.; Beek, P.J.

    2005-01-01

    A data driven characterization of time-delayed stochastic systems is proposed in terms of linear delay differential equations and two drift parameters. It is shown how these parameters determine the states of such systems with respect to generalized phase diagrams. This approach allows for a comparison of systems with different parameters as exemplified for two motor control tasks: tracking and force production

  13. Design and Performance Analysis of 2D OCDMA System with Polarization States

    Science.gov (United States)

    Bharti, Manisha; Sharma, Ajay K.; Kumar, Manoj

    2016-12-01

    This paper focuses on increasing the number of subscribers in optical code-division multiple access (OCDMA) system by using one of the features of light signal that it can be propagated in two polarization states. The performance of two-dimensional (2D) OCDMA system based on wavelength-time coding scheme by adding polarization state is investigated at varying data rates from 1 GHz to 6 GHz and for various modulation formats. It is reported that with increase in data rate of system, the performance of the system deteriorates due to polarization mode dispersion. Non-return to-zero (RZ), return to-zero (RZ), carrier suppressed return-to-zero (CSRZ) and differential phase shift keying (DPSK) modulation formats are simulated for a single user system with polarization. Investigations reveal that differential phase shift keying (DPSK) modulation format suits best to the proposed system and exhibit the potential to improve the flexibility of system for more number of users. The investigations are reported in terms of Q-factor, BER, received optical power (ROP) and eye diagrams.

  14. Analyzing the behavior and reliability of voting systems comprising tri-state units using enumerated simulation

    International Nuclear Information System (INIS)

    Yacoub, Sherif

    2003-01-01

    Voting is a common technique used in combining results from peer experts, for multiple purposes, and in a variety of domains. In distributed decision making systems, voting mechanisms are used to obtain a decision by incorporating the opinion of multiple units. Voting systems have many applications in fault tolerant systems, mutual exclusion in distributed systems, and replicated databases. We are specifically interested in voting systems as used in decision-making applications. In this paper, we describe a synthetic experimental procedure to study the behavior of a variety of voting system configurations using a simulator to: analyze the state of each expert, apply a voting mechanism, and analyze the voting results. We introduce an enumerated-simulation approach and compare it to existing mathematical approaches. The paper studies the following behaviors of a voting system: (1) the reliability of the voting system, R; (2) the probability of reaching a consensus, P c ; (3) certainty index, T; and (4) the confidence index, C. The configuration parameters controlling the analysis are: (1) the number of participating experts, N, (2) the possible output states of an expert, and (3) the probability distribution of each expert states. We illustrate the application of this approach to a voting system that consists of N units, each has three states: correct (success), wrong (failed), and abstain (did not produce an output). The final output of the decision-making (voting) system is correct if a consensus is reached on a correct unit output, abstain if all units abstain from voting, and wrong otherwise. We will show that using the proposed approach, we can easily conduct studies to unleash several behaviors of a decision-making system with tri-state experts

  15. Pressures on the dental care system in the United States.

    Science.gov (United States)

    Wotman, S; Goldman, H

    1982-07-01

    A number of significant pressures are creating tensions in the dental profession and the dental care delivery system. These pressures may be categorized in five major areas: 1) regulation and deregulation pressures involve changes in the state dental practice acts, court decisions concerning antitrust and advertising, and the inclusion of consumers on State professional regulatory boards; 2) cost of services includes factors involving the out-of-pocket cost of dental care and the growth of dental insurance; 3) dentist-related factors include the increased number of dentists and the indebtedness of dental graduates; 4) the pressures of changes in the American populations include the decline in population growth and the increase in proportion of elderly people; 5) changes in the distribution of dental care are based on new epidemiologic data concerning dental caries and progress in the prevention of periodontal disease. Many of these pressures are inducing competition in the dental care system. It is clear that the dental care system is in the process of change as it responds to these complex pressures.

  16. Benchmarking the State of Kosrae's Education Management Information System. REL 2017-174

    Science.gov (United States)

    Kendall, John S.; Dandapani, Nitara; Cicchinelli, Louis F.

    2016-01-01

    A quality data management system, such as an education management information system (EMIS), a state longitudinal data system, or a data warehouse, is key to ensuring that education policy, planning, and strategy decisions are grounded in accurate information (Data Quality Campaign, 2010; Mohamed, Kadir, May-Lin, Rahman, & Arshad, 2009;…

  17. Benchmarking the State of Chuuk's Education Management Information System. REL 2017-176

    Science.gov (United States)

    Kendall, John S.; Dandapani, Nitara; Cicchinelli, Louis F.

    2016-01-01

    A quality data management system, such as an education management information system (EMIS), a state longitudinal data system, or a data warehouse, is key to ensuring that education policy, planning, and strategy decisions are grounded in accurate information (Data Quality Campaign, 2010; Mohamed, Kadir, May-Lin, Rahman, & Arshad, 2009;…

  18. Benchmarking the State of Pohnpei's Education Management Information System. REL 2017-175

    Science.gov (United States)

    Kendall, John S.; Dandapani, Nitara; Cicchinelli, Louis F.

    2016-01-01

    A quality data management system, such as an education management information system (EMIS), a state longitudinal data system, or a data warehouse, is key to ensuring that education policy, planning, and strategy decisions are grounded in accurate information (Data Quality Campaign, 2010; Mohamed, Kadir, May-Lin, Rahman, & Arshad, 2009;…

  19. Fuzzy combination of fuzzy and switching state-feedback controllers for nonlinear systems subject to parameter uncertainties.

    Science.gov (United States)

    Lam, H K; Leung, Frank H F

    2005-04-01

    This paper presents a fuzzy controller, which involves a fuzzy combination of local fuzzy and global switching state-feedback controllers, for nonlinear systems subject to parameter uncertainties with known bounds. The nonlinear system is represented by a fuzzy combined Takagi-Sugeno-Kang model, which is a fuzzy combination of the global and local fuzzy plant models. By combining the local fuzzy and global switching state-feedback controllers using fuzzy logic techniques, the advantages of both controllers can be retained and the undesirable chattering effect introduced by the global switching state-feedback controller can be eliminated. The steady-state error introduced by the global switching state-feedback controller when a saturation function is used can also be removed. Stability conditions, which are related to the system matrices of the local and global closed-loop systems, are derived to guarantee the closed-loop system stability. An application example will be given to demonstrate the merits of the proposed approach.

  20. Data Use "Multi-State" Spotlight: Using Data Fidelity Tools to Improve Data Quality. Transforming State Systems to Improve Outcomes for Children with Disabilities

    Science.gov (United States)

    Ruedel, Kristin; Nelson, Gena; Bailey, Tessie

    2018-01-01

    To evaluate interim progress toward the State-identified Measurable Result (SIMR), states require access to high-quality data from local education agencies (LEAs) and early intervention service providers. In a review of 2017 Phase III State Systemic Improvement Plans (SSIP), 43 Part C states noted limitations or concerns related to data and…

  1. Quality Rating and Improvement System State Evaluations and Research

    Science.gov (United States)

    Ferguson, Daniel

    2016-01-01

    A quality rating and improvement system (QRIS) is a method used by states and local jurisdictions to assess the level of quality of child care and early education programs, improve quality, and convey quality ratings to parents and other consumers. A typical QRIS incorporates the following components: quality standards for participating providers;…

  2. Robust Performance of Systems with Structured Uncertainties in State Space

    OpenAIRE

    Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...

  3. Resonant state expansion applied to three-dimensional open optical systems

    OpenAIRE

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2014-01-01

    The resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Green's function. We demonstrate the valid...

  4. Origins of a national seismic system in the United States

    Science.gov (United States)

    Filson, John R.; Arabasz, Walter J.

    2016-01-01

    This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local‐scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the two‐step realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.

  5. Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system

    International Nuclear Information System (INIS)

    Lai, Chyh-Ming; Yeh, Wei-Chang

    2016-01-01

    The redundancy allocation problem involves configuring an optimal system structure with high reliability and low cost, either by alternating the elements with more reliable elements and/or by forming them redundantly. The multi-state bridge system is a special redundancy allocation problem and is commonly used in various engineering systems for load balancing and control. Traditional methods for redundancy allocation problem cannot solve multi-state bridge systems efficiently because it is impossible to transfer and reduce a multi-state bridge system to series and parallel combinations. Hence, a swarm-based approach called two-stage simplified swarm optimization is proposed in this work to effectively and efficiently solve the redundancy allocation problem in a multi-state bridge system. For validating the proposed method, two experiments are implemented. The computational results indicate the advantages of the proposed method in terms of solution quality and computational efficiency. - Highlights: • Propose two-stage SSO (SSO_T_S) to deal with RAP in multi-state bridge system. • Dynamic upper bound enhances the efficiency of searching near-optimal solution. • Vector-update stages reduces the problem dimensions. • Statistical results indicate SSO_T_S is robust both in solution quality and runtime.

  6. The Development of Multi-Agent System of State Estimation of Electric Power Systems Using Event Models

    Directory of Open Access Journals (Sweden)

    L. V. Massel

    2015-01-01

    Full Text Available The work objective is to offer a methodological approach to the development of multiagent systems (MAS in the energy sector. The agent approach is declared as an integral part of the Smart Grid concept (intelligent energy systems, but so far there is really neither methodological development and nor implementation in this area. The problem to estimate the states of electric power systems (EPS is one of the most important in the energy sector. Decentralization of calculations, when estimating the EPS states, allows reducing the host control center load and the amount of data transferred through the network.To achieve this aim were used the theory and methods for estimating the EPS state, artificial intelligence techniques, methods of object design and programming, multi-agent technologies, and algebraic Joiner-net network.The work analyses existing agent-based solutions, reveals their weaknesses, and proposes author's approach to MAS development in the energy sector, which includes 5 steps: 1 description of the future system, 2 construction and description of the agent-based scenarios, 3 MAS architecture development 4 MAS engineering design 5 MAS implementation.A novelty of the proposed approach lies in introduction of the agent interaction scenarios and application of Joiner-networks for scripting of scenarios. Agent-based scenarios allow nonprogrammers-experts to change the programme algorithm. A Joiner-network of the scenario consists of the functioning processes of agents (nodes, and the events that trigger or end the process. Output event of one process can be the input event for another.The operation algorithm of the EPS estimation system is developed. The first step is to provide decomposition of a nodalization diagram into the areas corresponding to the levels of node voltages. Then diagrams resulting from decomposition are distributed between the agents of EPS estimation and calculated in parallel. At the next stage, all diagrams are

  7. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  8. C-band solid state dual polarization T/R modules for airborne SAR systems

    NARCIS (Netherlands)

    Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    The use of distributed power in a, on a phased array antenna based, SAR system offers new possibilities for the system operation. As a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna, the PHARUS system has been

  9. Experience-based utility and own health state valuation for a health state classification system: why and how to do it.

    Science.gov (United States)

    Brazier, John; Rowen, Donna; Karimi, Milad; Peasgood, Tessa; Tsuchiya, Aki; Ratcliffe, Julie

    2017-10-11

    In the estimation of population value sets for health state classification systems such as the EuroQOL five dimensions questionnaire (EQ-5D), there is increasing interest in asking respondents to value their own health state, sometimes referred to as "experience-based utility values" or, more correctly, own rather than hypothetical health states. Own health state values differ to hypothetical health state values, and this may be attributable to many reasons. This paper critically examines whose values matter; why there is a difference between own and hypothetical values; how to measure own health state values; and why to use own health state values. Finally, the paper examines other ways that own health state values can be taken into account, such as including the use of informed general population preferences that may better take into account experience-based values.

  10. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.

  11. Present state and progress of industrial electron processing systems in Japan

    International Nuclear Information System (INIS)

    Sakamoto, I.; Mizusawa, K.

    1983-01-01

    A summary is given of the state of utilisation of electron processing systems in Japan, mainly for (1) cross-linking of wire and cable insulator, (2) heat shrinkable tube and sheet, (3) foamed polyethylene, and (4) curing of paint coats. Details are given of some of the electron processing systems. (U.K.)

  12. The Policy-Making Process of the State University System of Florida.

    Science.gov (United States)

    Sullivan, Sandra M.

    The policy-making process of the State University System of Florida is described using David Easton's model of a political system as the conceptual framwork. Two models describing the policy-making process were developed from personal interviews with the primary participants in the governance structure and from three case studies of policy…

  13. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  14. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  15. A state-of-the-art passive gamma-ray assay system

    International Nuclear Information System (INIS)

    Sampson, T.E.; Parker, J.L.; Cowder, L.R.; Kern, E.A.; Garcia, D.L.; Ensslin, N.

    1987-01-01

    We report details of the development of a high-accuracy, high-precision system for the non-destructive assay of 235 U in solution. The system can measure samples with concentrations ranging from 0.0001 to 500 g 235 U/l using 200-ml samples at low concentrations, 30-ml samples at high concentrations, and 1000-s measurement times. The accuracy and precision goals of 0.1% were essentially attained for concentrations above 100 g/l. This at-line system, designed for a production plant environment, represents a significant improvement in the state of the art

  16. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    Energy Technology Data Exchange (ETDEWEB)

    Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey)

    2015-12-20

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  17. Direct measurement of the Concurrence of spin-entangled states in a cavity–quantum dot system

    International Nuclear Information System (INIS)

    Dong, Ping; Liu, Jun; Zhang, Li-Hua; Cao, Zhuo-Liang

    2016-01-01

    A scheme for implementing the direct measurement of Concurrence is given in a cavity–quantum dot system. The scenario not only can directly measure the Concurrence of two-spin pure entangled state, but also suitable for the case of mixed state. More importantly, all of the operations are of geometric nature, which depend on the cavity-state-free evolution and can be robust against random operation errors. Our scheme provided an alternative method for directly measuring the degree of entanglement in solid-state system.

  18. Grey Box Modelling of Flow in Sewer Systems with State Dependent Diffusion

    DEFF Research Database (Denmark)

    Breinholt, Anders; Thordarson, Fannar Örn; Møller, Jan Kloppenborg

    2011-01-01

    . It is shown that an additive diffusion noise term description leads to a violation of the physical constraints of the system, whereas a state dependent diffusion noise avoids this problem and should be favoured. It is also shown that a logarithmic transformation of the flow measurements secures positive lower...... flow prediction limits, because the observation noise is proportionally scaled with the modelled output. Finally it is concluded that a state proportional diffusion term best and adequately describes the one-step flow prediction uncertainty, and a proper description of the system noise is important......Generating flow forecasts with uncertainty limits from rain gauge inputs in sewer systems require simple models with identifiable parameters that can adequately describe the stochastic phenomena of the system. In this paper, a simple grey-box model is proposed that is attractive for both...

  19. Location of external state financial control in national control system of Ukraine

    Directory of Open Access Journals (Sweden)

    N.G. Vygovska

    2016-12-01

    Full Text Available The article estimates the theoretical basis of the external state financial control in Ukraine in the context of defining its place in the formation of the functional areas of internal and external controls in order to eliminate duplication of a single national control system. The authors have investigated the scientific approaches to the interpretation of the concept of «external state financial control», «internal financial control», «public audit» in order to eliminate terminological confusion. It were found the differences between the external and internal financial control on the basis of comparative characteristics of such features as the entity controlling entities, controlled objects, object methods, and direction control. The concept of internal and external controls are considered to expedient to communicate with the system in which this control is identified. «Internal» in this case is identical intra-control, that is located within the executive branch, while an external control is not included in it and is external to the executive bodies of the controlled institution, and is not related to them and, as a consequence, independent. The authors suggest to form a unified system of state financial control, a clear distinction between internal and external powers of species. The authors consider that appropriate in this context will be the adoption of a single legislative act «About State Financial Control», the proposed structure is introduced in the article. Implementation of this law will contribute to the clear division of functional areas of the state control (internal and external, the elimination of departmental conflicts, and promote the formation of a single integrated control system in Ukraine, able to counteract abuses and prevent the possible loss of budgetary funds.

  20. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  1. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Directory of Open Access Journals (Sweden)

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  2. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    Science.gov (United States)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  3. Linear response theory for long-range interacting systems in quasistationary states.

    Science.gov (United States)

    Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano

    2012-02-01

    Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society

  4. Time-dependent theory of Raman scattering for systems with several excited electronic states: Application to a H+3 model system

    International Nuclear Information System (INIS)

    Heather, R.; Metiu, H.

    1989-01-01

    The time-dependent formulation of Raman scattering theory is used to study how nonadiabatic interactions affect the Raman spectrum of a model H + 3 system, which has two excited electronic states. We start with a formula derived by Heller which gives the Raman scattering cross section as the Fourier transform (over time) of a time-dependent overlap integral. The latter is calculated with a method proposed by Fleck, Morris, and Feit, and extended to curve crossing by Alvarellos and Metiu. In performing these calculations we are especially interested in displaying effects typical of systems having more than one upper state. If the incident laser populates two electronic states there are several ways (i.e., excite to state one and emit from state two, excite to state one, and emit from state one, etc.) by which the Raman process can reach a given final state, and this leads to quantum interference. This interference is manifested in the Raman cross section as approximate selection rules controlling which final states can be reached through the Raman process. These selection rules depend on the relative orientation of the transition dipoles that radiatively couple the ground electronic state with the excited electronic states. The magnitude of the nonadiabatic contribution to the Raman emission, e.g., the contribution from absorbing to state one and emitting from state two, can be determined from the polarization dependence of the Raman emission if the transition dipoles have neither parallel nor antiparallel relative orientation

  5. An impurity-induced gap system as a quantum data bus for quantum state transfer

    International Nuclear Information System (INIS)

    Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.

    2014-01-01

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer

  6. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    Science.gov (United States)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  7. Automatic diagnosis and control of distributed solid state lighting systems

    NARCIS (Netherlands)

    Dong, J.; van Driel, W.D.; Zhang, G.Q.

    2011-01-01

    This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may significantly reduce the overall illumination level, and destroy the uniform illumination distribution achieved by a nominal

  8. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  9. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  10. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  11. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  12. Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

    Science.gov (United States)

    Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.

    2018-04-01

    Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.

  13. Warehousing Human Beings: A Review of the New York State Correctional System.

    Science.gov (United States)

    New York State Advisory Committee to the U.S. Commission on Civil Rights, New York.

    In 1970, the New York Advisory Committee to the United States Commission on Civil Rights undertook a study of the State Department of Correctional Services. Using information obtained from observations and from interviews with officials, staff, and inmates, the investigation focused upon the impact of the system on minorities and women. In the…

  14. Component- and system-level degradation modeling of digital Instrumentation and Control systems based on a Multi-State Physics Modeling Approach

    International Nuclear Information System (INIS)

    Wang, Wei; Di Maio, Francesco; Zio, Enrico

    2016-01-01

    Highlights: • A Multi-State Physics Modeling (MSPM) framework for reliability assessment is proposed. • Monte Carlo (MC) simulation is utilized to estimate the degradation state probability. • Due account is given to stochastic uncertainty and deterministic degradation progression. • The MSPM framework is applied to the reliability assessment of a digital I&C system. • Results are compared with the results obtained with a Markov Chain Model (MCM). - Abstract: A system-level degradation modeling is proposed for the reliability assessment of digital Instrumentation and Control (I&C) systems in Nuclear Power Plants (NPPs). At the component level, we focus on the reliability assessment of a Resistance Temperature Detector (RTD), which is an important digital I&C component used to guarantee the safe operation of NPPs. A Multi-State Physics Model (MSPM) is built to describe this component degradation progression towards failure and Monte Carlo (MC) simulation is used to estimate the probability of sojourn in any of the previously defined degradation states, by accounting for both stochastic and deterministic processes that affect the degradation progression. The MC simulation relies on an integrated modeling of stochastic processes with deterministic aging of components that results to be fundamental for estimating the joint cumulative probability distribution of finding the component in any of the possible degradation states. The results of the application of the proposed degradation model to a digital I&C system of literature are compared with the results obtained by a Markov Chain Model (MCM). The integrated stochastic-deterministic process here proposed to drive the MC simulation is viable to integrate component-level models into a system-level model that would consider inter-system or/and inter-component dependencies and uncertainties.

  15. The management of the state reserving system in the aspect of the regional economic security supporting

    Directory of Open Access Journals (Sweden)

    Aleksandr Yefimovich Zemskov

    2011-06-01

    Full Text Available This paper reviews the role of the state material reserve system to ensure economic security of the region. A classification of reserves ensuring economic security of the region was elaborated. A scheme of systematic and structural representation of the state material reserve in order to improve the economic security of the region was suggested. Optimization of operational control of the territorial offices, factories, and settlements of custody within the framework of the state material reserve is one of the most effective instruments to enhance the functioning of the whole system. To solve the problem of technological processes optimization of products acquisition and storage in manufacturings, plants and points of consignment storage of the state material reserve, a static economic-mathematical model was developed. The results can be used to develop appropriate computer systems for support of effective management decisions in the system of state of material reserve.

  16. Proceedings of the 7th International Workshop on Verification of Infinite-State Systems (INFINITY'05)

    DEFF Research Database (Denmark)

    2005-01-01

    The aim of the workshop is, to provide a forum for researchers interested in the development of mathematical techniques for the analysis and verification of systems with infinitely many states. Topics: Techniques for modeling and analysis of infinite-state systems; Equivalence-checking and model-...

  17. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  18. Solid State Inflation Balloon Active Deorbiter: Scalable Low-Cost Deorbit System for Small Satellites

    Science.gov (United States)

    Huang, Adam

    2016-01-01

    The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.

  19. Present states and views on vault storage systems

    International Nuclear Information System (INIS)

    Yoshimura, Eiji

    2003-01-01

    Storage capacity of spent nuclear fuel storage pools in nuclear power station is reaching to a condition near its limit, and under a condition inevitable on delay of the Pu-thermal utilization plan importance on interim storage of the spent nuclear fuels is further rising. In U.S.A., Germany, and so on, a condition incapable of presenting nuclear energy business itself without its intermediate storage is approaching, so in Japan it will also be a key to smoothly promote the nuclear energy business how the interim storage is used and operated. Under such condition, in Japan storage facilities using a system called by 'metal cask' are established at areas of nuclear power stations to begin their operations. As on the system expensive metal containers are used for storage in themselves, it has a demerit of its high cost. On the other hand, on foreign countries, a storing system called by concrete cask, horizontal silo, or vault is occupying its main stream. Here was introduced present states and future views on vault storage system. (G. K)

  20. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    Science.gov (United States)

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Conflicting demands of No Child Left Behind and state systems: Mixed messages about school performance.

    OpenAIRE

    Robert L. Linn

    2005-01-01

    An ever-increasing reliance on student performance on tests holds schools and educators accountable both to state accountability systems and also to the accountability requirements of the No Child Left Behind (NCLB) Act of 2001. While each state has constructed its own definition of Adequate Yearly Progress (AYP) requirements within the confines of NCLB, substantial differences between the accountability requirements of many state systems and NCLB still have resulted in mixed messages regardi...

  2. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti

    2017-01-01

    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  3. Muon studies of low-dimensional solid state systems

    International Nuclear Information System (INIS)

    Jestaedt, T.

    1999-04-01

    of this spin-gap on the magnetic properties are investigated here. I also describe results of measurements on a material with even more reduced dimensionality, polybutadiene (PB). This is a non-conducting polymer without side-chains. Muons in this system can either be in a paramagnetic or a diamagnetic state (with a polymer radical state produced by reaction of muonium with a polymer bond). The nature of these states has been examined with a variety of μSR, techniques, and the influence of the polymer dynamics and the glass transition in PB is discussed. (author)

  4. Influence of Hyperthyroidism and the State of Female Reproductive System on the Development of Osteopenic Syndrome

    Directory of Open Access Journals (Sweden)

    L.V. Herasymenko

    2015-04-01

    Full Text Available The study was focused on determining the impact of hyperthyroidism due to Graves’ disease on the state of skeletal system in women. According to the ultrasound densitometry data, pathological changes in the state of skeletal system were revealed in both reproductive age and menopause. Hyperthyroidism had especially pronounced effect on the state of skeletal system in menopausal women, who were characterized by the presence of severe osteopenia and systemic osteoporosis (75 and 25 %, respectively. These findings indicate the need for treatment of osteoporotic syndrome, which complicates Graves’ disease course in women and increases the risk of pathological fractures.

  5. Plant-wide quantitative assessment of a process industry system's operating state based on color-spectrum

    Science.gov (United States)

    Kai, Sun; Jianmin, Gao; Zhiyong, Gao; Hongquan, Jiang; Xu, Gao

    2015-08-01

    This paper presents a general theoretical framework to assess the operating state of a process industry system quantitatively based on meshing the theory of scientific data visualization and digital image processing. First, a series of color-spectrum, which represent the operating state of the system, is formed by mapping the monitor data set to a group of digital color images. Second, the common feature of color-spectrum, which is named benchmark-color-spectrum, is extracted as a standard of the normal state. Third, the abnormal degree can be quantified by calculating the difference of the benchmark-color-spectrum with observed color-spectrum. At last, a plant-wide operating state of the system in a period of time can be shown by plotting quantitative abnormal degree. Two case is included to illustrate the proposed method and its appropriateness. One is a general process industry system simulator named Tennessee Eastman Process. Another is an air compressor group which belongs to a real chemical plant.

  6. Pair condensation and bound states in fermionic systems

    International Nuclear Information System (INIS)

    Sedrakian, Armen; Clark, John W.

    2006-01-01

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2

  7. CURRENT STATE ANALYSIS OF AUTOMATIC BLOCK SYSTEM DEVICES, METHODS OF ITS SERVICE AND MONITORING

    Directory of Open Access Journals (Sweden)

    A. M. Beznarytnyy

    2014-01-01

    Full Text Available Purpose. Development of formalized description of automatic block system of numerical code based on the analysis of characteristic failures of automatic block system and procedure of its maintenance. Methodology. For this research a theoretical and analytical methods have been used. Findings. Typical failures of the automatic block systems were analyzed, as well as basic reasons of failure occur were found out. It was determined that majority of failures occurs due to defects of the maintenance system. Advantages and disadvantages of the current service technology of automatic block system were analyzed. Works that can be automatized by means of technical diagnostics were found out. Formal description of the numerical code of automatic block system as a graph in the state space of the system was carried out. Originality. The state graph of the numerical code of automatic block system that takes into account gradual transition from the serviceable condition to the loss of efficiency was offered. That allows selecting diagnostic information according to attributes and increasing the effectiveness of recovery operations in the case of a malfunction. Practical value. The obtained results of analysis and proposed the state graph can be used as the basis for the development of new means of diagnosing devices for automatic block system, which in turn will improve the efficiency and service of automatic block system devices in general.

  8. Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2012-04-01

    Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.

  9. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  10. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    Science.gov (United States)

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  11. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan

    2017-11-01

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  12. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap.

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2017-11-17

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  13. Hyperchaos of four state autonomous system with three positive Lyapunov exponents

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang, C-H.

    2009-01-01

    This Letter gives the results of numerical simulations of Quantum Cellular Neural Network (Quantum-CNN) autonomous system with four state variables. Three positive Lyapunov exponents confirm hyperchaotic nature of its dynamics

  14. Homogeneous Stabilizer by State Feedback for Switched Nonlinear Systems Using Multiple Lyapunov Functions’ Approach

    Directory of Open Access Journals (Sweden)

    Hui Ye

    2017-01-01

    Full Text Available This paper investigates the problem of global stabilization for a class of switched nonlinear systems using multiple Lyapunov functions (MLFs. The restrictions on nonlinearities are neither linear growth condition nor Lipschitz condition with respect to system states. Based on adding a power integrator technique, we design homogeneous state feedback controllers of all subsystems and a switching law to guarantee that the closed-loop system is globally asymptotically stable. Finally, an example is given to illustrate the validity of the proposed control scheme.

  15. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong

    2015-05-01

    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  16. State-of-the-art Model M-2 Maintenance System

    International Nuclear Information System (INIS)

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-04-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system. 5 references, 8 figures

  17. Selected equation of state in the acentric factor system

    International Nuclear Information System (INIS)

    Schreiber, D.R.; Pitzer, K.S.

    1988-06-01

    A new equation of state in the acentric factor system is developed on the basis of high-precision data. The region in critical temperature T/sub r/, critical density P/sub r/ space is identified where there is good agreement as well as the regions of significant departures. The equation fits very well in the critical region. 10 refs., 6 figs., 3 tabs

  18. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M. Lee [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).; Richard, Stephen M. [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  19. Theoretical grounds of internal audit in the system of state financial control in Ukraine

    Directory of Open Access Journals (Sweden)

    Dikan Larysa V.

    2013-03-01

    Full Text Available The article considers modern directions of reformation of the system of state financial control connected with introduction of the state internal financial control. It considers economic essence of the state internal financial control in the context of its components. It justifies the place of the internal audit in the system of the state internal financial control in Ukraine. It considers existing definitions of internal audit in legislative acts. It generalises views of scientists on interpretation of the “internal audit” notion. It provides definitions united in approaches. It conducts a critical analysis of generalised approaches. It offers the authors’ view on the essence of internal audit in budget institutions, which has certain positive features compared to existing ones.

  20. Data acquisition system for steady state experiments at multi-sites

    International Nuclear Information System (INIS)

    Nakanishi, H.; Emoto, M.; Nagayama, Y.

    2010-11-01

    A high-performance data acquisition system (LABCOM system) has been developed for steady state fusion experiments in Large Helical Device (LHD). The most important characteristics of this system are the 110 MB/s high-speed real-time data acquisition capability and also the scalability on its performance by using unlimited number of data acquisition (DAQ) units. It can also acquire experimental data from multiple remote sites through the 1 Gbps fusion-dedicated virtual private network (SNET) in Japan. In LHD steady-state experiments, the DAQ cluster has established the world record of acquired data amount of 90 GB/shot which almost reaches the ITER data estimate. Since all the DAQ, storage, and data clients of LABCOM system are distributed on the local area network (LAN), remote experimental data can be also acquired simply by extending the LAN to the wide-area SNET. The speed lowering problem in long-distance TCP/IP data transfer has been improved by using an optimized congestion control and packet pacing method. Japan-France and Japan-US network bandwidth tests have revealed that this method actually utilize 90% of ideal throughput in both cases. Toward the fusion goal, a common data access platform is indispensable so that detailed physics data can be easily compared between multiple large and small experiments. The demonstrated bilateral collaboration scheme will be analogous to that of ITER and the supporting machines. (author)

  1. System Identification of Civil Engineering Structures using State Space and ARMAV Models

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...

  2. Steady-State and Transient Analysis for Design Validation of SMART-ITL Secondary System

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Eunkoo; Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SMART can prevent large-break loss of coolant accident (LBLOCA) inherently. SMART-ITL is an experimental simulation facility designed to perform integral effect tests for the SMART plant. In terms of the secondary system of SMART-ITL, the design has been simplified from that of reference plant by replacing several components, such as expansion device and condenser, with an appropriate device to be functional as the alternatives. In this paper, in order to understand the operational characteristics as well as design concept, the secondary system of SMRAT-ITL is analyzed in steady-state and transient aspects, and the results are compared with relevant experimental results. This study focuses on the understanding of thermal-hydraulic behavior of SMART-ITL secondary system, which is simplified from that of reference plant. To identify the behaviors of the secondary system, the steady-state and transient analysis were conducted based on experimental results. In steady-state analysis, the results clearly showed that the system pressure is related to the temperature of condensation tank which varies depending on mixture enthalpy. In transient analysis, the dynamic behavior during heat-up process has been investigated. The results reveal that we can reasonably assume the fluid filled in TK-CD-01 be in a saturated condition. The results showed that the design of SMART-ITL secondary system is appropriate, and the system is being properly operated to match the design intent.

  3. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    Science.gov (United States)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost

  4. Using Expert Systems in Evaluation of the State of High Voltage Machine Insulation Systems

    Directory of Open Access Journals (Sweden)

    K. Záliš

    2000-01-01

    Full Text Available Expert systems are used for evaluating the actual state and future behavior of insulating systems of high voltage electrical machines and equipment. Several rule-based expert systems have been developed in cooperation with top diagnostic workplaces in the Czech Republic for this purpose. The IZOLEX expert system evaluates diagnostic measurement data from commonly used offline diagnostic methods for the diagnostic of high voltage insulation of rotating machines, non-rotating machines and insulating oils. The CVEX expert system evaluates the discharge activity on high voltage electrical machines and equipment by means of an off-line measurement. The CVEXON expert system is for evaluating the discharge activity by on-line measurement, and the ALTONEX expert system is the expert system for on-line monitoring of rotating machines. These developed expert systems are also used for educating students (in bachelor, master and post-graduate studies and in courses which are organized for practicing engineers and technicians and for specialists in the electrical power engineering branch. A complex project has recently been set up to evaluate the measurement of partial discharges. Two parallel expert systems for evaluating partial dischatge activity on high voltage electrical machines will work at the same time in this complex evaluating system.

  5. State Online Query System (SOLQ)

    Data.gov (United States)

    Social Security Administration — Designed specifically for State Human Service agencies, SOLQ allows States real-time online access to SSA's SSN verification service and, if permitted, retrieval of...

  6. Dissipative differential systems and the state space H∞ control problem

    NARCIS (Netherlands)

    Trentelman, H.L.; Willems, J.C.

    2000-01-01

    The purpose of this paper is to apply our very recent results on the synthesis of dissipative linear differential systems to the 'classical' state space H∞ control problem. We first review our general problem set-up, where the problem of rendering a given plant dissipative by general

  7. Economic Potential of Taungya Farming System in Edo State, Nigeria

    African Journals Online (AJOL)

    The study examined the economic potential of taungya system in Edo state, using of data obtained from both primary and secondary sources with the aid of well structured questionnaires administered to 230 respondents in eight the Local Government Areas practicing taungya farming in government reserved forests.

  8. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  9. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  10. Matrix-product states for strongly correlated systems and quantum information processing

    International Nuclear Information System (INIS)

    Saberi, Hamed

    2008-01-01

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give

  11. Matrix-product states for strongly correlated systems and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Hamed

    2008-12-12

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any

  12. Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Feten Gannouni

    2017-01-01

    Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.

  13. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  14. Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems

    International Nuclear Information System (INIS)

    Nahas, Nabil; Khatab, Abdelhakim; Ait-Kadi, Daoud; Nourelfath, Mustapha

    2008-01-01

    This paper deals with preventive maintenance optimization problem for multi-state systems (MSS). This problem was initially addressed and solved by Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203]. It consists on finding an optimal sequence of maintenance actions which minimizes maintenance cost while providing the desired system reliability level. This paper proposes an approach which improves the results obtained by genetic algorithm (GENITOR) in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203]. The considered MSS have a range of performance levels and their reliability is defined to be the ability to meet a given demand. This reliability is evaluated by using the universal generating function technique. An optimization method based on the extended great deluge algorithm is proposed. This method has the advantage over other methods to be simple and requires less effort for its implementation. The developed algorithm is compared to than in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193-203] by using a reference example and two newly generated examples. This comparison shows that the extended great deluge gives the best solutions (i.e. those with minimal costs) for 8 instances among 10

  15. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    Science.gov (United States)

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  16. Reforming "developing" health systems: Tanzania, Mexico, and the United States.

    Science.gov (United States)

    Chernichovsky, Dov; Martinez, Gabriel; Aguilera, Nelly

    2009-01-01

    Tanzania, Mexico, and the United States are at vastly different points on the economic development scale. Yet, their health systems can be classified as "developing": they do not live up to their potential, considering the resources available to them. The three, representing many others, share a common structural deficiency: a segregated health care system that cannot achieve its basic goals, the optimal health of its people, and their possible satisfaction with the system. Segregation follows and signifies first and foremost the lack of financial integration in the system that prevents it from serving its goals through the objectives of equity, cost containment and sustainability, efficient production of care and health, and choice. The chapter contrasts the nature of the developing health care system with the common goals', objectives, and principles of the Emerging Paradigm (EP) in developed, integrated--yet decentralized--systems. In this context, the developing health care system is defined by its structural deficiencies, and reform proposals are outlined. In spite of the vast differences amongst the three countries, their health care systems share strikingly similar features. At least 50% of their total funding sources are private. The systems comprise exclusive vertically integrated, yet segregated, "silos" that handle all systemic functions. These reflect and promote wide variations in health insurance coverage and levels of benefits--substantial portions of their populations are without adequate coverage altogether; a considerable lack of income protection from medical spending; an inability to formalize and follow a coherent health policy; a lack of financial discipline that threatens sustainability and overall efficiency; inefficient production of care and health; and an dissatisfied population. These features are often promoted by the state, using tax money, and donors. The situation can be rectified by (a) "centralizing"--at any level of development

  17. Workshop meeting on State accounting and control system for radioactive substances and waste

    International Nuclear Information System (INIS)

    Evseev, V.F.

    2012-01-01

    On 2-6 July 2012, the fifth All-Russian workshop meeting of State Accounting and Control System for Radiation Substances (RS) and Radioactive Wastes (RAW) was conducted. The objective of the workshop was to discuss development of the State Accounting and Control System for RS and RAW in the Russian Federation, current changes to legal acts and regulations that pertain to management of RS and RAW, as well as other issues related to organisation of RS and RAW management activities and promotion of international cooperation [ru

  18. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  19. Approximate Analysis of Multi-State Weighted k-Out-of-n Systems Applied to Transmission Lines

    Directory of Open Access Journals (Sweden)

    Xiaogang Song

    2017-10-01

    Full Text Available Multi-state weighted k-out-of-n systems are widely applied in various scenarios, such as multiple line (power/oil transmission line transmission systems where the capability of fault tolerance is desirable. However, the complex operating environment and the dynamic features of load demands influence the evaluation of system reliability. In this paper, a stochastic multiple-valued (SMV approach is proposed to efficiently predict the reliability of two models of systems with non-repairable components and dynamically repairable components. The weights/performances and reliabilities of multi-state components (MSCs are represented by stochastic sequences consisting of a fixed number of multi-state values with the positions being randomly permutated. Using stochastic sequences with L multiple values, linear computational complexities with parameters n and L are required by the SMV approach to compute the reliability of different multi-state k-out-of-n systems at a reasonable accuracy, compared to the complexities of universal generating functions (UGF and fuzzy universal generating functions (FUGF that increase exponentially with the value of n. The analysis of two benchmarks shows that the proposed SMV approach is more efficient than the analysis using UGF or FUGF.

  20. A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Colli, Davide; Zio, Enrico; Tao, Liu; Tong, Jiejuan

    2015-01-01

    Highlights: • We model piping systems degradation of Nuclear Power Plants under uncertainty. • We use Multi-State Physics Modeling (MSPM) to describe a continuous degradation process. • We propose a Monte Carlo (MC) method for calculating time-dependent transition rates. • We apply MSPM to a piping system undergoing thermal fatigue. - Abstract: A Multi-State Physics Modeling (MSPM) approach is here proposed for degradation modeling and failure probability quantification of Nuclear Power Plants (NPPs) piping systems. This approach integrates multi-state modeling to describe the degradation process by transitions among discrete states (e.g., no damage, micro-crack, flaw, rupture, etc.), with physics modeling by (physic) equations to describe the continuous degradation process within the states. We propose a Monte Carlo (MC) simulation method for the evaluation of the time-dependent transition rates between the states of the MSPM. Accountancy is given for the uncertainty in the parameters and external factors influencing the degradation process. The proposed modeling approach is applied to a benchmark problem of a piping system of a Pressurized Water Reactor (PWR) undergoing thermal fatigue. The results are compared with those obtained by a continuous-time homogeneous Markov Chain Model

  1. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  2. Bound states and molecular structure of systems with hyperons

    International Nuclear Information System (INIS)

    Akaishi, Y.

    1992-01-01

    Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)

  3. 42 CFR 403.322 - Termination of agreements for Medicare recognition of State systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Termination of agreements for Medicare recognition of State systems. 403.322 Section 403.322 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State...

  4. An Approach for State Observation in Dynamical Systems Based on the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper discusses a novel approach for state estimation in dynamical systems, with the special focus on hydraulic valve-cylinder drives. The proposed observer structure is based on the framework of the so-called twisting algorithm. This algorithm utilizes the sign of the state being the target...

  5. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  6. Relative controllability of nonlinear systems with delays in state and ...

    African Journals Online (AJOL)

    In this work, sufficient conditions are developed for the relative controllability of perturbed nonlinear systems with time varying multiple delays in control with the perturbation function having implicit derivative with delays depending on both state and control variable, using Darbo's fixed points theorem. Journal of the Nigerian ...

  7. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active ...

  8. Factors affecting the choice of cropping systems in Kebbi State ...

    African Journals Online (AJOL)

    The study examined the factors that influence choice of cropping systems in Kebbi State Nigeria. The technique applied in the study was Logit regression. Data to conduct the research was obtained mainly from primary sources through a questionnaire survey of 256 farmers, comprising 98 monocroppers and 158 ...

  9. Unambiguous discrimination of mixed states: A description based on system-ancilla coupling

    International Nuclear Information System (INIS)

    Zhou, Xiang-Fa; Zhang, Yong-Sheng; Guo, Guang-Can

    2007-01-01

    We propose a general description for the unambiguous discrimination of mixed states according to the system-environment coupling, and present a procedure to reduce this to a standard semidefinite programming problem. In the two-state case, we introduce the canonical vectors and partly simplify the problem to the case of discrimination between pairs of canonical vectors. By considering the positivity of the 2x2 matrices, we obtain a series of new upper bounds for the total success probability, which depends on both the prior probabilities and specific state structures

  10. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    Science.gov (United States)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.

    2018-05-01

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to

  11. Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; Zhen, Wang; Pin-Dong, Zhao

    2008-01-01

    We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system

  12. Plant operation state monitoring system

    International Nuclear Information System (INIS)

    Sakai, Masanori; Babuchi, Katsumi; Arato, Toshiaki

    1994-01-01

    The system of the present invention accurately monitors a plant operation state of a plant, such as a nuclear power plant and a thermal power plant by using high temperature water, based on water quality informations. That is, water quality informations for the objective portion by using an electrochemical water quality sensor disposed in the objective portion to be monitored in the plant are continuously extracted for a predetermined period of time. Water quality is evaluated based on the extracted information. Obtained results for water quality evaluation and predetermined reference values of the plant operation handling are compared. Necessary part among the results of the measurement is displayed or recorded. The predetermined period of time described above is a period that the water quality information reaches at least a predetermined value or a period that the predetermined value is estimated by the water quality information, and it is defined as a period capable of measuring the information for three months continuously. The measurement is preferably conducted continuously in a period up to each periodical inspection on about every one year. (I.S.)

  13. Feasibility of using pedometers in a state-based surveillance system: 2014 Arizona Behavioral Risk Factor Surveillance System

    Directory of Open Access Journals (Sweden)

    Alberto Flórez-Pregonero

    2018-01-01

    Conclusion: The feasibility of using pedometers in a state-based surveillance system is modest at best. Feasibility may potentially be improved with easy-to-use pedometers where data can be electronically downloaded.

  14. Robust Performance of Systems with Structured Uncertainties in State Space

    DEFF Research Database (Denmark)

    Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...

  15. A system to measure isomeric state half-lives in the 10 ns to 10 μs range

    Energy Technology Data Exchange (ETDEWEB)

    Toufen, D. L., E-mail: dennis@if.usp.br [Institute of Physics, University of São Paulo, C.P. 66318, 05315-970 São Paulo, São Paulo (Brazil); Federal Institute of Education, Science and Technology of São Paulo - IFSP, 07115-000 Guarulhos, São Paulo (Brazil); Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Ribas, R. V. [Institute of Physics, University of São Paulo, C.P. 66318, 05315-970 São Paulo, São Paulo (Brazil); Linares, R. [Fluminense Federal University, 24220-900 Niterói, Rio de Janeiro (Brazil); Silveira, M. A. G. [Universitary Center of FEI, 09850-901 São Bernardo do Campo, São Paulo (Brazil)

    2014-07-15

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: {sup 54}Fe, 10{sup +} state (E = 6527.1 (11) keV, T{sub 1/2} = 364(7) ns) and the 5/2{sup +} state of {sup 19}F (E = 197.143 (4) keV, T{sub 1/2} = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10{sup +} state was T{sub 1/2} = 365(14) ns and for the 5/2{sup +} state, 100(36) ns.

  16. A system to measure isomeric state half-lives in the 10 ns to 10 μs range

    Science.gov (United States)

    Toufen, D. L.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Linares, R.; Silveira, M. A. G.; Ribas, R. V.

    2014-07-01

    The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: 54Fe, 10+ state (E = 6527.1 (11) keV, T1/2 = 364(7) ns) and the 5/2+ state of 19F (E = 197.143 (4) keV, T1/2 = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10+ state was T1/2 = 365(14) ns and for the 5/2+ state, 100(36) ns.

  17. Penn State geoPebble system: Design,Implementation, and Initial Results

    Science.gov (United States)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  18. Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States

    Science.gov (United States)

    Mendels, Dan; Organic Electronics Group Technion Team

    2014-03-01

    An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.

  19. Principles of Forming the State Budget of Ukraine: Process and System Approach

    Directory of Open Access Journals (Sweden)

    Zakhozhay Kostyantyn V.

    2017-09-01

    Full Text Available The aim of the article is considering the theoretical and methodological instruments of the State Budget of Ukraine and in view of this providing a more extended characteristic of the principles of the budget system, taking into account the role of the country’s main financial plan at five classical levels of economy. As a result of the research, there determined the necessity of supplementing the legislatively approved principles of the State Budget of Ukraine with the newly introduced principles of economic security and social protection of the population. In order to improve the theoretical and methodological instruments of the State Budget of Ukraine and the visibility of its impact on socio-economic processes under current conditions of the society development as well as to determine its role in the socio-economic space, it is suggested to consider the role of the main financial plan for mega-, macro-, meso-, micro- and nano-levels. Further practical application of the introduced principles of forming the State Budget of Ukraine on the basis of the process and system approach will enable development of many sectors of the national economy; increase the flow of investment; promote political stability; reduce the inflation, unemployment; increase production and exports; reduce the budget deficit and public debt; affect the increase in the financial potential and gold reserves of the state.

  20. Improved Stabilization Conditions for Nonlinear Systems with Input and State Delays via T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Chang Che

    2018-01-01

    Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.

  1. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  2. RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems.

    Science.gov (United States)

    Rodriguez Arreola, Alberto; Balsamo, Domenico; Merrett, Geoff V; Weddell, Alex S

    2018-01-10

    Energy harvesting sensor systems typically incorporate energy buffers (e.g., rechargeable batteries and supercapacitors) to accommodate fluctuations in supply. However, the presence of these elements limits the miniaturization of devices. In recent years, researchers have proposed a new paradigm, transient computing, where systems operate directly from the energy harvesting source and allow computation to span across power cycles, without adding energy buffers. Various transient computing approaches have addressed the challenge of power intermittency by retaining the processor's state using non-volatile memory. However, no generic approach has yet been proposed to retain the state of peripherals external to the processing element. This paper proposes RESTOP, flexible middleware which retains the state of multiple external peripherals that are connected to a computing element (i.e., a microcontroller) through protocols such as SPI or I 2 C. RESTOP acts as an interface between the main application and the peripheral, which keeps a record, at run-time, of the transmitted data in order to restore peripheral configuration after a power interruption. RESTOP is practically implemented and validated using three digitally interfaced peripherals, successfully restoring their configuration after power interruptions, imposing a maximum time overhead of 15% when configuring a peripheral. However, this represents an overhead of only 0.82% during complete execution of our typical sensing application, which is substantially lower than existing approaches.

  3. Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjun [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Weifang Vocational College, Weifang 261041 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Quanlong [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-07-18

    This Letter designs an asynchronous hyper chaotic secure communication system, which possesses high stability against noise, using dynamic delay and state variables switching to ensure the high security. The relationship between the bit error ratio (BER) and the signal-to-noise ratio (SNR) is analyzed by simulation tests, the results show that the BER can be ensured to reach zero by proportionally adjusting the amplitudes of the state variables and the noise figure. The modules of the transmitter and receiver are implemented, and numerical simulations demonstrate the effectiveness of the system. -- Highlights: → Asynchronous anti-noise hyper chaotic secure communication system. → Dynamic delay and state switching to ensure the high security. → BER can reach zero by adjusting the amplitudes of state variables and noise figure.

  4. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    Science.gov (United States)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; hide

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  5. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  6. INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.

    2010-01-01

    We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...... system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other...... states are unstable. The models are motivated from physics, chemistry, and biology, and the principal investigations can be useful for many systems with interacting particles or agents. The models match particularly well a system in neuroscience, namely the axonal pathfinding and sorting in the olfactory...

  7. Wheeled vehicle deceleration as estimation parameter of adaptive brake control system state

    Directory of Open Access Journals (Sweden)

    Turenko A.

    2012-06-01

    Full Text Available The method of stability estimation of adaptive control system with signal adjustment based on Lyapunov’s direct method that allows to take into account the nonstationarity of the basic system and non-linearity in the form of limitation on control action restriction as well as error control is stated.

  8. To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller

    International Nuclear Information System (INIS)

    Afridi, M. A.

    2012-01-01

    Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)

  9. Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Finster, F.

    1997-01-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc

  10. Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Châtelet, Eric; Nahas, Nabil

    2012-01-01

    This paper formulates a joint redundancy and imperfect preventive maintenance planning optimization model for series–parallel multi-state degraded systems. Non identical multi-state components can be used in parallel to improve the system availability by providing redundancy in subsystems. Multiple component choices are available in the market for each subsystem. The status of each component is considered to degrade with use. The objective is to determine jointly the maximal-availability series–parallel system structure and the appropriate preventive maintenance actions, subject to a budget constraint. System availability is defined as the ability to satisfy consumer demand that is represented as a piecewise cumulative load curve. A procedure is used, based on Markov processes and universal moment generating function, to evaluate the multi-state system availability and the cost function. A heuristic approach is also proposed to solve the formulated problem. This heuristic is based on a combination of space partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies TS to each selected sub-space.

  11. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    Science.gov (United States)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  12. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain.

    Science.gov (United States)

    Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue

    2017-08-22

    As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.

  13. E-Learning, State and Educational System in Middle East Countries

    Science.gov (United States)

    Rashidi, Hamid; Arani, Abbas Madandar; Kakia, Lida

    2012-01-01

    E-learning has provided men with new opportunities in teaching-learning procedures. A historical review of educational systems literature reveals that e-learning has spread out among people much faster than any other learning methods. E-learning as a state-of-the-art technology, has caused great innovations in materials development in those…

  14. Using Information Systems as Directions of the State Support for the Conditionally Depressive Regions

    Directory of Open Access Journals (Sweden)

    Morhachov Ilya V.

    2017-12-01

    Full Text Available The article is aimed at substantiating the perspectivity of information systems and technologies as a direction of the State support for the conditionally depressive regions. The article clarifies the assumption that an increase in the number of freelancers in region (even evaders from taxation, causes the growth of both the regional enterprises’ revenues and the tax revenues to budgets. Such freelancers become customers of works, services and goods, and, accordingly, employers for other persons who work officially. The State support for the concentration of such persons in the region contributes to reducing the «brain drain» abroad. The article substantiates prospective directions of the State support for the conditionally depressive regions by means of information systems, the basic elements of which are IT-specialists; as well as economic expediency of priority of the State support for the regions with presence of high level of unemployment of working population. The ways of solution of contradictions between the State and the freelancer in the part of payment of taxes and accrual of the insurance period for the future pension have been suggested. The ultimate goal of the State support for the conditionally depressive regions with use of information systems has been defined, which is to achieve the stage of the multiplied effect of growth of income of economic entities and tax revenues to the budget due to the implementation of innovation projects as result of the concentration of IT specialists in region.

  15. The state-of-the-art Model M-2 Maintenance System

    International Nuclear Information System (INIS)

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-01-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system

  16. Comparison between state graphs and fault trees for sequential and repairable systems

    International Nuclear Information System (INIS)

    Soussan, D.; Saignes, P.

    1996-01-01

    In French PSA (Probabilistic Safety Assessment) 1300 for the 1300 Mwe PWR plants carried out by EDF, sequential and reparable systems are modeled with state graphs. This method is particularly convenient for modeling dynamic systems with long-term missions but induces a bad traceability and understandability of models. In the objective of providing elements for rewriting PSA 1300 with only boolean models, EDF has asked CEA to participate to a methodological study. The aim is to carry out a feasibility study of transposition of state graphs models into fault trees on Component Cooling System and Essential Service Water System (CCS/ESWS) and to draw a methodological guide for transposition. The study realized on CCS/ESWS involves two main axes: quantification of cold source loss (as an accident sequence initiating event, called H1); quantification of the CCS/ESWS missions in accident sequences. The subject of this article is to show that this transformation is applicable with minimum distortions of the results and to determine the hypotheses, the conditions and the limits of application of this conversion. (authors). 2 refs

  17. Unsteady-state analysis of a counter-flow dew point evaporative cooling system

    KAUST Repository

    Lin, J.

    2016-07-19

    Understanding the dynamic behavior of the dew point evaporative cooler is crucial in achieving efficient cooling for real applications. This paper details the development of a transient model for a counter-flow dew point evaporative cooling system. The transient model approaching steady conditions agreed well with the steady state model. Additionally, it is able to accurately predict the experimental data within 4.3% discrepancy. The transient responses of the cooling system were investigated under different inlet air conditions. Temporal temperature and humidity profiles were analyzed for different transient and step responses. The key findings from this study include: (1) the response trend and settling time is markedly dependent on the inlet air temperature, humidity and velocity; (2) the settling time of the transient response ranges from 50 s to 300 s when the system operates under different inlet conditions; and (3) the average transient wet bulb effectiveness (1.00–1.06) of the system is observed to be higher than the steady state wet bulb effectiveness (1.01) for our range of study. © 2016 Elsevier Ltd

  18. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  19. State control of discrete-time linear systems to be bound in state variables by equality constraints

    International Nuclear Information System (INIS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-01-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach

  20. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)