WorldWideScience

Sample records for stars iii mass

  1. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  2. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  3. Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    DEFF Research Database (Denmark)

    Bovino, S.; Latif, M. A.; Grassi, Tommaso

    2014-01-01

    While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ioni...

  4. Population III Stars and Remnants in High-redshift Galaxies

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.

    2013-08-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  5. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Xu Hao; Norman, Michael L.; Wise, John H.

    2013-01-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies

  6. Revisiting The First Galaxies: The epoch of Population III stars

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  7. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  8. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  9. LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS

    International Nuclear Information System (INIS)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi; Suwa, Yudai; Sakamoto, Takanori

    2012-01-01

    Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than ∼100 M ☉ and typically ∼40 M ☉ . By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of ∼10 5 s in the observer frame and a peak luminosity of ∼5 × 10 50 erg s –1 . Assuming that the E p -L p (or E p -E γ,iso ) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or ∼100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E p -E γ,iso correlation holds, we have the possibility to detect Pop III GRBs at z ∼ 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E p -L p correlation holds, we have the possibility to detect Pop III GRBs up to z ∼ 19 as long-duration X-ray flashes by Lobster.

  10. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~Economia y Competitividad of Spain Consolider Project CSD2010-00064.

  11. CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT z = 7.01

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Davé, Romeel; Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Oh, S. Peng [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106-9530 (United States); Yang, Yujin, E-mail: caiz@email.arizona.edu [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2015-01-30

    Numerous theoretical models have long proposed that a strong He II λ1640 emission line is the most prominent and unique feature of massive Population III (Pop III) stars in high-redshift galaxies. The He II λ1640 line strength can constrain the mass and initial mass function (IMF) of Pop III stars. We use F132N narrowband filter on the Hubble Space Telescope's (HST) Wide Field Camera 3 to look for strong He II λ1640 emission in the galaxy BDF-521 at z = 7.01, one of the most distant spectroscopically confirmed galaxies to date. Using deep F132N narrowband imaging, together with our broadband imaging with F125W and F160W filters, we do not detect He II emission from this galaxy, but place a 2σ upper limit on the flux of 5.3×10{sup −19} erg s{sup −1} cm{sup −2}. This measurement corresponds to a 2σ upper limit on the Pop III star formation rate (SFR{sub PopIII}) of ∼0.2 M {sub ☉} yr{sup –1}, assuming a Salpeter IMF with 50 ≲ M/M {sub ☉} ≲ 1000. From the high signal-to-noise broadband measurements in F125W and F160W, we fit the UV continuum for BDF-521. The spectral flux density is ∼3.6×10{sup −11}×λ{sup −2.32} erg s{sup −1} cm{sup −2} Å{sup –1}, which corresponds to an overall unobscured SFR of ∼5 M {sub ☉} yr{sup –1}. Our upper limit on SFR{sub PopIII} suggests that massive Pop III stars represent ≲ 4% of the total star formation. Further, the HST high-resolution imaging suggests that BDF-521 is an extremely compact galaxy, with a half-light radius of 0.6 kpc.

  12. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  13. Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.

    Science.gov (United States)

    de Marchi, G.; Paresce, F.

    1995-12-01

    We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 195%. The main sequence luminosity function obtained from the observed CMD increases with decreasing luminosity following a power-law trend with index α=~0.15 in the range 5crowding. On the basis of the available mass-luminosity relation for this metallicity, the resultant mass function shows a power-law increase in numbers for decreasing masses in the range 0.8-0.3Msun_ with a slope α=~1.5, but then flattens out in the 0.3-0.15Msun_ range. The comparison of the mass function of 47 Tuc with that of NGC 6397 (Paper I) and of M 15 (Paper II), previously investigated with the same instrumentation, suggests that the stellar population near the half-mass radius of these clusters should not be very sensitive to either internal or externally-driven dynamical processes. The difference between their mass functions could then be attributed to metallicity, reflecting an intrinsic difference in their initial mass functions, unless mass-segregation is stronger in 47 Tuc than in the other two clusters. This latter circumstance could be due, for instance, to the large number of binaries discovered in 47 Tuc. In all cases, however, the mass function is found to flatten below 0.3Msun_ and the flattening is most likely an intrinsic

  14. The evolution of supermassive Population III stars

    Science.gov (United States)

    Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J.

    2018-02-01

    Supermassive primordial stars forming in atomically cooled haloes at z ˜ 15-20 are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of 0.1-1 M⊙ yr-1 until the general relativistic instability triggers its collapse to a black hole at masses of ˜105 M⊙. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionizing radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates 0.001-10 M⊙ yr-1, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We compute for the first time evolutionary tracks in the mass range M > 105 M⊙. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than 0.01 M⊙ yr-1, the stars evolve as red, cool supergiants with surface temperatures below 104 K towards masses >105 M⊙. Moreover, even with the lower rates 0.001 M_{⊙} yr{^{-1}}feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars. We provide numerical tables for the surface properties of our models.

  15. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS-PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Johnson, John Asher; Liu, Michael C.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Henry, Gregory W.; Fischer, Debra A.; Clubb, Kelsey I.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ∼5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 ∼ * /M sun ∼ +9 -8 %, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN ∝ M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (∼50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.

  16. Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars

    Science.gov (United States)

    Bowler, Brendan P.; Johnson, John Asher; Marcy, Geoffrey W.; Henry, Gregory W.; Peek, Kathryn M. G.; Fischer, Debra A.; Clubb, Kelsey I.; Liu, Michael C.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 lsim M */M sunlsim 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov-Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26+9 -8%, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN vprop M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets. Based on observations obtained at the Lick Observatory, which is operated by the University of California.

  17. Radiative Transfer Simulations of Cosmic Reionization With Pop II and III Stars

    Science.gov (United States)

    Trac, Hy; Cen, Renyue

    2008-03-01

    We have simulated 3 large volume, high resolution realizations of cosmic reionization using a hybrid code that combines a N-body algorithm for dark matter, prescriptions for baryons and star formation, and a radiative transfer algorithm for ionizing photons. Our largest simulation, with 24 billion particles in a 100 Mpc/h box, simultaneously provides (1) the mass resolution needed to resolve dark matter halos down to a virial temperatures of 104 K and (2) the volume needed to fairly sample highly biased sources and large HII regions. We model the stellar initial mass function (IMF) by following the spatially dependent gas metallicity evolution, and distinguish between the first generation (Population III) stars and the second generation (Population II) stars. The Population III stars, with a top-heavy IMF, produce an order of magnitude more ionizing photons at high redshifts z>~10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5measurements from SDSS. The values for the Thomson optical depth are consistent within 1-σ of the current best-fit value from the WMAP Year 3 data release.

  18. Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies

    Science.gov (United States)

    Magg, Mattis; Hartwig, Tilman; Agarwal, Bhaskar; Frebel, Anna; Glover, Simon C. O.; Griffen, Brendan F.; Klessen, Ralf S.

    2018-02-01

    The search for metal-free stars has so far been unsuccessful, proving that if there are surviving stars from the first generation, they are rare, they have been polluted or we have been looking in the wrong place. To predict the likely location of Population III (Pop III) survivors, we semi-analytically model early star formation in progenitors of Milky Way-like galaxies and their environments. We base our model on merger trees from the high-resolution dark matter only simulation suite Caterpillar. Radiative and chemical feedback are taken into account self-consistently, based on the spatial distribution of the haloes. Our results are consistent with the non-detection of Pop III survivors in the Milky Way today. We find that possible surviving Pop III stars are more common in Milky Way satellites than in the main Galaxy. In particular, low-mass Milky Way satellites contain a much larger fraction of Pop III stars than the Milky Way. Such nearby, low-mass Milky Way satellites are promising targets for future attempts to find Pop III survivors, especially for high-resolution, high signal-to-noise spectroscopic observations. We provide the probabilities of finding a Pop III survivor in the red giant branch phase for all known Milky Way satellites to guide future observations.

  19. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  20. C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K.; Johnson, T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Peña-Guerrero, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-20

    We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ∼ 1.6–3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < −5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf–Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  1. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 proof for the existence of Pop III stars.

  2. Mass loss from S stars

    International Nuclear Information System (INIS)

    Jura, M.

    1988-01-01

    The mass-loss process in S stars is studied using 65 S stars from the listing of Wing and Yorka (1977). The role of pulsations in the mass-loss process is examined. It is detected that stars with larger mass-loss rates have a greater amplitude of pulsations. The dust-to-gas ratio for the S stars is estimated as 0.002 and the average mass-loss rate is about 6 x 10 to the -8th solar masses/yr. Some of the properties of the S stars, such as scale height, surface density, and lifetime, are measured. It is determined that scale height is 200 pc; the total duration of the S star phase is greater than or equal to 30,000 yr; and the stars inject 3 x 10 to the -6th solar masses/sq kpc yr into the interstellar medium. 46 references

  3. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  4. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  5. Effect of Population III Multiplicity on Dark Star Formation

    Science.gov (United States)

    Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham

    2012-01-01

    We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.

  6. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  7. Spectroscopic and physical parameters of Galactic O-type stars. III. Mass discrepancy and rotational mixing

    Science.gov (United States)

    Markova, N.; Puls, J.; Langer, N.

    2018-05-01

    Context. Massive stars play a key role in the evolution of galaxies and our Universe. Aims: Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. Methods: We used a sample of 53 objects of all luminosity classes and with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, including projected rotational rates accounting for macroturbulence, and He and N surface abundances, using optical spectroscopy and applying the model atmosphere code FASTWIND. For the remaining objects, similar data from the literature, based on analyses by means of the CMFGEN code, were used instead. The properties of our sample were then compared to published predictions based on two grids of single massive star evolution models that include rotationally induced mixing. Results: Any of the considered model grids face problem in simultaneously reproducing the stellar masses, equatorial gravities, surface abundances, and rotation rates of our sample stars. The spectroscopic masses derived for objects below 30 M⊙ tend to be smaller than the evolutionary ones, no matter which of the two grids have been used as a reference. While this result may indicate the need to improve the model atmosphere calculations (e.g. regarding the treatment of turbulent pressure), our analysis shows that the established mass problem cannot be fully explained in terms of inaccurate parameters obtained by quantitative spectroscopy or inadequate model values of Vrot on the zero age main sequence. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, we also find a correlation of the surface nitrogen and helium abundances. The large number of nitrogen-enriched stars above 30 M⊙ argues for rotationally

  8. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.

  9. Mass loss from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Willis, A.J.

    1982-01-01

    Recent results relating to the stellar winds and mass loss rates of the WR stars are reviewed, emphasising new data and their interpretation acquired at UV, IR and Radio wavelengths. The subject is discussed under the headings: physical and chemical properties of WR stars (effective temperatures and radiative luminosities; masses; chemical abundances); velocity, ionisation and excitation structure of WR winds; mass loss rates of WR stars; mass loss properties of WR stars in the LMC; comparisons with theoretical models of mass loss; ring nebulae around WR stars; conclusions. (author)

  10. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    International Nuclear Information System (INIS)

    Özel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-01-01

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M ☉ and a dispersion of 0.24 M ☉ . These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M ☉ , but with a dispersion of only 0.05 M ☉ . Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M ☉ and a dispersion of 0.2 M ☉ , consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed ∼2 M ☉ suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  11. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  12. Unique Signatures of Population III Stars in the Global 21-cm Signal

    Science.gov (United States)

    Mirocha, Jordan; Mebane, Richard H.; Furlanetto, Steven R.; Singal, Krishma; Trinh, Donald

    2018-05-01

    We investigate the effects of Population III stars on the sky-averaged 21-cm background radiation, which traces the collective emission from all sources of ultraviolet and X-ray photons before reionization is complete. While UV photons from Pop III stars can in principle shift the onset of radiative coupling of the 21-cm transition - and potentially reionization - to early times, we find that the remnants of Pop III stars are likely to have a more discernible impact on the 21-cm signal than Pop III stars themselves. The X-rays from such sources preferentially heat the IGM at early times, which elongates the epoch of reheating and results in a more gradual transition from an absorption signal to emission. This gradual heating gives rise to broad, asymmetric wings in the absorption signal, which stand in contrast to the relatively sharp, symmetric signals that arise in models treating Pop II sources only. A stronger signature of Pop III, in which the position of the absorption minimum becomes inconsistent with Pop II-only models, requires extreme star-forming events that may not be physically plausible, lending further credence to predictions of relatively high frequency absorption troughs, νmin ˜ 100 MHz. As a result, though the trough location alone may not be enough to indicate the presence of Pop III, the asymmetric wings should arise even if only a few Pop III stars form in each halo before the transition to Pop II star formation occurs, provided that the Pop III IMF is sufficiently top-heavy and at least some Pop III stars form in binaries.

  13. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  14. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  15. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    International Nuclear Information System (INIS)

    Shi Wei-Bin; Zhao Gang; Ruan Gui-Ping; Zhou Li; Liang Yan-Chun; Shao Xu; Liu Xiao-Wei; Hammer Francois; Flores Hector; Zhang Yong

    2014-01-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t 2 , the electron temperature in the low ionization region, estimated from t 3 , that in the high ionization region, is compared using three analysis relations between t 2 – t 3 . These show obvious differences, which result in some different ionic oxygen abundances. The results of t 3 , t 2 , O ++ /H + and O + /H + derived by using methods from IRAF and literature are also compared. The ionic abundances O ++ /H + are higher than O + /H + for most cases. The different oxygen abundances derived from T e and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R 23 . The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews and Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 10 6 M ⊙ to 10 11 M ⊙ . (research papers)

  16. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  17. Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds

    Science.gov (United States)

    Zakharov, A. F.; Jovanović, P.; Borka, D.; Borka Jovanović, V.

    2018-04-01

    Recently, the LIGO-Virgo collaboration discovered gravitational waves and in their first publication on the subject the authors also presented a graviton mass constraint as mg advance for general relativity and Yukawa potential are different functions on eccentricity and semimajor axis, it gives an opportunity to improve current estimates of graviton mass with future observational facilities. In our considerations of an improvement potential for a graviton mass estimate we adopt a conservative strategy and assume that trajectories of bright stars and their apocenter advance will be described with general relativity expressions and it gives opportunities to improve graviton mass constraints. In contrast with our previous studies, where we present current constraints on parameters of Yukawa gravity [5] and graviton mass [6] from observations of S2 star, in the paper we express expectations to improve current constraints for graviton mass, assuming the GR predictions about apocenter shifts will be confirmed with future observations. We concluded that if future observations of bright star orbits during around fifty years will confirm GR predictions about apocenter shifts of bright star orbits it give an opportunity to constrain a graviton mass at a level around 5 × 10‑23 eV or slightly better than current estimates obtained with LIGO observations.

  18. Modeling Multi-wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    Science.gov (United States)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-05-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  19. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. III. DETERMINATION OF THE ABSOLUTE MASSES OF EXOPLANETS AND THEIR HOST STARS

    International Nuclear Information System (INIS)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-01-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  20. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  1. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R ⨁ ) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R ⨁ ) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M ⨁ in F stars to 5 M ⨁ in G and K stars to 7 M ⨁ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets

  2. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel, E-mail: mulders@lpl.arizona.edu [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R{sub ⨁}) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R{sub ⨁}) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M{sub ⨁} in F stars to 5 M{sub ⨁} in G and K stars to 7 M{sub ⨁} in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  3. Ages of evolved low mass stars: Central stars of planetary nebulae and white dwarfs

    Directory of Open Access Journals (Sweden)

    Costa R.D.D.

    2013-03-01

    Full Text Available We have developed several methods to estimate the ages of central stars of planetary nebulae (CSPN, which are based either on observed nebular properties or on data from the stars themselves. Our goal is to derive the age distribution of these stars and compare the results with empirical distributions for CSPN and white dwarfs. We have initially developed three methods based on nebular abundances, using (i an age-metallicity relation which is also a function of the galactocentric distance; (ii an age-metallicity relation obtained for the galactic disk, and (iii the central star masses derived from the observed nitrogen abundances. In this work we present two new, more accurate methods, which are based on kinematic properties: (I in this method, the expected rotation velocities of the nebulae around the galactic centre at their galactocentric distances are compared with the predicted values for the galactic rotation curve, and the differences are attributed to the different ages of the evolved stars; (II we determine directly the U, V, W, velocity components of the stars, as well as the velocity dispersions, and use the dispersion-age relation by the Geneva-Copenhagen survey. These methods were applied to two large samples of galactic CSPN. We conclude that most CSPN in the galactic disk have ages under 5 Gyr, and that the age distribution is peaked around 1 to 3 Gyr.

  4. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    Science.gov (United States)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  5. Mass-Radius diagram for compact stars

    International Nuclear Information System (INIS)

    Carvalho, G A; Jr, R M Marinho; Malheiro, M

    2015-01-01

    The compact stars represent the final stage in the evolution of ordinary stars, they are formed when a star ceases its nuclear fuel, in this point the process that sustain its stability will stop. After this, the internal pressure can no longer stand the gravitational force and the star colapses [2]. In this work we investigate the structure of these stars which are described by the equations of Tolman-Openheimer-Volkof (TOV) [1]. These equations show us how the pressure varies with the mass and radius of the star. We consider the TOV equations for both relativistic and non-relativistic cases. In the case of compact stars (white dwarfs and neutron stars) the internal pressure that balances the gravitational pressure is essentialy the pressure coming from the degeneracy of fermions. To have solved the TOV equations we need a equation of state that shows how this internal pressure is related to the energy density or mass density. Instead of using politropic equations of state we have solved the equations numericaly using the exact relativistic energy equation for the model of fermion gas at zero temperature. We obtain results for the mass-radius relation for white dwarfs and we compared with the results obtained using the politropic equations of state. In addition we discussed a good fit for the mass-radius relation. (paper)

  6. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  7. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  8. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  9. Very low mass stars

    International Nuclear Information System (INIS)

    Liebert, J.; Probst, R.G.

    1987-01-01

    This paper discusses several theoretical and observational topics involved in discovering and analyzing very low mass stellar objects below about 0.3 M circle, as well as their likely extension into the substellar range. The authors hereafter refer to these two classes of objects as VLM stars and brown dwarfs, respectively; collectively, they are called VLM objects. The authors outline recent theoretical work on low-mass stellar interiors and atmospheres, the determination of the hydrogen-burning mass limit, important dynamical evidence bearing on the expected numbers of such objects, and the expectations for such objects from star-formation theory. They focus on the properties of substellar objects near the stellar mass limit. Observational techniques used to discover and analyze VLM objects are summarized

  10. Optical diameters of stars measured with the Mt. Wilson Mark III interferometer

    International Nuclear Information System (INIS)

    Simon, R.S.; Mozurkewich, D.; Johnston, K.J.; Gaume, R.; Hutter, D.J.; Bowers, P.F.; Colavita, M.M.; Shao, M.

    1990-01-01

    Reliable stellar angular diameters can now be determined using the Mark III Optical Interferometer located on Mt. Wilson, California. The Mark III is a Michelson Interferometer capable of measuring the interferometric fringe visibility for stars using interferometer baselines varying from 3 to 31.5 meters in length. Angular diameters measured with the Mark III Optical Interferometer are presented for 12 stars at wavelengths of 450 and 800 nm. 10 refs

  11. TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Courtney R.; Johnson, Jennifer A.; Tayar, Jamie; Pinsonneault, Marc [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Elsworth, Yvonne P.; Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Edgbaston Park Road, West Midlands, Birmingham B15 2TT (United Kingdom); Shetrone, Matthew [McDonald Observatory, The University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Mosser, Benoît [LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, F-92195 Meudon Cedex (France); Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106-7215 (United States); Silva Aguirre, Víctor [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719, USA and JINA: Joint Institute for Nuclear Astrophysics (United States); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Bedding, Timothy R. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Universit Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191, Gif-sur-Yvette (France); Pérez, Ana E. García; Hearty, Fred R., E-mail: epstein@astronomy.ohio-state.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

    2014-04-20

    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<ΔM > =0.17 ± 0.05 M {sub ☉}) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M {sub ☉} level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ∼100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

  12. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; de Mink, S.E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V.V.; Huβman, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass

  13. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  14. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    Science.gov (United States)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  15. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  16. Mass-loss rates of cool stars

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  17. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    Science.gov (United States)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  18. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    Science.gov (United States)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  19. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  20. Explosion of a low mass neutron star

    International Nuclear Information System (INIS)

    Blinnikov, S.I.; Imshennik, V.S.; Nadyozhin, D.K.; Novikov, I.D.; Polnarev, A.G.; AN SSSR, Moscow. Fizicheskij Inst.); Perevodchikova, T.V.

    1990-01-01

    The hydrodynamical disruption of a low mass neutron star is investigated for the case when the stellar mass becomes smaller than the minimum value, M min ≅0.1 M sun . The final phase of the process is shown to proceed explosively, leading to an expansion of all the star, with a kinetic energy of 4.8 MeV per nucleon. The results of calculations are virtually independent of the way in which the neutron star mass goes down below M min (mass exchange in a close binary stellar system, nucleon decay, or some effective mass loss due to a hypothetical decrease of the gravitational constant). The neutron star disruption is followed by a short (0.01-0.1 s) burst of thermal hard X-rays and soft gamma-rays (kT=10-100 keV) with a subsequent much more prolonged tail of radiation induced by decays of long-lived radioactive nuclides. Some fraction of the explosion energy may be emitted in the form of neutrinos. (orig.)

  1. DENIS, 2MASS and VLM stars

    Science.gov (United States)

    Reid, Neill

    1994-01-01

    To a first approximation, every star is an M dwarf - but there are still considerable gaps in our understanding of these stars, particularly in the space density of the lowest mass stars. Fortunately, the 2 micrometer sky surveys are likely to change this state of affairs. In this paper, I review briefly the likely impact of these surveys.

  2. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  3. Metal enrichment signatures of the first stars on high-z DLAs

    Science.gov (United States)

    Ma, Q.; Maio, U.; Ciardi, B.; Salvaterra, R.

    2017-12-01

    We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Lyα absorbers (DLAs). The simulations include atomic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3 per cent (40 per cent) of mass (temperature)-selected high-z (z ≥ 5.5) DLAs retain signatures of pollution from PopIII stars, independent of the first star model. Such DLAs have low halo mass ( Z⊙) and star formation rate ( generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at z ≥ 5, we find that most of these DLAs are consistent within errors with PopII star dominated enrichment and strongly disfavour the pollution pattern of very massive first stars (i.e. 100-500 M⊙). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100] M⊙. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.

  4. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  5. The initial mass function for very low mass stars in the Hyades

    International Nuclear Information System (INIS)

    Hubbard, W.B.; Burrows, A.; Lunine, J.I.

    1990-01-01

    Theoretical luminosity functions at various evolutionary ages for stars and substellar objects (brown dwarfs), spanning the mass range from 0.03 to 0.2 solar mass is computed. These functions constrain the distribution of very low mass objects in a star cluster of known age. Calculations with a 1988-1989 survey of faint members of the Hyades cluster by Leggett and Hawkins (1988, 1989), a cluster whose age is 6 x 10 to the 8th yr are compared. The comparison shows that the survey does not reach sufficiently low luminosities to reveal brown dwarfs. A strong constraint on the initial mass function (IMF) for very low mass stars in the Hyades is obtained and it is inferred that its IMF does not increase with decreasing mass for the mass interval investigated here. Results imply at most a moderate contribution from brown dwarfs to the cluster mass, and to the Galaxy's mass if the Hyades are representative of the Galaxy as a whole. 10 refs

  6. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  7. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  8. Missing mass from low-luminosity stars

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1986-01-01

    Results from a deep photometric survey for low-luminosity stars show a turnup to the luminosity function at faint magnitudes, and reopen the possibility that the missing mass in the solar neighbourhood is made up of stars after all. (author)

  9. The [Fe(III)[Fe(III)(L1)2]3] star-type single-molecule magnet.

    Science.gov (United States)

    Saalfrank, Rolf W; Scheurer, Andreas; Bernt, Ingo; Heinemann, Frank W; Postnikov, Andrei V; Schünemann, Volker; Trautwein, Alfred X; Alam, Mohammad S; Rupp, Holger; Müller, Paul

    2006-06-21

    Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

  10. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  11. 2MASS Identifications for Galactic OB Stars

    OpenAIRE

    Reed, B. Cameron

    2007-01-01

    Cross-identifications for 14,574 intrinsically luminous galactic stars (mostly OB stars) to objects in the 2MASS survey have been determined using a search box of +/-0.0015 degrees (+/- 5.4 arcsec) in both RA and Dec. Instructions on obtaining the relevant files can be obtained at othello.alma.edu/~reed/OB-2MASS.doc.

  12. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. [INAF-Osservatorio Astronomico di Collurania, I-64100 Teramo (Italy)

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  13. Mass distribution and evolutionary scheme for central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Heap, S.R.; Augensen, H.J.; Widener Univ., Chester, PA)

    1987-01-01

    IUE data and a distance measuring method that considered central stars in optically thick nebulae were used to examine mass distributions of planetary nebulae. Other data such as spectral type, spatial and kinematic characteristics, etc., were studied to derive relationships between population type and mass distribution. A central star mass range of at least 0.55 solar mass was obtained. Stars with masses of at least 0.64 solar mass, concentrated in the galactic disk, originated from 1.5 solar mass stars. Low mass nuclei originated in old disk or halo populations and evolved from 1.0 solar mass objects. A mass-loss parameter value of 1/3 was calculated for red giants, implying that white dwarfs evolve from stars of under 5 solar masses. Mass distributions around planetary nuclei were concluded to follow patterns associated with the individual mass. 75 references

  14. New Low-mass Stars in the 25 Orionis Stellar Group and Orion OB1a Sub-association from SDSS-III/BOSS Spectroscopy

    Science.gov (United States)

    Suárez, Genaro; Downes, Juan José; Román-Zúñiga, Carlos; Covey, Kevin R.; Tapia, Mauricio; Hernández, Jesús; Petr-Gotzens, Monika G.; Stassun, Keivan G.; Briceño, César

    2017-07-01

    The Orion OB1a sub-association is a rich low-mass star (LMS) region. Previous spectroscopic studies have confirmed 160 LMSs in the 25 Orionis stellar group (25 Ori), which is the most prominent overdensity of Orion OB1a. Nonetheless, the current census of the 25 Ori members is estimated to be lower than 50% complete, leaving a large number of members to be still confirmed. We retrieved 172 low-resolution stellar spectra in Orion OB1a observed as ancillary science in the SDSS-III/BOSS survey, for which we classified their spectral types and determined physical parameters. To determine memberships, we analyzed the {{{H}}}α emission, Li I λ6708 absorption, and Na I λλ8183, 8195 absorption as youth indicators in stars classified as M type. We report 50 new LMSs spread across the 25 Orionis, ASCC 18, and ASCC 20 stellar groups with spectral types from M0 to M6, corresponding to a mass range of 0.10≤slant m/{M}⊙ ≤slant 0.58. This represents an increase of 50% in the number of known LMSs in the area and a net increase of 20% in the number of 25 Ori members in this mass range. Using parallax values from the Gaia DR1 catalog, we estimated the distances to these three stellar groups and found that they are all co-distant, at 338 ± 66 pc. We analyzed the spectral energy distributions of these LMSs and classified their disks into evolutionary classes. Using H-R diagrams, we found a suggestion that 25 Ori could be slightly older than the other two observed groups in Orion OB1a.

  15. THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Baraffe, Isabelle; Chabrier, Gilles; Brun, A. Sacha; Bouvier, Jérôme

    2015-01-01

    To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes

  16. Spectroscopic Observations of Nearby Low Mass Stars

    Science.gov (United States)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  17. Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia

    Science.gov (United States)

    Stassun, Keivan G.; Corsaro, Enrico; Pepper, Joshua A.; Gaudi, B. Scott

    2018-01-01

    We present a methodology for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars for which these measures are available in the literature, and show that the stellar masses can be measured with this method to a precision of ∼25%, limited by the surface-gravity precision of the granulation “flicker” method (∼0.1 dex) and by the parallax uncertainties (∼10% for the Kepler sample). We explore the impact of expected improvements in the surface gravity determinations—through the application of granulation background fitting and the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival of the Gaia second data release. We show that the application of this methodology to stars that will be observed by TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface. Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including those that will ultimately be found to host planets.

  18. MOTION VERIFIED RED STARS (MoVeRS): A CATALOG OF PROPER MOTION SELECTED LOW-MASS STARS FROM WISE, SDSS, AND 2MASS

    Energy Technology Data Exchange (ETDEWEB)

    Theissen, Christopher A.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Dhital, Saurav, E-mail: ctheisse@bu.edu [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2016-02-15

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS Data Release 10 (DR10), Two Micron All-Sky Survey (2MASS) point-source catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r − i, i − z, r − z, z − J, and z − W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2σ uncertainty were included. Our Motion Verified Red Stars catalog is available through SDSS CasJobs and VizieR.

  19. HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX

    Science.gov (United States)

    Schneider, Adam C.; Shkolnik, Evgenya L.

    2018-03-01

    Low-mass stars are currently the most promising targets for detecting and characterizing habitable planets in the solar neighborhood. However, the ultraviolet (UV) radiation emitted by such stars can erode and modify planetary atmospheres over time, drastically affecting their habitability. Thus, knowledge of the UV evolution of low-mass stars is critical for interpreting the evolutionary history of any orbiting planets. Shkolnik & Barman used photometry from the Galaxy Evolution Explorer (GALEX) to show how UV emission evolves for early-type M stars (>0.35 M ⊙). In this paper, we extend their work to include both a larger sample of low-mass stars with known ages as well as M stars with lower masses. We find clear evidence that mid- and late-type M stars (0.08–0.35 M ⊙) do not follow the same UV evolutionary trend as early-Ms. Lower-mass M stars retain high levels of UV activity up to field ages, with only a factor of 4 decrease on average in GALEX NUV and FUV flux density between young (flux density ratio, which can affect the photochemistry of important planetary biosignatures, is mass- and age-dependent for early-Ms, but remains relatively constant for the mid- and late-type Ms in our sample.

  20. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  1. The masses of retired A stars with asteroseismology

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Campante, Tiago L.; Miglio, Andrea

    2017-01-01

    We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overes...

  2. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, E. D.; Brown, J. E. [Western Illinois University, Physics Department, 1 University Circle, Macomb, IL 61455 (United States); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Ortiz, J. Morales [University of Puerto Rico, Río Piedras Campus, Physical Sciences Department, P.O. Box 23323, San Juan, PR 00931 (United States); Hofner, P.; Creech-Eakman, M. J. [New Mexico Institute of Mining and Technology, Physics Department, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58089 Morelia, Michoacán (Mexico); Linz, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  3. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  4. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jaskot, A. E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Ravindranath, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2016-12-20

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  5. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Jaskot, A. E.; Ravindranath, S.

    2016-01-01

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  6. White dwarfs: connection with masses of the parent stars

    International Nuclear Information System (INIS)

    Amnuel', P.R.; Guseinov, O.Kh.; Novruzova, Kh.I.; Rustamov, Yu.S.

    1988-01-01

    A relationship between the mass of a white dwarf and the mass of the parent star on the main sequence is established. The white dwarf birth-rate matches the birth-rate (death-rate) of main sequence stars

  7. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  8. Massive stars with mass loss: Evolution, nucleosynthesis, and astrophysical implications

    International Nuclear Information System (INIS)

    Prantzos, N.

    1986-06-01

    Evolution and nucleosynthesis of mass loss WR stars is studied, particularly evolution of stars with initial mass between 50 and 100 solar masses, during combustion of H and He. A semi-empirical mass loss formalism, the Roxburgh criterion for convection, and nuclear data are used. Composition of the stellar surface and ejecta (and ejecta contribution to cosmic ray composition) are derived. The contribution of these stars to s elements in our solar system is shown. Their production of 26 Al is compared to the quantity in the galaxy. Gamma ray emission at 1.8 MeV from the decay of this radionuclide is estimated in galactic longitude. The stars evolve as 0 and 0f stars during H combustion and spend 20% of their He combustion period as WN stars and 80% as WC-W0. Evolution always occurs in the blue part of the HR diagram, and satisfies observational constraints on its upper part [fr

  9. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  10. Low-mass Stars with Extreme Mid-Infrared Excesses: Potential Signatures of Planetary Collisions

    Science.gov (United States)

    Theissen, Christopher; West, Andrew

    2018-01-01

    I investigate the occurrence of extreme mid-infrared (MIR) excesses, a tracer of large amounts of dust orbiting stars, in low-mass stellar systems. Extreme MIR excesses, defined as an excess IR luminosity greater than 1% of the stellar luminosity (LIR/L* ≥ 0.01), have previously only been observed around a small number of solar-mass (M⊙) stars. The origin of this excess has been hypothesized to be massive amounts of orbiting dust, created by collisions between terrestrial planets or large planetesimals. Until recently, there was a dearth of low-mass (M* ≤ 0.6M⊙) stars exhibiting extreme MIR excesses, even though low-mass stars are ubiquitous (~70% of all stars), and known to host multiple terrestrial planets (≥ 3 planets per star).I combine the spectroscopic sample of low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (70,841 stars) with MIR photometry from the Wide-field Infrared Survey Explorer (WISE), to locate stars exhibiting extreme MIR excesses. I find the occurrence frequency of low-mass field stars (stars with ages ≥ 1 Gyr) exhibiting extreme MIR excesses is much larger than that for higher-mass field stars (0.41 ± 0.03% versus 0.00067 ± 0.00033%, respectively).In addition, I build a larger sample of low-mass stars based on stellar colors and proper motions using SDSS, WISE, and the Two-Micron All-Sky Survey (8,735,004 stars). I also build a galactic model to simulate stellar counts and kinematics to estimate the number of stars missing from my sample. I perform a larger, more complete study of low-mass stars exhibiting extreme MIR excesses, and find a lower occurrence frequency (0.020 ± 0.001%) than found in the spectroscopic sample but that is still orders of magnitude larger than that for higher-mass stars. I find a slight trend for redder stars (lower-mass stars) to exhibit a higher occurrence frequency of extreme MIR excesses, as well as a lower frequency with increased stellar age. These samples probe important

  11. Constraining the mass and radius of neutron stars in globular clusters

    Science.gov (United States)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  12. The luminosity and mass functions of the Pleiades: low-mass stars and brown dwarfs

    International Nuclear Information System (INIS)

    Hambly, N.C.; Jameson, R.F.

    1991-01-01

    COSMOS measurements of R and I Schmidt plates are used to determine the luminosity function and hence mass function of the Pleiades open cluster. Star counts are made in the cluster and the field star contribution, measured outside the cluster, is subtracted. A lower limit of 30 brown dwarfs is found; the mass function is flat at the lowest masses. (author)

  13. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  14. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  15. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  16. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    International Nuclear Information System (INIS)

    Harwit, Martin; Brisbin, Drew

    2015-01-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10 9 to 6 × 10 10 M ☉ . This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established

  17. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Harwit, Martin; Brisbin, Drew, E-mail: harwit@verizon.net [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  18. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-01-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 (≈52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R ≈ 3800) 1.5-2.4 μm spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ∼120 Myr AB Dor young moving group based on the photometric distance to the primary (36 ± 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I λ6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ∼10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, κ And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is ≈12-13 M Jup or ≈22-27 M Jup if it is an AB Dor member, or possibly as low as 11 M Jup if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition (≈1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being retained to cooler temperatures at low surface gravities, as seen in the spectra of young (8-30 Myr

  19. BANYAN. III. Radial velocity, rotation, and X-ray emission of low-mass star candidates in nearby young kinematic groups

    Energy Technology Data Exchange (ETDEWEB)

    Malo, Lison; Artigau, Étienne; Doyon, René; Lafrenière, David; Albert, Loïc; Gagné, Jonathan, E-mail: malo@astro.umontreal.ca, E-mail: doyon@astro.umontreal.ca [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada)

    2014-06-10

    Based on high-resolution spectra obtained with PHOENIX at Gemini-South, CRIRES at VLT-UT1, and ESPaDOnS at the Canada-France-Hawaii Telescope, we present new measurements of the radial and projected rotational velocities of 219 low-mass stars. The target likely membership was initially established using the Bayesian analysis tool recently presented in Malo et al., taking into account only the position, proper motion, and photometry of the stars to assess their membership probability. In the present study, we include radial velocity as an additional input to our analysis, and in doing so we confirm the high membership probability for 130 candidates: 27 in β Pictoris, 22 in Tucana-Horologium, 25 in Columba, 7 in Carina, 18 in Argus and 18 in AB Doradus, and 13 with an ambiguous membership. Our analysis also confirms the membership of 57 stars proposed in the literature. A subsample of 16 candidates was observed at 3 or more epochs, allowing us to discover 6 new spectroscopic binaries. The fraction of binaries in our sample is 25%, consistent with values in the literature. Of the stars in our sample, 20% show projected rotational velocities (vsin i) higher than 30 km s{sup –1} and therefore are considered as fast rotators. A parallax and other youth indicators are still needed to fully confirm the 130 highly probable candidates identified here as new bona fide members. Finally, based on the X-ray emission of bona fide and highly probable group members, we show that for low-mass stars in the 12-120 Myr age range, the X-ray luminosity is an excellent indicator of youth and better than the more traditionally used R {sub X} parameter, the ratio of X-ray to bolometric luminosity.

  20. White Dwarfs in Star Clusters: The Initial-Final Mass Relation for Stars from 0.85 to 8 M$_\\odot$

    Science.gov (United States)

    Cummings, Jeffrey; Kalirai, Jason; Tremblay, P.-E.; Ramírez-Ruiz, Enrico

    2018-01-01

    The spectroscopic study of white dwarfs provides both their mass, cooling age, and intrinsic photometric properties. For white dwarfs in the field of well-studied star clusters, this intrinsic photometry can be used to determine if they are members of that star cluster. Comparison of a member white dwarf's cooling age to its total cluster's age provides the evolutionary timescale of its progenitor star, and hence the mass. This is the initial-final mass relation (IFMR) for stars, which gives critical information on how a progenitor star evolves and loses mass throughout its lifetime, and how this changes with progenitor mass. Our work, for the first time, presents a uniform analysis of 85 white dwarf cluster members spanning from progenitor masses of 0.85 to 8 M$_\\odot$. Comparison of our work to theoretical IFMRs shows remarkable consistency in their shape but differences remain. We will discuss possible explanations for these differences, including the effects of stellar rotation.

  1. Mass return to the interstellar medium from highly-evolved carbon stars

    International Nuclear Information System (INIS)

    Latter, W.B.; Thronson, H.A. Jr.; Hacking, P.; Bally, J.; Black, J.; Bell Telephone Labs. Inc., Holmdel, NJ)

    1986-01-01

    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated

  2. On the mass-spectrum relation for the main sequence stars

    International Nuclear Information System (INIS)

    Svechnikov, M.A.; Tajdakova, T.A.

    1984-01-01

    From 240 main-sequence stars with well-determined masses, a new mass-spectrum relation is obtained, which differs appreciably in certain intervals of spectral types from the mass-spectrum relations of Allen and Trimble. The accuracy of mass determination for the components of eclipsing binary systems of different types from their spectra given in the General Catalogue of Variable Stars (3rd edition) and in its supplements is evaluated

  3. Mass loss by stars at the stage of the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Y.L.

    1986-01-01

    For a given initial stellar mass function, star formation function, and initial chemical composition, distributions have been constructed for stars of the asymptotic giant branch by luminosity, and for white dwarfs by mass, by calculating the approximate evolution of a large number of stars. Variants are calculated with different assumptions about the mass loss in the asymptotic branch. Theory can be reconciled with observation only if it is assumed that at this stage there is also a still large mass loss in addition to the stellar wind and the ejection of a planetary nebula shell. This provides the explanation for the absence in the Magellanic clouds of carbon stars with M /sub bol/ 1.0M /sub ./. The degenerate carbon-oxygen nuclei of stars evolving along the asymptotic giant branch cannot attain the Chandrasekhar limit on account of the great mass loss by the stars. The luminosity of stars of the asymptotic giant branch in the globular clusters of the Magellanic Clouds is a good indicator of the age of the clusters

  4. Mass loss rates of OB stars derived from infrared observations

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Tarenghi, M.; Panagia, N.

    1981-01-01

    In this paper the authors report briefly on a study of the mass loss of early type stars in the infrared. Up to now near infrared (1.25 - 4.8 μ) broad band photometry of 70 southern OB stars of various luminosity class has been secured. Program stars have been selected, among those bright enough in the infrared to give a suitable photometric accuracy, in order to cover a wide range of spectral types. 37 stars are found to exhibit emission in excess over a blackbody photospheric continuum, which is interpreted in terms of gas ejected in the form of an accelerated wind. By means of model calculations the corresponding mass loss rates are derived. The obtained values compare well with those determined independently by various authors for stars in common. Their data show that mass loss rates increase with luminosity and are a decreasing function of surface gravity. (Auth.)

  5. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    International Nuclear Information System (INIS)

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-01

    We examine the connection between the observed star-forming sequence (SFR ∝ M α ) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M ☉ ) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M ☉ ) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M ☉ ) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al

  6. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Mortlock, Daniel; Greaves, Jane; Pascucci, Ilaria; Apai, Daniel; Scholz, Aleks; Thompson, Mark; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ∼100 AU for intermediate-mass stars, solar types, and VLMS, and ∼20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ∼ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly

  7. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P.; Liu, Michael C. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Dupuy, Trent J., E-mail: bpbowler@ifa.hawaii.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 ( Almost-Equal-To 52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R Almost-Equal-To 3800) 1.5-2.4 {mu}m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the {approx}120 Myr AB Dor young moving group based on the photometric distance to the primary (36 {+-} 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I {lambda}6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of {approx}10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, {kappa} And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is Almost-Equal-To 12-13 M{sub Jup} or Almost-Equal-To 22-27 M{sub Jup} if it is an AB Dor member, or possibly as low as 11 M{sub Jup} if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition ( Almost-Equal-To 1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case

  8. Evolution of a 30 solar mass star: the interplay of nuclear burning and mass loss

    International Nuclear Information System (INIS)

    Falk, H.J.; Mitalas, R.

    1981-01-01

    Evolutionary tracks for a 30 solar mass star with various mass loss rates (MLR) were evolved to core He exhaustion. The 'overluminosity' of mass losing (ML) stars is explained in terms of the well known mass-luminosity (M-L) law. A critical ZAMS MLR above which mass loss leads to evolution to fainter luminosities is derived. Two tracks showed reversals in their direction of evolution across the HR diagram. These have been shown to be a consequence of mass loss dominating over the effects of the shell source. An analytic criterion for this condition has been derived. (Auth.)

  9. Low-Mass Stars and Their Companions

    Science.gov (United States)

    Montet, Benjamin Tyler

    In this thesis, I present seven studies aimed towards better understanding the demographics and physical properties of M dwarfs and their companions. These studies focus in turn on planetary, brown dwarf, and stellar companions to M dwarfs. I begin with an analysis of radial velocity and transit timing analyses of multi-transiting planetary systems, finding that if both signals are measured to sufficiently high precision the stellar and planetary masses can be measured to a high precision, eliminating a need for stellar models which may have systematic errors. I then combine long-term radial velocity monitoring and a direct imaging campaign to measure the occurrence rate of giant planets around M dwarfs. I find that 6.5 +/- 3.0% of M dwarfs host a Jupiter mass or larger planet within 20 AU, with a strong dependence on stellar metallicity. I then present two papers analyzing the LHS 6343 system, which contains a widely separated M dwarf binary (AB). Star A hosts a transiting brown dwarf (LHS 6343 C) with a 12.7 day period. By combining radial velocity data with transit photometry, I am able to measure the mass and radius of the brown dwarf to 2% precision, the most precise measurement of a brown dwarf to date. I then analyze four secondary eclipses of the LHS 6343 AC system as observed by Spitzer in order to measure the luminosity of the brown dwarf in both Spitzer bandpasses. I find the brown dwarf is consistent with theoretical models of an 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 +/- 130 K. This is the first non-inflated brown dwarf with a measured mass, radius, and multi-band photometry, making it an ideal test of evolutionary models of field brown dwarfs. Next, I present the results of an astrometric and radial velocity campaign to measure the orbit and masses of both stars in the GJ 3305 AB system, an M+M binary comoving with 51 Eridani, a more massive star with a directly imaged planetary

  10. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    Science.gov (United States)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  11. The Mass-Ratio Distribution of Visual Binary Stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1990-01-01

    The selection effects that govern the observations of Visual Binary Stars are in- vestigated, in order to obtain a realistic statistical distribution of the mass-ratio q = Msec=Mprim. To this end a numerical simulation programme has been developed, which `generates' binary stars and `looks' at

  12. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  13. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    Science.gov (United States)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  14. Detection of [O III] at z ∼ 3: A Galaxy Above the Main Sequence, Rapidly Assembling Its Stellar Mass

    Science.gov (United States)

    Vishwas, Amit; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Schoenwald, Justin P.; Stacey, Gordon J.; Higdon, Sarah J. U.; Higdon, James L.; Weiss, Axel; Güsten, Rolf; Menten, Karl M.

    2018-04-01

    We detect bright emission in the far-infrared (far-IR) fine structure [O III] 88 μm line from a strong lensing candidate galaxy, H-ATLAS J113526.3-014605, hereafter G12v2.43, at z = 3.127, using the second-generation Redshift (z) and Early Universe Spectrometer (ZEUS-2) at the Atacama Pathfinder Experiment Telescope (APEX). This is only the fifth detection of this far-IR line from a submillimeter galaxy at the epoch of galaxy assembly. The observed [O III] luminosity of 7.1 × 109 ≤ft(\\tfrac{10}{μ }\\right) L ⊙ likely arises from H II regions around massive stars, and the amount of Lyman continuum photons required to support the ionization indicate the presence of (1.2–5.2) × 106 ≤ft(\\tfrac{10}{μ }\\right) equivalent O5.5 or higher stars, where μ would be the lensing magnification factor. The observed line luminosity also requires a minimum mass of ∼2 × 108 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ in ionized gas, that is 0.33% of the estimated total molecular gas mass of 6 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We compile multi-band photometry tracing rest-frame ultraviolet to millimeter continuum emission to further constrain the properties of this dusty high-redshift, star-forming galaxy. Via SED modeling we find G12v2.43 is forming stars at a rate of 916 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ yr‑1 and already has a stellar mass of 8 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We also constrain the age of the current starburst to be ≤slant 5 Myr, making G12v2.43 a gas-rich galaxy lying above the star-forming main sequence at z ∼ 3, undergoing a growth spurt, and it could be on the main sequence within the derived gas depletion timescale of ∼66 Myr.

  15. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  16. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  17. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  18. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  19. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    Science.gov (United States)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  20. StarHorse: a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars

    Science.gov (United States)

    Queiroz, A. B. A.; Anders, F.; Santiago, B. X.; Chiappini, C.; Steinmetz, M.; Dal Ponte, M.; Stassun, K. G.; da Costa, L. N.; Maia, M. A. G.; Crestani, J.; Beers, T. C.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Roman-Lopes, A.; Zamora, O.

    2018-05-01

    Understanding the formation and evolution of our Galaxy requires accurate distances, ages, and chemistry for large populations of field stars. Here, we present several updates to our spectrophotometric distance code, which can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectrophotometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called StarHorse) can accommodate different observational data sets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known Gaia-like parallaxes. The typical internal precisions (obtained from realistic simulations of an APOGEE+Gaia-like sample) are {˜eq } 8 {per cent} in distance, {˜eq } 20 {per cent} in age, {˜eq } 6 {per cent} in mass, and ≃ 0.04 mag in AV. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of {˜eq } [0,2] {per cent} for distances, {˜eq } [12,31] {per cent} for ages, {˜eq } [4,12] {per cent} for masses, and ≃ 0.07 mag for AV. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3, and GALAH DR1 catalogues.

  1. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    Science.gov (United States)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  2. Tracing the first stars and galaxies of the Milky Way

    Science.gov (United States)

    Griffen, Brendan F.; Dooley, Gregory A.; Ji, Alexander P.; O'Shea, Brian W.; Gómez, Facundo A.; Frebel, Anna

    2018-02-01

    We use 30 high-resolution dark matter haloes of the Caterpillar simulation suite to probe the first stars and galaxies of Milky Way-mass systems. We quantify the environment of the high-z progenitors of the Milky Way and connect them to the properties of the host and satellites today. We identify the formation sites of the first generation of Population III (Pop III) stars (z ˜ 25) and first galaxies (z ˜ 22) with several different models based on a minimum halo mass. This includes a simple model for radiative feedback, the primary limitation of the model. Through this method we find approximately 23 000 ± 5000 Pop III potentially star-forming sites per Milky Way-mass host, though this number is drastically reduced to ˜550 star-forming sites if feedback is included. The majority of these haloes identified form in isolation (96 per cent at z = 15) and are not subject to external enrichment by neighbouring haloes (median separation ˜1 kpc at z = 15), though half merge with a system larger than themselves within 1.5 Gyr. Using particle tagging, we additionally trace the Pop III remnant population to z = 0 and find an order of magnitude scatter in their number density at small (i.e. r 50 kpc) galactocentric radii. We provide fitting functions for determining the number of progenitor minihalo and atomic cooling halo systems that present-day satellite galaxies might have accreted since their formation. We determine that observed dwarf galaxies with stellar masses below 104.6 M⊙ are unlikely to have merged with any other star-forming systems.

  3. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  4. Calculations of mass and moment of inertia for neutron stars

    International Nuclear Information System (INIS)

    Moelnvik, T.; Oestgaard, E.

    1985-01-01

    Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)

  5. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    International Nuclear Information System (INIS)

    Yu, Jincheng; Puzia, Thomas H.; Lin, Congping; Zhang, Yiwei

    2017-01-01

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  6. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jincheng; Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22 (Chile); Lin, Congping; Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com [Center for Mathematical Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 4370074 (China)

    2017-05-10

    We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.

  7. On the likelihood of detecting gravitational waves from Population III compact object binaries

    Science.gov (United States)

    Belczynski, Krzysztof; Ryu, Taeho; Perna, Rosalba; Berti, Emanuele; Tanaka, Takamitsu L.; Bulik, Tomasz

    2017-11-01

    We study the contribution of binary black hole (BH-BH) mergers from the first, metal-free stars in the Universe (Pop III) to gravitational wave detection rates. Our study combines initial conditions for the formation of Pop III stars based on N-body simulations of binary formation (including rates, binary fraction, initial mass function, orbital separation and eccentricity distributions) with an updated model of stellar evolution specific for Pop III stars. We find that the merger rate of these Pop III BH-BH systems is relatively small (≲ 0.1 Gpc-3 yr-1) at low redshifts (z 1 per cent) contribution of these stars to low-redshift BH-BH mergers. However, it remains to be tested whether (and at what level) rapidly spinning Pop III stars in the homogeneous evolution scenario can contribute to BH-BH mergers in the local Universe.

  8. Bounds on the mass and the moment of inertia of nonrotating neutron stars

    International Nuclear Information System (INIS)

    Sabbadini, A.G.

    1976-01-01

    Bounds are placed on the mass and the moment of inertia of relativistic, spherical, perfect fluid neutron stars, under minimal assumptions on the equation of state of neutron star matter above nuclear densities. The assumptions are: the pressure p, the density rho, and the derivative dp/d rho are positive. The equation of state is assumed to be known below the density rho 0 = 5 x 10 14 g/cm 3 . The upper bound on the mass of a nonrotating neutron star, under these assumptions, is found to be 5 M/sub solar mass/. Upper and lower bounds on the moment of inertia are derived: for a spherical star of given mass and radius (without assuming a specific equation of state in any density region); for a spherical neutron star of arbitrary mass and radius; for a spherical neutron star of given mass. These bounds are optimum ones, in the sense that there always exists a configuration consistent with the assumptions, having a moment of inertia equal to the bound. Using these results for the moment of inertia, the correction to the upper bound on the mass due to slow rotation is discussed

  9. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Louis E.; Gladders, Michael D. [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Poggianti, Bianca [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta, E-mail: labramson@uchicago.edu [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  10. Compact stars with a small electric charge: the limiting radius to mass relation and the maximum mass for incompressible matter

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Jose P.S.; Lopes, Francisco J.; Quinta, Goncalo [Universidade de Lisboa, UL, Departamento de Fisica, Centro Multidisciplinar de Astrofisica, CENTRA, Instituto Superior Tecnico, IST, Lisbon (Portugal); Zanchin, Vilson T. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil)

    2015-02-01

    One of the stiffest equations of state for matter in a compact star is constant energy density and this generates the interior Schwarzschild radius to mass relation and the Misner maximum mass for relativistic compact stars. If dark matter populates the interior of stars, and this matter is supersymmetric or of some other type, some of it possessing a tiny electric charge, there is the possibility that highly compact stars can trap a small but non-negligible electric charge. In this case the radius to mass relation for such compact stars should get modifications. We use an analytical scheme to investigate the limiting radius to mass relation and the maximum mass of relativistic stars made of an incompressible fluid with a small electric charge. The investigation is carried out by using the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation, together with the other equations of structure, with the further hypothesis that the charge distribution is proportional to the energy density. The approach relies on Volkoff and Misner's method to solve the TOV equation. For zero charge one gets the interior Schwarzschild limit, and supposing incompressible boson or fermion matter with constituents with masses of the order of the neutron mass one finds that the maximum mass is the Misner mass. For a small electric charge, our analytical approximating scheme, valid in first order in the star's electric charge, shows that the maximum mass increases relatively to the uncharged case, whereas the minimum possible radius decreases, an expected effect since the new field is repulsive, aiding the pressure to sustain the star against gravitational collapse. (orig.)

  11. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wolk, Scott J., E-mail: osten@stsci.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  12. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Kouwenhoven, M. B. N. [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Goodwin, S. P., E-mail: yunli@pku.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low-mass

  13. Olivier Chesneau's Work on Low Mass Stars

    Science.gov (United States)

    Lagadec, E.

    2015-12-01

    During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optical interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.

  14. The effect of Livermore OPAL opacities on the evolutionary masses of RR Lyrae stars

    Science.gov (United States)

    Yi, Sukyoung; Lee, Young-Wook; Demarque, Pierre

    1993-01-01

    We have investigated the effect of the new Livermore OPAL opacities on the evolution of horizontal-branch (HB) stars. This work was motivated by the recent stellar pulsation calculations using the new Livermore opacities, which suggest that the masses of double-mode RR Lyrae stars are 0.1-0.2 solar mass larger than those based on earlier opacities. Unlike the pulsation calculations, we find that the effect of opacity change on the evolution of HB stars is not significant. In particular, the effect of the mean masses of RR Lyrae stars is very small, showing a decrease of only 0.01-0.02 solar mass compared to the models based on old Cox-Stewart opacities. Consequently, with the new Livermore OPAL opacities, both the stellar pulsation and evolution models now predict approximately the same masses for the RR Lyrae stars. Our evolutionary models suggest that the mean masses of the RR Lyrae stars are about 0.76 and about 0.71 solar mass for M15 (Oosterhoff group II) and M3 (group I), respectively. If (alpha/Fe) = 0.4, these values are decreased by about 0.03 solar mass. Variations of the mean masses of RR Lyrae stars with HB morphology and metallicity are also presented.

  15. VizieR Online Data Catalog: SDSS-III/APOGEE. I. Be stars (Chojnowski+, 2015)

    Science.gov (United States)

    Chojnowski, S. D.; Whelan, D. G.; Wisniewski, J. P.; Majewski, S. R.; Hall, M.; Shetrone, M.; Beaton, R.; Burton, A.; Damke, G.; Eikenberry, S.; Hasselquist, S.; Holtzman, J. A.; Meszaros, S.; Nidever, D.; Schneider, D. P.; Wilson, J.; Zasowski, G.; Bizyaev, D.; Brewington, H.; Brinkmann, J.; Ebelke, G.; Frinchaboy, P. M.; Kinemuchi, K.; Malanushenko, E.; Malanushenko, V.; Marchante, M.; Oravetz, D.; Pan, K.; Simmons, A.

    2015-01-01

    The sample at hand consists of 238 B-type emission line (Be) stars that have been observed by APOGEE. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument is a 300 fiber, R~22500 spectrograph attached to the SDSS 2.5m telescope at Apache Point Observatory. APOGEE records a vacuum wavelength range of 15145-16955Å via an arrangement of three Teledyne H2RG 2048*2048 detectors. The detector layout consists of "blue," "green," and "red" detectors which cover 15145-15808Å, 15858-16433Å, and 16474-16955Å respectively, resulting in coverage gaps between 15808-15858Å and 16433-16474Å. The APOGEE survey uses the Two Micron All Sky Survey (2MASS; cat. II/246) as a source catalog. Both proprietary and publicly available spectra are used and displayed in this paper. The publicly available spectra were included in SDSS data release 10 (DR10: pertains to APOGEE data taken prior to MJD=56112), and the full data set will be made publicly available in SDSS data release 12 (DR12: scheduled for 2014 December). Shortly after DR12, we intend to convert the ABE star spectra to the format accepted by the Be Star Spectra Database (BeSS; Neiner et al., 2011AJ....142..149N) and deposit them there, ensuring convenient public access. More details on DR10-released APOGEE data can be found on the SDSS-III website (http://www.sdss3.org/dr10/irspec/). (2 data files).

  16. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  17. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  18. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O.; Pereira, C. B. [Observatório Nacional, Rua José Cristino 77, CEP 20921-400, São Cristóvão, Rio de Janeiro (Brazil); Miranda, L. F. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, E-36310 Vigo (Spain)

    2013-11-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in

  19. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    International Nuclear Information System (INIS)

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    2013-01-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K s ) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K s ) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10 8-9 cm –3 ), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S

  20. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  1. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  2. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    Science.gov (United States)

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  3. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state

    Science.gov (United States)

    Alsing, Justin; Silva, Hector O.; Berti, Emanuele

    2018-04-01

    We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multi-modality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0M⊙ sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12: 1, whilst under a flexible piecewise polytropic equation of state model our maximum mass measurement improves constraints on the pressure at 3 - 7 × the nuclear saturation density by ˜30 - 50% compared to simply requiring mmax > 2M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_s^max > 0.63c (99.8%), ruling out c_s^max c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.

  4. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES

    International Nuclear Information System (INIS)

    Rawls, Meredith L.; Orosz, Jerome A.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bailyn, Charles D.; Buxton, Michelle M.

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely, Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming that the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor β of the companion star, where β = 1 indicates a completely filled Roche lobe. In previous work a range of β between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal light-curve data to constrain β. We find neutron star masses of 1.77 ± 0.08 M sun for Vela X-1, 0.87 ± 0.07 M sun for 4U 1538-52 (eccentric orbit), 1.00 ± 0.10 M sun for 4U 1538-52 (circular orbit), 1.04 ± 0.09 M sun for SMC X-1, 1.29 ± 0.05 M sun for LMC X-4, 1.49 ± 0.08 M sun for Cen X-3, and 1.07 ± 0.36 M sun for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.

  5. Clustered star formation and the origin of stellar masses.

    Science.gov (United States)

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  6. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  7. Evidence for mass loss at moderate to high velocity in Be stars

    Science.gov (United States)

    Snow, T. P., Jr.; Marlborough, J. M.

    1976-01-01

    Ultraviolet spectra of intermediate resolution have been obtained with Copernicus for 12 objects classified as Be or shell stars and for 19 additional early B dwarfs. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si IV doublet at 1400 A, indicating the presence in some cases of outflowing material with maximum velocities of nearly 1000 km/s. Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5; the only objects later than B0.5 which show this effect are Be or shell stars. Among the stars considered, there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the ultraviolet flux from B1-B2 dwarfs is sufficient to drive high-velocity stellar winds only if rotational effects reduce the effective gravity near the equator. The mass-loss rate for one of the most active Be stars, 59 Cyg, is crudely estimated to be one billionth or one ten-billionth of a solar mass per year. The data suggest that the extended atmospheres associated with Be-star phenomena may be formed by mass ejection.

  8. High mass planets and low mass stars

    International Nuclear Information System (INIS)

    Stevenson, D.J.

    1986-01-01

    The paper on theoretical models of brown dwarf stars was presented to the workshop on ''Astrophysics of brown dwarfs'', Virginia, USA, 1985. The ingredients in the models i.e. equation of state, entropy and the infrared opacity are described. An analytical model is developed which is based on a polytrope (n = 3/4) but which neglects thermonuclear reactions. The model forms the basis of scaling laws for luminosity, mass, opacity and age. Complicating factors in brown dwarf evolution are also discussed. (U.K.)

  9. INTERACTIONS BETWEEN FORMING STARS AND DENSE GAS IN THE SMALL LOW-MASS CLUSTER CEDERBLAD 110

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, E. F. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Wong, T. [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thompson, K. L., E-mail: ladd@bucknell.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2011-12-20

    We present observations of dense gas and outflow activity in the Cederblad 110 region of the Chamaeleon I dark cloud complex. The region contains nine forming low-mass stars in evolutionary stages ranging from Class 0 to Class II/III crowded into a 0.2 pc region with high surface density ({Sigma}{sub YSO} {approx} 150 pc{sup -2}). The analysis of our N{sub 2}H{sup +} (J = 1{yields}0) maps indicates the presence of 13 {+-} 3 solar masses of dense (n {approx} 10{sup 5} cm{sup -3}) gas in this region, much of which is unstable against gravitational collapse. The most unstable material is located near the Class 0 source MMS-1, which is almost certainly actively accreting material from its dense core. Smaller column densities of more stable dense gas are found toward the region's Class I sources, IRS 4, 11, and 6. Little or no dense gas is colocated with the Class II and III sources in the region. The outflow from IRS 4 is interacting with the dense core associated with MMS-1. The molecular component of the outflow, measured in the (J = 1{yields}0) line of {sup 12}CO, appears to be deflected by the densest part of the core, after which it appears to plow through some of the lower column density portions of the core. The working surface between the head of the outflow lobe and the dense core material can be seen in the enhanced velocity dispersion of the dense gas. IRS 2, the Class III source that produces the optical reflection nebula that gives the Cederblad 110 region its name, may also be influencing the dense gas in the region. A dust temperature gradient across the MMS-1 dense core is consistent with warming from IRS 2, and a sharp gradient in dense gas column density may be caused by winds from this source. Taken together, our data indicate that this region has been producing several young stars in the recent past, and that sources which began forming first are interacting with the remaining dense gas in the region, thereby influencing current and future star

  10. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  11. The incidence of stellar mergers and mass gainers among massive stars

    International Nuclear Information System (INIS)

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-01-01

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8 −4 +9 % of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30 −15 +10 % of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  12. A super-Earth transiting a nearby low-mass star.

    Science.gov (United States)

    Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-12-17

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

  13. The distribution of masses and radii of white-dwarf stars

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1978-01-01

    The status of determinations of white dwarf radii by model atmosphere methods is reviewed. The results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R(Sun); (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R(Sun), indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R(Sun). (Auth.)

  14. Rotation in moderate-mass pre-main-sequence radiative track G stars

    International Nuclear Information System (INIS)

    Mcnamara, B.

    1990-01-01

    Recent studies suggest that the observed high-mass radiative track velocity histograms for pre-main-sequence stars differ significantly. In the Vogel and Kuhi (1981) study, these stars were found to possess a rather broad distribution of rotational velocities with a moderate peak at low velocities. In contrast, Smith et al. (1983), found a very sharply peaked distribution located at low values of v sin i. The difference in these velocity distributions is shown to be due to inadequate allowance for field stars in the Smith, et al., work. Once these stars are removed, the high-mass velocity distributions of the two regions are remarkably similar. This result suggests that a unique velocity distribution might be used in modeling very young stars. Assuming that the Orion Ic proto-F stars continue to contract in a homologous fashion, their average current rotational velocity is in agreement with that expected for zero-age main sequence F stars. 27 refs

  15. Evidence for mass loss at moderate to high velocity in Be stars

    International Nuclear Information System (INIS)

    Snow, T.P. Jr.; Marlborough, J.M.

    1976-01-01

    Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of 12 objects classified as Be or shell stars, and 19 additional early B dwarfs. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si iv doublet at 1400 A, indicating the presence in some cases of outflowing material with maximum velocities of nearly 1000 km s -1 . Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5; the only objects later than B0.5 which show this effect are Be or shell stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the ultraviolet flux from B1-B2 dwarfs is sufficient to drive high-velocity stellar winds only if rotation effects reduce the effective gravity near the equator. The mass loss rate for one of the most active Be stars, 59 Cyg, is crudely estimated to be 10 -10 --10 -9 M/sub sun/ yr -1 . The data are suggestive that the extended atmospheres associated with Be star phenomena may be formed by mass ejection

  16. Flaring red dwarf stars: news from Crimea

    International Nuclear Information System (INIS)

    Gershberg, Roald E

    1998-01-01

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium λ 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  17. Flaring red dwarf stars: news from Crimea

    Energy Technology Data Exchange (ETDEWEB)

    Gershberg, Roald E [Crimean Astrophysical Observatory, Nauchnyi, Crimea (Ukraine)

    1998-08-31

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium {lambda} 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  18. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  19. Analysis of the lambda 5696 Carbon III line in the O stars

    International Nuclear Information System (INIS)

    Cardona-Nunez, O.

    1978-01-01

    Lines of twice-ionized Carbon, specifically lambda 5695 and lambda 8500, in the O stars were analyzed on the basis of a detailed solution of the coupled statistical-equilibrium and transfer equations for a multilevel, multiline, multi-ion ensemble. It is significant that these plane-parallel non-LTE statistical equilibrium calculations reproduce successfully the observed emission a lambda 5696 and absorption at lambda 8500. The 3p 1 P 0 -3d 1 D transition is found to come into emission at the observed temperatures for both main-sequence and low-gravity objects. The equivalent widths of the emission and absorption lines agree very well with those measured for O stars. In these stars the basic physical mechanism responsible for this phenomenon is the overpopulation of 3d by means of direct recombination and cascades from upper states (with dielectronic recombination taking part in the earliest types) with subsequent cascade to 3p. The 3p state is drained by the two-electron transitions coupling 3p to the 2p 2 ( 1 S, 1 D) states; emission in the 3s 1 S-3p 1 P 0 line is thus prevented. The mechanism of formation of C III is different from that of N III because of dielectronic recombination is not necessary in the former case. The fact that the C III emission line can be produced in a static nonextended atmosphere in radiative equilibrium indicates that the presence of emission lines is not sufficient evidence for the existence of extended atmospheres

  20. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, George H. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Marco, Orsola De [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Davies, James [Space Telescope Science Institute, Baltimore MD 21218 (United States); Lotarevich, I. [American Museum of Natural History, New York, NY (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Harrington, J. Patrick [University of Maryland, College Park, MD (United States); Lanz, Thierry, E-mail: gjacoby@lowell.edu, E-mail: orsola.demarco@mq.edu.au, E-mail: jdavies@stsci.edu, E-mail: heb11@psu.edu, E-mail: jph@astro.umd.edu, E-mail: thierry.lanz@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice (France)

    2017-02-10

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.

  1. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    Science.gov (United States)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  2. Strange star candidates revised within a quark model with chiral mass scaling

    Institute of Scientific and Technical Information of China (English)

    Ang Li; Guang-Xiong Peng; Ju-Fu Lu

    2011-01-01

    We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (~ 1.6 M⊙) and radius (~ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.

  3. HERBIG-HARO OBJECTS IN THE LUPUS I AND III MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Wang Hongchi; Henning, Thomas

    2009-01-01

    We performed a deep search for Herbig-Haro (HH) objects toward the Lupus I and III clouds, covering a sky area of ∼ 1 and ∼ 0.5 deg 2 , respectively. In total, 11 new HH objects, HH 981--991, are discovered. The HH objects both in Lupus I and in Lupus III tend to be concentrated in small areas. The HH objects detected in Lupus I are located in a region of radius 0.26 pc near the young star Sz 68. The abundance of HH objects shows that this region of the cloud is active in on-going star formation. HH objects in the Lup III cloud are concentrated in the central part of the cloud around the Herbig Ae/Be stars HR 5999 and 6000. HH 981 and 982 in Lupus I are probably driven by the young brown dwarf SSTc2d J154457.9-342340 which has a mass of 50 M J . HH 990 and 991 in Lup III align well with the HH 600 jet emanating from the low-mass star Par-Lup3-4, and are probably excited by this low-mass star of spectral type M5. High proper motions for HH 228 W, E, and E2 are measured, which confirms that they are excited by the young star Th 28. In contrast, HH 78 exhibits no measurable proper motion in the time span of 18 years, indicating that HH 78 is unlikely part of the HH 228 flow. The HH objects in Lup I and III are generally weak in terms of brightness and dimension in comparison to HH objects we detected with the same technique in the R CrA and Cha I clouds. Through a comparison with the survey results from the Spitzer c2d program, we find that our optical survey is more sensitive, in terms of detection rate, than the Spitzer IRAC survey to high-velocity outflows in the Lup I and III clouds.

  4. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  5. Relation between initial and minimum final white dwarf mass for Population I stars

    Energy Technology Data Exchange (ETDEWEB)

    Mazzitelli, I.; Dantona, F.

    1986-12-01

    The evolutionary paths for Population I stars having initial masses 1, 2.5, 3, 4, and 5 solar masses were computed from the homogeneous main sequence to the onset of the first major thermal pulse to evaluate the minimum mass and the chemical stratification of the remnant white dwarf (WD) associated with each parent mass. The helium flash phase was followed in detail for a 2.5 solar masses star, whereas for the 1 solar mass star the flash was bypassed, and the models at the beginning of the steady central helium burning phase were obtained by means of a scaling procedure upon the properly computed total and core masses. The results show that for a parent ranging between 1-3 solar masses the core mass at the first thermal pulse ranges only from 0.64-0.69 solar mass. If some very fast mass-loss mechanism is triggered in connection with the early stages of the thermal pulse phase, as suggested by the observed deficiency of asymptotic giant branch stars, the relation between final and initial mass is almost flat at least up to an initial mass of 3 solar masses, and the mass spectrum of the WDs is narrow and heavily peaked around 0.65 solar mass. 53 references.

  6. Relation between initial and minimum final white dwarf mass for Population I stars

    International Nuclear Information System (INIS)

    Mazzitelli, I.; Dantona, F.; CNR, Istituto di Astrofisica Spaziale, Frascati; Roma, Osservatorio Astronomico, Rome, Italy)

    1986-01-01

    The evolutionary paths for Population I stars having initial masses 1, 2.5, 3, 4, and 5 solar masses were computed from the homogeneous main sequence to the onset of the first major thermal pulse to evaluate the minimum mass and the chemical stratification of the remnant white dwarf (WD) associated with each parent mass. The helium flash phase was followed in detail for a 2.5 solar masses star, whereas for the 1 solar mass star the flash was bypassed, and the models at the beginning of the steady central helium burning phase were obtained by means of a scaling procedure upon the properly computed total and core masses. The results show that for a parent ranging between 1-3 solar masses the core mass at the first thermal pulse ranges only from 0.64-0.69 solar mass. If some very fast mass-loss mechanism is triggered in connection with the early stages of the thermal pulse phase, as suggested by the observed deficiency of asymptotic giant branch stars, the relation between final and initial mass is almost flat at least up to an initial mass of 3 solar masses, and the mass spectrum of the WDs is narrow and heavily peaked around 0.65 solar mass. 53 references

  7. The impact of galaxy geometry and mass evolution on the survival of star clusters

    International Nuclear Information System (INIS)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-01-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10 10 M ☉ to 10 × 10 10 M ☉ halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk of identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.

  8. A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars

    Science.gov (United States)

    Pascucci, Ilaria; Mulders, Gijs D.; Gould, Andrew; Fernandes, Rachel

    2018-04-01

    We follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii ∼1–6 R ⊕ and periods law with a break at ∼3 × 10‑5 independent of host type for hosts below 1 M ⊙. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M host common planet inside the snowline is ∼3–10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.

  9. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  10. High-mass twins & resolution of the reconfinement, masquerade and hyperon puzzles of compact star interiors

    International Nuclear Information System (INIS)

    Blaschke, David; Alvarez-Castillo, David E.

    2016-01-01

    We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M ⊙ with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (by excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram

  11. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  12. The role of rotation in the evolution of massive stars losing mass

    International Nuclear Information System (INIS)

    Sreenivasan, S.R.; Wilson, W.J.F.

    1979-01-01

    The role of differential and solid body rotation in the evolution of massive stars undergoing mass loss is discussed. The implications for Of, WR, β Cephei stars and shell stars are brought out. (Auth.)

  13. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    Science.gov (United States)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  14. MASS LOSS IN PRE-MAIN-SEQUENCE STARS VIA CORONAL MASS EJECTIONS AND IMPLICATIONS FOR ANGULAR MOMENTUM LOSS

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N. [Astronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Stassun, Keivan G., E-mail: aarnio@umich.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2012-11-20

    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.

  15. Mass and age of red giant branch stars observed with LAMOST and Kepler

    Science.gov (United States)

    Wu, Yaqian; Xiang, Maosheng; Bi, Shaolan; Liu, Xiaowei; Yu, Jie; Hon, Marc; Sharma, Sanjib; Li, Tanda; Huang, Yang; Liu, Kang; Zhang, Xianfei; Li, Yaguang; Ge, Zhishuai; Tian, Zhijia; Zhang, Jinghua; Zhang, Jianwei

    2018-04-01

    Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ˜20 per cent. The sample stars reveal two separate sequences in the age-[α/Fe] relation - a high-α sequence with stars older than ˜8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ˜24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.

  16. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    Science.gov (United States)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  17. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    International Nuclear Information System (INIS)

    Wisniewski, John P.; Agol, Eric; Barnes, Rory; Ge, Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Chang, Liang; Crepp, Justin R.; Eastman, Jason; Gaudi, B. Scott; Esposito, Massimiliano; Gonzalez Hernandez, Jonay I.; Prieto, Carlos Allende; Ghezzi, Luan; Da Costa, Luiz N.; Porto De Mello, G. F.; Stassun, Keivan G.; Cargile, Phillip; Bizyaev, Dmitry

    2012-01-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff ∼ ☉ and radius of 0.99 ± 0.18 R ☉ . We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ∼2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ± 0.012 days, an eccentricity of 0.1095 ± 0.0023, and a semi-amplitude of 4199 ± 11 m s –1 . We determine the minimum companion mass (if sin i = 1) to be 97.7 ± 5.8 M Jup . The system's companion to host star mass ratio, ≥0.087 ± 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff ∼< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  18. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    Science.gov (United States)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  19. Neutrino diffusion and mass ejection in protoneutron stars

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-01-01

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  20. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Latter, W.B.; Black, J.H.; Bally, J.; Hacking, P.; Steward Observatory, Tucson, AZ; AT and T Bell Laboratories, Holmdel, NJ; Cornell Univ., Ithaca, NY; California Institute of Technology, Pasadena)

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting carbon stars shows no variation with Galactocentric radius, while the evolved oxygen star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars. 53 references

  1. Initial mass function for early-type stars in starburst galaxies

    International Nuclear Information System (INIS)

    Sekiguchi, K.; Anderson, K.S.

    1987-01-01

    The IMF slope of early-type stars in starburst galaxies is investigated using IUE observations and a technique that utilizes mass-linewidth relations for early-type stars. Fourteen low-resolution IUE spectra of eight starburst galaxies and three H II region galaxies are used to obtain line-strength ratios Si IV(1400 A)/C IV(1550 A). These are compared to model line ratios, and indicate that the average IMF slope for OB stars in these intense star-formation regions is appreciably flatter than that of the solar neighborhood. 46 references

  2. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mo; Evans II, Neal J. [Astronomy Department, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Willacy, Karen; Turner, Neal J. [Mail Stop 169-506, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-05-20

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  3. Simultaneous, multi-wavelength flare observations of nearby low-mass stars

    Science.gov (United States)

    Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia

    2018-01-01

    Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

  4. A UV spectroscopic snapshot survey of low-mass stars in the Hyades

    Science.gov (United States)

    Agueros, Marcel

    2017-08-01

    Because of its proximity, the 650-Myr-old Hyades open cluster is a unique resource for exploring the relationship between magnetic activity, rotation, and age in low-mass stars. While the cluster has been largely ignored in UV studies of the dependence of activity on rotation, we now have an extensive and growing set of complementary rotation period, Halpha, and X-ray measurements with which to examine in detail the rotation-activity relation at 650 Myr and to constrain theories of magnetic heating. We propose to measure Mg II line emission, the strongest NUV activity tracer, in COS spectra of 86 Hyads ranging in spectral type from G to M with known rotation periods or currently being observed by K2. These stars form a representative sample of low-mass Hyads with known periods and are a significant addition to, and expansion of, the sample of 20 mainly solar-mass rotators with existing (mostly low-resolution) IUE NUV spectra. The Mg II measurements will contribute significantly to our goal of mapping out the rotation-activity relation star-by-star in this benchmark open cluster. This, in turn, will move us toward an improved understanding of the radiation environment and habitability of the exoplanets we continue to find around low-mass stars.

  5. A two-solar-mass neutron star measured using Shapiro delay

    NARCIS (Netherlands)

    Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T.

    2010-01-01

    Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out

  6. The evolution of the lithium abundances of solar-type stars. III - The Pleiades

    Science.gov (United States)

    Soderblom, David R.; Jones, Burton F.; Balachandran, Suchitra; Stauffer, John R.; Duncan, Douglas K.; Fedele, Stephen B.; Hudon, J. D.

    1993-01-01

    New measurements of lithium in more than 100 Pleiades F, G, and K dwarfs are reported. Abundances are determined from spectrum synthesis fits to the data as well as from use of new covers of growth from the Li 6708-A feature. It is argued that most Late-F and early-G dwarfs in the Pleiades are consistent with the tight N(Li) vs mass relation seen in the Hyades in the same mass range. Most Li-rich stars have abundances at or near the primordial level for Population I, and none exceed that level by a significant amount. At any given color the stars that rotate fast have the most Li and have the strongest chromospheric activity. Ways in which an apparent spread in N(Li) could arise from an intrinsically tight n(Li)-mass relation are considered, and it is concluded that the spread is probably real and is not an artifact of line formation conditions or inhomogeneous atmospheres on the stars.

  7. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  8. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  9. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  10. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  11. Radiative feedback by low-mass stars in the first generation

    International Nuclear Information System (INIS)

    Whalen, Daniel James; Hueckstaedt, Robert; Mcconkie, Thomas

    2009-01-01

    The survival of cosmological minihalos in both ionizing and Lyman-Werner (LW) UV fields from nearby and distant sources has attracted recent attention for its role in regulating the rise of stellar populations at high red-shifts. Numerical models suggest that the first stars form in isolation in small dark matter halos of ∼ 10 5 -10 7 M · at z ∼ 20-30 and that they are very massive, 25-500 M · . These stars form large H II regions 2.5-5 kpc in radius capable of engulfing nearby halos. With the rise of Population III stars throughout the cosmos also comes a global LW background that sterilizes mini-halos of H 2 , delaying or preventing new star formation in them. At high redshifts, ionizaing radiation is therefore relatively local while LW photons can originate from many megaparsects away because their energies lie below the ionization limit of H.

  12. On the stability and maximum mass of differentially rotating relativistic stars

    Science.gov (United States)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that 'quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  13. The mass-metallicity-star formation rate relation under the STARLIGHT microscope

    Science.gov (United States)

    Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.

    2014-10-01

    The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.

  14. VizieR Online Data Catalog: New IR photometric study of Ap and Am stars (Chen+, 2017)

    Science.gov (United States)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2018-05-01

    In the General Catalog of Ap and Am stars (Renson & Manfroid 2009, Cat. III/260) 8265 stars are included in which, as Renson & Manfroid (2009, Cat. III/260) described, only 426 stars are of the "well known confirmed sample". We take these 426 stars as our working sample. The cross-identifications of 2MASS/WISE counterparts for all Ap, Am, and HgMn stars listed in this paper are made from Cutri et al. (2012, Cat. II/311) by using the radius of 2 arcsec. All 426 Ap, Am, and HgMn stars have 2MASS and/or WISE counterparts, which are listed in Table 3. The cross-identifications of IRAS counterparts are made according to the positional error ellipse of the source, because it has a 95% confidence level (IRAS Explanatory Supplement, Beichman et al. 1988, Cat. II/274). Finally, 202 stars are found to have the IRAS counterparts from IRAS PSC/FSC, which is listed in Table 4. (5 data files).

  15. An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Science.gov (United States)

    Cowie, L. L.; Barger, A. J.

    2008-10-01

    We present an integrated study of star formation and galactic stellar mass assembly from z = 0.05 to 1.5 and galactic metallicity evolution from z = 0.05 to 0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 M⊙). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24 μm sources, but after correcting for extinction, the bulk of the 24 μm sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21 +/- 0.03 dex between the local value and the value at z = 0.77 in the 1010-1011 M⊙ range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (gtrsim1011 M⊙) ceases at z Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  16. LP 543-25: A Rare Low-mass Runaway Disk Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    LP 543-25 or PSS 544-7 is a high proper-motion star located 458 pc from the Sun in the constellation of Canis Minor; it has been argued that it could be a candidate cannonball star ejected by a star cluster. Here, we revisit the issue of the kinematics of this interesting star using Gaia DR2. The heliocentric Galactic velocity components are (U, V, W) = (206, -289, 30) km/s; the corresponding Galactocentric Galactic velocity components show that LP 543-25 is moving in the Galactic plane and away from the Galactic Center at a rate of nearly 200 km/s, which is compatible with an origin in one of the multiple star clusters that inhabit the inner regions of the Milky Way. LP 543-25 appears to be a member of an elusive class of stars, the low-mass runaway stars. It is perhaps one of the closest and less massive runaway stars identified so far.

  17. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  18. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades

    Science.gov (United States)

    Stauffer, John R.; Liebert, James; Giampapa, Mark; Macintosh, Bruce; Reid, Neill; Hamilton, Donald

    1994-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km s(exp -1) for approximately 20 candidate very low mass members of the Hyades and Pleiades clusters. The radial velocities for the Hyades sample suggest that nearly all of these stars are indeed highly probable members of the Hyades. The faintest stars in the Hyades sample have masses of order 0.1 solar mass. We also obtained radial velocities for four candidate very low mass members of the Pleiades and two objects that are candidate BD Pleiads. All of these stars have apparent V magnitudes fainter than the Hyades stars we observed, and the resultant radial velocity accuracy is worse. We believe that the three brighter stars are indeed likely very low mass stellar members of the Pleiades, whereas the status of the two brown dwarf candidates is uncertain. The Hyades stars we have observed and the three Pleiades very low mass stars are the lowest mass members of any open cluster whose membership has been confirmed by radial velocities and whose chromospheric activity has been measured. We see no change in chromospheric activity at the boundary where stars are expected to become fully convective (M approximately equals 0.3 solar mass) in either cluster. In the Pleiades, however, there may be a decrease in chromospheric activity for stars with (V-I)(sub K) greater than 3.5 (M less than or equal to 0.1 solar mass).

  19. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  20. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    Science.gov (United States)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyáën Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-04-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  1. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    Science.gov (United States)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyen Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-06-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  2. High-mass stars in Milky Way clusters

    Science.gov (United States)

    Negueruela, Ignacio

    2017-11-01

    Young open clusters are our laboratories for studying high-mass star formation and evolution. Unfortunately, the information that they provide is difficult to interpret, and sometimes contradictory. In this contribution, I present a few examples of the uncertainties that we face when confronting observations with theoretical models and our own assumptions.

  3. Maximum Mass of Hybrid Stars in the Quark Bag Model

    Science.gov (United States)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  4. Observations of mass loss from OB and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    In this review, three observationally accessible parameters of the winds of OB and Wolf-Rayet stars are discussed: (1) Terminal velocities, (2) Velocity laws, (3) Mass loss rates. In addition, some discussion of the ionisation structure of the winds is included. In general, only the most recent results for OB stars are mentioned. (Auth.)

  5. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    International Nuclear Information System (INIS)

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-01-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ∼30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10 –5 M ☉ yr –1 , equivalent to a total mass injection rate (including the gas) into the ISM of ∼6 × 10 –3 M ☉ yr –1 . Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J – K s color, BC K s = -0.40(J-K s ) 2 + 1.83(J-K s ) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot d ) from C-rich AGB stars, such as log M-dot d = (-18.90/((K s -[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  6. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    Science.gov (United States)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  7. PSR1987A: the case for strange-quark stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    The new fast pulsar observed in the remnant of SN1987A, together with other considerations, provide evidence that there are two types of collapsed stars: neutron stars, having moderate central densities and subject to the usual mass constraint, and strange-quark-matter stars. We show that (i) all known pulsar masses and frequencies, with the exception of the new one, can be accounted for by plausible neutron star models; (ii) no known neutron star model can withstand the fast rotation of the new pulsar unless the central energy density is ∼ 15 that of normal nuclei, at which densities hadrons cannot plausibly exist as constituents; and (iii) if strange-quark matter is the true ground state of the strong interactions, strange-quark stars can sustain the high rotation imputed to the new pulsar. In the absence of another plausible structure that can withstand the fast rotation, we provisionally infer that the new pulsar is such a star. (author)

  8. Converging on the Initial Mass Function of Stars

    International Nuclear Information System (INIS)

    Federrath, Christoph; Krumholz, Mark; Hopkins, Philip F.

    2017-01-01

    Understanding the origin of stellar masses—the initial mass function (IMF)— remains one of the most challenging problems in astrophysics. The IMF is a key ingredient for simulations of galaxy formation and evolution, and is used to calibrate star formation relations in extra-galactic observations. Modeling the IMF directly in hydrodynamical simulations has been attempted in several previous studies, but the most important processes that control the IMF remain poorly understood. This is because predicting the IMF from direct hydrodynamical simulations involves complex physics such as turbulence, magnetic fields, radiation feedback and mechanical feedback, all of which are difficult to model and the methods used have limitations in terms of accuracy and computational efficiency. Moreover, a physical interpretation of the simulated IMFs requires a numerically converged solution at high resolution, which has so far not been convincingly demonstrated. Here we present a resolution study of star cluster formation aimed at producing a converged IMF. We compare a set of magnetohydrodynamical (MHD) adaptive-mesh-refinement simulations with three different implementations of the thermodynamics of the gas: 1) with an isothermal equation of state (EOS), 2) with a polytropic EOS, and 3) with a simple stellar heating feedback model. We show that in the simulations with an isothermal or polytropic EOS, the number of stars and their mass distributions depend on the numerical resolution. By contrast, the simulations that employ the simple radiative feedback module demonstrate convergence in the number of stars formed and in their IMFs. (paper)

  9. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita [Indian Institute of Space Science and Technology, Trivandrum 695547 (India); Ghosh, Swarna K.; Ishwara Chandra, C. H., E-mail: swagat.12@iist.ac.in [National Centre For Radio Astrophysics, Pune 411007 (India)

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {sub ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  10. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  11. Short-term variability and mass loss in Be stars. III. BRITE and SMEI satellite photometry of 28 Cygni

    Science.gov (United States)

    Baade, D.; Pigulski, A.; Rivinius, Th.; Carciofi, A. C.; Panoglou, D.; Ghoreyshi, M. R.; Handler, G.; Kuschnig, R.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Wade, G. A.; Weiss, W. W.; Zwintz, K.

    2018-03-01

    Context. Be stars are important reference laboratories for the investigation of viscous Keplerian discs. In some cases, the disc feeder mechanism involves a combination of non-radial pulsation (NRP) modes. Aims: We seek to understand whether high-cadence photometry can shed further light on the role of NRP modes in facilitating rotation-supported mass loss. Methods: The BRITE-Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014-2016. We added observations with the Solar Mass Ejection Imager (SMEI) in 2003-2010 and 118 Hα line profiles, half of which were from 2016. Results: For decades, 28 Cyg has exhibited four large-amplitude frequencies: two closely spaced frequencies of spectroscopically confirmed g modes near 1.5 c/d, one slightly lower exophotospheric (Štefl) frequency, and at 0.05 c/d the difference (Δ) frequency between the two g modes. This top-level framework is indistinguishable from η Cen (Paper I), which is also very similar in spectral type, rotation rate, and viewing angle. The circumstellar (Štefl) frequency alone does not seem to be affected by the Δ frequency. The amplitude of the Δ frequency undergoes large variations; around maximum the amount of near-circumstellar matter is increased and the amplitude of the Štefl frequency grows by a factor of a few. During such brightenings dozens of transient spikes appear in the frequency spectrum; these spikes are concentrated into three groups. Only 11 frequencies were common to all years of BRITE observations. Conclusions: Be stars seem to be controlled by several coupled clocks, most of which are not very regular on timescales of weeks to months but function for decades. The combination of g modes to the slow Δ variability and/or the atmospheric response to it appears significantly non-linear. As in η Cen, the Δ variability seems to be mainly responsible for the modulation of the star-to-disc mass transfer in 28 Cyg. A hierarchical set of Δ frequencies

  12. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  13. First light - II. Emission line extinction, population III stars, and X-ray binaries

    Science.gov (United States)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  14. The low-mass star and sub-stellar populations of the 25 Orionis group

    Science.gov (United States)

    Downes, Juan José; Briceño, César; Mateu, Cecilia; Hernández, Jesús; Vivas, Anna Katherina; Calvet, Nuria; Hartmann, Lee; Petr-Gotzens, Monika G.; Allen, Lori

    2014-10-01

    We present the results of a survey of the low-mass star and brown dwarf population of the 25 Orionis group. Using optical photometry from the CIDA (Centro de Investigaciones de Astronomía `Francisco J. Duarte', Mérida, Venezuela) Deep Survey of Orion, near-IR photometry from the Visible and Infrared Survey Telescope for Astronomy and low-resolution spectroscopy obtained with Hectospec at the MMT telescope, we selected 1246 photometric candidates to low-mass stars and brown dwarfs with estimated masses within 0.02 ≲ M/M⊙ ≲ 0.8 and spectroscopically confirmed a sample of 77 low-mass stars as new members of the cluster with a mean age of ˜7 Myr. We have obtained a system initial mass function of the group that can be well described by either a Kroupa power-law function with indices α3 = -1.73 ± 0.31 and α2 = 0.68 ± 0.41 in the mass ranges 0.03 ≤ M/M⊙ ≤ 0.08 and 0.08 ≤ M/M⊙ ≤ 0.5, respectively, or a Scalo lognormal function with coefficients m_c=0.21^{+0.02}_{-0.02} and σ = 0.36 ± 0.03 in the mass range 0.03 ≤ M/M⊙ ≤ 0.8. From the analysis of the spatial distribution of this numerous candidate sample, we have confirmed the east-west elongation of the 25 Orionis group observed in previous works, and rule out a possible southern extension of the group. We find that the spatial distributions of low-mass stars and brown dwarfs in 25 Orionis are statistically indistinguishable. Finally, we found that the fraction of brown dwarfs showing IR excesses is higher than for low-mass stars, supporting the scenario in which the evolution of circumstellar discs around the least massive objects could be more prolonged.

  15. The neutron star mass distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kiziltan, Bülent [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kottas, Athanasios; De Yoreo, Maria [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States); Thorsett, Stephen E., E-mail: bkiziltan@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2013-11-20

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ☉} and 1.55 M {sub ☉}, suggesting significant mass accretion (Δm ≈ 0.22 M {sub ☉}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ∼2.1 M {sub ☉} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ☉} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  16. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  17. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  18. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  19. Statistical investigation of flare stars. III. Flare stars in the general galactic star field

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Mirzoyan, A.L.

    1989-01-01

    Some questions relating to the existence of a large number of flare stars in the general star field of the Galaxy are discussed. It is shown that only a small proportion of them can be found by photographic observations, and the fraction of field flare stars among such stars found in the regions of star clusters and associations does not exceed 10%. The ratio of the numbers of flare stars of the foreground and the background for a particular system depends on its distance, reaching zero at a distance of about 500 pc. The spatial density of flare stars in the Pleiades is at least two orders of magnitude greater than in the general galactic field. A lower limit for the number of flare stars in the Galaxy is estimated at 4.2 ·10 9 , and the number of nonflare red dwarfs at 2.1·10 10 . There are grounds for believing that they were all formed in star clusters and associations

  20. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  1. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (∼ the peak mass of the IMF), and the lower and upper limits on the mass, m l and m u (taken to be 0.004 and 120 M sun , respectively): ψ(m)dln m ∝ m -Γ {1 - exp [- (m/m ch ) γ+Γ ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses sun ; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  2. The early evolution of stars and planets with varying mass

    International Nuclear Information System (INIS)

    Bhattacharjee, S.K.

    1980-09-01

    In this thesis some aspects of stellar and planetary evolution with varying mass are examined. It is divided into two sections. The first section deals with the evolution of stars in the pre-main-sequence phase with mass accretion while in the second section we discuss the spin angular momentum of the planets with mass loss. (author)

  3. Light-Time Effect and Mass Transfer in the Triple Star SW Lyncis

    Directory of Open Access Journals (Sweden)

    Chun-Hwey Kim

    1999-06-01

    Full Text Available In this paper all the photoelectric times of minimum for the triple star SW Lyn have been analyzed in terms of light-time e ect due to the third-body and secular period decreases induced by mass transfer process. The light-time orbit determined recently by Ogloza et al.(1998 were modi ed and improved. And it is found that the orbital period of SW Lyn have been decreasing secularly. The third-body revolves around the mass center of triple stars every 5y.77 in a highly eccentric elliptical orbit(e=0.61. The third-body with a minimum mass of 1.13M may be a binary or a white dwarf. The rate of secular period-decrease were obtained as ¡âP/P = -12.45 x 10^-11, implying the mass-transfer from the massive primary star to the secondary. The mass losing rate from the primary were calculated as about 1.24 x 10^-8M /y. It is noticed that the mass-transfer in SW Lyn system is opposite in direction to that deduced from it's Roche geometry by previous investigators.

  4. High-mass Star Formation and Its Initial Conditions

    Science.gov (United States)

    Zhang, C. P.

    2017-11-01

    In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc

  5. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eunkyu; Muirhead, Philip S. [Department of Astronomy and Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Swift, Jonathan J. [The Thacher School, 5025 Thacher Road Ojai, CA 93023 (United States); Baranec, Christoph; Atkinson, Dani [Institute for Astronomy, University of Hawaiì at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Mace, Gregory N. [McDonald Observatory and The University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); DeFelippis, Daniel, E-mail: eunkyuh@bu.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2017-09-01

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius of the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.

  6. Gamow's calculation of the neutron star's critical mass revised

    International Nuclear Information System (INIS)

    Ludwig, Hendrik; Ruffini, Remo

    2014-01-01

    It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau's work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9 M, not the one he declared, namely, 1.5 M. Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow's calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow's approach to other early and modern approaches to the problem.

  7. Mass loss of evolved massive stars: the circumstellar environment at high angular resolution

    International Nuclear Information System (INIS)

    Montarges, Miguel

    2014-01-01

    Mass loss of evolved stars is still largely mysterious, despite its importance as the main evolution engine for the chemical composition of the interstellar medium. For red supergiants (RSG), the triggering of the outflow and the mechanism of dust condensation remain unknown. Concerning red giant stars, we still do not know how their mass loss is able to form a bipolar planetary nebula. During my PhD thesis, I observed evolved stars with high angular resolution techniques. They allowed us to study the surface and the close environment of these stars, from where mass loss originates. With near-infrared interferometric observations, I characterized the water vapor and carbon monoxide envelope of the nearby RSG Betelgeuse. I also monitored a hot spot on its surface and analyzed the structure of its convection, as well as that of Antares (another very nearby supergiant) thanks to radiative hydrodynamical simulations. Diffraction-limited imaging techniques (near-infrared adaptive optics, ultraviolet space telescope) allowed me to observe the evolution of inhomogeneities in the circumstellar envelope of Betelgeuse and to discover a circumstellar disk around L2 Puppis, an asymptotic giant branch star. These multi-scale and multi-wavelength observations obtained at several epochs allowed us to monitor the evolution of the structures and to derive information on the dynamics of the stellar environment. With a wider stellar sample expected in the next few years, this observing program will allow a better understanding of the mass loss of evolved stars. (author)

  8. First stars. II. Evolution with mass loss

    Czech Academy of Sciences Publication Activity Database

    Bahena, David; Hadrava, Petr

    2012-01-01

    Roč. 337, č. 2 (2012), s. 651-663 ISSN 0004-640X R&D Projects: GA MŠk(CZ) LC506; GA ČR GA202/09/0772 Institutional research plan: CEZ:AV0Z10030501 Keywords : first stars * evolution * mass loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.064, year: 2012

  9. On p-mode oscillations in stars from 1 solar mass to 2 solar masses

    Science.gov (United States)

    Audard, N.; Provost, J.

    1994-06-01

    The structure of stars more massive than about 1.2 solar masses is characterized by a convective core. We have studied the evolution with age and mass of acoustic frequencies of high radical order n and low degree l for models of stars of 1, 1.5 and 2 solar masses. Using a polynomial approximation for the frequency, the p-mode spectrum can be characterized by derived global asteroseismic coefficients, i.e. the mean separation nu0 is approximately equal to nun, l - nun - 1, l and the small frequency separation Delta nu0, 2 is approximately equal to nun, l = 0 - nun - 1, l = 2. The diagram (nu0, delta nu0, 2/nu0) plotted along the evolutionary tracks would help to separate the effects of age and mass. We study the sensitivity of these coefficients and other observable quantities, like the radius and luminosity, to stellar parameters in the vicinity of 1 solar mass and 2 solar masses; this sensitivity substantially depends on the stellar mass and must be taken into account for asteroseismic calibration of stellar clusters. Considering finally some rapid variations of the internal structure, we show that the second frequency difference delta2 nu = nu(subn, l) - 2 nun - 1, l + nun - 2, l exponent gamma in the He II ionization zone.

  10. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  11. Reconciling mass functions with the star-forming main sequence via mergers

    Science.gov (United States)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  12. A UKIDSS-based search for low-mass stars and small stellar clumps in off-cloud parts of young star-forming regions* **

    Directory of Open Access Journals (Sweden)

    Barrado y Navascués D.

    2011-07-01

    Full Text Available The form and universality of the mass function of young and nearby star-forming regions is still under debate. Its relation to the stellar density, its mass peak and the dependency on most recent models shows significant differencies for the various regions and remains unclear up to date. We aim to get a more complete census of two of such regions. We investigate yet unexplored areas of Orion and Taurus-Auriga, observed by the UKIDSS survey. In the latter, we search for low-mass stars via photometric and proper motion criteria and signs for variability. In Orion, we search for small stellar clumps via nearest-neighbor methods. Highlights in Taurus would be the finding of the missing low-mass stars and the detection of a young cluster T dwarf. In Orion, we discovered small stellar associations of its OB1b and OB1c populations. Combined with what is known in literature, we will provide by this investigations a general picture of the results of the star-forming processes in large areas of Taurus and Orion and probe the most recent models.

  13. Evolution models of helium white dwarf--main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    OpenAIRE

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2017-01-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with ...

  14. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  15. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  16. THE FORMATION OF THE PRIMITIVE STAR SDSS J102915+172927: EFFECT OF THE DUST MASS AND THE GRAIN-SIZE DISTRIBUTION

    International Nuclear Information System (INIS)

    Bovino, S.; Banerjee, R.; Grassi, T.; Schleicher, D. R. G.

    2016-01-01

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M ⊙ primordial stars, which are suitable to reproduce the chemical pattern of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.

  17. THE FORMATION OF THE PRIMITIVE STAR SDSS J102915+172927: EFFECT OF THE DUST MASS AND THE GRAIN-SIZE DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, S.; Banerjee, R. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Grassi, T. [Niels Bohr Institute and Centre for Star and Planet Formation, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Schleicher, D. R. G., E-mail: stefano.bovino@uni-hamburg.de [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160, Concepción (Chile)

    2016-12-01

    Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical pattern of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.

  18. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  19. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  20. Massive stars evolution with mass-loss. 20-100 M(sun) models

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Sreenivasan, S R [Calgary Univ., Alberta (Canada). Dept. of Physics; Nasi, E [Padua Univ. (Italy). Istituto di Astronomia

    1978-02-01

    The evolution of stars with initial masses 20, 30, 40, 60, 80, 100 M(sun) and Population I chemical composition (X = 0.700, Z = 0.02) is calculated, taking into account mass-loss due to stellar winds, from the main sequence up to the early stages of central He-burning. This study incorporates mass-loss rates predicted by the theory of Castor et al. (1975) for the early type phases and a novel way of treating mass-loss rates due to acoustic energy flux driven winds in the later stages analogous to the work of Fusi-Pecci and Renzini (1975a). The results are presented in terms of evolutionary tracks, isochrones, loci of constant mass-loss rates and loci of constant mass in the HR diagram. The effects of mass-loss on the internal structure of the models as well as on the occurrence of semiconvection are also investigated. A detailed comparison of the theoretical predictions and observational results is made and possible implications for O, Of, Wolf-Rayet stars and red supergiants are brought out.

  1. Merger of binary neutron stars of unequal mass in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Taniguchi, Keisuke; Uryu-bar, Ko-barji

    2003-01-01

    We present results of three dimensional numerical simulations of the merger of unequal-mass binary neutron stars in full general relativity. A Γ-law equation of state P=(Γ-1)ρε is adopted, where P, ρ, ε, and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant, respectively. We take Γ=2 and the baryon rest-mass ratio Q M to be in the range 0.85-1. The typical grid size is (633,633,317) for (x,y,z). We improve several implementations since the latest work. In the present code, the radiation reaction of gravitational waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation reaction. It is found that if the total rest mass of the system is more than ∼1.7 times of the maximum allowed rest mass of spherical neutron stars, a black hole is formed after the merger, irrespective of the mass ratios. The gravitational waveforms and outcomes in the merger of unequal-mass binaries are compared with those in equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the gravitational waveforms also depend strongly on the rest-mass ratios even for the range Q M =0.85-1

  2. GW170817: a neutron star merger in a mass-transferring triple system

    Science.gov (United States)

    Chang, Philip; Murray, Norman

    2018-02-01

    The light curve of GW170817 is surprisingly blue and bright. Assuming that the event is a binary neutron star merger, we argue that blueness and brightness of the light curve is the result of ejecta that contains an substantial amount of thermal energy. To achieve this, the ejecta must be reheated at a substantial distance (1-2000 solar radii) from the merger to avoid losing the energy to adiabatic cooling. We show that this reheating can occur if the merger occurs in a hierarchical triple system where the outer star has evolved and filled its Roche lobe. The outer star feeds mass to the inner binary, forming a circumbinary disc, driving the inner binary to merge. Because the outer star fills its Roche lobe, a substantial fraction of the dynamical ejecta collides with the evolved star, reheating the ejecta in the process. We suggest that the process of mass transfer in hierarchical triples tends to form coplanar triple systems such as PSR J0337+1715, and may provide electromagnetic counterparts to binary black hole mergers.

  3. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Sugiyama, N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, 277-8583 (Japan); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Sanders, D.; Zahid, J.; Kewley, L. J.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822 (United States); Kartaltepe, J. S. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ, 85719 (United States); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, Hawaii, 96720 (United States); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122, Padova, Italy, EU (Italy); Rodighiero, G.; Baronchelli, I. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122, Padova (Italy); Daddi, E.; Juneau, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Lilly, S. J.; Carollo, C. M. [Institute of Astronomy, ETH Zürich, CH-8093, Zürich (Switzerland); Capak, P. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ilbert, O., E-mail: john.silverman@ipmu.jp [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); and others

    2015-09-15

    We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Hα emission line that falls within the H-band (1.6–1.8 μm) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M{sub stellar} ≳ 10{sup 10} M{sub ⊙}. With the high multiplex capability of FMOS, it is now feasible to construct samples of over 1000 galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R ∼ 2600) effectively separates Hα and [N ii]λ6585, thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate (SFR)—stellar mass relation. Galaxies with Hα detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11–1.35 μm) grating to detect Hβ and [O iii]λ5008 which provides an assessment of the extinction required to measure SFRs not hampered by dust, and an indication of embedded active galactic nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.

  4. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Scott, Nicholas; Graham, Alister W.

    2013-01-01

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M NC , correlates most tightly with the host galaxy's velocity dispersion: log M NC = (2.11 ± 0.31)log (σ/54) + (6.63 ± 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M NC ∝M 0.55±0.15 Gal,dyn ; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.

  5. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  6. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    Science.gov (United States)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  7. Star Formation in Taurus: Preliminary Results from 2MASS

    Science.gov (United States)

    Beichman, C. A.; Jarrett, T.

    1993-01-01

    Data with the 2MASS prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from IRAS observations to contain a number of very young solar type stars.

  8. Effect of mass loss on the driving of g-modes in B supergiant stars

    Energy Technology Data Exchange (ETDEWEB)

    Godart, Melanie; Noels, Arlette [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Helanie.Godart@ulg.ac.be, E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr

    2008-10-15

    MOST has detected p and g-modes in the B supergiant star HD163899. Saio et al. (2006) have explained the driving of g-modes in a post main sequence star by the presence of a convective shell which prevents some modes from entering the damping radiative core. We show that this scenario depends on the evolution of the star, with or without mass loss. If the mass loss rate is high enough, the convective shell disappears and all the g-modes are stable.

  9. Effect of mass loss on the driving of g-modes in B supergiant stars

    International Nuclear Information System (INIS)

    Godart, Melanie; Noels, Arlette; Dupret, Marc-Antoine

    2008-01-01

    MOST has detected p and g-modes in the B supergiant star HD163899. Saio et al. (2006) have explained the driving of g-modes in a post main sequence star by the presence of a convective shell which prevents some modes from entering the damping radiative core. We show that this scenario depends on the evolution of the star, with or without mass loss. If the mass loss rate is high enough, the convective shell disappears and all the g-modes are stable.

  10. Constraining the Population of Small Close-in Planets Around Evolved Intermediate Mass Stars

    Science.gov (United States)

    Medina, Amber; Johnson, John Asher

    2018-01-01

    Intermediate mass stars ( > 1.3 M_Sun) have high occurrence rates of Jupiter mass planets in predominately long period orbits (~1.0 AU). There is a prominent planet gap, known as the ‘Planet Desert’, for low mass planets (Super-Earth, Neptune) < 0.5 AU from subgiants, the evolved counterpart to intermediate mass stars. Thus far, using current radial velocity methods, we have not been able to detect short period planets around subgiants due to noise from p-mode oscillations perhaps mimicking radial velocity signals (~5 m/s) in this planetary regime. Here we present techniques and preliminary results with regards to finding low mass, short period planets around subgiants and its implications for the Planet Desert.

  11. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  12. Evolution of low-mass stars in the alpha persei cluster

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Burnham, J.N.; Jones, B.F.

    1985-01-01

    We present a photometric and spectroscopic study of low-mass members of the α Persei cluster. Now relative proper motions have been obtained for 4000 stars in a 1X2 x 1X2 region of the α Persei open cluster. The survey extends to Vroughly-equal16.5 mag, much fainter than the previous proper motion surveys. Optical photometry and high-dispersion spectroscopy of the possible cluster members from our survey, as well as a set of 10th to 12th magnitude stars from previous surveys, have also been obtained. The new photometry shows an apparent pre-main sequence (PMS), but we cannot yet accurately determine the PMS turn-on point. The faint stars in the cluster have positions in a V versus V-I diagram that are roughly in accord with the 5 x 10 7 yr isochrone derived by VandenBerg et al. In agreement with previous results for the Pleiades cluster, some of the late-type α Persei members are photometric variables, with periods of 1 day or less. Light curves and estimated periods are presented for six of the G and K dwarf members of the cluster. We attribute the periodic light variations to spots on the surfaces of these stars, which are carried around the visible hemisphere by rapid rotation. The photometric periods are consistent with rotational broadening measurements when available. Projected rotational velocities derived from the echelle spectra indicate that nearly 50% of the stars observed that are later than G2 have 25 km s -1 -1 . The large rotational velocities among low-mass stars in young clusters are ascribed to spin-up during contraction to the main sequence

  13. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  14. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  15. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  16. THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2010-01-01

    We have analyzed nearly all images of the Taurus star-forming region at 3.6, 4.5, 5.8, 8.0, and 24 μm that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg 2 ) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources, or 99% of the known stellar population. By combining these measurements with previous observations with the Spitzer Infrared Spectrograph and other facilities, we have classified the members of Taurus according to whether they show evidence of circumstellar disks and envelopes (classes I, II, and III). Through these classifications, we find that the disk fraction in Taurus, N(II)/N(II+III), is ∼75% for solar-mass stars and declines to ∼45% for low-mass stars and brown dwarfs (0.01-0.3 M sun ). This dependence on stellar mass is similar to that measured for Chamaeleon I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 Myr versus 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (∼20%) in IC 348 and σ Ori, which are denser than Taurus and Chamaeleon I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in star-forming regions that have lower stellar densities. Through an analysis of multiple epochs of Spitzer photometry that are available for ∼200 Taurus members, we find that stars with disks exhibit significantly greater mid-infrared (mid-IR) variability than diskless stars, which agrees with the results of similar variability measurements for a smaller sample of stars in Chamaeleon I. The variability fraction for stars with disks is higher in Taurus than in Chamaeleon I, indicating that the IR variability of disks decreases with age. Finally, we have used our data in Taurus to refine the observational criteria for primordial, evolved, and transitional disks. The ratio of the number of evolved and

  17. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  18. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  19. Detection of X-ray emission from the young low-mass star Rossiter 137B

    Science.gov (United States)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  20. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  1. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    Science.gov (United States)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  2. Tracing early evolutionary stages of high-mass star formation with molecular lines

    NARCIS (Netherlands)

    Marseille, M. G.; van der Tak, F. F. S.; Herpin, F.; Jacq, T.

    2010-01-01

    Context. Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M >= 10 M(circle dot)) remains poorly understood. Two types of massive star cluster precursors, the so-called massive dense cores (MDCs), have been observed, which differ in terms of their

  3. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  4. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  5. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  6. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  7. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  8. The Complexity that the First Stars Brought to the Universe: Fragility of Metal-enriched Gas in a Radiation Field

    NARCIS (Netherlands)

    Aykutalp, A.; Spaans, M.

    2011-01-01

    The initial mass function (IMF) of the first (Population III) stars and Population II (Pop II) stars is poorly known due to a lack of observations of the period between recombination and reionization. In simulations of the formation of the first stars, it has been shown that, due to the limited

  9. DISCOVERY OF A LOW-MASS COMPANION TO THE SOLAR-TYPE STAR TYC 2534-698-1

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Mahadevan, Suvrath; Sivarani, Thirupathi; Cochran, William D.; Street, Rachel A.; Henry, Gregory W.; Williamson, Michael H.

    2009-01-01

    Brown dwarfs and low-mass stellar companions are interesting objects to study since they occupy the mass region between deuterium and hydrogen burning. We report here the serendipitous discovery of a low-mass companion in an eccentric orbit around a solar-type main-sequence star. The stellar primary, TYC 2534-698-1, is a G2V star that was monitored both spectroscopically and photometrically over the course of several months. Radial velocity observations indicate a minimum mass of 0.037 M sun and an orbital period of ∼103 days for the companion. Photometry outside of the transit window shows the star to be stable to within ∼6 millimags. The semimajor axis of the orbit places the companion in the 'brown dwarf desert' and we discuss potential follow-up observations that could constrain the mass of the companion.

  10. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    Science.gov (United States)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  11. General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers

    Science.gov (United States)

    Giacomazzo, Bruno

    2017-01-01

    We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.

  12. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  13. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    Science.gov (United States)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  14. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    Science.gov (United States)

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  15. A MULTIPLICITY CENSUS OF INTERMEDIATE-MASS STARS IN SCORPIUS-CENTAURUS

    International Nuclear Information System (INIS)

    Janson, Markus; Lafrenière, David; Jayawardhana, Ray; Bonavita, Mariangela; Girard, Julien H.; Brandeker, Alexis; Gizis, John E.

    2013-01-01

    Stellar multiplicity properties have been studied for the lowest and the highest stellar masses, but intermediate-mass stars from F-type to late A-type have received relatively little attention. Here, we report on a Gemini/NICI snapshot imaging survey of 138 such stars in the young Scorpius-Centaurus (Sco-Cen) region, for the purpose of studying multiplicity with sensitivity down to planetary masses at wide separations. In addition to two brown dwarfs and a companion straddling the hydrogen-burning limit which we reported previously, here we present 26 new stellar companions and determine a multiplicity fraction within 0.''1-5.''0 of 21% ± 4%. Depending on the adopted semimajor axis distribution, our results imply a total multiplicity in the range of ∼60%-80%, which further supports the known trend of a smooth continuous increase in the multiplicity fraction as a function of primary stellar mass. A surprising feature in the sample is a distinct lack of nearly equal-mass binaries, for which we discuss possible reasons. The survey yielded no additional companions below or near the deuterium-burning limit, implying that their frequency at >200 AU separations is not quite as high as might be inferred from previous detections of such objects within the Sco-Cen region

  16. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  17. VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bo; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Wang Ji [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Barnes, Rory; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dutra-Ferreira, Leticia; Porto de Mello, G. F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lctea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bizyaev, Dmitry, E-mail: boma@astro.ufl.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T{sub eff} = 5903 {+-} 42 K, surface gravity log (g) = 4.07 {+-} 0.16 (cgs), and metallicity [Fe/H] = -0.23 {+-} 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 {+-} 0.041 km s{sup -1}, period P = 9.0090 {+-} 0.0004 days, and eccentricity e = 0.226 {+-} 0.011. Adopting a mass of 1.16 {+-} 0.11 M{sub Sun} for the subgiant host star, we infer that the companion has a minimum mass of 40.0 {+-} 2.5 M{sub Jup}. Assuming an edge-on orbit, the semimajor axis is 0.090 {+-} 0.003 AU. The host star is photometrically variable at the {approx}1% level with a period of {approx}13.16 {+-} 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 {+-} 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M{sub Sun} if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v{sub rot}sin i, but unusual for a subgiant of this T{sub eff}. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  18. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    Science.gov (United States)

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  19. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  20. An unstable truth: how massive stars get their mass

    Science.gov (United States)

    Rosen, Anna L.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2016-12-01

    The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this, we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channelled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features should be present around accreting massive stars throughout their formation.

  1. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T.; Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J.; Murgas, F.; Ivanyuk, O.; Jordán, A.

    2013-01-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 ± 0.0015 days and with a radial velocity semi-amplitude of only 5.96 ± 1.74 ms –1 , we find a minimum mass of 15.9 +4.7 -5.3 M ⊕ . The best-fit eccentricity from this solution is 0.09 +0.25 -0.09 , and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 ± 0.06 dex, whereas another recent work finds +0.47 ± 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the ∼4.5σ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  2. Electromagnetic pulse from supernovae. [model for old low-mass stars

    Science.gov (United States)

    Colgate, S. A.

    1975-01-01

    Upper and lower limits to the radiated electromagnetic pulse from a supernova are calculated assuming that the mass fraction of the matter expanding inside the dipole magnetic field shares energy and maintains the pressure balance in the process. A supernova model is described in which the explosion occurs in old low-mass stars containing less than 10% hydrogen in their ejecta and a remnant neutron star is produced. The analysis indicates that although the surface layer of a star of 1 g/cu thickness may be shock-accelerated to an energy factor of about 100 and may expand into the vacuum with an energy factor approaching 10,000, the equatorial magnetic field will retard this expansion so that the inner, more massive ejecta layers will effectively accelerate the presumed canonical dipole magnetic field to greater velocities than would the surface layer alone. A pulse of 10 to the 46th power ergs in a width of about 150 cm will result which will not be affected by circumstellar matter or electron self-radiation effects. It is shown that interstellar matter will attenuate the pulse, but that charge separation may reduce the attenuation and allow a larger pulse to escape.

  3. The BDNYC database of low-mass stars, brown dwarfs, and planetary mass companions

    Science.gov (United States)

    Cruz, Kelle; Rodriguez, David; Filippazzo, Joseph; Gonzales, Eileen; Faherty, Jacqueline K.; Rice, Emily; BDNYC

    2018-01-01

    We present a web-interface to a database of low-mass stars, brown dwarfs, and planetary mass companions. Users can send SELECT SQL queries to the database, perform searches by coordinates or name, check the database inventory on specified objects, and even plot spectra interactively. The initial version of this database contains information for 198 objects and version 2 will contain over 1000 objects. The database currently includes photometric data from 2MASS, WISE, and Spitzer and version 2 will include a significant portion of the publicly available optical and NIR spectra for brown dwarfs. The database is maintained and curated by the BDNYC research group and we welcome contributions from other researchers via GitHub.

  4. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  5. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  6. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5contract NAS5-26555.

  7. THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Allanson, Steven P.; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.

    2009-01-01

    This paper addresses the challenge of understanding the typical star formation histories of red-sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We first construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend, i.e., the stellar populations are younger, on average, for lower σ galaxies. We find, however, that this trend flattens or reverses at σ ∼ -1 . We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the fundamental plane (FP), or by the SAURON group. For galaxies with σ ∼ 70 km s -1 , models with a late 'frosting' of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The single stellar population (SSP) model is consistent with the FP, and requires a modest amount of dark matter (between 20% and 30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was 'quenched' at intermediate ages is also consistent with the observations, although in this case less dark matter is required for low mass galaxies. We also find that the contribution of stellar populations to the 'tilt' of the fundamental plane is highly dependent on the assumed star formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one-third is due to dark matter or non-homology.

  8. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  9. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    Science.gov (United States)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  10. Bump masses for BL Her stars

    International Nuclear Information System (INIS)

    Davis, C.G.

    1982-01-01

    The masses of classical Cepheids can be determined by using the phase of the Hertzsprung bump on the light or velocity curve, Cox-Stewart opacities, and nonlinear pulsation theory. The fact that these bump masses are some 60% lower than the evolutionary masses raises some questions about this approach. In support of our method, we calculate the light curve for BL Her, a population II Cepheid, with an observed bump on the declining portion of its light curve. The nonlinear hydrodynamic model we use (Davis and Davison - 1978) resolves the light curve by dynamic zoning and allows us the opportunity to make a direct comparison of the calculated light curve to the observations, using a prescribed mass, luminosity and effective temperature. The parameters for BL Her are from a linear model (Hodson, Cox, and King - 1982) that has nearly the correct period (1./sup d/2) and the correct period ratio from resonance theory (π 2 /π 0 = 0.53) for a bump to appear on the declining portion of the light curve as observed. These parameters are: M = 0.55 M, L = 95.0 L, and T/sub eff/ = 6500 K. This mass is near the evolutionary mass as described by Schwartzschild and Haerm (1970). The model results agree well with the observations and the color-T/sub eff/ relation has the same slope as that observed for RR Lyrae stars by the Oke, Giver and Searle (1965) relationship

  11. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  12. Luminosities and mass-loss rates of Local Group AGB stars and red supergiants

    Science.gov (United States)

    Groenewegen, M. A. T.; Sloan, G. C.

    2018-01-01

    Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking. Aims: We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies (dSphs). Methods: Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. Results: New deep K-band photometry from the VMC survey and multi-epoch data from IRAC (at 4.5 μm) and AllWISE and NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 ± 1.6 M⊙, suggesting an initial mass well above 8 M⊙ in agreement with estimates based on its large Rubidium abundance. Using synthetic photometry, we present and discuss colour-colour and

  13. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  14. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    International Nuclear Information System (INIS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-01-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir  ∼ 10 12.1 M ⊙ ) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star  ∼ 10 8 –10 10 M ⊙ . Halos with more quiescent accretion histories tend to have lower mass progenitors (10 8 –10 9 M ⊙ ), and lower overall accreted stellar masses. Ultra-faint mass (M star  < 10 5 M ⊙ ) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10 5  < M star /M ⊙  < 10 8 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M star  > 10 8 M ⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo

  15. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  16. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  17. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Greenwood, Aaron; Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Henning, Thomas [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Ménard, François [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Dent, William R. F. [Department of Engineering, Atacama Large Millimeter/submillimeter Array (ALMA) Santiago Central Offices, Alonso de Córdova 3107, Vitacura, Casilla 763 0355, Santiago (Chile); II, Neal J. Evans, E-mail: equant@lpl.arizona.edu [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  18. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    International Nuclear Information System (INIS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; II, Neal J. Evans

    2017-01-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  19. Effect of mass loss on the chemical yields from massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1979-01-01

    Recent results on the calculation of the chemical yields from massive stars, are rediscussed by taking into account the occurrence of mass loss by stellar wind during the core H- and He-burning phases. The new yields are found to be compatible with the observed distribution of chemical abundances in the solar system, except for He. The net enrichment of several elements over the galaxy's lifetime is found to be consistent with the current estimate of the star formation rate, if we adopt a two phase process of galaxy formation (halodisk). The relative He to heavy element enrichment rate ..delta..Y/..delta..Z turns out to agree with the observational value when mass loss by stellar wind is taken into account.

  20. POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS

    Energy Technology Data Exchange (ETDEWEB)

    Nagakura, Hiroki; Suwa, Yudai [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Ioka, Kunihito, E-mail: hiroki@heap.phys.waseda.ac.jp [KEK Theory Center, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2012-08-01

    We investigate the propagation of accretion-powered jets in various types of massive stars such as Wolf-Rayet stars, light Population III (Pop III) stars, and massive Pop III stars, all of which are the progenitor candidates of gamma-ray bursts (GRBs). We perform two-dimensional axisymmetric simulations of relativistic hydrodynamics, taking into account both the envelope collapse and the jet propagation (i.e., the negative feedback of the jet on the accretion). Based on our hydrodynamic simulations, we show for the first time that the accretion-powered jet can potentially break out relativistically from the outer layers of Pop III progenitors. In our simulations, the accretion rate is estimated by the mass flux going through the inner boundary, and the jet is injected with a fixed accretion-to-jet conversion efficiency {eta}. By varying the efficiency {eta} and opening angle {theta}{sub op} for more than 40 models, we find that the jet can make a relativistic breakout from all types of progenitors for GRBs if a simple condition {eta} {approx}> 10{sup -4}({theta}{sub op}/8 Degree-Sign ){sup 2} is satisfied, which is consistent with analytical estimates. Otherwise no explosion or some failed spherical explosions occur.

  1. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  2. Advanced evolution of a 15 solar mass star

    International Nuclear Information System (INIS)

    Endal, A.S.

    1974-01-01

    The evolution of a 15 solar mass star has been followed from the zero-age main sequence to the neon-ignition phase by use of the Henyey method for solving the equations of quasi-hydrostatic evolution. The detailed results of nucleosynthesis during carbon burning were calculated by a second-order, backwards-differencing scheme, with the effects of convection included in an approximate manner. The results of the evolution calculations and of the nucleosynthesis calculations are described and a detailed analysis of the effects of convection on nucleosynthesis is presented. The quiescent nature of evolution through the hydrogen, helium, and carbon burning stages is confirmed. Comparison with previous studies of the post-carbon burning evolution of massive stars shows that calculations in which degeneracy is neglected will not yield realistic results

  3. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    Science.gov (United States)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  4. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    International Nuclear Information System (INIS)

    Mineshige, S.

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars. 52 references

  5. PLANETS AROUND LOW-MASS STARS (PALMS). V. AGE-DATING LOW-MASS COMPANIONS TO MEMBERS AND INTERLOPERS OF YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Brendan P.; Montet, Benjamin T.; Riddle, Reed [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Shkolnik, Evgenya L.; Flagg, Laura [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Liu, Michael C.; Howard, Andrew W.; Aller, Kimberly M.; Best, William M. J.; Kotson, Michael C.; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schlieder, Joshua E. [NASA Postdoctoral Program Fellow, NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Mann, Andrew W.; Dupuy, Trent J. [Department of Astronomy, University of Texas at Austin, TX (United States); Hinkley, Sasha [Physics and Astronomy, University of Exeter, EX4 4QL Exeter (United Kingdom); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Johnson, John Asher [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Weinberger, Alycia J. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd NW, Washington, DC 20015 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Herczeg, Gregory J., E-mail: bpbowler@caltech.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871 (China); and others

    2015-06-10

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7–M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8–120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (∼10–100 M{sub Jup}) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892–0929121 C (40–60 M{sub Jup}) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ∼40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229–2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the

  6. PLANETS AROUND LOW-MASS STARS (PALMS). V. AGE-DATING LOW-MASS COMPANIONS TO MEMBERS AND INTERLOPERS OF YOUNG MOVING GROUPS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Montet, Benjamin T.; Riddle, Reed; Shkolnik, Evgenya L.; Flagg, Laura; Liu, Michael C.; Howard, Andrew W.; Aller, Kimberly M.; Best, William M. J.; Kotson, Michael C.; Baranec, Christoph; Schlieder, Joshua E.; Mann, Andrew W.; Dupuy, Trent J.; Hinkley, Sasha; Crepp, Justin R.; Johnson, John Asher; Weinberger, Alycia J.; Allers, Katelyn N.; Herczeg, Gregory J.

    2015-01-01

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7–M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8–120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (∼10–100 M Jup ) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892–0929121 C (40–60 M Jup ) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ∼40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229–2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest

  7. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  8. Chromospherically active stars. VIII - HD 155638 = V792 Herculis: Observational constraints on evolutionary theory

    International Nuclear Information System (INIS)

    Fekel, F.C.

    1991-01-01

    V792 Her is an eclipsing RS CVn binary with an orbital period of 27.54 days whose components have spectral types of K0 III and F2 IV. New spectroscopic observations combined with existing photometry have resulted in masses of 1.47 + or - 0.003 solar mass and 1.41 + or - 0.003 solar mass for the K giant and F star, respectively. Additional fundamental parameters are derived. Standard evolutionary models were specifically computed by VandenBerg (1990) for the two stars. The best fit occurs if the components are somewhat metal poor with Fe/H/ = - 0.46. Ages of about 2.3 x 10 to the 9th yr derived for the two components differ by less than 3 percent. Thus, standard evolutionary models with no convective overshoot are able to fit the observed parameters of stars as massive as 1.45 solar mass. However, a definitive comparison is not yet possible since the metal abundance of the stars is unknown and metal-poor convective-overshoot tracks in this mass range are needed. 35 refs

  9. Magnetic Modeling of Inflated Low-mass Stars Using Interior Fields No Larger than ˜10 kG

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2017-11-01

    We have previously reported on models of low-mass stars in which the presence of inflated radii is ascribed to magnetic fields that impede the onset of convection. Some of our magneto-convection models have been criticized because, when they were first reported by Mullan & MacDonald, the deep interior fields were found to be very large (50-100 MG). Such large fields are now known to be untenable. For example, Browning et al. used stability arguments to suggest that interior fields in low-mass stars cannot be larger than ˜1 MG. Moreover, 3D models of turbulent stellar dynamos suggest that fields generated in low-mass interiors may be not much stronger than 10-20 kG. In the present paper, we present magneto-convective models of inflated low-mass stars in which the interior fields are not permitted to be stronger than 10 kG. These models are used to fit empirical data for 15 low-mass stars for which precise masses and radii have been measured. We show that our 10 kG magneto-convective models can replicate the empirical radii and effective temperatures for 14 of the stars. In the case of the remaining star (in the Praesepe cluster), two different solutions have been reported in the literature. We find that one of these solutions can be fitted well with our model using the nominal age of Praesepe (800 Myr). However, the second solution cannot be fitted unless the star’s age is assumed to be much younger (˜150 Myr).

  10. Initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    International Nuclear Information System (INIS)

    Van Buren, D.

    1985-01-01

    Using the Michigan HD catalog volumes I--III, the all-sky sample of O stars of Garmany, Conti, and Chiosi, Lucke's map of the distribution of obscuring material within 2 kpc, and an amalgam of recent stellar evolution calculations, the number of stars formed kpc -2 yr -1 [log (M/M/sub sun/)] -1 (IMF) is psi = 5.4 x 10 -4 (M/M/sub sun/)/sup -1.03/. A calibration of mass-loss rates with stellar parameters based on published data yields m = 2.0 x 10 -13 (L/L/sub sun/)/sup 1.25/M/sub sun/ yr -1 . Energy injection into the ISM by winds and supernovae balances mechanical energy dissipation via cloud-cloud collisions. For stars M>5 M/sub sun/ there is near balance between the rate at which mass is turned into stars and the rate at which it is lost from them, implying small remnant masses

  11. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  12. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M ⊕ and 5 M ⊕ . Assuming H 2 O-(inner HZ) and CO 2 -(outer HZ) dominated atmospheres, and scaling the background N 2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H 2 O column depth. For larger planets, the H 2 O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs

  13. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  14. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  15. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Jorick S.; Graefener, Goetz, E-mail: jsv@arm.ac.uk [Armagh Observatory, College Hill, BT61 9DG Armagh (United Kingdom)

    2012-06-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of {approx_equal}2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot{sub trans} between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the {approx}50 M{sub Sun} mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  16. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    International Nuclear Information System (INIS)

    Vink, Jorick S.; Gräfener, Götz

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ≅2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot trans between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the ∼50 M ☉ mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  17. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  18. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  19. Constraining the low-mass Slope of the star formation sequence at 0.5 < z < 2.5

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Henry, Alaina; Rigby, Jane R.; Franx, Marijn; Fumagalli, Mattia; Labbé, Ivo; Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Skelton, Rosalind E.; Brammer, Gabriel B.

    2014-01-01

    We constrain the slope of the star formation rate (SFR; log Ψ) to stellar mass (log M * ) relation down to log (M * /M ☉ ) = 8.4 (log (M * /M ☉ ) = 9.2) at z = 0.5 (z = 2.5) with a mass-complete sample of 39,106 star-forming galaxies selected from the 3D-HST photometric catalogs, using deep photometry in the CANDELS fields. For the first time, we find that the slope is dependent on stellar mass, such that it is steeper at low masses (log Ψ∝log M * ) than at high masses (log Ψ∝(0.3-0.6)log M * ). These steeper low-mass slopes are found for three different star formation indicators: the combination of the ultraviolet (UV) and infrared (IR), calibrated from a stacking analysis of Spitzer/MIPS 24 μm imaging; β-corrected UV SFRs; and Hα SFRs. The normalization of the sequence evolves differently in distinct mass regimes as well: for galaxies less massive than log (M * /M ☉ ) < 10 the specific SFR (Ψ/M * ) is observed to be roughly self-similar with Ψ/M * ∝(1 + z) 1.9 , whereas more massive galaxies show a stronger evolution with Ψ/M * ∝(1 + z) 2.2-3.5 for log (M * /M ☉ ) = 10.2-11.2. The fact that we find a steep slope of the star formation sequence for the lower mass galaxies will help reconcile theoretical galaxy formation models with the observations.

  20. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    Science.gov (United States)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  1. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Faculty of Science Bldg. 1 #711, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  2. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2016-01-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO_2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO_2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  3. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  4. CONSTRAINTS OF THE PHYSICS OF LOW-MASS AGB STARS FROM CH AND CEMP STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Piersanti, L.; Gobrecht, D. [INAF—Osservatorio Astronomico di Teramo, I-64100 (Italy); Karinkuzhi, D.; Goswami, A. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2016-12-20

    We analyze a set of published elemental abundances from a sample of CH stars which are based on high resolution spectral analysis of ELODIE and SUBARU/HDS spectra. All the elemental abundances were derived from local thermodynamic equilibrium analysis using model atmospheres, and thus they represent the largest homogeneous abundance data available for CH stars to date. For this reason, we can use the set to constrain the physics and the nucleosynthesis occurring in low mass asymptotic giant branch (AGB) s.tars. CH stars have been polluted in the past from an already extinct AGB companion and thus show s-process enriched surfaces. We discuss the effects induced on the surface AGB s-process distributions by different prescriptions for convection and rotation. Our reference theoretical FRUITY set fits only part of the observations. Moreover, the s-process observational spread for a fixed metallicity cannot be reproduced. At [Fe/H] > −1, a good fit is found when rotation and a different treatment of the inner border of the convective envelope are simultaneously taken into account. In order to increase the statistics at low metallicities, we include in our analysis a selected number of CEMP stars and, therefore, we compute additional AGB models down to [Fe/H] = −2.85. Our theoretical models are unable to attain the large [hs/ls] ratios characterizing the surfaces of those objects. We speculate on the reasons for such a discrepancy, discussing the possibility that the observed distribution is a result of a proton mixing episode leading to a very high neutron density (the so-called i-process).

  5. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 (United States)

    2016-04-10

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  6. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  7. Analysis of a selected sample of RR Lyrae stars in the LMC from OGLE-III

    International Nuclear Information System (INIS)

    Chen Bing-Qiu; Jiang Bi-Wei; Yang Ming

    2013-01-01

    A systematic study of RR Lyrae stars is performed using a selected sample of 655 objects in the Large Magellanic Cloud (LMC) with long-term observations and numerous measurements from the Optical Gravitational Lensing Experiment III project. The phase dispersion method and linear superposition of the harmonic oscillations are used to derive the pulsation frequency and properties of light variation. It is found that a dichotomy exists in Oosterhoff Type I and Oosterhoff Type II for RR Lyrae stars in the LMC. Due to our strict criteria for identifying a frequency, a lower limit for the incidence rate of Blazhko modulation in the LMC is estimated in various subclasses of RR Lyrae stars. For fundamental-mode RR Lyrae stars, the rate of 7.5% is smaller than the previous result. In the case of the first-overtone RR Lyrae variables, the rate of 9.1% is relatively high. In addition to the Blazhko variables, 15 objects are identified to pulsate in the fundamental/first-overtone double mode. Furthermore, four objects show a period ratio around 0.6, which makes them very likely to be rare pulsators in the fundamental/second-overtone double mode. (research papers)

  8. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  9. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    Science.gov (United States)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-06

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  10. Mass-radius relation for magnetized strange quark stars

    CERN Document Server

    Martinez, A Perez; Paret, D Manreza

    2010-01-01

    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

  11. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  12. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    Science.gov (United States)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  13. Carcass mass gains of steers grazing star grass, with different ...

    African Journals Online (AJOL)

    Carcass mass gains of steers grazing dryland Cynodon aethiopicus cv. No. 2 Star grass pastures during the growing season were determined for each of 16 treatments comprising four levels of nitrogen fertilisation in combination with four overlapping sets of stocking rates. The treatments were repeated over four growing ...

  14. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy); Lavagno, Andrea; Pigato, Daniele [Politecnico di Torino (Italy). Dept. of Applied Science and Technology; INFN, Torino (Italy)

    2016-02-15

    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M {sub CircleDot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  15. The Masses and Evolutionary State of the Stars in the Dwarf Nova SS Cygni

    Science.gov (United States)

    Bitner, Martin A.; Robinson, Edward L.; Behr, Bradford B.

    2007-06-01

    The dwarf nova SS Cygni is a close binary star consisting of a K star transferring mass to a white dwarf by way of an accretion disk. We have obtained new spectroscopic observations of SS Cyg. Fits of synthetic spectra for Roche lobe-filling stars to the absorption-line spectrum of the K star yield the amplitude of the K star's radial velocity curve and the mass ratio, KK=162.5+/-1.0 km s-1 and q=MK/MWD=0.685+/-0.015. The fits also show that the accretion disk and white dwarf contribute a fraction f=0.535+/-0.075 of the total flux at 5500 Å. Taking the weighted average of our results with previously published results obtained using similar techniques, we find =163.7+/-0.7 km s-1 and =0.683+/-0.012. The orbital light curve of SS Cyg shows an ellipsoidal variation diluted by light from the disk and white dwarf. From an analysis of the ellipsoidal variations, we limit the orbital inclination to the range 45degAustin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  16. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  17. Deriving temperature, mass, and age of evolved stars from high-resolution spectra. Application to field stars and the open cluster IC 4651

    Science.gov (United States)

    Biazzo, K.; Pasquini, L.; Girardi, L.; Frasca, A.; da Silva, L.; Setiawan, J.; Marilli, E.; Hatzes, A. P.; Catalano, S.

    2007-12-01

    Aims:We test our capability of deriving stellar physical parameters of giant stars by analysing a sample of field stars and the well studied open cluster IC 4651 with different spectroscopic methods. Methods: The use of a technique based on line-depth ratios (LDRs) allows us to determine with high precision the effective temperature of the stars and to compare the results with those obtained with a classical LTE abundance analysis. Results: (i) For the field stars we find that the temperatures derived by means of the LDR method are in excellent agreement with those found by the spectral synthesis. This result is extremely encouraging because it shows that spectra can be used to firmly derive population characteristics (e.g., mass and age) of the observed stars. (ii) For the IC 4651 stars we use the determined effective temperature to derive the following results. a) The reddening E(B-V) of the cluster is 0.12±0.02, largely independent of the color-temperature calibration used. b) The age of the cluster is 1.2±0.2 Gyr. c) The typical mass of the analysed giant stars is 2.0±0.2~M⊙. Moreover, we find a systematic difference of about 0.2 dex in log g between spectroscopic and evolutionary values. Conclusions: We conclude that, in spite of known limitations, a classical spectroscopic analysis of giant stars may indeed result in very reliable stellar parameters. We caution that the quality of the agreement, on the other hand, depends on the details of the adopted spectroscopic analysis. Based on observations collected at the ESO telescopes at the Paranal and La Silla Observatories, Chile.

  18. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  19. Gravitational wave generated by mass ejection in protoneutron star neutrino burst

    International Nuclear Information System (INIS)

    Almeida, L. G.; Rodrigues, H.; Portes, D. JR.; Duarte, S. B.

    2010-01-01

    In this work we discuss the mechanism of mass ejection in protoneutron stars induced by diffusion of neutrinos. A dynamical calculation is employed in order to determine the amount of matter ejected and the properties of the remnant compact object [1]. The equations of state of this supra-nuclear regime [2] is properly linked with others describing the different sub-nuclear regimes of density [3, 4, 5]. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with a schematic treatment of the neutrino transport through the dense stellar medium. We investigate the gravitational waves production accompanying the mass ejection induced by the neutrino burst. It is estimated the gravitational wave intensity and the detection of such wave by the existing detector or near future project for this purpose is discussed.

  20. Binary star statistics: the mass ratio distribution for very wide systems

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The distribution of mass ratios for a sample of common proper motion (CPM) binaries is determined and compared with that of 798 visual binaries (VB's) studied earlier, in hopes of answering the question: Can the member stars of these systems have been drawn at random from the normal initial mass function for single stars? The observed distributions peak strongly toward q = 1.0 for both kinds of systems, but less strongly for the CPM's than for the VB's. Due allowance having been made for assorted observational selection effects, it seems quite probable that the CPM's represent the observed part of a population drawn at random from the normal IMF, while the VB's are much more difficult to interpret that way and could, perhaps, result from a formation mechanism that somewhat favors sytems with roughly equal components. (author)

  1. The evolution of the global stellar mass function of star clusters: an analytic description

    NARCIS (Netherlands)

    Lamers, H.J.G.L.M.; Baumgardt, H.; Gieles, M.

    2013-01-01

    The evolution of the global stellar mass function of star clusters is studied based on a large set of N-body simulations of clusters with a range of initial masses, initial concentrations, in circular or elliptical orbits in different tidal environments. Models with and without initial mass

  2. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Korea 34055 (Korea, Republic of); Lacy, John [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Li, Pak Shing [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Garay, Guido; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Zhu, Qingfeng [Astronomy Department, University of Science and Technology, Chinese Academy of Sciences, Hefei 210008 (China); Tatematsu, Ken’ichi; Hirota, Tomoya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ren, Zhiyuan; Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru; Su, Yu-Nung, E-mail: liutiepku@gmail.com [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2017-11-01

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.

  3. Neutron Star masses from the Field Correlator Method Equation of State

    Directory of Open Access Journals (Sweden)

    Zappalà D.

    2014-04-01

    Full Text Available We analyse the hadron-quark phase transition in neutron stars by confronting the hadronic Equation of State (EoS obtained according to the microscopic Brueckner-Hartree-Fock many body theory, with the quark matter EoS derived within the Field Correlator Method. In particular, the latter EoS is only parametrized in terms of the gluon condensate and the large distance quark-antiquark potential, so that the comparison of the results of this analysis with the most recent measurements of heavy neutron star masses provides some physical constraints on these two parameters.

  4. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  5. Understanding of variability properties in very low mass stars and brown dwarfs

    Science.gov (United States)

    Mondal, Soumen; Ghosh, Samrat; Khata, Dhrimadri; Joshi, Santosh; Das, Ramkrishna

    2018-04-01

    We report on photometric variability studies of a L3.5 brown dwarf 2MASS J00361617+1821104 (2M0036+18) in the field and of four young brown dwarfs in the star-forming region IC 348. From muti-epoch observations, we found significant periodic variability in 2M0036+18 with a period of 2.66 ± 0.55 hours on one occasion while it seemed to be non-variable on three other occasions. An evolving dust cloud might cause such a scenario. Among four young brown dwarfs of IC 348 in the spectral range M7.25 - M8, one brown dwarf 2MASS J03443921+3208138 shows significant variability. The K-band spectra (2.0-2.4 μm) of nine very low mass stars (M1 - M9 V) are used to characterize the water band index (H20-K2). We found that it is strongly correlated with the surface temperature of M dwarfs.

  6. Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2

    Science.gov (United States)

    Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.

    2018-05-01

    We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.

  7. Astrophysical parameters of open star clusters using 2MASS JHKs data

    Science.gov (United States)

    Durgapal, Alok; Bisht, Devendra; Yadav, Ramakant Singh

    2018-04-01

    In the present analysis we have estimated the fundamental parameters of two poorly studied open star clusters, namely Teutsch 61 and Czernik 3, using 2MASS JHKs data. We have used the color-magnitude and colour-colour diagrams to determine their fundamental parameters.

  8. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  9. Correlation between the helium abundances in the atmospheres of early B stars and their ages and masses

    International Nuclear Information System (INIS)

    Lyubimkov, L.S.

    1989-01-01

    The masses M and ages t are found for early main sequence B stars for which fairly accurate estimates of the helium abundance var-epsilon He are available. It is shown that if the stars are grouped according to M and then var-epsilon He is compared with t a correlation between var-epsilon He and t is found in each such group. Moreover, the rate of enrichment of the atmospheres of B stars with helium, var-epsilon He , is higher the larger the mass M. In the interval M/M circle-dot = 6-14 the value of var-epsilon He depends linearly on M. For stars with such masses the helium abundance in the atmosphere is increased during the time of hydrogen burning in the core by 0.03-0.05, whereas for stars with M ≤ 5M circle-dot the addition to var-epsilon He does not exceed 0.01. The dependence of var-epsilon He on M and t, together with the analogous dependence found for nitrogen [10], may have an evolutionary nature and indicate that already in the main sequence stage there exists a mechanism which carries products of the CNO cycle from the interior of the stars to the surface

  10. THE FREQUENCY OF LOW-MASS EXOPLANETS. III. TOWARD η+ AT SHORT PERIODS

    International Nuclear Information System (INIS)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; Horner, J.; Butler, R. P.; O'Toole, Simon J.; Jones, H. R. A.; Carter, B. D.

    2011-01-01

    Determining the occurrence rate of 'super-Earth' planets (m sin i + ) is a critically important step on the path toward determining the frequency of Earth-like planets (η + ), and hence the uniqueness of our solar system. Current radial-velocity surveys, achieving precisions of 1 m s -1 , are now able to detect super-Earths and provide meaningful estimates of their occurrence rate. We present an analysis of 67 solar-type stars from the Anglo-Australian Planet Search specifically targeted for very high precision observations. When corrected for incompleteness, we find that the planet occurrence rate increases sharply with decreasing planetary mass. Our results are consistent with those from other surveys: in periods shorter than 50 days, we find that 3.0% of stars host a giant (msin i > 100 M + ) planet, and that 17.4% of stars host a planet with msin i + . The preponderance of low-mass planets in short-period orbits is in conflict with formation simulations in which the majority of super-Earths reside at larger orbital distances. This work gives a hint as to the size of η + , but to make meaningful predictions on the frequency of terrestrial planets in longer, potentially habitable orbits, low-mass terrestrial planet searches at periods of 100-200 days must be made an urgent priority for ground-based Doppler planet searches in the years ahead.

  11. Long-term captures of low-mass intruders by binary stars

    International Nuclear Information System (INIS)

    Hills, J.G.

    1983-01-01

    Intensive computer simulations were made of three families of encounters between a binary star and a low-mass intruder which previous work indicated have a high probability of producing long-lived triple-star systems. For comparison, a fourth family which produces few long-lived trinaries was also studied. In the first two families, the binary components are equally massive and the closest approach of the intruder to the center of mass of the binary is about two times its semimajor axis, a 0 . In Family 1, the orbit of the original binary is circular, e = 0, while in Family 2, e 0 = 0.95. In Family 3 one binary component is 100 times as massive as the other, the orbit is circular, and the low-mass intruder enters the binary at nearly zero impact parameter. The probability that the intruder is trapped for at least one revolution around the binary is 0.24, 0.46, and 0.51, respectively, for these three families of encounters. The fraction of the intruders surviving successive revolutions drops rapidly. However, one encounter in Family 1 and two in Family 3 resulted in the intruder making more than 300 revolutions around the inner binary before escaping. Some intruders remained bound for more than 20 000 revolutions of the inner binary. The longest duration captures occur when the intruder is thrown into an orbit with a very large semimajor axis. About 20% of the encounters in the three families result in the intruder being thrown into an orbit with a semimajor axis a>100 a 0 , while about 2% result in the intruder going into an orbit with a>1000 a 0 . Intruders thrown into these large semimajor axis orbits have the best chance of having their orbits stabilized by passing stars

  12. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    Science.gov (United States)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  13. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Current address: Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA. (United States)

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  14. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2014-01-01

    Roč. 567, July (2014), A63/1-A63/7 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars: winds * outflows * stars: mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  15. Neutron star mass limit at 2M{sub ⊙} supports the existence of a CEP

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Castillo, D. [JINR Dubna, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Benic, S. [University of Zagreb, Department of Physics, Zagreb (Croatia); Blaschke, D. [JINR Dubna, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation); University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Han, Sophia [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-08-15

    We point out that the very existence of a ''horizontal branch'' in the mass-radius characteristics for neutron stars indicates a strong first-order phase transition and thus supports the existence of a critical endpoint (CEP) of first-order phase transitions in the QCD phase diagram. This branch would sample a sequence of hybrid stars with quark matter core, leading to the endpoint of stable compact star configurations with the highest possible baryon densities. Since we know of the existence of compact stars with 2M{sub ⊙}, this hypothetical branch has to lie in the vicinity of this mass value, if it exists. We report here a correlation between the maximal radius of the horizontal branch and the pressure at the onset of hadron-to-quark matter phase transition, which is likely to be a universal quantity of utmost relevance to the upcoming experiments with heavy-ion collisions at NICA and FAIR. (orig.)

  16. Binary neutron star mergers: Dependence on the nuclear equation of state

    International Nuclear Information System (INIS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta

    2011-01-01

    We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of states (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types: (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2M · , the lifetime of the HMNS is longer than 10 ms for a total mass m 0 =2.7M · . A recent radio observation suggests that the maximum mass of spherical neutron stars is M max ≥1.97±0.04M · in one σ level. This fact and our results support the possible existence of a HMNS soon after the onset of the merger for a typical binary neutron star with m 0 =2.7M · . We also show that the torus mass surrounding the remnant black hole is correlated with the type of the merger process; the torus mass could be large, ≥0.1M · , in the case that a long-lived HMNS is formed. We also show that gravitational waves carry information of the merger process, the remnant, and the torus mass surrounding a black hole.

  17. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089 (Mexico)

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  18. The extraordinary mass-loss bubble G2.4 + 1.4 and its central star

    International Nuclear Information System (INIS)

    Dopita, M.A.; Mcgregor, P.J.; Rawlings, S.J.; Lozinskaia, T.A.

    1990-01-01

    Data are presented on the WR 102 star and the surrounding nebula (G2.4 + 1.4). It is shown that WR 102 and the nebula are associated, the nebula being a mass-loss bubble powered by the central star. From a photoionization analysis of the surrounding nebula, the star was determined to have the following parameters: log T(ion) = 5.20 + or - 0.05; log (R/solar R) = about 0.05; and log (L/solar L) = 5.85 + or - 0.20. 42 refs

  19. Non-LTE calculations of Al III line strengths in early-type stars

    International Nuclear Information System (INIS)

    Dufton, P.L.; Brown, P.J.F.; Lennon, D.J.; Lynas-Gray, A.E.

    1986-01-01

    Non-LTE line formation calculations, based on the 'complete linearization method' are presented for the Al III ion in early-type stars. Equivalent widths, together with the corresponding LTE values, are tabulated for 15 ultraviolet and visible region transitions, for effective temperatures from 20 000 to 35 000 K, logarithmic gravities of 3.5, 4.0 and 4.5, microturbulent velocities of 0 and 5 km s -1 and logarithmic aluminium abundances of 6.0, 6.5 and 7.0. The non-LTE line strengths are significantly larger than the LTE values particularly for the visible region transitions and the implications of this are briefly discussed. (author)

  20. Black hole formation from axion stars

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas; Marsh, David J.E.; Clough, Katy; Fairbairn, Malcolm; Lim, Eugene A. [King' s College London, Strand, London, WC2R 2LS (United Kingdom); Becerril, Ricardo, E-mail: thomas.1.helfer@kcl.ac.uk, E-mail: david.marsh@kcl.ac.uk, E-mail: katy.clough@phys.uni-goettingen.de, E-mail: malcolm.fairbairn@kcl.ac.uk, E-mail: eugene.lim@kcl.ac.uk, E-mail: becerril@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58040 Morelia, Michoacán (Mexico)

    2017-03-01

    The classical equations of motion for an axion with potential V (φ)= m {sub a} {sup 2} f {sub a} {sup 2} [1−cos (φ/ f {sub a} )] possess quasi-stable, localized, oscillating solutions, which we refer to as ''axion stars''. We study, for the first time, collapse of axion stars numerically using the full non-linear Einstein equations of general relativity and the full non-perturbative cosine potential. We map regions on an ''axion star stability diagram', parameterized by the initial ADM mass, M {sub ADM}, and axion decay constant, f {sub a} . We identify three regions of the parameter space: i) long-lived oscillating axion star solutions, with a base frequency, m {sub a} , modulated by self-interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and interactions. We locate the boundaries of these three regions and an approximate ''triple point' ( M {sub TP}, f {sub TP}) ∼ (2.4 M {sub pl}{sup 2}/ m {sub a} ,0.3 M {sub pl}). For f {sub a} below the triple point BH formation proceeds during winding (in the complex U(1) picture) of the axion field near the dispersal phase. This could prevent astrophysical BH formation from axion stars with f {sub a} || M {sub pl}. For larger f {sub a} ∼> f {sub TP}, BH formation occurs through the stable branch and we estimate the mass ratio of the BH to the stable state at the phase boundary to be O(1) within numerical uncertainty. We discuss the observational relevance of our findings for axion stars as BH seeds, which are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass formed from axion star collapse is M {sub BH} ∼ 3.4 ( f {sub a} /0.6 M {sub pl}){sup 1.2} M {sub ⊙}.

  1. Neutron-star mass limit in the bimetric theory of gravitation

    International Nuclear Information System (INIS)

    Caporaso, G.; Brecher, K.

    1977-01-01

    The ''neutron''-star upper mass limit is examined in Rosen's bimetric theory of gravitation. An exact solution, approximate scaling law, and numerical integration of the hydrostatic equilibrium equation show the dependence of the mass limit on the assumed equation of state. As in general relativity, that limit varies roughly as 1/√rho 0 , where rho 0 is the density above which the equation of state becomes ''stiff.'' Unlike general relativity, the stiffer the equation of state, the higher the mass limit. For rho 0 = 2 x 10 14 g/cm 3 and P = (rho - rho 0 ) c 2 , we found M/sub max/ = 81M/sub sun/. This mass is consistent with causality and experimental tests of gravitation and nuclear physics. For dp/drho > c 2 it appears that the upper mass limit can become arbitrarily large

  2. Mass-Individualism: Converse All Stars and the Paradox of Sartorial Sameness

    DEFF Research Database (Denmark)

    Mackinney-Valentin, Maria

    2014-01-01

    . The concept of mass-individualism is used as a vehicle for understanding this paradox that is heightened both by the social value attributed to individuality in much of contemporary Western society and the image of All Stars as a symbol of individuality and self-expression. The concept is seen as part...... of an ambiguous strategy of status representation operating on conditions of fashion democracy. The study is interview-based and focuses on consumers aged seven to 71 in the greater Copenhagen area in which All Stars may be considered a transplanted, American cultural icon. Themes of undercoding and visual...

  3. The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Martínez-Vázquez, Clara E.; Monelli, Matteo; Bernard, Edouard J.; Gallart, Carme; Stetson, Peter B.; Skillman, Evan D.; Bono, Giuseppe; Cassisi, Santi; Fiorentino, Giuliana; McQuinn, Kristen B. W.; Cole, Andrew A.; McConnachie, Alan W.; Martin, Nicolas F.; Dolphin, Andrew E.; Boylan-Kolchin, Michael; Aparicio, Antonio; Hidalgo, Sebastian L.; Weisz, Daniel R.

    2017-12-01

    We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), and XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three eclipsing binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit (I, B-I) relations published by Marconi et al., we obtain distance moduli of μ 0 = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties <0.11 mag. We have considered an enlarged sample of 16 M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods and amplitudes) with those of 15 Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13028 and 13739.

  4. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  5. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    Science.gov (United States)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  6. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4

    NARCIS (Netherlands)

    Oberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred; van Dishoeck, Ewine F.

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high-mass star-forming regions. Spitzer IRS now provides a unique opportunity to probe solid CH4 toward low-mass star-forming regions as well. Infrared spectra

  7. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  8. A Search for Host Stars of Free-Floating Planetary Mass Objects

    Science.gov (United States)

    Tristan, Isaiah; Bowler, Brendan P.

    2017-01-01

    Over the past decade, the number of free-floating planetary-mass objects (FFPMOs) and imaged planets in widely-bound orbits (from hundreds to thousand of AU) have increased steadily, but the origin of these objects and the relationship between them is unclear. To test if known free-floating objects could actually be distant companions to stars, we searched for wide co-moving companions around a sample of 77 young brown dwarfs and FFPMOs using the PPMXL proper motion catalog. Contamination rates (the probability of field stars co-moving by chance) were then calculated using nearby but unrelated fields, and host star candidates were further vetted using their positions in color magnitude diagrams. Using this method, we recovered all previously known widely-bound host stars within our sample and identified several promising widely separated systems, with separations ranging from 10^4-10^5 AU. Follow up radial velocities are currently being obtained to validate the shared space motion of the most promising candidates; if confirmed, these will be the widest planetary systems known.

  9. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  10. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  11. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, C.; Kanaan, S.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso. Av. Gran Bretana 1111, Valparaíso (Chile); Jones, C. E.; Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-06-10

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {sub ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

  12. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  13. Consequences of dynamical disruption and mass segregation for the binary frequencies of star clusters

    International Nuclear Information System (INIS)

    Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.

    2013-01-01

    The massive (13,000-26,000 M ☉ ) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M ☉ ). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ≳ 3000 AU), on approximately a crossing time (∼5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t rh (0) ∼ 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t rh (0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.

  14. The photometric evolution of star clusters and the preferential loss of low-mass bodies – with an application to globular clusters

    NARCIS (Netherlands)

    Kruijssen, J.M.D.; Lamers, H.J.G.L.M.

    2008-01-01

    Context. To obtain an accurate description of broad-band photometric star cluster evolution, certain effects should be accounted for. Energy equipartition leads to mass segregation and the preferential loss of low-mass stars, while stellar remnants severely influence cluster mass-to-light ratios.

  15. A Be-type star with a black-hole companion.

    Science.gov (United States)

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  16. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    Science.gov (United States)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  17. 2MASS J06562998+3002455: Not a Cool White Dwarf Candidate, but a Population II Halo Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-06-01

    2MASS J06562998+3002455 or PSS 309-6 is a high proper-motion star that was discovered during a survey with the 2.1 m telescope at Kitt Peak National Observatory. Here, we reevaluate the status of this interesting star using Gaia DR2. Our results strongly suggest that PSS 309-6 could be a Population II star as the value of its V component is close to -220 km/s, which is typical for halo stars in the immediate solar neighborhood. Kapteyn's star is the nearest known halo star and PSS 309-6 exhibits similar kinematic and photometric signatures. Its properties also resemble those of 2MASS J15484023-3544254, which was once thought to be the nearest cool white dwarf but was later reclassified as K-type subdwarf. Although it is virtually certain that PSS 309-6 is not a nearby white dwarf but a more distant Population II subdwarf, further spectroscopic information, including radial velocity measurements, is necessary to fully characterize this probable member of the Galactic halo.

  18. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Stassun, Keivan G.

    2012-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ∼50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days X /L bol ≈ –3.3). However, we find a significant positive correlation between L X /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  19. MMT hypervelocity star survey. III. The complete survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  20. MMT hypervelocity star survey. III. The complete survey

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2014-01-01

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M ☉ main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M ☉ stars are ejected from the Milky Way at a rate of 1.5 × 10 –6 yr –1 . These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  1. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc, E-mail: jrad@astro.washington.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-20

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied {approx}50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r - i) and (i - z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have {approx}1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K{sub s} . We determine that red optical filters are sensitive to flares with u-band amplitudes {approx}>2 mag, and NIR filters to flares with {Delta}u {approx}> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of {Delta}J {>=} 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  2. MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS

    International Nuclear Information System (INIS)

    Davenport, James R. A.; Becker, Andrew C.; Kowalski, Adam F.; Hawley, Suzanne L.; Schmidt, Sarah J.; Hilton, Eric J.; Sesar, Branimir; Cutri, Roc

    2012-01-01

    We present the first rates of flares from M dwarf stars in both red optical and near-infrared (NIR) filters. We have studied ∼50,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) Stripe 82 area and 1321 M dwarfs from the Two Micron All Sky Survey (2MASS) Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r – i) and (i – z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have ∼1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small-amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the recovery efficiency for flares in each filter, we extend a two-component flare model into the NIR. Quiescent M0-M6 spectral templates were used with the model to predict the photometric response of flares from u to K s . We determine that red optical filters are sensitive to flares with u-band amplitudes ∼>2 mag, and NIR filters to flares with Δu ∼> 4.5 mag. Our model predicts that M0 stars have the best color contrast for J-band detections, but M4-M6 stars should yield the highest rate of NIR flares with amplitudes of ΔJ ≥ 0.01 mag. Characterizing flare rates and photometric variations at longer wavelengths is important for predicting the signatures of M dwarf variability in next-generation surveys, and we discuss their impact on surveys such as the Large Synoptic Survey Telescope.

  3. THE COMPLEXITY THAT THE FIRST STARS BROUGHT TO THE UNIVERSE: FRAGILITY OF METAL-ENRICHED GAS IN A RADIATION FIELD

    International Nuclear Information System (INIS)

    Aykutalp, A.; Spaans, M.

    2011-01-01

    The initial mass function (IMF) of the first (Population III) stars and Population II (Pop II) stars is poorly known due to a lack of observations of the period between recombination and reionization. In simulations of the formation of the first stars, it has been shown that, due to the limited ability of metal-free primordial gas to cool, the IMF of the first stars is a few orders of magnitude more massive than the current IMF. The transition from a high-mass IMF of the first stars to a lower-mass current IMF is thus important to understand. To study the underlying physics of this transition, we performed several simulations using the cosmological hydrodynamic adaptive mesh refinement code Enzo for metallicities of 10 -4 , 10 -3 , 10 -2 , and 10 -1 Z sun . In our simulations, we include a star formation prescription that is derived from a metallicity-dependent multi-phase interstellar medium (ISM) structure, an external UV radiation field, and a mechanical feedback algorithm. We also implement cosmic ray heating, photoelectric heating, and gas-dust heating/cooling, and follow the metal enrichment of the ISM. It is found that the interplay between metallicity and UV radiation leads to the coexistence of Pop III and Pop II star formation in non-zero-metallicity (Z/Z sun ≥ 10 -2 ) gas. A cold (T 10 -22 g cm -3 ) gas phase is fragile to ambient UV radiation. In a metal-poor (Z/Z sun ≤ 10 -3 ) gas, the cold and dense gas phase does not form in the presence of a radiation field of F 0 ∼ 10 -5 -10 -4 erg cm -2 s -1 . Therefore, metallicity by itself is not a good indicator of the Pop III-Pop II transition. Metal-rich (Z/Z sun ≥ 10 -2 ) gas dynamically evolves two to three orders of magnitude faster than metal-poor gas (Z/Z sun ≤ 10 -3 ). The simulations including supernova explosions show that pre-enrichment of the halo does not affect the mixing of metals.

  4. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  5. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, S. Drew; Holtzman, Jon A. [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Wisniewski, John P. [Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Whelan, David G. [Department of Physics, Austin College, 900 N. Grand Avenue, Sherman, TX 75090 (United States); Labadie-Bartz, Jonathan; Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Fernandes, Marcelo Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400, São Cristovão, Rio de Janeiro (Brazil); Lin, Chien-Cheng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road Shanghai 200030 (China); Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stringfellow, Guy S. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, Colorado 80309-0389 (United States); Mennickent, Ronald E.; Tang, Baitian [Departamento de Astronomía, Universidad de Concepción, Concepción (Chile); Roman-Lopes, Alexandre [Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile); Hearty, Fred R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Zasowski, Gail [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States)

    2017-04-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.

  6. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    International Nuclear Information System (INIS)

    Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.; Whelan, David G.; Labadie-Bartz, Jonathan; Pepper, Joshua; Fernandes, Marcelo Borges; Lin, Chien-Cheng; Majewski, Steven R.; Stringfellow, Guy S.; Mennickent, Ronald E.; Tang, Baitian; Roman-Lopes, Alexandre; Hearty, Fred R.; Zasowski, Gail

    2017-01-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.

  7. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Frebel, Anna [Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Karakas, Amanda I.; Kennedy, Catherine R. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  8. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. III. MEASURING AGES AND MASSES OF PARTIALLY RESOLVED STELLAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Lori C.; Johnson, L. Clifton; Fouesneau, Morgan; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Ben F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Gouliermis, Dimitrios A. [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Kalirai, Jason S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Melbourne, Jason L. [Caltech Optical Observatories, Division of Physics, Mathematics and Astronomy, Mail Stop 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Skillman, Evan D., E-mail: beermalc@astro.washington.edu [Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2012-12-01

    The apparent age and mass of a stellar cluster can be strongly affected by stochastic sampling of the stellar initial mass function (IMF), when inferred from the integrated color of low-mass clusters ({approx}<10{sup 4} M {sub Sun }). We use simulated star clusters to show that these effects are minimized when the brightest, rapidly evolving stars in a cluster can be resolved, and the light of the fainter, more numerous unresolved stars can be analyzed separately. When comparing the light from the less luminous cluster members to models of unresolved light, more accurate age estimates can be obtained than when analyzing the integrated light from the entire cluster under the assumption that the IMF is fully populated. We show the success of this technique first using simulated clusters, and then with a stellar cluster in M31. This method represents one way of accounting for the discrete, stochastic sampling of the stellar IMF in less massive clusters and can be leveraged in studies of clusters throughout the Local Group and other nearby galaxies.

  9. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Brittany E. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Road, Tempe, AZ 85281 (United States)

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV; 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  10. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Goldsmith, Paul F., E-mail: jens.kauffmann@astro.caltech.edu, E-mail: tpillai@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter α = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by α ≲ 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters α ≳ 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ∼1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  11. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  12. HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

    International Nuclear Information System (INIS)

    Cao, Chen; Xu, Cong Kevin; Lu, Nanyao; Mazzarella, Joe; Domingue, Donovan; Ronca, Joseph; Jacques, Allison; Buat, Veronique; Cheng, Yi-Wen; Gao, Yu; Huang, Jiasheng; Jarrett, Thomas H.; Lisenfeld, Ute; Sun, Wei-Hsin; Wu, Hong; Yun, Min S.

    2016-01-01

    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M dust ) are derived from the IR SED fitting. The mass of total gas (M gas ) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M gas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR

  13. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  14. EMACSS: Evolve Me A Cluster of StarS

    Science.gov (United States)

    Alexander, Poul E. R.; Gieles, Mark

    2012-03-01

    The star cluster evolution code Evolve Me A Cluster of StarS (EMACSS) is a simple yet physically motivated computational model that describes the evolution of some fundamental properties of star clusters in static tidal fields. The prescription is based upon the flow of energy within the cluster, which is a constant fraction of the total energy per half-mass relaxation time. According to Henon's predictions, this flow is independent of the precise mechanisms for energy production within the core, and therefore does not require a complete description of the many-body interactions therein. Dynamical theory and analytic descriptions of escape mechanisms is used to construct a series of coupled differential equations expressing the time evolution of cluster mass and radius for a cluster of equal-mass stars. These equations are numerically solved using a fourth-order Runge-Kutta integration kernel; the results were benchmarked against a data base of direct N-body simulations. EMACSS is publicly available and reproduces the N-body results to within 10 per cent accuracy for the entire post-collapse evolution of star clusters.

  15. HOBYS and W43-HERO: Two more steps toward a Galaxy-wide understanding of high-mass star formation

    Science.gov (United States)

    Motte, Frédérique; Bontemps, Sylvain; Tigé, Jérémy

    The Herschel/HOBYS key program allows to statistically study the formation of 10-20 M ⊙ stars. The IRAM/W43-HERO large program is itself dedicated to the much more extreme W43 molecular complex, which forms stars up to 50 M ⊙. Both reveal high-density cloud filaments of several pc3, which are forming clusters of OB-type stars. Given their activity, these so-called mini-starburst cloud ridges could be seen as ``miniature and instant models'' of starburst galaxies. Both surveys also strongly suggest that high-mass prestellar cores do not exist, in agreement with the dynamical formation of cloud ridges. The HOBYS and W43 surveys are necessary steps towards Galaxy-wide studies of high-mass star formation.

  16. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Porto de Mello, Gustavo F.; Ferreira, Leticia D. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lactea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Agol, Eric, E-mail: jpaty@mail.ustc.edu.cn [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  17. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ≤ z ≤ 6.5 IN CANDELS

    International Nuclear Information System (INIS)

    Salmon, Brett; Papovich, Casey; Tilvi, Vithal; Finkelstein, Steven L.; Finlator, Kristian; Behroozi, Peter; Lu, Yu; Wechsler, Risa H.; Dahlen, Tomas; Ferguson, Henry C.; Davé, Romeel; Dekel, Avishai; Dickinson, Mark; Giavalisco, Mauro; Long, James; Mobasher, Bahram; Reddy, Naveen; Somerville, Rachel S.

    2015-01-01

    Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 ≤ z ≤ 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR ∼ M ⋆ a with a =0.54 ± 0.16 at z ∼ 6 and 0.70 ± 0.21 at z ∼ 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, σ(log SFR/M ☉ yr –1 ) < 0.3-0.4 dex, for galaxies with log M * /M ☉ > 9 dex. Assuming that the SFR is tied to the net gas inflow rate (SFR ∼ M-dot gas ), then the scatter in the gas inflow rate is also smaller than 0.3–0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation

  18. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  19. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  20. EFFICIENT SELECTION AND CLASSIFICATION OF INFRARED EXCESS EMISSION STARS BASED ON AKARI AND 2MASS DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yafang; Li Jinzeng [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Rector, Travis A. [University of Alaska, 3211 Providence Drive, Anchorage, AK 99508 (United States); Mallamaci, Carlos C., E-mail: ljz@nao.cas.cn [Observatorio Astronomico Felix Aguilar, Universidad Nacional de San Juan (Argentina)

    2013-05-15

    The selection of young stellar objects (YSOs) based on excess emission in the infrared is easily contaminated by post-main-sequence stars and various types of emission line stars with similar properties. We define in this paper stringent criteria for an efficient selection and classification of stellar sources with infrared excess emission based on combined Two Micron All Sky Survey (2MASS) and AKARI colors. First of all, bright dwarfs and giants with known spectral types were selected from the Hipparcos Catalogue and cross-identified with the 2MASS and AKARI Point Source Catalogues to produce the main-sequence and the post-main-sequence tracks, which appear as expected as tight tracks with very small dispersion. However, several of the main-sequence stars indicate excess emission in the color space. Further investigations based on the SIMBAD data help to clarify their nature as classical Be stars, which are found to be located in a well isolated region on each of the color-color (C-C) diagrams. Several kinds of contaminants were then removed based on their distribution in the C-C diagrams. A test sample of Herbig Ae/Be stars and classical T Tauri stars were cross-identified with the 2MASS and AKARI catalogs to define the loci of YSOs with different masses on the C-C diagrams. Well classified Class I and Class II sources were taken as a second test sample to discriminate between various types of YSOs at possibly different evolutionary stages. This helped to define the loci of different types of YSOs and a set of criteria for selecting YSOs based on their colors in the near- and mid-infrared. Candidate YSOs toward IC 1396 indicating excess emission in the near-infrared were employed to verify the validity of the new source selection criteria defined based on C-C diagrams compiled with the 2MASS and AKARI data. Optical spectroscopy and spectral energy distributions of the IC 1396 sample yield a clear identification of the YSOs and further confirm the criteria defined

  1. EFFICIENT SELECTION AND CLASSIFICATION OF INFRARED EXCESS EMISSION STARS BASED ON AKARI AND 2MASS DATA

    International Nuclear Information System (INIS)

    Huang Yafang; Li Jinzeng; Rector, Travis A.; Mallamaci, Carlos C.

    2013-01-01

    The selection of young stellar objects (YSOs) based on excess emission in the infrared is easily contaminated by post-main-sequence stars and various types of emission line stars with similar properties. We define in this paper stringent criteria for an efficient selection and classification of stellar sources with infrared excess emission based on combined Two Micron All Sky Survey (2MASS) and AKARI colors. First of all, bright dwarfs and giants with known spectral types were selected from the Hipparcos Catalogue and cross-identified with the 2MASS and AKARI Point Source Catalogues to produce the main-sequence and the post-main-sequence tracks, which appear as expected as tight tracks with very small dispersion. However, several of the main-sequence stars indicate excess emission in the color space. Further investigations based on the SIMBAD data help to clarify their nature as classical Be stars, which are found to be located in a well isolated region on each of the color-color (C-C) diagrams. Several kinds of contaminants were then removed based on their distribution in the C-C diagrams. A test sample of Herbig Ae/Be stars and classical T Tauri stars were cross-identified with the 2MASS and AKARI catalogs to define the loci of YSOs with different masses on the C-C diagrams. Well classified Class I and Class II sources were taken as a second test sample to discriminate between various types of YSOs at possibly different evolutionary stages. This helped to define the loci of different types of YSOs and a set of criteria for selecting YSOs based on their colors in the near- and mid-infrared. Candidate YSOs toward IC 1396 indicating excess emission in the near-infrared were employed to verify the validity of the new source selection criteria defined based on C-C diagrams compiled with the 2MASS and AKARI data. Optical spectroscopy and spectral energy distributions of the IC 1396 sample yield a clear identification of the YSOs and further confirm the criteria defined

  2. Emission - line theoretical profiles for Wolf- Rayet stars with low-mass companions

    International Nuclear Information System (INIS)

    Antokhin, I.I.

    1986-01-01

    Profiles of the resonant line λ 765 A and the subordinate line λ 4058 of N4 have been calculated for a binary system medel consisting of the Wolf-Rayet star and the low-mass companion (possibly, a relativistic object) by means of Sobolev approximation. The equations of statistical equilibrium have been solved for the first 32 levels of N4. Two cases have been considered: 1) detached zone of N5 surrounding the Wolf-Rayet star and the companion; 2) common zone of N5. The criteria for detection of presence of a companion in line profile observations have been formulated

  3. Resolving the Formation of Protogalaxies. 3; Feedback from the First Stars

    Science.gov (United States)

    Wise, John H.; Abel, Tom

    2008-01-01

    The first stars form in dark matter halos of masses 106 M as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from the shallow potential well of their surrounding dark matter halos.We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10(exp 8) Stelar Mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions.We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H2 cooling create a complex, multiphase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10(exp 4) K to approximately 10(exp -3) of solar metallicity.We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.

  4. Subsonic islands within a high-mass star-forming infrared dark cloud

    Science.gov (United States)

    Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou

    2018-03-01

    High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.

  5. INVESTIGATING THE MASS SEGREGATION PROCESS IN GLOBULAR CLUSTERS WITH BLUE STRAGGLER STARS: THE IMPACT OF DARK REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Alessandrini, Emiliano; Lanzoni, Barbara; Ferraro, Francesco R.; Miocchi, Paolo [Dept. of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2 (Italy); Vesperini, Enrico [Dept. of Astronomy, Indiana University, Bloomington, IN 47401 (United States)

    2016-12-20

    We present the results of a set of N -body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes (BHs)). To this end, clusters characterized by different initial concentrations and different fractions of dark remnants have been modeled. We find that an increasing fraction of stellar-mass BHs significantly delay the mass segregation of BSSs and the visible stellar component. In order to trace the evolution of BSS segregation, we introduce a new parameter ( A {sup +}), which can be easily measured when the cumulative radial distribution of these stars and a reference population are available. Our simulations show that A {sup +} might also be used as an approximate indicator of the time remaining to the core collapse of the visible component.

  6. Protoplanetary disks around intermediate-mass stars: the asset of imaging in the mid-infrared

    International Nuclear Information System (INIS)

    Doucet, Coralie

    2006-01-01

    The accrued efficiency of the instruments in many wavelengths has allowed to show that most young stellar objects were surrounded by circumstellar matter distributed in a disk. Direct imaging of such systems is very difficult because of their narrow angular size and their weak luminosity in comparison with the star. Nowadays, 50 % of low-mass pre-main sequence stars, i.e. T Tauri stars, are surrounded by a disk. This proportion is less obvious for intermediate-mass stars, like Herbig Ae stars, that are less numerous and whose direct disk detection is more difficult. Until now, only the interpretation of the Spectral Energy Distribution (SED) of such objects allows to have access to the geometry of the disk. But the solutions are degenerated and several parameters fit the same SED. It is essential to have direct images of the objects, the only evidence of the presence of disks. This PhD allows to show that mid-infrared imaging could rise a part of the degeneracy of the disk's parameters linked to the fit of the SED for several objects and gives constraints on the minimum external radius and inclination of the disk. We present a new observation mode with VISIR, the mid-infrared imager and spectrometer on the VLT (ESO, Chile): the so-called BURST mode. This mode allows to reach the diffraction limit of the telescope. Thanks to mid-infrared imaging with this instrument, we were able, for the first time, to have access to the geometry of a disk (flared structure) around a massive star that was, until now, only deduced from the SED modelling. (author) [fr

  7. Maser Emission Associated with Young High Mass Stars

    Science.gov (United States)

    Mahmoud, Khaled Abdalla Edris

    In this work the maser emission has been used to study the very early stage evolution of the young stars. The maser emission of OH molecule was searched for towards a sample of high mass protostellar objects using the Nançay and GBT telescopes. The sample of objects searched was selected to contain very young forming high mass stars. The results of this survey have been compared with previous H2O and CH3OH masers observations. Then MERLIN has been used to map the OH as well as H2O and CH3OH masers towards one of these sources in high angular resolution. The survey detected OH maser emission towards 63 objects with 37 new detections. There are 56 star forming regions and 7 OH/IR candidates. The detection of OH masers towards 26% of a sample of 217 sources should remove any doubt about the existence of OH maser emission towards these objects of this early evolutionary stage. Nearly half of the detected sources have OH fluxes rates and velocity range support the spatial association of OH and class II CH3OH masers as suggested by Caswell et al. [1995] and modelled by Cragg et al. [2002]. IRAS20126+4104 was mapped in the OH, water and methanol masers using MERLIN. The 1665-MHz OH, 22-GHz H2O and 6.7-GHz CH3OH masers are detected and all originate very close to the central source. The OH and methanol masers appear to trace part of the circumstellar disk around the central source. The positions and velocities of the OH masers are consistent with Keplerian rotation around a central mass of ˜5Msun. The water masers are offset from the OH and CH3OH masers and have significantly changed since they were last observed, but still appear to be associated outflow from the source. All the OH masers components are circular polarized, in some cases reaching 100 percent while some OH components also have low levels of linear polarization. We identified one Zeeman pair and the splitting of this pair indicate the presence of a magnetic field of strength ˜11 mG within ˜0.5" (850 AU

  8. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  9. SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    Science.gov (United States)

    Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne

    2018-05-01

    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.

  10. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Mann, Andrew W.; Howard, Andrew W., E-mail: gaidos@hawaii.edu [Institute for Astronomy, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States)

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  11. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Howard, Andrew W.

    2013-01-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M ☉ and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% ± 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% ± 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  12. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; Mahadevan, Suvrath; Lee, Brian; Cuong Nguyen, Duy; Morehead, Robert C.; Wan Xiaoke; Zhao Bo; Liu Jian; Guo Pengcheng; Kane, Stephen R.; Eastman, Jason D.; Siverd, Robert J.; Scott Gaudi, B.; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan G.; Gary, Bruce; Wolszczan, Alex; Barnes, Rory

    2010-01-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T eff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M sun and R = 1.15 ± 0.15 R sun . The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M J , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of 'Hot Jupiters'. We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ∼>0.8 R J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

  13. Interferometric diameters of five evolved intermediate-mass planet-hosting stars measured with PAVO at the CHARA Array

    Science.gov (United States)

    White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.

    2018-04-01

    Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.

  14. The evolution of massive stars with mass loss: the H- and the He-burning phases

    International Nuclear Information System (INIS)

    Chieffi, Alessandro; Limongi, Marco

    2010-01-01

    The evolution of a massive star to its final fate is strongly modified by the efficient mass loss episodes it experiences during its lifetime. In the following, we will briefly summarize how the H- and the He- burning phases depend on the adopted mass loss rate.

  15. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  16. The First X-shooter Observations of Jets from Young Stars

    OpenAIRE

    Bacciotti, Francesca; Whelan, Emma T.; Alcala', Juan M.; Nisini, Brunella; Podio, Linda; Randich, Sofia; Stelzer, Beate; Cupani, Guido

    2011-01-01

    We present the first pilot study of jets from young stars conducted with X-shooter, on ESO/VLT. As it offers simultaneous, high quality spectra in the range 300-2500 nm X-shooter is uniquely important for spectral diagnostics in jet studies. We chose to probe the accretion/ejection mechanisms at low stellar masses examining two targets with well resolved continuous jets lying on the plane of the sky, ESO-HA 574 in Chamaleon I, and Par-Lup3-4 in Lupus III. The mass of the latter is close to th...

  17. Chromospherically active stars. III - HD 26337 = EI Eri: An RS CVn candidate for the Doppler-imaging technique

    Science.gov (United States)

    Fekel, Francis C.; Quigley, Robert; Gillies, Kim; Africano, John L.

    1987-01-01

    Spectroscopic observations of the chromospherically active G5 IV single-lined binary HD 26337 = EI Eri are presented. An orbital period of 1.94722 days is found for the star. It has moderately strong Ca II H and K emission and strong ultraviolet emission features, while H-alpha is a weak absorption feature that is variable in strength. The inclination of the system is 46 + or - 12 deg, and the unseen secondary is probably a late K or early M dwarf. The v sin i of the primary is 50 + or - 3 km/s, resulting in a minimum radius of 1.9 + or - 0.1 solar radius. The star is within the required limits for Doppler imaging. The primary is close to filling its Roche lobe, resulting in a strong constraint that the mass ratio is 2.6 or greater, with a primary mass of at least 1.4 solar mass. The distance to the system is estimated at 75 pc.

  18. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  19. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    International Nuclear Information System (INIS)

    Epstein, Courtney R.; Pinsonneault, Marc H.

    2014-01-01

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M ☉ . Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M ☉ stars.

  20. Water in star-forming regions with Herschel (WISH) : IV. A survey of low-J H2O line profiles toward high-mass protostars

    NARCIS (Netherlands)

    van der Tak, F. F. S.; Chavarria, L.; Herpin, F.; Wyrowski, F.; Walmsley, C. M.; van Dishoeck, E. F.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Kristensen, L. E.; Liseau, R.; Nisini, B.; Tafalla, M.

    Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with

  1. Presupernova evolution of massive stars

    International Nuclear Information System (INIS)

    Weaver, T.A.; Zimmerman, G.B.; Woosley, S.E.

    1977-01-01

    Population I stars of 15 M/sub mass/ and 25 M/sub mass/ have been evolved from the zero-age main sequence through iron core collapse utilizing a numerical model that incorporates both implicit hydrodynamics and a detailed treatment of nuclear reactions. The stars end their presupernova evolution as red supergiants with photospheric radii of 3.9 x 10 13 cm and 6.7 x 10 13 cm, respectively, and density structures similar to those invoked to explain Type II supernova light curves on a strictly hydrodynamic basis. Both stars are found to form substantially neutronized ''iron'' cores of 1.56 M/sub mass/ and 1.61 M/sub mass/, and central electron abundances of 0.427 and 0.439 moles/g, respectively, during hydrostatic silicon burning. Just prior to collapse, the abundances of the elements in the 25 M/sub mass/ star (excluding the neutronized iron core) have ratios strikingly close to their solar system values over the mass range from oxygen to calcium, while the 15 M/sub mass/ star is characterized by large enhancements of Ne, Mg, and Si. It is pointed out on nucleosynthetic grounds that the mass of the neutronized core must represent a lower limit to the mass of the neutron star or black hole remnant that stars in this mass range can normally produce

  2. The range of variation of the mass of the most massive star in stellar clusters derived from 35 million Monte Carlo simulations

    International Nuclear Information System (INIS)

    Popescu, Bogdan; Hanson, M. M.

    2014-01-01

    A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function (IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and (2) independent of an upper stellar mass limit, M limit , for unsaturated clusters and emerges naturally from our IMF sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters, to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass range of the most massive star as a function of the cluster's total mass and present a new M max -M cluster relation.

  3. BINARY STARS WITH COMPONENTS OF SOLAR TYPE: 25 ORBITS AND SYSTEM MASSES

    International Nuclear Information System (INIS)

    Docobo, J. A.; Ling, J. F.

    2009-01-01

    Revised orbits and system masses are presented for the following 25 visual double stars: WDS 00593-0040 (A 1902), WDS 00596-0111 (A 1903 AB), WDS 01023+0552 (A 2003), WDS 01049+3649 (A 1515), WDS 01234+5809 (STF 115 AB), WDS 02399+0009 (A 1928), WDS 03310+2937 (A 983), WDS 06573-3530 (I 65), WDS 07043-0303 (A 519), WDS 08267+2432 (A 1746 BC), WDS 10585+1711 (A 2375), WDS 11308+4117 (STT 234), WDS 15370+6426 (HU 1168), WDS 16044-1122 (STF 1998 AB), WDS 16283-1613 (RST 3950), WDS 17324+2848 (A 352), WDS 18466+3821 (HU 1191), WDS 19039+2642 (A 2992), WDS 19055+3352(HU 940), WDS 19282-1209 (SCJ 22), WDS 19487+1504 (A 1658), WDS 22400+0113 (A 2099), WDS 23506-5142 (SLR 14), WDS 23518-0637 (A 2700), and WDS 23529-0309 (FIN 359). In all of these systems, at least one component is of solar type. Total system masses were calculated in each case from the orbital period and semiaxis major together with the Hipparcos parallax, except in the cases for which there are no Hipparcos data or when these values are not precise. Other orbital and physical properties of these stars are also discussed. This paper is the second of three collating the revised double star orbits we have calculated in the past 15 yr.

  4. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Gnat, Orly [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH, CH-8093 Zürich (Switzerland); Burkert, Andreas [Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, D-81679 München (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Hicks, Erin K. S., E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  5. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  6. Self-consistent semi-analytic models of the first stars

    Science.gov (United States)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  7. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  8. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ≤ z ≤ 6.5 IN CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Brett; Papovich, Casey; Tilvi, Vithal [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy Texas A and M University, College Station, TX 77843 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Finlator, Kristian [DARK fellow, Dark Cosmology Centre, Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Behroozi, Peter; Lu, Yu; Wechsler, Risa H. [Physics Department, Stanford University, Particle Astrophysics, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology Stanford, CA 94305 (United States); Dahlen, Tomas; Ferguson, Henry C. [Space Telescope Science Institute, Baltimore, MD (United States); Davé, Romeel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Dickinson, Mark [National Optical Astronomy Observatories, Tucson, AZ (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Long, James [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); Mobasher, Bahram; Reddy, Naveen [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Somerville, Rachel S., E-mail: bsalmon@physics.tamu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2015-02-01

    Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 ≤ z ≤ 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR ∼ M{sub ⋆}{sup a} with a =0.54 ± 0.16 at z ∼ 6 and 0.70 ± 0.21 at z ∼ 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, σ(log SFR/M {sub ☉} yr{sup –1}) < 0.3-0.4 dex, for galaxies with log M {sub *}/M {sub ☉} > 9 dex. Assuming that the SFR is tied to the net gas inflow rate (SFR ∼ M-dot {sub gas}), then the scatter in the gas inflow rate is also smaller than 0.3–0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.

  9. Characterization of the Praesepe star cluster by photometry and proper motions with 2MASS, PPMXL, and Pan-STARRS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P. F.; Chen, W. P. [Department of Physics, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Lin, C. C.; Huang, C. K.; Panwar, N.; Lee, C. H. [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Pandey, A. K. [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Tsai, M. F.; Tang, C.-H. [Department of Computer Science and Information Engineering, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Goldman, B. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Heasley, J. N.; Hodapp, K. W.; Huber, M. E.; Jedicke, R.; Kaiser, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Grav, T. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2014-03-20

    Membership identification is the first step in determining the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates of the intermediate-age Praesepe cluster (M44) with stellar masses ∼0.11-2.4 M {sub ☉}, using Panoramic Survey Telescope And Rapid Response System and Two Micron All Sky Survey photometry, and PPMXL proper motions. Within a sky area of 3° radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars, an estimated false positive rate of 16% was determined, suggesting that 872 of the candidates are true members. This most complete and reliable membership list allows us to favor the BT-Settl model over other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20%-40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.

  10. Mass Modelling of Dwarf Spheroidal Galaxies: the Effect of Unbound Stars From Tidal Tails And the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Klimentowski, Jaroslaw; Lokas, Ewa L.; /Warsaw, Copernicus Astron. Ctr.; Kazantzidis, Stelios; /KIPAC, Menlo Park; Prada, Francisco; /IAA, Granada; Mayer, Lucio; /Zurich,; Mamon, Gary A.; /Paris, Inst. Astrophys. /Meudon Observ.

    2006-11-14

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N- body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions.We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails.We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated dark matter haloes. We model the cleaned up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio and velocity anisotropy parameter. We show that even for such strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25 percent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy for which we find a mass-to-light ratio of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.

  11. Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers

    Science.gov (United States)

    Christian, Pierre; Mocz, Philip; Loeb, Abraham

    2018-05-01

    We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.

  12. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  13. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  14. Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca

    2011-01-01

    By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that, even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger, we conclude that for realistic magnetic-field strengths B 12 G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than ≅2 kHz.

  15. Neutron star natal kicks and the long-term survival of star clusters

    Science.gov (United States)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  16. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  17. for the internal rotation evolution of low-mass stars

    Directory of Open Access Journals (Sweden)

    Pinçon Charly

    2017-01-01

    Full Text Available Due to the space-borne missions CoRoT and Kepler, noteworthy breakthroughs have been made in our understanding of stellar evolution, and in particular about the angular momentum redistribution in stellar interiors. Indeed, the high-precision seismic data provide with the measurement of the mean core rotation rate for thousands of low-mass stars from the subgiant branch to the red giant branch. All these observations exhibit much lower core rotation rates than expected by current stellar evolution codes and they emphasize the need for an additional transport process. In this framework, internal gravity waves (herefater, IGW could play a signifivative role since they are known to be able to transport angular momentum. In this work, we estimate the effciency of the transport by the IGW that are generated by penetrative convection at the interface between the convective and the radiative regions. As a first step, this study is based on the comparison between the timescale for the waves to modify a given rotation profile and the contraction/expansion timescale throughout the radiative zone of 1.3M⊙ stellar models. We show that IGW, on their own, are ineffcient to slow down the core rotation of stars on the red giant branch, where the radiative damping becomes strong enough and prevent the IGW from reaching the innermost layers. However, we find that IGW generated by penetrative convection could effciently modify the core rotation of subgiant stars as soon as the amplitude of the radial differential rotation between the core and the base of the convective zone is high enough, with typical values close to the observed rotation rates in these stars. This result argues for the necessity to account for IGW generated by penetrative convection in stellar modeling and in the angular momentum redistribution issue.

  18. First low WIMP mass results in EDELWEISS III experiment

    Energy Technology Data Exchange (ETDEWEB)

    Scorza, Silvia [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Postfach 3640, Karlsruhe (Germany); Collaboration: EDELWEISS-Collaboration

    2016-07-01

    The EDELWEISS-III collaboration is operating an experiment for the direct detection of Weakly Interacting Massive Particle (WIMPs) dark matter in the low radioactivity environment of the Modane Underground Laboratory. It consists of twenty-four advanced high purity germanium detectors operating at 18 mK in a dilution refrigerator in order to identify rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. The current EDELWEISS-III program, including improvements of the background, data-acquisition and the configuration is detailed. Sources of background along with the rejection techniques are discussed. Detector performances and a first low WIMP mass analysis of data acquired in a long-term campaign are presented as well.

  19. IUE observations of long period eclipsing binaries: a study of accretion onto non-degenerate stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1980-01-01

    It has long been thought that β Lyrae is a unique system, by virtue of its UV spectrum and its nature. The author argues that a whole class of interacting long-period binaries exists, similar to β Lyrae. According to IUE observations made in 1978-79 this group comprises: RX Cas, SX Cas, V 367 Cyg, W Cru, β Lyr, and W Ser. AR Pav is a transition case linking them with the symbiotics. The author also suggests that HD 218393 (KX And), HD 72754, and HD 51480 are their non-eclipsing counterparts. The whole group is called the W Serpentis stars. These systems are mass-transfering binaries (case B) in which the mass transfer rate is relatively high, probably on the order 10 -6 to 10 -4 solar masses/year. They display an ultraviolet continuum with a color temperature definitely higher than the one observed in the optical region. Even more characteristical is the presence of strong emission lines of N V, C IV, Si IV, Fe III, Al III, and lower ions of C and Si. The author discusses these phenomena on the assumption that they are due to accretion onto non-degenerate stars. (Auth.)

  20. The range of variation of the mass of the most massive star in stellar clusters derived from 35 million Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Bogdan; Hanson, M. M., E-mail: bogdan.popescu@uc.edu, E-mail: margaret.hanson@uc.edu [Department of Physics, University of Cincinnati, P.O. Box 210011, Cincinnati, OH 45221-0011 (United States)

    2014-01-01

    A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function (IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and (2) independent of an upper stellar mass limit, M{sub limit} , for unsaturated clusters and emerges naturally from our IMF sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters, to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass range of the most massive star as a function of the cluster's total mass and present a new M{sub max} -M{sub cluster} relation.

  1. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    Science.gov (United States)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  2. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  3. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  4. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  5. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    International Nuclear Information System (INIS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-01-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that ∼ 10 5 stars, ∼ 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  6. Stars, their evolution and their stability

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    The most important fact concerning a star is its mass. It is measured in units of the mass of the sun, which is 2 x 10 33 g: stars with masses very much less than, or very much more than the mass of the sun are relatively infrequent. The current theories of stellar structure and evolution derive their successes largely from the fact that the following combination of the dimensions of a mass provides a correct measure of stellar masses: natural constant = (hc/G) 3 2 1/H 2 approx. = 29.2 times the mass of sun where G is the constant of gravitation and H is the mass of hydrogen atom. There is an upper limit, M sub limit, to the mass of stars which can become degenerate configurations, as the last stage in their evolution; and stars with M > M sub limit must have end states which cannot be predicted from the considerations presented in this paper. For stars with mass less than 0.43 x the mass of the sun, the end stage of evolution can only be that of the white dwarfs. The inability of massive stars to become white dwarfs must result in the development of much more extreme conditions in their interiors and eventually in the onset of gravitational collapse attended by the supernova phenomena. Neutron stars or black holes form as the natural end products of stellar evolution of massive stars. 24 references, 7 figures, 2 tables

  7. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model - Mass-loss history unravelled in VYCMa

    NARCIS (Netherlands)

    Decin, L.; Hony, S.; de Koter, A.; Justtanont, K.; Tielens, A. G. G. M.; Waters, L. B. F. M.

    Context. Mass loss plays a dominant role in the evolution of low mass stars while they are on the Asymptotic Giant Branch (AGB). The gas and dust ejected during this phase are a major source in the mass budget of the interstellar medium. Recent studies have pointed towards the importance of

  8. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  9. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ≤ z ≤ 2.2

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Whitaker, K. E.; Van Dokkum, P. G.; Lee, K.-S.; Muzzin, A.; Marchesini, D.; Franx, M.; Kriek, M.; Labbe, I.; Quadri, R. F.; Williams, R.; Rudnick, G.

    2011-01-01

    We study the buildup of the bimodal galaxy population using the NEWFIRM Medium-Band Survey, which provides excellent redshifts and well-sampled spectral energy distributions of ∼27, 000 galaxies with K 3 x 10 10 M sun increases by a factor of ∼10 from z ∼ 2 to the present day, whereas the mass density in star-forming galaxies is flat or decreases over the same time period. Modest mass growth by a factor of ∼2 of individual quiescent galaxies can explain roughly half of the strong density evolution at masses >10 11 M sun , due to the steepness of the exponential tail of the mass function. The rest of the density evolution of massive, quiescent galaxies is likely due to transformation (e.g., quenching) of the massive star-forming population, a conclusion which is consistent with the density evolution we observe for the star-forming galaxies themselves, which is flat or decreasing with cosmic time. Modest mass growth does not explain the evolution of less massive quiescent galaxies (∼10 10.5 M sun ), which show a similarly steep increase in their number densities. The less massive quiescent galaxies are therefore continuously formed by transforming galaxies from the star-forming population.

  10. PERIODIC VARIABILITY OF LOW-MASS STARS IN SLOAN DIGITAL SKY SURVEY STRIPE 82

    International Nuclear Information System (INIS)

    Becker, A. C.; Hawley, S. L.; Ivezic, Z.; Kowalski, A. F.; Sesar, B.; Bochanski, J. J.; West, A. A.

    2011-01-01

    We present a catalog of periodic stellar variability in the 'Stripe 82' region of the Sloan Digital Sky Survey. After aggregating and re-calibrating catalog-level data from the survey, we ran a period-finding algorithm (Supersmoother) on all point-source light curves. We used color selection to identify systems that are likely to contain low-mass stars, in particular M dwarfs and white dwarfs. In total, we found 207 candidates, the vast majority of which appear to be in eclipsing binary systems. The catalog described in this paper includes 42 candidate M dwarf/white dwarf pairs, four white dwarf pairs, 59 systems whose colors indicate they are composed of two M dwarfs and whose light-curve shapes suggest they are in detached eclipsing binaries, and 28 M dwarf systems whose light-curve shapes suggest they are in contact binaries. We find no detached systems with periods longer than 3 days, thus the majority of our sources are likely to have experienced orbital spin-up and enhanced magnetic activity. Indeed, 26 of 27 M dwarf systems that we have spectra for show signs of chromospheric magnetic activity, far higher than the 24% seen in field stars of the same spectral type. We also find binaries composed of stars that bracket the expected boundary between partially and fully convective interiors, which will allow the measurement of the stellar mass-radius relationship across this transition. The majority of our contact systems have short orbital periods, with small variance (0.02 days) in the sample near the observed cutoff of 0.22 days. The accumulation of these stars at short orbital period suggests that the process of angular momentum loss, leading to period evolution, becomes less efficient at short periods. These short-period systems are in a novel regime for studying the effects of orbital spin-up and enhanced magnetic activity, which are thought to be the source of discrepancies between mass-radius predictions and measurements of these properties in eclipsing

  11. Excitation of Neutron Star f-mode in Low Mass X-ray Binaries

    International Nuclear Information System (INIS)

    Araujo, J C N de; Miranda, O D; Aguiar, O D

    2006-01-01

    Neutron Stars (NSs) present a host of pulsation modes. Only a few of them, however, is of relevance from the gravitational wave (GW) point of view. Among the various possible modes the pulsation energy is mostly stored in the f-mode in which the fluid parameters undergo the largest changes. An important question is how the pulsation modes are excited in NSs. Here we consider the excitation of the f-mode in the accreting NSs belonging to Low Mass X-ray Binaries (LMXBs), which may well be a recurrent source of GWs, since the NSs are continuously receiving matter from their companion stars. We also discuss the detectability of the GWs for the scenario considered here

  12. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Guo Yicheng; Giavalisco, Mauro; Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer; Hathi, Nimish P.; Huang, Kuang-Han; Newman, Jeffrey A.

    2012-01-01

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 10 M ☉ and have specific star formation rates (SFRs) above 1/t H . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to ∼20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z ∼ 1 and z ∼ 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  13. Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars

    Science.gov (United States)

    2004-05-01

    Massive Star Observed that Forms through a Rotating Accretion Disc Summary Based on a large observational effort with different telescopes and instruments, mostly from the European Southern Observatory (ESO), a team of European astronomers [1] has shown that in the M 17 nebula a high mass star [2] forms via accretion through a circumstellar disc, i.e. through the same channel as low-mass stars. To reach this conclusion, the astronomers used very sensitive infrared instruments to penetrate the south-western molecular cloud of M 17 so that faint emission from gas heated up by a cluster of massive stars, partly located behind the molecular cloud, could be detected through the dust. Against the background of this hot region a large opaque silhouette, which resembles a flared disc seen nearly edge-on, is found to be associated with an hour-glass shaped reflection nebula. This system complies perfectly with a newly forming high-mass star surrounded by a huge accretion disc and accompanied by an energetic bipolar mass outflow. The new observations corroborate recent theoretical calculations which claim that stars up to 40 times more massive than the Sun can be formed by the same processes that are active during the formation of stars of smaller masses. PR Photo 15a/04: Stellar cluster and star-forming region M 17 (also available without text inside photo) PR Photo 15b/04: Silhouette disc seen in M 17 PR Photo 15c/04: Rotation of the disc in M 17. PR Photo 15d/04: Bipolar reflection nebula and silhouette disc of a young, massive star in M 17 PR Photo 15e/04: Optical spectrum of the bipolar nebula. PR Video 03/04: Zooming in onto the disc. The M 17 region ESO PR Photo 15a/04 ESO PR Photo 15a/04 [Preview - JPEG: 400 x 497 pix - 271k] [Normal - JPEG: 800 x 958 pix - 604k] ESO PR Photo 15a1/04 ESO PR Photo 15a/04 (without text within photo) [Preview - JPEG: 400 x 480 pix - 275k] [Normal - JPEG: 800 x 959 pix - 634k] [High-Res - JPEG: 3000 x 3597 pix - 3.8M] [Full-Res - JPEG

  14. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    Science.gov (United States)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-05-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  15. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  16. How massive the Wolf-Rayet stars are

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1981-01-01

    If the Wolf-Rayet stars are produced by the evolution of massive stars with mass loss (Paczynski 1967, Conti 1976) from O stars to WN stars and thereafter to WC stars, then we may expect to observe a correlation of decreasing mean masses in the same sense as the evolution. Information about the masses of WR stars are obtained from studies of binary systems with WR components. (Auth.)

  17. The Impact of Star Formation Histories on Stellar Mass Estimation: Implications from the Local Group Dwarf Galaxies

    Science.gov (United States)

    Zhang, Hong-Xin; Puzia, Thomas H.; Weisz, Daniel R.

    2017-11-01

    Building on the relatively accurate star formation histories (SFHs) and metallicity evolution of 40 Local Group (LG) dwarf galaxies derived from resolved color-magnitude diagram modeling, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-near-IR color-mass-to-light ratio (color-{log}{{{\\Upsilon }}}\\star (λ)) distributions and M ⋆ estimation of local universe galaxies. We find that (1) the LG galaxies follow color-{log}{{{\\Upsilon }}}\\star (λ) relations that fall in between the ones calibrated by previous studies; (2) optical color-{log}{{{\\Upsilon }}}\\star (λ) relations at higher [M/H] are generally broader and steeper; (3) the SFH “concentration” does not significantly affect the color-{log}{{{\\Upsilon }}}\\star (λ) relations; (4) light-weighted ages }λ and metallicities }λ together constrain {log}{{{\\Upsilon }}}\\star (λ) with uncertainties ranging from ≲0.1 dex for the near-IR up to 0.2 dex for the optical passbands; (5) metallicity evolution induces significant uncertainties to the optical but not near-IR {{{\\Upsilon }}}\\star (λ) at a given }λ and }λ ; (6) the V band is the ideal luminance passband for estimating {{{\\Upsilon }}}\\star (λ) from single colors, because the combinations of {{{\\Upsilon }}}\\star (V) and optical colors such as B - V and g - r exhibit the weakest systematic dependences on SFHs, metallicities, and dust extinction; and (7) without any prior assumption on SFHs, M ⋆ is constrained with biases ≲0.3 dex by the optical-to-near-IR SED fitting. Optical passbands alone constrain M ⋆ with biases ≲0.4 dex (or ≲0.6 dex) when dust extinction is fixed (or variable) in SED fitting. SED fitting with monometallic SFH models tends to underestimate M ⋆ of real galaxies. M ⋆ tends to be overestimated (or underestimated) at the youngest (or oldest) }{mass}.

  18. Big Fish in Small Ponds: massive stars in the low-mass clusters of M83

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J. E.; Calzetti, D.; McElwee, Sean [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Chandar, R. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Elmegreen, B. G. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Lee, J. C.; Whitmore, B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); O' Connell, R. W., E-mail: jandrews@astro.umass.edu, E-mail: callzetti@astro.umass.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-09-20

    We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages ≤ 8 Myr. As in earlier papers on M51 and NGC 4214, the uIMF in M83 is consistent with a universal IMF, and stochastic sampling of the stellar populations in the ∼<10{sup 3} M {sub ☉} clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.

  19. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  20. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  1. Burn out or fade away? On the X-ray and magnetic death of intermediate mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J. [Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138 (United States); Braithwaite, Jonathan, E-mail: jdrake@cfa.harvard.edu [Argelander Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-05-10

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L{sub X} ≤ 1.3 × 10{sup 27} erg s{sup –1}. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 10{sup 25} erg s{sup –1}. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  2. Evolution of massive stars with mass loss: surface abundances

    International Nuclear Information System (INIS)

    Greggio, L.

    1984-01-01

    The location of theoretical stellar models in the upper part of the Hertzsprung-Russell diagram depends on a variety of poorly understood physical processes which may occur during the evolution of massive stars. The comparison between theoretical predictions and observations of the surface chemical composition of these objects can help in understanding their evolution and to set more stringent limits to the mentioned parameters. To this end, evolutionary sequences corresponding to 20, 40 and 60 solar masses have been computed up to core He exhaustion, following in detail the abundance variations of CNO, Ne and Mg isotopes. (Auth.)

  3. Stars Spring up Out of the Darkness

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Stars Spring up Out of the Darkness This artist's animation illustrates the universe's early years, from its explosive formation to its dark ages to its first stars and mini-galaxies. Scientists using NASA's Spitzer Space Telescope found patches of infrared light splattered across the sky that might be the collective glow of clumps of the universe's first objects. Astronomers do not know if these first objects were stars or 'quasars,' which are black holes voraciously consuming surrounding gas. The movie begins with a flash of color that represents the birth of the universe, an explosion called the Big Bang that occurred about 13.7 billion years ago. A period of darkness ensues, where gas begins to clump together. The universe's first stars are then shown springing up out of the gas clumps, flooding the universe with light, an event that probably happened about a few hundred million years after the Big Bang. Though these first stars formed out of gas alone, their deaths seeded the universe with the dusty heavy chemical elements that helped create future generations of stars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. They grouped together into mini-galaxies, which then merged to form galaxies like our own mature Milky Way galaxy. The first quasars, not shown here, ultimately became the centers of powerful galaxies that are more common in the distant universe.

  4. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  5. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  6. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  7. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    International Nuclear Information System (INIS)

    Cristallo, S.; Domínguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-01-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10 –3 ≤ Z ≤ 2 × 10 –2 , is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  8. Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS

    Science.gov (United States)

    André, Ph.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; Dubreuil, D.; Lortholary, M.; Martignac, J.; Talvard, M.; Delisle, C.; Visticot, F.; Dumaye, L.; De Breuck, C.; Shimajiri, Y.; Motte, F.; Bontemps, S.; Hennemann, M.; Zavagno, A.; Russeil, D.; Schneider, N.; Palmeirim, P.; Peretto, N.; Hill, T.; Minier, V.; Roy, A.; Rygl, K. L. J.

    2016-07-01

    Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ~0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims: In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 μm. Methods: We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 μm with Herschel/HOBYS data at 70-500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8″ or Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The final ArTéMiS+SPIRE 350 μm map (Fig. 1b) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A54

  9. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Romeo Velonà, A. D.; Gavignaud, I.; Meza, A.; Sommer-Larsen, J.; Napolitano, N. R.; Antonuccio-Delogu, V.; Cielo, S.

    2013-01-01

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M * plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies

  10. A new carbon-symbiotic star in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Cowley, A.P.; Hartwick, F.D.A.

    1989-01-01

    A new carbon-symbiotic star, designated as CH-95, was discovered during a study of the kinematics of CH stars in the LMC. The spectrum of CH-95 is presented. Some of the strong emission lines found include H, He I, He II, forbidden O III, and the broad C III/N III blend at 4640 A, often seen in compact systems such as X-ray binaries. A comparison was made with other C-star symbiotics in the LMC, SMC, and Draco. 12 refs

  11. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  12. Linking the formation of molecular clouds and high-mass stars: a multi-tracer and multi-scale study

    International Nuclear Information System (INIS)

    Nguyen-Luong, Quang

    2012-01-01

    Star formation is a complex process involving many physical processes acting from the very large scales of the galaxy to the very small scales of individual stars. Among the highly debated topics, the gas to star-formation-rate (SFR) relation is an interesting topic for both the galactic and extragalactic communities. Although it is studied extensively for external galaxies, how this relation behaves with respect to the molecular clouds of the Milky Way is still unclear. The detailed mechanisms of the formation of molecular clouds and stars, especially high-mass stars, are still not clear. To tackle these two questions, we investigate the molecular cloud formation and the star formation activities in the W43 molecular cloud complex and the G035.39-00.33 filament. The first goal is to infer the connections of the gas-SFR relations of these two objects to those of other galactic molecular clouds and to extragalactic ones. The second goal is to look for indications that the converging flows theory has formed the W43 molecular cloud since it is the first theory to explain star formation self-consistently, from the onset of molecular clouds to the formation of seeds of (high-mass) stars. We use a large dataset of continuum tracers at 3.6--870 μm extracted from Galaxy-wide surveys such as HOBYS, EPOS, Hi-GAL, ATLASGAL, GLIMPSE, and MIPSGAL to trace the cloud structure, mass and star formation activities of both the W43 molecular cloud complex and the G035.39-00.33 filament. To explore the detailed formation mechanisms of the molecular cloud in W43 from low-density to very high-density gas, we take advantage of the existing H_I, "1"3CO 1-0 molecular line data from the VGPS and GRS surveys in combination with the new dedicated molecular line surveys with the IRAM 30 m. We characterise the W43 molecular complex as being a massive complex (M(total) ∼ 7.1 *10"6 M. over spatial extent of ∼ 140 pc), which has a high concentration of dense clumps (M(clumps) ∼ 8.4*10"5 M

  13. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  14. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Guo Yicheng; Giavalisco, Mauro [Astronomy Department, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hathi, Nimish P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); and others

    2012-07-10

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 < z < 1.5 and 326 SFGs at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10{sup 10} M{sub Sun} and have specific star formation rates (SFRs) above 1/t{sub H} . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to {approx}20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z {approx} 1 and z {approx} 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  15. AGB stellar evolution and symbiotic stars

    International Nuclear Information System (INIS)

    Schild, H.

    1989-01-01

    Published data on the mass loss rates and periods of Miras and OH/IR stars have been compiled. There is a good correlation between mass loss rate and period and a smooth transition from Miras to OH/IR sources. At periods below 600 d. the mass loss increases exponentially but at longer periods it remains constant. As a Mira evolves from short to longer periods, its mass loss rate increases dramatically. Phenomenologically, the object evolves from a classical Mira into a variable OH/IR source. Symbiotic stars cluster in the transition zone where Miras transform into OH/IR stars and mass loss increase is at its steepest. The red star in these symbiotic systems is in the same evolutionary status as short periodic OH/IR stars. (author)

  16. Yunnan-III models for evolutionary population synthesis

    Science.gov (United States)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands

  17. Weighing the Smallest Stars

    Science.gov (United States)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  18. On the mass of rotating stars in Newtonian gravity and GR

    International Nuclear Information System (INIS)

    Reina, Borja; Vera, Raül

    2016-01-01

    We show how the correction to the calculation of the mass in the original relativistic model of a rotating star by Hartle (1967 Astrophys. J. 150 1005–29), found recently by Reina and Vera (2015 Class. Quantum Grav. 32 155008), appears in the Newtonian limit, and that the correcting term is indeed present, albeit hidden, in the original Newtonian approach by Chandrasekhar (1933 Mon. Not. Roy. Astr. Soc. 93 390–406). (note)

  19. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  20. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  1. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cong [School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000 (China); Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  2. Life and death of the stars

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    This volume is devoted to one of the fascinating things about stars: how they evolve as they age. This evolution is different for stars of different masses. How stars end their lives when their supply of energy is exhausted also depends on their masses. Interestingly, astronomers conjectured about the ultimate fate of the stars even before the details of their evolution became clear. Part I of this book gives an account of the remarkable predictions made during the 1920s and 1930s concerning the ultimate fate of stars. Since much of this development hinged on quantum physics that emerged during this time, a detailed introduction to the relevant physics is included in the book. Part II is a summary of the life history of stars. This discussion is divided into three parts: low-mass stars, like our Sun, intermediate-mass stars, and massive stars. Many of the concepts of contemporary astrophysics were built on the foundation erected by Subrahmanyan Chandrasekhar in the 1930s. This book, written during his birth c...

  3. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  4. The cooling, mass and radius of the neutron star in EXO 0748-676 in quiescence with XMM-Newton

    NARCIS (Netherlands)

    Cheng, Zheng; Méndez, Mariano; Díaz-Trigo, María; Costantini, Elisa

    2017-01-01

    We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748-676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per cent confidence the power law contributes less than

  5. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  6. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  7. NEAR-INFRARED SPECTROSCOPY OF LOW-MASS X-RAY BINARIES: ACCRETION DISK CONTAMINATION AND COMPACT OBJECT MASS DETERMINATION IN V404 Cyg AND Cen X-4

    International Nuclear Information System (INIS)

    Khargharia, Juthika; Froning, Cynthia S.; Robinson, Edward L.

    2010-01-01

    We present near-infrared (NIR) broadband (0.80-2.42 μm) spectroscopy of two low-mass X-ray binaries: V404 Cyg and Cen X-4. One important parameter required in the determination of the mass of the compact objects in these systems is the binary inclination. We can determine the inclination by modeling the ellipsoidal modulations of the Roche-lobe filling donor star, but the contamination of the donor star light from other components of the binary, particularly the accretion disk, must be taken into account. To this end, we determined the donor star contribution to the infrared flux by comparing the spectra of V404 Cyg and Cen X-4 to those of various field K-stars of known spectral type. For V404 Cyg, we determined that the donor star has a spectral type of K3 III. We determined the fractional donor contribution to the NIR flux in the H and K bands as 0.98 ± 0.05 and 0.97 ± 0.09, respectively. We remodeled the H-band light curve from Sanwal et al. after correcting for the donor star contribution to obtain a new value for the binary inclination. From this, we determined the mass of the black hole in V404 Cyg to be M BH = 9.0 +0.2 -0.6 M sun . We performed the same spectral analysis for Cen X-4 and found the spectral type of the donor star to be in the range K5-M1 V. The donor star contribution in Cen X-4 is 0.94 ± 0.14 in the H band while in the K band, the accretion disk can contribute up to 10% of the infrared flux. We remodeled the H-band light curve from Shahbaz et al., again correcting for the fractional contribution of the donor star to obtain the inclination. From this, we determined the mass of the neutron star as M NS = 1.5 +0.1 -0.4 M sun . However, the masses obtained for both systems should be viewed with some caution since contemporaneous light curve and spectral data are required to obtain definitive masses.

  8. Dust discs around low-mass main-sequence stars

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Walker, H.J.

    1988-01-01

    Current understanding of the formation of circumstellar discs as a natural accompaniment to the process of low-mass star formation is briefly reviewed. Models of the thermal emission from the dust discs around the prototype stars α Lyr, α PsA, β Pic and ε Eri are discussed, which indicate that the central regions of three of these discs are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest dust lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud that sweeps up grains crossing its orbit. The colour, diameter and thickness of the optical image of β Pic, obtained by coronagraphic techniques, have provided further information on the size, radial distribution of number density and orbital inclination of the grains. The difference in surface brightness on the two sides of the disc is puzzling, but might be explained if the grains are elongated and aligned by the combined effects of a stellar wind and a magnetic field of spiral configuration. Finally, we discuss the orbital evolution and lifetimes of particles in these discs, which are governed primarily by radiation pressure, Poynting-Robertson drag and grain-grain collisions. (author)

  9. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  10. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  11. Graviton mass bounds from an analysis of bright star trajectories at the Galactic Center

    Directory of Open Access Journals (Sweden)

    Zakharov Alexander

    2017-01-01

    Full Text Available In February 2016 the LIGO & VIRGO collaboration reported the discovery of gravitational waves in merging black holes, therefore, the team confirmed GR predictions about an existence of black holes and gravitational waves in the strong gravitational field limit. Moreover, in their papers the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10−22 eV (Abbott et al. 2016. So, the authors concluded that their observational data do not show any violation of classical general relativity. We show that an analysis of bright star trajectories could constrain graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and the estimate is consistent with the one obtained by the LIGO & VIRGO collaboration. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a useful tool to obtain constraints on the fundamental gravity law such as modifications of the Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we obtain bounds on a graviton mass.

  12. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  13. Observational tests of convective core overshooting in stars of intermediate to high mass in the Galaxy

    Science.gov (United States)

    Stothers, Richard B.

    1991-01-01

    This study presents the results of 14 tests for the presence of convective overshooting in large convecting stellar cores for stars with masses of 4-17 solar masses which are members of detached close binary systems and of open clusters in the Galaxy. A large body of theoretical and observational data is scrutinized and subjected to averaging in order to minimize accidental and systematic errors. A conservative upper limit of d/HP less than 0.4 is found from at least four tests, as well as a tighter upper limit of d/HP less than 0.2 from one good test that is subject to only mild restrictions and is based on the maximum observed effective temperature of evolved blue supergiants. It is concluded that any current uncertainty about the distance scale for these stars is unimportant in conducting the present tests for convective core overshooting. The correct effective temperature scale for the B0.5-B2 stars is almost certainly close to one of the proposed hot scales.

  14. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  15. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    Science.gov (United States)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  16. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  17. Wolf--Rayet stars of M33

    International Nuclear Information System (INIS)

    Corso, G.J. Jr.

    1975-01-01

    A comprehensive study of the 54 known Wolf--Rayet stars of M33 is undertaken with the intention of improving our knowledge of the Wolf--Rayet phenomenon, identifying significant features of their distribution in an Sc galaxy, and discerning possible trends in the variation of chemical composition of the interstellar medium from place to place within that galaxy. Thirty-seven of these stars were classified for the first time into carbon and nitrogen sequences on the basis of photographic photometry of image tube plates obtained with the Kitt Peak 84-inch telescope and an ITT magnetically focused image tube equipped with a set of narrow-band interference filters designed to isolate the broad emission features between 4640 A and 4686 A due to N III, C III-IV, and He II. The subclasses WC6-9, missing in the Large Magellanic Cloud, were found in M33, although there is a tendency for the known stars of both sequences to belong to the high-excitation subclasses. The distribution of these stars was compared with the distributions of luminous blue stars, dust, and H II regions. Star counts on the image tube plates indicated that one out of every 75 stars in M33 brighter than M/sub B/ = --4.5 is a Wolf--Rayet star

  18. A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527

    International Nuclear Information System (INIS)

    Biller, Beth; Benisty, Myriam; Chauvin, Gael; Olofsson, Johan; Pott, Jörg-Uwe; Müller, André; Bonnefoy, Mickaël; Henning, Thomas; Lacour, Sylvestre; Thebault, Philippe; Juhász, Attila; Sicilia-Aguilar, Aurora; Tuthill, Peter; Crida, Aurelien

    2012-01-01

    With the uniquely high contrast within 0.''1 (Δmag(L') = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 ± 5 mas (12.8 ± 1.5 AU at 145 pc) and flux ratios in H, K, and L' of 0.016 ± 0.007, 0.012 ± 0.008, and 0.0086 ± 0.0011, respectively (3σ errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of ∼0.1-0.4 M ☉ . HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.

  19. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  20. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.